JP6961980B2 - Composite active material for lithium secondary battery and its manufacturing method - Google Patents

Composite active material for lithium secondary battery and its manufacturing method Download PDF

Info

Publication number
JP6961980B2
JP6961980B2 JP2017068998A JP2017068998A JP6961980B2 JP 6961980 B2 JP6961980 B2 JP 6961980B2 JP 2017068998 A JP2017068998 A JP 2017068998A JP 2017068998 A JP2017068998 A JP 2017068998A JP 6961980 B2 JP6961980 B2 JP 6961980B2
Authority
JP
Japan
Prior art keywords
active material
carbon
graphite
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017068998A
Other languages
Japanese (ja)
Other versions
JP2018170246A (en
Inventor
日出彦 三崎
俊祐 八ツ波
雅則 向後
徹 津吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2017068998A priority Critical patent/JP6961980B2/en
Publication of JP2018170246A publication Critical patent/JP2018170246A/en
Application granted granted Critical
Publication of JP6961980B2 publication Critical patent/JP6961980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池用複合活物質およびその製造方法に関するものである。 The present invention relates to a composite active material for a lithium secondary battery and a method for producing the same.

電子材料の小型軽量化、および、HEVまたはEVの開発の進展に伴い、大容量、高速充放電特性、良好なサイクル特性、かつ安全性に優れた電池の開発の要望は益々増大している。なかでも、リチウムイオン二次電池(リチウム二次電池)が最も有望な電池として注目されている。 With the miniaturization and weight reduction of electronic materials and the progress of development of HEVs or EVs, there is an increasing demand for the development of batteries having a large capacity, high-speed charge / discharge characteristics, good cycle characteristics, and excellent safety. Among them, lithium ion secondary batteries (lithium secondary batteries) are attracting attention as the most promising batteries.

しかしながら、優れた性能を示すリチウム二次電池が開発される前提として、各種性能に優れた負極材料、正極材料、電解液、セパレータ、または集電体などが開発され、且つ、それらの特性を十分に生した電池設計がなされなくてはならない。 However, as a prerequisite for the development of a lithium secondary battery exhibiting excellent performance, a negative electrode material, a positive electrode material, an electrolytic solution, a separator, a current collector, etc. having excellent various performances have been developed, and their characteristics are sufficiently exhibited. The battery design must be made.

なかでも、負極材料は基本的な電池特性を決定するものであるため、充放電容量などの特性がより優れる材料の開発が活発に行われている。例えば、特許文献1では、大充放電容量、高速充放電特性、および良好なサイクル特性を併せ持ったリチウム二次電池の作製が可能なリチウム二次電池用複合活物質、並びに、その製造方法が開示されている。同様に金属元素を添加することで、高い充放電容量を有しながら、タールピッチ由来の炭素質を含ませたリチウム二次電池用複合活物質が開示されている(例えば特許文献2参照)。 Among them, since the negative electrode material determines the basic battery characteristics, the development of materials having more excellent characteristics such as charge / discharge capacity is being actively carried out. For example, Patent Document 1 discloses a composite active material for a lithium secondary battery capable of producing a lithium secondary battery having a large charge / discharge capacity, high-speed charge / discharge characteristics, and good cycle characteristics, and a method for producing the same. Has been done. Similarly, by adding a metal element, a composite active material for a lithium secondary battery containing a carbon substance derived from tar pitch while having a high charge / discharge capacity is disclosed (see, for example, Patent Document 2).

しかし、金属元素を添加したリチウム二次電池用複合活物質は、充放電容量などの特性が優れるが、充放電サイクル寿命が低下し易い問題があった。そのため、ソフトカーボンを含ませた複合活物質により、充放電サイクル寿命を改善した複合活物質も開示されている(例えば特許文献3参照)。 However, although the composite active material for a lithium secondary battery to which a metal element is added has excellent characteristics such as charge / discharge capacity, there is a problem that the charge / discharge cycle life tends to be shortened. Therefore, a composite active material containing soft carbon to improve the charge / discharge cycle life is also disclosed (see, for example, Patent Document 3).

しかしながら、これらの方法でも長いサイクルを実施した場合には、不可逆な膨張の抑制は不十分であった。 However, even with these methods, the suppression of irreversible expansion was insufficient when a long cycle was carried out.

特許第5227483号公報Japanese Patent No. 5227483 特許第3289231号公報Japanese Patent No. 3289231 特許第4281099号公報Japanese Patent No. 4281099

一方、近年、電池の使用安全性の点から、充放電を繰り返した後においても電極材料の体積が膨張しないことが求められている。電極材料の体積膨張が大きいと、電解液の液漏れの発生や、電池の寿命の低下が引き起こされる。また、近年、電池材料に対する要求特性が非常に高まってきており、サイクル特性に対する要求水準もより一層高まっている。また、電池設計の観点から、充電時の電極材料の体積膨脹低減の要望も高まっている。 On the other hand, in recent years, from the viewpoint of battery use safety, it has been required that the volume of the electrode material does not expand even after repeated charging and discharging. If the volume expansion of the electrode material is large, the electrolytic solution leaks and the battery life is shortened. Further, in recent years, the required characteristics for battery materials have been greatly increased, and the required levels for cycle characteristics have been further increased. Further, from the viewpoint of battery design, there is an increasing demand for reducing the volume expansion of the electrode material during charging.

本発明者らは、上述した特許文献1に記載の製造方法に従って、リチウムイオンと化合可能な電池活物質としてシリコンを含むリチウム二次電池用複合活物質を製造して、得られたリチウム二次電池用複合活物質を含む電極材料(例えば、負極材料)の膨張特性について評価を行ったところ、数サイクル後にはリチウムとシリコンの合金化に伴う理論的な膨張以上の不可逆的な大きな体積の膨張が認められ、更なる改良が必要であることを知見した。また、サイクル特性に関しては、従来の要求レベルは満たすものの、昨今のより高い要求レベルを満たしておらず、更なる改良が必要であった。また充電時にはリチウムとシリコンの合金化に伴う理論的な膨脹に伴う、電極の体積膨脹が認められ、電池設計の観点からも更なる改良が必要であった。 The present inventors produced a composite active material for a lithium secondary battery containing silicon as a battery active material capable of combining with lithium ions according to the production method described in Patent Document 1 described above, and obtained the lithium secondary. When the expansion characteristics of an electrode material containing a composite active material for a battery (for example, a negative electrode material) were evaluated, after several cycles, an irreversible large volume expansion beyond the theoretical expansion associated with the alloying of lithium and silicon was performed. Was observed, and it was found that further improvement was necessary. Further, regarding the cycle characteristics, although the conventional required level is satisfied, the higher required level of recent years is not satisfied, and further improvement is required. Further, during charging, the volume expansion of the electrode was observed due to the theoretical expansion due to the alloying of lithium and silicon, and further improvement was required from the viewpoint of battery design.

本発明は、上記実情に鑑みて、充電時の体積膨脹及び、充放電を繰り返した後でも体積膨張が抑制された電極材料の作製が可能で、かつ、優れたサイクル特性を示すリチウム二次電池の作製が可能なリチウム二次電池用複合活物質およびその製造方法を提供することを課題とする。 In view of the above circumstances, the present invention is a lithium secondary battery capable of producing an electrode material in which volume expansion is suppressed during charging and volume expansion is suppressed even after repeated charging and discharging, and exhibits excellent cycle characteristics. It is an object of the present invention to provide a composite active material for a lithium secondary battery capable of producing the same, and a method for producing the same.

また、本発明は、上記リチウム二次電池用複合活物質を含むリチウム二次電池を提供することも課題とする。 Another object of the present invention is to provide a lithium secondary battery containing the above-mentioned composite active material for a lithium secondary battery.

本発明者らは、従来技術について鋭意検討を行った結果、以下の構成によって上記課題を解決できることを見出した。
(1)SiまたはSi合金と、黒鉛薄層とSiまたはSi合金の間や、黒鉛薄層と黒鉛薄層間、SiまたはSi合金とSiまたはSi合金間に空隙を有し、空隙率が2〜50%であるリチウム二次電池用複合活物質。
(2)活物質の平均粒径(D50)が1〜40μm、比表面積が0.5〜45m/g、平均細孔径が10〜40nm、開気孔体積が0.06cm/g以下である(1)に記載のリチウム二次電池用複合活物質。
(3)前記SiまたはSi合金の平均粒径(D50)が0.01〜5μmであり、炭素が少なくとも活物質表面を覆っていることを特徴とする(1)又は(2)に記載のリチウム二次電池用複合活物質。
(4)前記SiまたはSi合金が、炭素と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っており、最外層の表面を炭素が覆っている(1)又は(2)に記載のリチウム二次電池用複合活物質。
(5)前記SiまたはSi合金の含有量が10〜80質量部、前記炭素の含有量が90〜10質量部である(1)〜(4)のいずれかに記載のリチウム二次電池用複合活物質。
(6)SiまたはSi合金、炭素前駆体、空隙形成材、と必要に応じて黒鉛を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程及び/又は空隙形成材を溶媒中での溶解によって除去する工程、炭素前駆体と該複合粒子もしくは焼成粉とを混合する工程及びその混合物を不活性雰囲気中で加熱する事で炭素膜を焼成粉もしくは炭素被覆した複合粒子を得る工程を含む、(1)〜(5)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(7)(6)で得られた炭素被覆した複合粒子、球形化した複合粒子もしくは焼成粉と炭素前駆体とを不活性雰囲気中で焼成し炭素膜を複合粒子もしくは焼成粉の内外に被覆する工程を行う、(6)に記載のリチウム二次電池用複合活物質の製造方法。
(8)気相で被覆する工程の後、粉砕および球形処理した粉体もしくは焼成粉もしくは炭素被覆した粉体を風力分級する工程を行う、(6)又は(7)に記載のリチウム二次電池用複合活物質の製造方法。
(9)複合粒子及び焼成粉を炭素前駆体と共に不活性雰囲気中で焼成する工程及び炭素前駆体を不活性雰囲気中で加熱する事で炭素膜を焼成粉もしくは炭素被覆した複合粒子もしくは炭素被覆した焼成粉の内外に気相で被覆する工程の温度が、それぞれ300〜1200℃である、(7)〜(9)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(10)(1)〜(5)のいずれかに記載のリチウム二次電池用複合活物質を含むリチウム二次電池。
As a result of diligent studies on the prior art, the present inventors have found that the above problems can be solved by the following configurations.
(1) There are voids between the Si or Si alloy and the graphite thin layer and the Si or Si alloy, between the graphite thin layer and the graphite thin layer, and between the Si or Si alloy and the Si or Si alloy, and the void ratio is 2. ~ 50% composite active material for lithium secondary batteries.
(2) The average particle size (D50) of the active material is 1 to 40 μm, the specific surface area is 0.5 to 45 m 2 / g, the average pore diameter is 10 to 40 nm, and the open pore volume is 0.06 cm 3 / g or less. The composite active material for a lithium secondary battery according to (1).
(3) Lithium according to (1) or (2), wherein the average particle size (D50) of the Si or Si alloy is 0.01 to 5 μm, and carbon at least covers the surface of the active material. Composite active material for secondary batteries.
(4) The Si or Si alloy has a structure sandwiched between carbon thin layers of graphite having a thickness of 0.2 μm or less, and the structure spreads in a laminated and / or mesh pattern, and the graphite thin layers are spread. The composite active material for a lithium secondary battery according to (1) or (2), wherein the active material particles are curved near the surface of the active material particles to cover the active material particles, and the surface of the outermost layer is covered with carbon.
(5) The composite for a lithium secondary battery according to any one of (1) to (4), wherein the content of the Si or Si alloy is 10 to 80 parts by mass, and the content of the carbon is 90 to 10 parts by mass. Active material.
(6) A step of mixing Si or Si alloy, a carbon precursor, a void forming material, and graphite as necessary, a step of granulating and compacting, and a substantially spherical composite by pulverizing and spheroidizing the mixture. A step of forming particles, a step of calcining the composite particles in an inert atmosphere, and / or a step of removing the void forming material by dissolution in a solvent, and mixing the carbon precursor with the composite particles or calcined powder. The composite for a lithium secondary battery according to any one of (1) to (5), which comprises a step of obtaining a composite particle having a carbon film coated with a calcined powder or carbon by heating the step and a mixture thereof in an inert atmosphere. Manufacturing method of active material.
(7) The carbon-coated composite particles, spherical composite particles or calcined powder obtained in (6) and the carbon precursor are calcined in an inert atmosphere to coat the inside and outside of the composite particles or calcined powder with a carbon film. The method for producing a composite active material for a lithium secondary battery according to (6), wherein the step is performed.
(8) The lithium secondary battery according to (6) or (7), wherein after the step of coating with a vapor phase, a step of wind classifying the crushed and spherically treated powder or calcined powder or carbon-coated powder is performed. A method for producing a composite active material for use.
(9) A step of calcining the composite particles and the calcined powder together with the carbon precursor in an inert atmosphere and heating the carbon precursor in the inert atmosphere to coat the carbon film with the calcined powder or the carbon-coated composite particles or carbon. The method for producing a composite active material for a lithium secondary battery according to any one of (7) to (9), wherein the temperature of the step of coating the inside and outside of the calcined powder with the gas phase is 300 to 1200 ° C., respectively.
(10) A lithium secondary battery containing the composite active material for the lithium secondary battery according to any one of (1) to (5).

本発明によれば、充電時の体積膨脹及び、充放電を繰り返した後でも体積膨張が抑制された電極材料の作製が可能で、かつ、優れたサイクル特性を示すリチウム二次電池の作製が可能なリチウム二次電池用複合活物質およびその製造方法を提供することができる。 According to the present invention, it is possible to manufacture an electrode material in which volume expansion during charging and volume expansion is suppressed even after repeated charging and discharging, and it is possible to manufacture a lithium secondary battery exhibiting excellent cycle characteristics. A composite active material for a lithium secondary battery and a method for producing the same can be provided.

また、本発明によれば、上記リチウム二次電池用複合活物質を含むリチウム二次電池を提供することもできる。 Further, according to the present invention, it is also possible to provide a lithium secondary battery containing the composite active material for the lithium secondary battery.

以下に、本発明のリチウム二次電池用複合活物質およびその製造方法について詳述する。 Hereinafter, the composite active material for a lithium secondary battery of the present invention and a method for producing the same will be described in detail.

本発明のリチウム二次電池用複合活物質は、SiまたはSi合金と、黒鉛薄層とSiまたはSi合金の間や、黒鉛薄層と黒鉛薄層間に空隙を有し、空隙率が2〜50%、好ましくは4〜50%、特に好ましくは10〜50%であり、該空隙を有することにより、充電時の体積膨脹を抑制し、またすぐれたサイクル特性を有するものである。 The composite active material for a lithium secondary battery of the present invention has voids between a Si or Si alloy and a graphite thin layer and a Si or Si alloy, or between a graphite thin layer and a graphite thin layer, and has a porosity of 2 to 2. It is 50%, preferably 4 to 50%, particularly preferably 10 to 50%, and having the voids suppresses volume expansion during charging and has excellent cycle characteristics.

リチウム二次電池用複合活物質の粒径(D50:50%体積粒径)は特に制限されないが、本発明の効果がより優れる点で、2〜40μmが好ましく、5〜35μmがより好ましく、5〜30μmがさらに好ましい。 The particle size (D50: 50% volume particle size) of the composite active material for a lithium secondary battery is not particularly limited, but 2 to 40 μm is preferable, and 5 to 35 μm is more preferable, because the effect of the present invention is more excellent. ~ 30 μm is more preferable.

なお、粒径(D90:90%体積粒径)は特に制限されないが、本発明の効果がより優れる点で、10〜75μmが好ましく、10〜60μmがより好ましく、20〜45μmがさらに好ましい。 The particle size (D90: 90% volume particle size) is not particularly limited, but 10 to 75 μm is preferable, 10 to 60 μm is more preferable, and 20 to 45 μm is further preferable, in that the effect of the present invention is more excellent.

さらに、粒径(D10:10%体積粒径)は特に制限されないが、本発明の効果がより優れる点で、1〜20μmが好ましく、2〜10μmがより好ましい。 Further, the particle size (D10: 10% volume particle size) is not particularly limited, but 1 to 20 μm is preferable, and 2 to 10 μm is more preferable, because the effect of the present invention is more excellent.

D10、D50およびD90は、レーザー回折散乱法により測定した累積粒度分布の微粒側から累積10%、累積50%、累積90%の粒径にそれぞれ該当する。 D10, D50 and D90 correspond to the cumulative 10%, cumulative 50% and cumulative 90% particle sizes from the fine particle side of the cumulative particle size distribution measured by the laser diffraction scattering method, respectively.

なお、測定に際しては、リチウム二次電池用複合活物質を液体に加えて超音波などを利用しながら激しく混合し、作製した分散液を装置にサンプルとして導入し、測定を行う。液体としては作業上、水やアルコール、低揮発性の有機溶媒を用いることが好ましい。この時、得られる粒度分布図は正規分布を示すことが好ましい。 At the time of measurement, the composite active material for a lithium secondary battery is added to the liquid and vigorously mixed using ultrasonic waves or the like, and the prepared dispersion liquid is introduced into the apparatus as a sample to perform the measurement. As the liquid, it is preferable to use water, alcohol, or a low volatility organic solvent for work. At this time, it is preferable that the obtained particle size distribution map shows a normal distribution.

本発明のリチウム二次電池用複合活物質は、比表面積が0.5〜45m/gが好ましく、さらに好ましくは0.5〜30m/g、特に好ましくは0.5〜10m/gである。この範囲とすることによりで電解液との接触及び充放電により活物質表面に形成される固体電解質層(SEI)を抑制し、初回クーロン効率と容量維持率を改善できる。 The composite active material for a lithium secondary battery of the present invention preferably has a specific surface area of 0.5 to 45 m 2 / g, more preferably 0.5 to 30 m 2 / g, and particularly preferably 0.5 to 10 m 2 / g. Is. Within this range, the solid electrolyte layer (SEI) formed on the surface of the active material due to contact with the electrolytic solution and charge / discharge can be suppressed, and the initial Coulomb efficiency and the capacity retention rate can be improved.

また、平均細孔径が10〜40nmであることが好ましく、さらに好ましくは10〜30nm、特に好ましくは10〜20nmである。また開気孔体積が0.06cm/g以下であることが好ましく、さらに好ましくは0.04cm/g以下、特に好ましくは0.02cm/g以下である。平均細孔径及び開気孔体積をこの範囲とすることにより活物質内部への電解液侵入を抑制し、容量維持率、過膨張率を改善できる。 The average pore diameter is preferably 10 to 40 nm, more preferably 10 to 30 nm, and particularly preferably 10 to 20 nm. Further preferably open pore volume is less than 0.06 cm 3 / g, more preferably 0.04 cm 3 / g, particularly preferably at most 0.02 cm 3 / g. By setting the average pore diameter and the volume of the open pores in this range, it is possible to suppress the invasion of the electrolytic solution into the active material and improve the capacity retention rate and the hyperexpansion rate.

リチウム二次電池用複合活物質の比表面積(BET比表面積)、平均細孔径、開気孔体積の測定方法は、試料を300℃で30分真空乾燥後、窒素吸着多点法で測定する。 The specific surface area (BET specific surface area), average pore diameter, and open pore volume of the composite active material for a lithium secondary battery are measured by vacuum drying the sample at 300 ° C. for 30 minutes and then measuring it by the nitrogen adsorption multipoint method.

本発明のリチウム二次電池用複合活物質においては、電池活物質が炭素と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、最外層の表面を炭素が活物質粒子の表面付近で湾曲して活物質粒子を覆っていることが好ましい。 The composite active material for a lithium secondary battery of the present invention has a structure in which the battery active material is sandwiched between carbon and a thin graphite layer having a thickness of 0.2 μm or less, and the structure spreads in a laminated and / or mesh pattern. It is preferable that carbon curves near the surface of the active material particles to cover the active material particles on the surface of the outermost layer.

厚みが0.2μmを超えると黒鉛薄層の電子伝達効果が薄まる。黒鉛薄層を断面で見て線状の場合、その長さはリチウム二次電池用複合活物質粒子のサイズの半分以上あることが電子伝達に好ましく、リチウム二次電池用複合物質粒子のサイズと同等程度であることがさらに好ましい。黒鉛薄層が網目状の場合、黒鉛薄層の網が活物質粒子のサイズの半分以上に渡って繋がっていることが電子伝達に好ましく、活物質粒子のサイズと同等程度であることがさらに好ましい。 When the thickness exceeds 0.2 μm, the electron transfer effect of the graphite thin layer diminishes. When the graphite thin layer is linear in cross section, its length is preferably at least half the size of the composite active material particles for a lithium secondary battery for electron transfer, and the size of the composite material particles for a lithium secondary battery It is more preferable that the degree is equivalent. When the graphite thin layer is in the form of a mesh, it is preferable for electron transfer that the network of the graphite thin layer is connected over half or more of the size of the active material particles, and it is more preferable that the size of the graphite thin layer is about the same as the size of the active material particles. ..

本発明のリチウム二次電池用複合活物質においては、最外層の表面を炭素が活物質粒子の表面付近で湾曲して活物質粒子を覆うことが好ましい。そのような形状にすることで、最外層の表面を炭素端面から電解液が侵入して、電池活物質や最外層の表面を炭素端面と電解液が直接接して、充放電時に反応物が形成され、効率が下がるというリスクが低減する。 In the composite active material for a lithium secondary battery of the present invention, it is preferable that carbon curves near the surface of the active material particles on the surface of the outermost layer to cover the active material particles. With such a shape, the electrolytic solution invades the surface of the outermost layer from the carbon end face, and the carbon end face and the electrolytic solution come into direct contact with the surface of the battery active material and the outermost layer, and a reactant is formed during charging and discharging. And the risk of reduced efficiency is reduced.

本発明でいうSiとは、純度が98重量%程度の汎用グレードの金属シリコン、純度が2〜4Nのケミカルグレードの金属シリコン、塩素化して蒸留精製した4Nより高純度のポリシリコン、単結晶成長法による析出工程を経た超高純度の単結晶シリコン、もしくはそれらに周期表13族もしくは15族元素をドーピングして、p型またはn型としたもの、半導体製造プロセスで発生したウエハの研磨や切断の屑、プロセスで不良となった廃棄ウエハなど、汎用グレードの金属シリコン以上の純度のものであれば特に限定されない。 Si in the present invention refers to general-purpose grade metallic silicon having a purity of about 98% by weight, chemical grade metallic silicon having a purity of 2 to 4N, polysilicon having a higher purity than 4N obtained by chlorination and distillation purification, and single crystal growth. Ultra-high-purity single-crystal silicon that has undergone the precipitation process by the method, or those obtained by doping them with Group 13 or Group 15 elements of the periodic table to form p-type or n-type, and polishing and cutting of wafers generated in the semiconductor manufacturing process. It is not particularly limited as long as it has a purity higher than that of general-purpose grade metallic silicon, such as waste wafers and waste wafers that have become defective in the process.

本発明でいうSi合金とは、Siが主成分の合金である。前記Si合金において、Si以外に含まれる元素としては、周期表2〜15族の元素の一つ以上が好ましく、合金に含まれる相の融点が900℃以上となる元素の選択および/または添加量が好ましい。 The Si alloy referred to in the present invention is an alloy containing Si as a main component. In the Si alloy, as the element contained in addition to Si, one or more of the elements of Groups 2 to 15 of the periodic table is preferable, and the selection and / or the amount of the element added at which the melting point of the phase contained in the alloy is 900 ° C. or more. Is preferable.

本発明のリチウム二次電池用複合活物質において、Si化合物の平均粒径(D50)は0.01〜5μmが好ましく、さらに好ましくは0.01〜1μmであり、特に好ましくは0.05〜0.6μmである。0.01μmより小さいと、表面酸化による容量や初期効率の低下が激しく、5μmより大きいと、リチウム挿入による膨張で割れが激しく生じ、サイクル劣化が激しくなりやすい。なお、平均粒径(D50)はレーザー粒度分布計で測定した体積平均の粒子径である。 In the composite active material for a lithium secondary battery of the present invention, the average particle size (D50) of the Si compound is preferably 0.01 to 5 μm, more preferably 0.01 to 1 μm, and particularly preferably 0.05 to 0. It is 0.6 μm. If it is smaller than 0.01 μm, the capacity and initial efficiency are severely lowered due to surface oxidation, and if it is larger than 5 μm, cracks are severely caused by expansion due to lithium insertion, and cycle deterioration is likely to be severe. The average particle size (D50) is the volume average particle size measured by a laser particle size distribution meter.

Si化合物の含有量は10〜80質量部が好ましく、15〜50質量部が特に好ましい。Si化合物の含有量が10質量部未満の場合、従来の黒鉛に比べて十分に大きい容量が得られず、80質量部より大きい場合、サイクル劣化が激しくなりやすい。 The content of the Si compound is preferably 10 to 80 parts by mass, and particularly preferably 15 to 50 parts by mass. When the content of the Si compound is less than 10 parts by mass, a sufficiently large capacity cannot be obtained as compared with conventional graphite, and when it is larger than 80 parts by mass, cycle deterioration tends to be severe.

黒鉛としては、天然黒鉛材、人造黒鉛等が挙げられ、その中でも通常グラファイトと呼ばれる天然黒鉛を薄片化した薄片化黒鉛が好ましい。 Examples of graphite include natural graphite materials and artificial graphite, and among them, flaky graphite obtained by flaking natural graphite, which is usually called graphite, is preferable.

本明細書においては、薄片化黒鉛とは、グラフェンシートの積層数が400層以下の黒鉛を意図する。なお、グラフェンシートは主にファンデルワールス力によって互いに結合している。 In the present specification, the flaky graphite is intended to be graphite having 400 or less layers of graphene sheets. The graphene sheets are mainly bonded to each other by van der Waals force.

薄片化黒鉛におけるグラフェンシートの積層数は、リチウムイオンと化合可能な電池活物質と薄片化黒鉛とがより均一に分散し、リチウム二次電池用複合活物質を用いた電池材料の膨張がより抑制される、および/または、リチウム二次電池のサイクル特性がより優れる点で(以後、単に「本発明の効果がより優れる点」)で、300層以下が好ましく、200層以下がより好ましく、150層以下がさらに好ましい。取り扱い性の点からは、5層以上が好ましい。 As for the number of graphene sheets laminated in the flaky graphite, the battery active material that can be combined with lithium ions and the flaky graphite are more evenly dispersed, and the expansion of the battery material using the composite active material for the lithium secondary battery is further suppressed. And / or, in that the cycle characteristics of the lithium secondary battery are more excellent (hereinafter, simply "the point where the effect of the present invention is more excellent"), 300 layers or less is preferable, 200 layers or less is more preferable, and 150 layers or less. Layers and below are more preferred. From the viewpoint of handleability, 5 or more layers are preferable.

なお、薄片化黒鉛におけるグラフェンシートの積層数は透過型電子顕微鏡(TEM)を用いて測定することができる。 The number of graphene sheets laminated in the flaky graphite can be measured using a transmission electron microscope (TEM).

薄片化黒鉛の平均厚みは、本発明の効果がより優れる点で、40nm以下が好ましく、22nm以下がより好ましい。下限は特に制限されないが、製造手順が煩雑になることから、通常、4nm以上である場合が多い。 The average thickness of the flaky graphite is preferably 40 nm or less, more preferably 22 nm or less, in that the effect of the present invention is more excellent. The lower limit is not particularly limited, but it is usually 4 nm or more in many cases because the manufacturing procedure becomes complicated.

なお、上記平均厚みの測定方法としては、電子顕微鏡観察(TEM)によって薄片化黒鉛を観察し、薄片化黒鉛中の積層したグラフェンシートの層の厚みを10個以上測定して、その値を算術平均することによって、平均厚みが得られる。 As a method for measuring the average thickness, flaky graphite is observed by electron microscope observation (TEM), the thickness of 10 or more layers of laminated graphene sheets in the flaky graphite is measured, and the value is calculated. By averaging, the average thickness is obtained.

薄片化黒鉛は、黒鉛化合物をその層面間において剥離し薄片化して得られる。 The flaky graphite is obtained by exfoliating the graphite compound between its layer surfaces and flaking it.

薄片化黒鉛としては、例えば、いわゆる膨張黒鉛が挙げられる。 Examples of flaky graphite include so-called expanded graphite.

膨張黒鉛中には、黒鉛が含まれており、例えば、鱗片状黒鉛を濃硫酸や硝酸や過酸化水素水等で処理し、グラフェンシートの隙間にこれら薬液をインターカレートさせ、さらに加熱してインターカレートされた薬液が気化する際にグラフェンシートの隙間を広げることによって得られる。なお、後述するように、膨張黒鉛を出発原料として所定のリチウム二次電池用複合活物質を製造することができる。つまり、リチウム二次電池用複合活物質中の黒鉛として、膨張黒鉛を使用することもできる。 Expanded graphite contains graphite. For example, scaly graphite is treated with concentrated sulfuric acid, nitric acid, hydrogen peroxide solution, etc., and these chemicals are intercalated in the gaps between graphene sheets and further heated. It is obtained by widening the gaps in the graphene sheet as the intercalated drug solution evaporates. As will be described later, a predetermined composite active material for a lithium secondary battery can be produced using expanded graphite as a starting material. That is, expanded graphite can also be used as the graphite in the composite active material for the lithium secondary battery.

また、黒鉛として、球形化処理が施された膨張黒鉛も挙げられる。球形化処理の手順は後段で詳述する。なお、後述するように、膨張黒鉛に球形化処理を実施する際には、他の成分(例えば、ハードカーボン及びソフトカーボンの前駆体、リチウムイオンと化合可能な電池活物質など)と共に、球形化処理が実施されてもよい。 Further, as the graphite, expanded graphite which has been subjected to a spheroidizing treatment can also be mentioned. The procedure for spheroidization will be described in detail later. As will be described later, when the expanded graphite is spheroidized, it is spheroidized together with other components (for example, precursors of hard carbon and soft carbon, battery active material capable of combining with lithium ions, etc.). The process may be carried out.

なお、黒鉛の比表面積は特に制限されないが、本発明の効果がより優れる点で、10m/g以上が好ましく、20m/g以上がより好ましい。上限は特に制限されないが、製造の手順が煩雑となり、合成が困難な点で、比表面積は200m/g以下が好ましい。 The specific surface area of graphite is not particularly limited, but 10 m 2 / g or more is preferable, and 20 m 2 / g or more is more preferable, in that the effect of the present invention is more excellent. The upper limit is not particularly limited, but the specific surface area is preferably 200 m 2 / g or less because the manufacturing procedure becomes complicated and synthesis is difficult.

なお、黒鉛の比表面積は、窒素吸着によるBET法(JIS Z 8830、一点法)を用いて測定したものである。 The specific surface area of graphite was measured by using the BET method (JIS Z 8830, one-point method) by nitrogen adsorption.

黒鉛は、純度99.9重量%以上、若しくは不純物量1000ppm以下であり、S量が0.3重量%以下及び/又はBET比表面積が200m/g以下であることが好ましい。純度が99.9重量%よりも少なく、若しくは不純物量が1000ppmよりも多いと、不純物由来のSEI形成による不可逆容量が多くなるため、初回の充電容量に対する放電容量である初回充放電効率が低くなる傾向がある。また、S量が0.3重量%よりも高くなると同様に不可逆容量が高くなるため、初回充放電効率が低くなる。さらに好ましくは、S量が0.1重量%以下が好ましい。黒鉛のBET比表面積が40m/gよりも高いと、電解液との反応する面積が多くなるため、初回充放電効率が低くなる。 Graphite preferably has a purity of 99.9% by weight or more, an impurity amount of 1000 ppm or less, an S amount of 0.3% by weight or less, and / or a BET specific surface area of 200 m 2 / g or less. If the purity is less than 99.9% by weight or the amount of impurities is more than 1000 ppm, the irreversible capacity due to the formation of SEI derived from impurities increases, so that the initial charge / discharge efficiency, which is the discharge capacity with respect to the initial charge capacity, becomes low. Tend. Further, when the amount of S is higher than 0.3% by weight, the irreversible capacity is similarly increased, so that the initial charge / discharge efficiency is lowered. More preferably, the amount of S is 0.1% by weight or less. When the BET specific surface area of graphite is higher than 40 m 2 / g, the area that reacts with the electrolytic solution becomes large, so that the initial charge / discharge efficiency becomes low.

不純物の測定は、ICP発光分光分析法により、以下の26元素(Al、Ca、Cr、Fe、K、Mg、Mn、Na、Ni、V、Zn、Zr、Ag、As、Ba、Be、Cd、Co、Cu、Mo、Pb、Sb、Se、Th、Tl、U)の不純物半定量値により測定する。また、S量は、酸素フラスコ燃焼法で燃焼吸収処理した後、フィルター濾過してイオンクロマトグラフィー(IC)測定により行う。 Impurities were measured by ICP emission spectroscopic analysis of the following 26 elements (Al, Ca, Cr, Fe, K, Mg, Mn, Na, Ni, V, Zn, Zr, Ag, As, Ba, Be, Cd. , Co, Cu, Mo, Pb, Sb, Se, Th, Tl, U) by semi-quantitative value of impurities. The amount of S is determined by combustion absorption treatment by an oxygen flask combustion method, filtering by a filter, and ion chromatography (IC) measurement.

本発明における黒鉛薄層以外の炭素としては、焼結または熱処理すると炭素になるものであれば特に制限はなく、黒鉛薄層以外の炭素質物が好ましく、該炭素質物とは、非晶質もしくは微結晶の炭素物質であり、2000℃を超える熱処理で黒鉛化する易黒鉛化炭素(ソフトカーボン)と、黒鉛化しにくい難黒鉛化炭素(ハードカーボン)が挙げられる。 The carbon other than the graphite thin layer in the present invention is not particularly limited as long as it becomes carbon when sintered or heat-treated, and a carbonaceous material other than the graphite thin layer is preferable, and the carbonaceous material is amorphous or fine. Examples of crystalline carbon substances include easily graphitized carbon (soft carbon) that is graphitized by heat treatment exceeding 2000 ° C. and non-graphitizable carbon (hard carbon) that is difficult to graphitize.

ハードカーボンは、樹脂または樹脂組成物などの前駆体を炭化処理して得ることが好ましい。炭化処理することで、樹脂または樹脂組成物が炭化処理され、リチウムイオン二次電池用炭素材として用いることができる。ハードカーボンの原材料(前駆体)となる、樹脂又は樹脂組成物としては、高分子化合物など(例えば、熱硬化性樹脂、熱可塑性樹脂)が挙げられる。熱硬化性樹脂としては特に限定されず、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂;ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂などのエポキシ樹脂;メラミン樹脂;尿素樹脂;アニリン樹脂;シアネート樹脂;フラン樹脂;ケトン樹脂;不飽和ポリエステル樹脂;ウレタン樹脂などが挙げられる。また、これらが種々の成分で変性された変性物を用いることもできる。 Hard carbon is preferably obtained by carbonizing a precursor such as a resin or a resin composition. By carbonizing, the resin or resin composition is carbonized and can be used as a carbon material for a lithium ion secondary battery. Examples of the resin or resin composition used as a raw material (precursor) of hard carbon include polymer compounds (for example, thermosetting resin and thermoplastic resin). The thermosetting resin is not particularly limited, and for example, a phenol resin such as a novolak type phenol resin or a resol type phenol resin; an epoxy resin such as a bisphenol type epoxy resin or a novolak type epoxy resin; a melamine resin; a urea resin; an aniline resin; Examples thereof include cyanate resin; furan resin; ketone resin; unsaturated polyester resin; and urethane resin. Further, modified products obtained by modifying these with various components can also be used.

また、熱可塑性樹脂としては、特に限定されず、例えば、ポリエチレン、ポリスチレン、アクリロニトリル−スチレン(AS)樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリプロピレン、ポリエチレンテレフタレート、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトンなどが挙げられる。 The thermoplastic resin is not particularly limited, and for example, polyethylene, polystyrene, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, polyethylene terephthalate, polycarbonate, polyacetal, polyphenylene ether, and poly. Examples thereof include butylene terephthalate, polyphenylene sulfide, polysulfone, polyether sulfone, and polyether ether ketone.

これらのうち1種または2種以上を組み合わせて用いることができる。 One or a combination of two or more of these can be used.

これらの中でも特に好ましいハードカーボンの原材料(前駆体)は、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂等が挙げられる。 Among these, particularly preferable hard carbon raw materials (precursors) include phenol resins such as novolak type phenol resins and resol type phenol resins.

ハードカーボンの前駆体の形状は特に制限されず、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。これらの前駆体は、各種成分を混合する際に使用する溶剤に溶解することが好ましい。 The shape of the hard carbon precursor is not particularly limited, and any shape such as powder, plate, granular, fibrous, lump, and spherical can be used. These precursors are preferably dissolved in the solvent used when mixing the various components.

使用されるハードカーボンの前駆体の重量平均分子量としては、本発明の効果がより優れる点で1000以上が好ましく、1,000,000以下がより好ましい。 The weight average molecular weight of the precursor of the hard carbon used is preferably 1000 or more, and more preferably 1,000,000 or less in that the effect of the present invention is more excellent.

ソフトカーボンは、樹脂または樹脂組成物などの前駆体を炭化処理して得ることが好ましい。炭化処理することで、樹脂または樹脂組成物が炭化処理され、リチウムイオン二次電池用炭素材として用いることができる。ソフトカーボンの原材料(前駆体)となる、樹脂又は樹脂組成物としては、特に限定されず、石炭系ピッチ(例えば、コールタールピッチ)、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油、またはそれらの誘導体などが挙げられ、石炭系ピッチ(例えば、コールタールピッチ)、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油、またはそれらの誘導体などが好ましい。なかでも、本発明の効果がより優れる点で、石炭系ピッチなどの前駆体から得られるソフトカーボンが好ましい。 Soft carbon is preferably obtained by carbonizing a precursor such as a resin or a resin composition. By carbonizing, the resin or resin composition is carbonized and can be used as a carbon material for a lithium ion secondary battery. The resin or resin composition used as a raw material (precursor) for soft carbon is not particularly limited, and is limited to coal-based pitch (for example, coal tar pitch), petroleum-based pitch, mesophase pitch, coke, low-molecular-weight heavy oil, and the like. Alternatively, examples thereof include coal-based pitches (for example, coal tar pitches), petroleum-based pitches, mesophase pitches, coke, low-molecular-weight heavy oils, and derivatives thereof. Among them, soft carbon obtained from a precursor such as a coal-based pitch is preferable because the effect of the present invention is more excellent.

ソフトカーボンの前駆体の形状は特に制限されず、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。これらの前駆体は、各種成分を混合する際に使用する溶剤に溶解することが好ましい。 The shape of the soft carbon precursor is not particularly limited, and any shape such as powder, plate, granular, fibrous, lump, and spherical can be used. These precursors are preferably dissolved in the solvent used when mixing the various components.

使用されるソフトカーボンの前駆体の重量平均分子量としては、本発明の効果がより優れる点で1000以上が好ましく、1,000,000以下がより好ましい。 The weight average molecular weight of the precursor of the soft carbon used is preferably 1000 or more, and more preferably 1,000,000 or less because the effect of the present invention is more excellent.

本発明のリチウム二次電池用複合活物質において、黒鉛薄層以外の炭素が含まれる場合黒鉛薄層以外の炭素の含有量は90〜10質量部が好ましく、60〜10質量部が特に好ましい。黒鉛薄層以外の炭素の含有量が10質量部未満の場合、黒鉛薄層以外の炭素がSi化合物を覆うことができず、導電パスが不十分となって容量劣化が激しく起こりやすく、90質量部より大きい場合、容量が十分に得られない。 When the composite active material for a lithium secondary battery of the present invention contains carbon other than the graphite thin layer, the content of carbon other than the graphite thin layer is preferably 90 to 10 parts by mass, particularly preferably 60 to 10 parts by mass. When the content of carbon other than the graphite thin layer is less than 10 parts by mass, the carbon other than the graphite thin layer cannot cover the Si compound, the conductive path becomes insufficient, and capacity deterioration is likely to occur, and 90 mass. If it is larger than the part, sufficient capacity cannot be obtained.

本発明のリチウム二次電池用複合活物質において、黒鉛薄層以外の炭素と黒鉛が含まれる場合、各々の含有量は5〜60質量部と20〜80質量部の割合が好ましく、10〜55質量部と30〜70質量部の割合が特に好ましい。黒鉛薄層以外の炭素の含有量が5質量部未満の場合、黒鉛薄層以外の炭素がSi化合物および黒鉛を覆うことができず、Si化合物と黒鉛との接着が不十分となり、活物質粒子の形成が困難となりやすい。また、60質量部より大きい場合、導電性が黒鉛薄層以外の炭素より高い黒鉛の効果が十分に引き出されない。一方、黒鉛の含有量が20質量部未満の場合、炭素質物より高い導電性を有する黒鉛の効果が十分でなく、80質量部より多い場合、従来の黒鉛に比べて十分に大きい容量が得られない。 When the composite active material for a lithium secondary battery of the present invention contains carbon and graphite other than the graphite thin layer, the respective contents are preferably 5 to 60 parts by mass and 20 to 80 parts by mass, and 10 to 55 parts by mass. The ratio of parts by mass to 30 to 70 parts by mass is particularly preferable. When the content of carbon other than the graphite thin layer is less than 5 parts by mass, the carbon other than the graphite thin layer cannot cover the Si compound and graphite, the adhesion between the Si compound and graphite becomes insufficient, and the active material particles. Is likely to be difficult to form. Further, when it is larger than 60 parts by mass, the effect of graphite having higher conductivity than carbon other than the graphite thin layer is not sufficiently brought out. On the other hand, when the content of graphite is less than 20 parts by mass, the effect of graphite having higher conductivity than the carbonaceous material is not sufficient, and when it is more than 80 parts by mass, a sufficiently large capacity can be obtained as compared with the conventional graphite. No.

本発明のリチウム二次電池用複合活物質の製造方法は、SiまたはSi合金、炭素前駆
体、空隙形成材、必要に応じて黒鉛を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程及び/又は空隙形成材を溶媒中での溶解によって除去する工程、該複合粒子を不活性雰囲気中で焼成する工程と、炭素前駆体と該複合粒子もしくは焼成粉とを混合する工程及びその混合物を不活性雰囲気中で加熱する事で炭素膜を焼成粉もしくは炭素被覆した複合粒子を得る工程を含むものである。
The method for producing a composite active material for a lithium secondary battery of the present invention includes a step of mixing Si or Si alloy, a carbon precursor, a void forming material, and graphite as necessary, a step of granulating and compacting, and a mixture. To form substantially spherical composite particles and / or to remove the void forming material by dissolution in a solvent, to calcin the composite particles in an inert atmosphere, and a carbon precursor. This includes a step of mixing the body with the composite particles or the calcined powder, and a step of heating the mixture in an inert atmosphere to obtain a calcined powder or a carbon-coated composite particle of the carbon film.

原料であるSi化合物は、平均粒径(D50)が0.01〜5μmの粉末を使用することが好ましい。所定の粒子径のSi化合物を得るためには、上述のSi化合物の原料(インゴット、ウエハ、粉末などの状態)を粉砕機で粉砕し、場合によっては分級機を用いる。インゴット、ウエハなどの塊の場合、最初はジョークラッシャー等の粗粉砕機を用いて粉末化することができる。その後、例えば、ボール、ビーズなどの粉砕媒体を運動させ、その運動エネルギーによる衝撃力や摩擦力、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミルや、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザー」などを用いて微粉砕することができる。 As the raw material Si compound, it is preferable to use a powder having an average particle size (D50) of 0.01 to 5 μm. In order to obtain a Si compound having a predetermined particle size, the raw material (state of ingot, wafer, powder, etc.) of the above-mentioned Si compound is pulverized by a pulverizer, and in some cases, a classifier is used. In the case of lumps such as ingots and wafers, they can be first pulverized using a coarse crusher such as a jaw crusher. After that, for example, a ball mill, a medium stirring mill, or a roller that uses a crushing medium such as a ball or a bead to crush the crushed material by using the impact force, the frictional force, and the compressive force generated by the kinetic energy. Rotation of a roller mill that crushes objects at high speed, a jet mill that collides with lining materials at high speed or collides with particles, and crushes by the impact force of the impact, and a rotor with hammers, blades, pins, etc. fixed. It can be finely crushed using a hammer mill, pin mill, disc mill that crushes the material to be crushed by using the impact force of the above, a colloid mill that uses the shearing force, and a high-pressure wet facing collision type disperser "Ultimizer". ..

粉砕は、湿式、乾式共に用いることができる。さらに微粉砕するには、例えば、湿式のビーズミルを用い、ビーズの径を段階的に小さくすること等により非常に細かい粒子を得ることができる。また、粉砕後に粒度分布を整えるため、乾式分級や湿式分級もしくはふるい分け分級を用いることができる。乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われ、粒子相互間の干渉、粒子の形状、気流の乱れ、速度分布、静電気の影響などで分級効率を低下させないように、分級をする前に前処理(水分、分散性、湿度などの調整)を行うか、使用される気流の水分や酸素濃度を調整して行う。乾式で分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。 Both wet and dry pulverization can be used. For further fine pulverization, for example, a wet bead mill is used, and the diameter of the beads is gradually reduced to obtain very fine particles. Further, in order to adjust the particle size distribution after pulverization, dry classification, wet classification or sieving classification can be used. Dry classification mainly uses airflow, and the processes of dispersion, separation (separation of fine particles and coarse particles), collection (separation of solid and gas), and discharge are performed sequentially or simultaneously, and interference between particles and particles Pretreatment (adjustment of moisture, dispersibility, humidity, etc.) is performed before classification so that the classification efficiency is not reduced due to the shape, turbulence of airflow, velocity distribution, influence of static electricity, etc., or the moisture content of the airflow used. And adjust the oxygen concentration. In the dry type with an integrated classifier, crushing and classification are performed at once, and it is possible to obtain a desired particle size distribution.

別の所定の粒子径のSi化合物を得る方法としては、プラズマやレーザー等でSi化合物を加熱して蒸発させ、不活性雰囲気中で凝固させて得る方法、ガス原料を用いてCVDやプラズマCVD等で得る方法があり、これらの方法は0.1μm以下の超微粒子を得るのに適している。 As another method for obtaining a Si compound having a predetermined particle size, a method of heating the Si compound with a plasma, a laser, or the like to evaporate it and coagulating it in an inert atmosphere, CVD, plasma CVD, etc. using a gas raw material, etc. These methods are suitable for obtaining ultrafine particles of 0.1 μm or less.

原料の炭素前駆体としては、炭素を主体とする炭素系化合物で、不活性雰囲気中での熱処理により炭素質物になるものであれば特に限定はなく、前記易黒鉛化炭素(ソフトカーボン)、黒鉛化しにくい難黒鉛化炭素(ハードカーボン)等が挙げられる。 The carbon precursor of the raw material is not particularly limited as long as it is a carbon-based compound mainly composed of carbon and becomes a carbonaceous substance by heat treatment in an inert atmosphere, and the graphitized carbon (soft carbon) and graphite are not particularly limited. Examples thereof include non-graphitized carbon (hard carbon) which is difficult to convert.

本発明でいう空隙形成材とは、液体及び固体の有機物、無機物であり150℃以上の熱処理で気化、蒸発する物質や、水系溶媒、非水系溶媒に可溶な物質、熱分解により大半が気化蒸発するが一部は添加時とは異なる成分となって残存する物質であり、例えばグリセリン、ジグリセリン、ポリグリセリン、メントール、カンフル、PEG、PVA、トリメチロールプロパン、ペンタエリスリトール、ポリビニルピロリドン、スクロース、グルコース、フルクトース、サッカリン、ソルビトール、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂、天然ゴム、スチレンブタジエンゴム、ブタジエンゴム、クロロプレンゴム、ブチルゴム、ニトリルゴム等のゴム類、ポリスチレン、ポリエチレン、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリプロピレン、ポリカーボネイト、ポリウレタン、アクリル等の樹脂類が挙げられ、その中でもグリセリン、ジグリセリン、ポリグリセリン、メントール、PEG、ポリビニルピロリドン、スクロース、グルコース、フルクトース、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、スチレンブタジエンゴム、ポリプロピレン好ましく、特に好ましくはグリセリン、ジグリセリン、ポリグリセリン、メントール、PEG、ポリビニルピロリドン、スクロース、レゾール型フェノール樹脂である。 The void forming material referred to in the present invention is a liquid or solid organic substance or an inorganic substance, which is vaporized and evaporated by heat treatment at 150 ° C. or higher, a substance soluble in an aqueous solvent or a non-aqueous solvent, and most of which is vaporized by thermal decomposition. It is a substance that evaporates, but part of it remains as a component different from that at the time of addition. Phenolic resins such as glucose, fructose, saccharin, sorbitol, novolak type phenol resin, resole type phenol resin, natural rubber, styrene butadiene rubber, butadiene rubber, chloroprene rubber, butyl rubber, rubbers such as nitrile rubber, polystyrene, polyethylene, polychloride Resins such as vinylidene, polyvinylidene fluoride, polypropylene, polycarbonate, polyurethane, acrylic, etc. are mentioned, and among them, glycerin, diglycerin, polyglycerin, menthol, PEG, polyvinylpyrrolidone, sucrose, glucose, fructose, novolak type phenol resin, resole. Type phenol resin, styrene butadiene rubber, polypropylene are preferable, and glycerin, diglycerin, polyglycerin, menthol, PEG, polyvinylpyrrolidone, sucrose, and resole type phenol resin are particularly preferable.

原料である黒鉛は、天然黒鉛、石油や石炭のピッチを黒鉛化した人造黒鉛等が利用でき、鱗片状、小判状もしくは球状、円柱状もしくはファイバー状等が用いられる。また、それらの黒鉛を酸処理、酸化処理した後、熱処理することにより膨張させて黒鉛層間の一部が剥離してアコーディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物、または超音波等により層間剥離させたグラフェン等も用いることができる。膨張黒鉛もしくは膨張黒鉛の粉砕物はその他の黒鉛に比べて可とう性に優れており、後述する複合粒子を形成する工程において、粉砕された粒子が再結着して略球状の複合粒子を容易に形成することができる。上記の点で、膨張黒鉛もしくは膨張黒鉛の粉砕物を用いることが好ましい。原料の黒鉛は予め混合工程で使用可能な大きさに整えて使用し、混合前の粒子サイズとしては天然黒鉛や人造黒鉛では1〜100μm、膨張黒鉛もしくは膨張黒鉛の粉砕物、グラフェンでは5μm〜5mm程度である。 As the raw material graphite, natural graphite, artificial graphite obtained by graphitizing the pitch of petroleum or coal, or the like can be used, and scaly, oval or spherical, columnar or fibrous or the like is used. Further, after the graphite is acid-treated and oxidized, the graphite is expanded by heat treatment, and a part of the graphite layers is peeled off to form an accordion-like expanded graphite or a crushed product of expanded graphite, or the layers are subjected to ultrasonic waves or the like. Peeled graphene or the like can also be used. Expanded graphite or a crushed product of expanded graphite is superior in flexibility to other graphites, and in the step of forming composite particles described later, the crushed particles are re-bonded to facilitate substantially spherical composite particles. Can be formed into. In the above points, it is preferable to use expanded graphite or a pulverized product of expanded graphite. The raw material graphite is prepared in advance to a size that can be used in the mixing process, and the particle size before mixing is 1 to 100 μm for natural graphite or artificial graphite, crushed expanded graphite or expanded graphite, and 5 μm to 5 mm for graphene. Degree.

これらのSi化合物、炭素前駆体、空隙形成材、さらに必要に応じて黒鉛との混合は、炭素前駆体が加熱により軟化、液状化するものである場合は、加熱下でSi化合物、炭素前駆体、空隙形成材、さらに必要に応じて黒鉛を混練することによって行うことができる。また、炭素前駆体が溶媒に溶解するものである場合には、溶媒にSi化合物、炭素前駆体、空隙形成材、さらに必要に応じて黒鉛を投入し、炭素前駆体が溶解した溶液中でSi化合物、炭素前駆体、空隙形成材、さらに必要に応じて黒鉛を分散、混合し、次いで溶媒を除去することで行うことができる。用いる溶媒は、炭素前駆体を溶解できるものであれば特に制限なく使用できる。例えば、炭素前駆体としてピッチ、タール類を用いる場合には、キノリン、ピリジン、トルエン、ベンゼン、テトラヒドロフラン、クレオソート油等が使用でき、ポリ塩化ビニルを用いる場合には、テトラヒドロフラン、シクロヘキサノン、ニトロベンゼン等が使用でき、フェノール樹脂、フラン樹脂を用いる場合には、エタノール、メタノール等が使用できる。 Mixing with these Si compounds, carbon precursors, void forming materials and, if necessary, graphite, if the carbon precursors are softened and liquefied by heating, the Si compounds and carbon precursors are heated. This can be done by kneading the void forming material and, if necessary, graphite. When the carbon precursor is soluble in a solvent, a Si compound, a carbon precursor, a void forming material, and if necessary graphite are added to the solvent, and Si is added to the solution in which the carbon precursor is dissolved. This can be done by dispersing and mixing the compound, carbon precursor, void forming material and, if necessary, graphite, and then removing the solvent. The solvent used is not particularly limited as long as it can dissolve the carbon precursor. For example, when pitch and tars are used as carbon precursors, quinoline, pyridine, toluene, benzene, tetrahydrofuran, cleosort oil and the like can be used, and when polyvinyl chloride is used, tetrahydrofuran, cyclohexanone, nitrobenzene and the like can be used. It can be used, and when a phenol resin or a furan resin is used, ethanol, methanol or the like can be used.

混合方法としては、炭素前駆体を加熱軟化させる場合は、混練機(ニーダー)を用いることができる。溶媒を用いる場合は、上述の混練機の他、ナウターミキサー、レーディゲミキサー、ヘンシェルミキサ、ハイスピードミキサー、ホモミキサー等を用いることができる。また、これらの装置でジャケット加熱したり、その後、振動乾燥機、パドルドライヤーなどで溶媒を除去する。 As a mixing method, a kneader can be used when the carbon precursor is heated and softened. When a solvent is used, in addition to the above-mentioned kneader, a Nauter mixer, a Reedige mixer, a Henschel mixer, a high-speed mixer, a homomixer and the like can be used. In addition, the jacket is heated by these devices, and then the solvent is removed by a vibration dryer, a paddle dryer, or the like.

これらの装置で、炭素前駆体を固化、または、溶媒除去の過程における撹拌をある程度の時間続けることで、Si化合物、炭素前駆体、空隙形成材、さらに必要に応じて黒鉛との混合物は造粒・圧密化される。また、炭素前駆体を固化、または溶媒除去後の混合物をローラーコンパクタ等の圧縮機によって圧縮し、解砕機で粗粉砕することにより、造粒・圧密化することができる。これらの造粒・圧密化物の大きさは、その後の粉砕工程での取り扱いの容易さから0.1〜5mmが好ましい。 By solidifying the carbon precursor or continuing stirring in the process of removing the solvent for a certain period of time with these devices, the Si compound, the carbon precursor, the void forming material, and, if necessary, the mixture with graphite are granulated.・ It is compacted. Further, the carbon precursor is solidified or the mixture after removing the solvent is compressed by a compressor such as a roller compactor and roughly pulverized by a crusher, whereby granulation and consolidation can be performed. The size of these granulated / consolidated products is preferably 0.1 to 5 mm from the viewpoint of ease of handling in the subsequent pulverization step.

造粒・圧密化の方法は、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミル等の乾式の粉砕方法が好ましい。また、粉砕後に粒度分布を整えるため、風力分級、ふるい分け等の乾式分級が用いられる。粉砕機と分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。 Granulation and compaction methods include ball mills and medium stirring mills that use compressive force to crush crushed materials, roller mills that crush crushed materials using the compressive force of rollers, and lining materials at high speed. Jet mills that collide with each other or collide with each other and crush by the impact force of the impact, hammer mills and pin mills that crush the crushed material by using the impact force of the rotation of the rotor with fixed hammers, blades, pins, etc. , A dry crushing method such as a disc mill is preferable. Further, in order to adjust the particle size distribution after pulverization, dry classification such as wind power classification and sieving is used. In the type in which the crusher and the classifier are integrated, crushing and classification are performed at once, and a desired particle size distribution can be obtained.

造粒・圧密化した混合物を粉砕及び球形化処理を施す方法としては、上述の粉砕方法により粉砕して粒度を整えた後、専用の球形化装置を通す方法と、上述のジェットミルやローターの回転による衝撃力を利用して被砕物を粉砕する方法を繰り返す、もしくは処理時間を延長することで球形化する方法がある。専用の球形化装置としては、ホソカワミクロン社のファカルティ(登録商標)、ノビルタ(登録商標)、メカノフュージョン(登録商標)、日本コークス工業社のCOMPOSI、奈良機械製作所社のハイブリダイゼーションシステム、アーステクニカ社のクリプトロンオーブ、クリプトロンエディ等が挙げられる。 As a method of crushing and spheroidizing the granulated / consolidated mixture, a method of crushing by the above-mentioned crushing method to adjust the particle size and then passing through a dedicated spheroidizing device, and the above-mentioned jet mill or rotor There is a method of repeating the method of crushing the material to be crushed by utilizing the impact force due to rotation, or a method of making it spherical by extending the processing time. Dedicated spherical devices include Hosokawa Micron's Faculty (registered trademark), Nobilta (registered trademark), Mechanofusion (registered trademark), Nippon Coke Industries, Inc. COMPOSI, Nara Machinery Co., Ltd.'s hybridization system, and EarthTechnica Co., Ltd. Examples include Cryptron Orb and Cryptron Eddie.

上記粉砕および球形化処理を行うことにより、略球状の複合粒子を得ることができる。 By performing the above pulverization and spheroidizing treatment, substantially spherical composite particles can be obtained.

得られた複合粒子は、炭素前駆体成分の炭化及び空隙形成材の除去のため、アルゴンガスや窒素ガス気流中、もしくは真空などで焼成する。焼成温度は300〜1200℃とすることが好ましく、特に好ましくは600〜1200℃である。焼成温度が300℃未満であると、炭素前駆体及び空隙形成材の未熱分解成分の残存により、複合粒子内部の黒鉛層とSi、及び、複合粒子間の電気抵抗が増大するため、放電容量が低下する傾向にある。一方、焼成温度が1200℃を超える場合、Si化合物と炭素前駆体由来の非晶質炭素や黒鉛との反応が起こる可能性が強くなり、放電容量の低下が発生する傾向にある。 The obtained composite particles are calcined in an argon gas or nitrogen gas stream, in a vacuum, or the like in order to carbonize the carbon precursor component and remove the void forming material. The firing temperature is preferably 300 to 1200 ° C, particularly preferably 600 to 1200 ° C. When the firing temperature is less than 300 ° C., the electric resistance between the graphite layer and Si inside the composite particles and the composite particles increases due to the residual unthermally decomposed components of the carbon precursor and the void forming material, so that the discharge capacity Tends to decrease. On the other hand, when the calcination temperature exceeds 1200 ° C., there is a strong possibility that the reaction between the Si compound and the amorphous carbon or graphite derived from the carbon precursor occurs, and the discharge capacity tends to decrease.

空隙形成材は、上記焼成による除去の他に、水、アルコール等の溶媒により溶解させ、濾過、遠心分離等の手法にて抽出しても良い。溶解抽出をする場合は、炭素前駆体を溶解しない溶媒を使用する事が好ましく、該溶媒としては、例えば水、メタノール、エタノール、イソプロパノール、アセトン、トルエン、テトラヒドロフラン、等が挙げられ、その中でも水、メタノール、エタノール、アセトン、テトラヒドロフラン等が好ましい。 In addition to the removal by firing, the void forming material may be dissolved in a solvent such as water or alcohol and extracted by a method such as filtration or centrifugation. In the case of dissolution extraction, it is preferable to use a solvent that does not dissolve the carbon precursor, and examples of the solvent include water, methanol, ethanol, isopropanol, acetone, toluene, tetrahydrofuran, etc., among which water, Methanol, ethanol, acetone, tetrahydrofuran and the like are preferable.

また、本発明のリチウム二次電池用複合活物質は、前工程で得られた炭素被覆した複合粒子、球形化した複合粒子もしくは焼成粉と炭素前駆体とを不活性雰囲気中で焼成し炭素膜を複合粒子もしくは焼成粉の内外に被覆する工程を行い、製造することが好ましい。 Further, in the composite active material for a lithium secondary battery of the present invention, carbon-coated composite particles, spherical composite particles or calcined powder obtained in the previous step and a carbon precursor are fired in an inert atmosphere to form a carbon film. Is preferably produced by performing a step of coating the inside and outside of the composite particles or the calcined powder.

用いる炭素前駆体としては、石炭系ピッチ(例えば、コールタールピッチ)、石油系ピッチ、メソフェーズピッチ、コークス、低分子重質油等が挙げられる。 Examples of the carbon precursor used include coal-based pitch (for example, coal tar pitch), petroleum-based pitch, mesophase pitch, coke, low-molecular-weight heavy oil, and the like.

炭素被覆した複合粒子、球形化した複合粒子もしくは焼成粉と炭素前駆体とを不活性雰囲気中で焼成し炭素膜を複合粒子もしくは焼成粉の内外に被覆する際には、炭素前駆体を坩堝等に入れ、複合粒子と直接接触しないようにした状態で不活性雰囲気で加熱、もしくは、不活性雰囲気中にメタン、エタン、エチレン、アセチレ、プロピレン等の炭化水素ガスを添加し、加熱する事により、炭素膜を焼成粉もしくは炭素被覆した複合粒子もしくは炭素被覆した焼成粉の内外に気相で被覆することが好ましい。 When carbon-coated composite particles, spherical composite particles or calcined powder and a carbon precursor are fired in an inert atmosphere to coat the carbon film inside and outside the composite particles or calcined powder, the carbon precursor is squeezed or the like. By putting it in a container and heating it in an inert atmosphere so that it does not come into direct contact with the composite particles, or by adding a hydrocarbon gas such as methane, ethane, ethylene, acetylene, or propylene to the inert atmosphere and heating it. It is preferable to coat the inside and outside of the carbon film with the calcined powder, the carbon-coated composite particles, or the carbon-coated calcined powder with a gas phase.

さらに、本発明のリチウム二次電池用複合活物質は、気相で炭素膜を被覆する工程の後、球形処理した粉体、焼成粉もしくは炭素被覆した粉体を風力分級する工程を行い、製造することが好ましい。 Further, the composite active material for a lithium secondary battery of the present invention is manufactured by performing a step of coating a carbon film with a gas phase and then a step of wind-classifying a spherically treated powder, a calcined powder or a carbon-coated powder. It is preferable to do so.

風力分級の方法としては、ホソカワミクロン製ATP−50のような風力分級装置に粉体を投入し、ローター回転数、や差圧等の運転条件を調整することで、分級される粉体の粒径を制御することが可能である。 As a method of wind power classification, powder is put into a wind power classification device such as ATP-50 manufactured by Hosokawa Micron, and the particle size of the powder to be classified is adjusted by adjusting the operating conditions such as the rotor rotation speed and the differential pressure. It is possible to control.

本発明のリチウム二次電池用複合活物質は、リチウム二次電池で使用される電池材料(電極材料)に使用される活物質として有用である。 The composite active material for a lithium secondary battery of the present invention is useful as an active material used as a battery material (electrode material) used in a lithium secondary battery.

複合活物質を使用してリチウム二次電池用負極を製造する方法は特に制限されず、公知の方法を使用することができる。 The method for producing the negative electrode for a lithium secondary battery using the composite active material is not particularly limited, and a known method can be used.

例えば、リチウム二次電池用複合活物質と結着剤とを混合し、溶剤を用いてペースト化し、銅箔上に塗布してリチウム二次電池用負極とすることができる。 For example, a composite active material for a lithium secondary battery and a binder can be mixed, made into a paste using a solvent, and coated on a copper foil to obtain a negative electrode for a lithium secondary battery.

なお、集電体としては銅箔以外に、電池のサイクルがより優れる点で、三次元構造を有する集電体が好ましい。三次元構造を有する集電体の材料としては、例えば、炭素繊維、スポンジ状カーボン(スポンジ状樹脂にカーボンを塗工したもの)、金属などが挙げられる。 As the current collector, in addition to the copper foil, a current collector having a three-dimensional structure is preferable in that the battery cycle is more excellent. Examples of the material of the current collector having the three-dimensional structure include carbon fiber, sponge-like carbon (a sponge-like resin coated with carbon), and metal.

三次元構造を有する集電体(多孔質集電体)としては、金属や炭素の導電体の多孔質体として、平織り金網、エキスパンドメタル、ラス網、金属発泡体、金属織布、金属不織布、炭素繊維織布、または炭素繊維不織布などが挙げられる。 As a current collector having a three-dimensional structure (porous current collector), as a porous body of a metal or carbon conductor, a plain woven wire net, an expanded metal, a lath net, a metal foam, a metal woven cloth, a metal non-woven fabric, etc. Examples thereof include carbon fiber woven fabrics and carbon fiber non-woven fabrics.

使用される結着剤としては、公知の材料を使用でき、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、SBR、ポリエチレン、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリル酸、膠などが用いられる。 As the binder used, known materials can be used, and for example, fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene, SBR, polyethylene, polyvinyl alcohol, carboxymethyl cellulose, polyacrylic acid, glue and the like are used. Be done.

また、溶剤としては、例えば、水、イソプロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどが挙げられる。 Examples of the solvent include water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide and the like.

なお、ペースト化する際には、上記のように必要に応じて、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合してもよい。 When making a paste, as described above, a known stirrer, mixer, kneader, kneader or the like may be used for stirring and mixing, if necessary.

リチウム二次電池用複合活物質を用いて塗工用スラリーを調製する場合、導電材として導電性カーボンブラック、カーボンナノチューブまたはその混合物を添加することが好ましい。上記工程により得られたリチウム二次電池用複合活物質の形状は、比較的、粒状化(特に、略球形化)している場合が多く、粒子間の接触は点接触となりやすい。この弊害を避けるために、スラリーにカーボンブラック、カーボンナノチューブまたはその混合物を配合する方法が挙げられる。カーボンブラック、カーボンナノチューブまたはその混合物はスラリー溶剤の乾燥時に該複合活物質が接触して形成する毛細管部分に集中的に凝集することが出来るので、サイクルに伴う接点切れ(抵抗増大)を防止することが出来る。 When preparing a coating slurry using a composite active material for a lithium secondary battery, it is preferable to add conductive carbon black, carbon nanotubes or a mixture thereof as a conductive material. The shape of the composite active material for a lithium secondary battery obtained by the above step is often relatively granular (particularly substantially spherical), and the contact between the particles tends to be point contact. In order to avoid this adverse effect, a method of blending carbon black, carbon nanotubes or a mixture thereof in the slurry can be mentioned. Since carbon black, carbon nanotubes, or a mixture thereof can be concentratedly aggregated in the capillary portion formed by contact with the composite active material when the slurry solvent is dried, it is necessary to prevent contact breakage (increased resistance) due to the cycle. Can be done.

カーボンブラック、カーボンナノチューブまたはその混合物の配合量は特に制限されないが、リチウム二次電池用複合活物質100質量部に対して、0.2〜4質量部であることが好ましく、0.5〜2質量部であることがより好ましい。カーボンナノチューブの例としては、シングルウォールカーボンナノチューブ、マルチウォールカーボンナノチューブがある。
(正極)
上記複合活物質を使用して得られる負極を有するリチウム二次電池に使用される正極としては、公知の正極材料を使用した正極を使用することができる。
The blending amount of carbon black, carbon nanotubes or a mixture thereof is not particularly limited, but is preferably 0.2 to 4 parts by mass and 0.5 to 2 parts by mass with respect to 100 parts by mass of the composite active material for a lithium secondary battery. More preferably, it is by mass. Examples of carbon nanotubes include single-wall carbon nanotubes and multi-wall carbon nanotubes.
(Positive electrode)
As the positive electrode used in the lithium secondary battery having the negative electrode obtained by using the composite active material, a positive electrode using a known positive electrode material can be used.

正極の製造方法としては公知の方法が挙げられ、正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布する方法などが挙げられる。正極材料(正極活物質)としては、酸化クロム、酸化チタン、酸化コバルト、五酸化バナジウムなどの金属酸化物や、LiCoO、LiNiO、LiNi1−yCo、LiNi1−x−yCoAl、LiMnO、LiMn、LiFeOなどのリチウム金属酸化物、硫化チタン、硫化モリブデンなどの遷移金属のカルコゲン化合物、または、ポリアセチレン、ポリパラフェニレン、ポリピロールなどの導電性を有する共役系高分子物質などが挙げられる。
(電解液)
上記複合活物質を使用して得られる負極を有するリチウム二次電池に使用される電解液としては、公知の電解液を使用することができる。
As a method for producing a positive electrode, a known method can be mentioned, and a method of applying a positive electrode mixture composed of a positive electrode material, a binder and a conductive agent to the surface of a current collector can be mentioned. As the cathode material (cathode active material), chromium oxide, titanium oxide, cobalt oxide, or metal oxides such as vanadium pentoxide, LiCoO 2, LiNiO 2, LiNi 1-y Co y O 2, LiNi 1-x-y Co x Al y O 2, LiMnO 2, LiMn 2 O 4, LiFeO 2 lithium metal oxides such as titanium sulfide, chalcogen compounds of transition metals such as molybdenum sulfide, or polyacetylene, polyparaphenylene, conductive polypyrrole Examples thereof include a conjugated polymer substance having.
(Electrolytic solution)
As the electrolytic solution used in the lithium secondary battery having a negative electrode obtained by using the composite active material, a known electrolytic solution can be used.

例えば、電解液中に含まれる電解質塩として、LiPF、LiBF、LiAsF、LiClO、LiB(C)、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN{(CFCHOSO、LiB{C(CF、LiN(SOCF、LiC(SOCF、LiAlCl、LiSiFなどのリチウム塩を用いることができる。特にLiPFおよびLiBFが酸化安定性の点から好ましい。 For example, as an electrolyte salt contained in the electrolyte, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5), LiCl, LiBr, LiCF 3 SO 3, LiCH 3 SO 3, LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 3 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN {(CF 3 ) 2 CHOSO 2 } 2 , LiB {C 6 H 3 (CF 3 ) 2 } 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6, etc. Lithium salts can be used. In particular, LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.

電解質溶液中の電解質塩濃度は0.1〜5モル/リットルが好ましく、0.5〜3モル/リットルがより好ましい。 The electrolyte salt concentration in the electrolyte solution is preferably 0.1 to 5 mol / liter, more preferably 0.5 to 3 mol / liter.

電解液で使用される溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソフラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。 Examples of the solvent used in the electrolytic solution include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran and 2 -Methyl tetrahydrofuran, γ-butyrolactone, 1,3-dioxofuran, 4-methyl-1,3-dioxolane, anisole, ethers such as diethyl ether, sulfolanes, thioethers such as methyl sulfolane, acetonitrile, chloronitrile, propionitrile, etc. Nitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethylolthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethylsulfoxide, 3-methyl-2- Aprotonic organic solvents such as oxazoline, ethylene glycol and dimethylsulfite can be used.

なお、電解液の代わりに、高分子固体電解質、高分子ゲル電解質などの高分子電解質を使用してもよい。高分子固体電解質または高分子ゲル電解質のマトリクスを構成する高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのメタクリレート系高分子化合物、ポリアクリレートなどのアクリレート系高分子化合物、ポリビニリデンフルオライド(PVDF)やビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が好ましい。これらを混合して使用することもできる。酸化還元安定性などの観点から、PVDFやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が特に好ましい。
(セパレータ)
上記複合活物質を使用して得られる負極を有するリチウム二次電池に使用されるセパレータとしては、公知の材料を使用できる。例えば、織布、不織布、合成樹脂製微多孔膜などが例示される。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、膜厚、膜強度、膜抵抗などの点から好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などである。
Instead of the electrolytic solution, a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte may be used. Examples of the polymer compound constituting the matrix of the polymer solid electrolyte or the polymer gel electrolyte include ether-based polymer compounds such as polyethylene oxide and its crosslinked product, methacrylate-based polymer compounds such as polymethacrylate, and acrylate-based compounds such as polyacrylate. Polymer compounds, fluoropolymer compounds such as polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer are preferred. These can also be mixed and used. From the viewpoint of redox stability and the like, fluoropolymer compounds such as PVDF and vinylidene fluoride-hexafluoropropylene copolymer are particularly preferable.
(Separator)
A known material can be used as the separator used in the lithium secondary battery having a negative electrode obtained by using the composite active material. Examples thereof include woven fabrics, non-woven fabrics, and microporous membranes made of synthetic resins. A microporous membrane made of synthetic resin is preferable, and among them, a polyolefin-based microporous membrane is preferable in terms of film thickness, membrane strength, membrane resistance, and the like. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane made of a composite thereof.

リチウム二次電池は、上述した負極、正極、セパレータ、電解液、その他電池構成要素(例えば、集電体、ガスケット、封口板、ケースなど)を用いて、常法にしたがって円筒型、角型あるいはボタン型などの形態を有することができる。 The lithium secondary battery uses the above-mentioned negative electrode, positive electrode, separator, electrolyte, and other battery components (for example, current collector, gasket, sealing plate, case, etc.) and is cylindrical, square, or according to a conventional method. It can have a form such as a button type.

本発明のリチウム二次電池は、各種携帯電子機器に用いられ、特にノート型パソコン、ノート型ワープロ、パームトップ(ポケット)パソコン、携帯電話、携帯ファックス、携帯プリンター、ヘッドフォンステレオ、ビデオカメラ、携帯テレビ、ポータブルCD、ポータブルMD、電動髭剃り機、電子手帳、トランシーバー、電動工具、ラジオ、テープレコーダー、デジタルカメラ、携帯コピー機、携帯ゲーム機などに用いることができる。また、さらに、電気自動車、ハイブリッド自動車、自動販売機、電動カート、ロードレベリング用蓄電システム、家庭用蓄電器、分散型電力貯蔵機システム(据置型電化製品に内蔵)、非常時電力供給システムなどの二次電池として用いることもできる。 The lithium secondary battery of the present invention is used in various portable electronic devices, and in particular, a notebook computer, a notebook word processor, a palm top (pocket) computer, a mobile phone, a mobile fax, a mobile printer, a headphone stereo, a video camera, and a portable television. , Portable CD, Portable MD, Electric Shaving Machine, Electronic Notebook, Transceiver, Electric Tool, Radio, Tape Recorder, Digital Camera, Portable Copy Machine, Portable Game Machine, etc. In addition, there are two types of vehicles such as electric vehicles, hybrid vehicles, vending machines, electric carts, power storage systems for road leveling, household power storage, distributed power storage systems (built into stationary electrical appliances), and emergency power supply systems. It can also be used as a secondary battery.

本発明の実施例1で製造した複合活物質の断面SEM像である。It is a cross-sectional SEM image of the composite active material produced in Example 1 of the present invention. 本発明の実施例2で製造した複合活物質の断面SEM像である。It is a cross-sectional SEM image of the composite active material produced in Example 2 of the present invention. 本発明の実施例3で製造した複合活物質の断面SEM像である。It is a cross-sectional SEM image of the composite active material produced in Example 3 of the present invention. 本発明の実施例3で製造した複合活物質の断面SEM像である。It is a cross-sectional SEM image of the composite active material produced in Example 3 of the present invention.

以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
(膨張黒鉛の調製)
平均粒子径1mmの鱗片状天然黒鉛を硫酸9質量部、硝酸1質量部の混酸に室温で1時間浸漬後、No3ガラスフィルターで混酸を除去して酸処理黒鉛を得た。さらに酸処理黒鉛を水洗後、乾燥した。乾燥した酸処理黒鉛5gを蒸留水100g中で攪拌し、1時間後にpHを測定したところ、pHは6.7であった。乾燥した酸処理黒鉛を850℃に設定した窒素雰囲気下の縦型電気炉に投入し、膨張黒鉛を得た。膨張黒鉛の嵩密度は0.002g/cm、比表面積は45m/gであった。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
<Example 1>
(Preparation of expanded graphite)
A scaly natural graphite having an average particle diameter of 1 mm was immersed in a mixed acid of 9 parts by mass of sulfuric acid and 1 part by mass of nitric acid at room temperature for 1 hour, and then the mixed acid was removed with a No. 3 glass filter to obtain acid-treated graphite. Further, the acid-treated graphite was washed with water and then dried. When 5 g of the dried acid-treated graphite was stirred in 100 g of distilled water and the pH was measured 1 hour later, the pH was 6.7. The dried acid-treated graphite was put into a vertical electric furnace under a nitrogen atmosphere set at 850 ° C. to obtain expanded graphite. The bulk density of expanded graphite was 0.002 g / cm 3 , and the specific surface area was 45 m 2 / g.

(混合工程)
平均粒径(D50)が7μmのケミカルグレードの金属Si(純度3N)をエタノールに21重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビーズミルを6時間行い、平均粒径(D50)0.3μm、乾燥時のBET比表面積が100m/gの超微粒子Siスラリーを得た。
(Mixing process)
A chemical grade metal Si (purity 3N) having an average particle size (D50) of 7 μm was mixed with ethanol in an amount of 21% by weight, and a finely pulverized wet bead mill using zirconia beads having a diameter of 0.3 mm was carried out for 6 hours to obtain an average particle size (D50). D50) An ultrafine Si slurry having a BET specific surface area of 0.3 μm and a dry BET specific surface area of 100 m 2 / g was obtained.

粒子径0.3mm((200)面方向の幅)、厚み10μmの酸処理した天然黒鉛を振動粉末供給器に入れ、12L/分の流量の窒素ガスに乗せて電気ヒーターで850℃に加熱した長さ1m、内径20mmのムライト管に通し、端面から大気に放出し、亜硫酸等のガスを上部に排気、下部に膨張黒鉛をステンレス容器で捕集した。膨張黒鉛の(200)面方向の幅は0.3mmで元の黒鉛の値を保っていたが、厚みは2.4mmと240倍に膨張し、外観はコイル状であり、SEM観察で黒鉛層が剥離し、アコーディオン状であることが確認された。 Acid-treated natural graphite having a particle size of 0.3 mm (width in the direction of the (200) plane) and a thickness of 10 μm was placed in a vibrating powder feeder, placed on nitrogen gas at a flow rate of 12 L / min, and heated to 850 ° C. with an electric heater. It was passed through a Murite tube having a length of 1 m and an inner diameter of 20 mm, and was released into the atmosphere from the end face, gas such as sulfurous acid was exhausted to the upper part, and expanded graphite was collected in the lower part in a stainless steel container. The width of the expanded graphite in the (200) plane direction was 0.3 mm, which was the same as that of the original graphite, but the thickness was 2.4 mm, which expanded 240 times, and the appearance was coiled. Was peeled off, and it was confirmed that it was accordion-like.

上記超微粒子Siスラリーを286g、上記膨張黒鉛を91g、レゾール型のフェノール樹脂(重量平均分子量(Mw)=1500)を18g、グリセリンを49g、エタノール2Lを撹拌容器に入れ、インラインミキサーで22分混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で40℃に加熱し、真空ポンプで減圧し、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、199gの混合乾燥物(軽装かさ密度190g/L)を得た。 286 g of the ultrafine Si slurry, 91 g of the expanded graphite, 18 g of a resole-type phenol resin (weight average molecular weight (Mw) = 1500), 49 g of glycerin, and 2 L of ethanol are placed in a stirring container and mixed with an in-line mixer for 22 minutes. Stirred. Then, the mixed solution was transferred to a rotary evaporator, heated to 40 ° C. in a warm bath while rotating, and depressurized by a vacuum pump to remove the solvent. Then, it was spread on a vat in a draft and dried for 2 hours while being exhausted, passed through a mesh having a mesh size of 2 mm, and dried for another day to obtain 199 g of a mixed dry matter (light bulk density 190 g / L).

(プレス工程)
この混合乾燥物を3本ロールミルに2回通し、目開き1mmの篩を通し、軽装かさ密度293g/Lに造粒・圧密化した。
(Press process)
This mixed dried product was passed through a three-roll mill twice, passed through a sieve having an opening of 1 mm, and granulated and compacted to a light bulk density of 293 g / L.

(球形化工程)
次に、この造粒・圧密化物を粉砕・球形化装置のハイブリダージェーションシステムに投入し、ローター周速100m/sで30分間粉砕し、同時に球形化し、軽装かさ密度603g/Lの略球状複合粉末を得た。
(Spheroidization process)
Next, this granulated / consolidated product is put into a hybridization system of a crushing / spheroidizing device, crushed at a rotor peripheral speed of 100 m / s for 30 minutes, and at the same time sphericalized, and has a substantially spherical shape with a light bulk density of 603 g / L. A composite powder was obtained.

(焼成工程)
得られた粉末を石英ボートに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成する事でフェノール樹脂の炭化と空隙形成材であるグリセリンの気化を同時に行った。これにより、黒鉛の含有量65質量部、Si含有量30質量部、炭素質物5質量部(フェノール樹脂由来のハードカーボン含有量)からなる略球状焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired at a maximum temperature of 900 ° C. for 1 hour while flowing nitrogen gas in a tubular furnace to carbonize the phenol resin and vaporize glycerin, which is a void forming material, at the same time. As a result, a substantially spherical fired powder consisting of 65 parts by mass of graphite, 30 parts by mass of Si content, and 5 parts by mass of carbonaceous material (hard carbon content derived from phenol resin) was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度788g/L、平均粒径(D
50)が40.4μm、の略球状焼成粉を得た。
After that, a mesh with an opening of 45 μm was passed through, and the bulk density was 788 g / L, and the average particle size (D).
A substantially spherical calcined powder having a size of 50) of 40.4 μm was obtained.

(コールタールピッチによる炭素被覆)
得らえた略球状焼成粉23gとコールタールピッチ18gを混合した後、キノリン18gを加え、10分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。
(Carbon coating with coal tar pitch)
After mixing 23 g of the obtained substantially spherical calcined powder and 18 g of coal tar pitch, 18 g of quinoline was added, and the mixture was stirred for 10 minutes, and then calcined and coated by the following method.

(焼成)
窒素を流しながら(4L/min)、混合物を600℃で2時間加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛の含有量50質量部、Si含有量23質量部、炭素質物27質量部(フェノール樹脂由来のハードカーボンの含有量4質量部、コールタールピッチ由来のソフトカーボンの含有量23質量部)からなる複合活物質を得た。
(Baking)
The coal tar pitch was denatured to soft carbon by heating the mixture at 600 ° C. for 2 hours with flowing nitrogen (4 L / min). As a result, the graphite content is 50 parts by mass, the Si content is 23 parts by mass, and the carbon material is 27 parts by mass (hard carbon content derived from phenol resin is 4 parts by mass, and soft carbon content derived from coal tar pitch is 23 parts by mass). ) Was obtained.

(解砕・篩)
得られた複合活物質をスタンプミルにて解砕した後にボールミルによって粉砕し、目開き45μmのメッシュを通し、軽装かさ密度685g/Lの粉砕粉を得た。
(Crushing / sieving)
The obtained composite active material was crushed by a stamp mill and then pulverized by a ball mill, and passed through a mesh having a mesh size of 45 μm to obtain a pulverized powder having a light bulk density of 685 g / L.

(風力分級)
得られた粉砕粉をホソカワミクロン製風力分級装置(50ATP)に投入し、分級ローター回転数を15000rpmとし風力分級し、軽装かさ密度187g/Lの粉体を得た。
(Wind power classification)
The obtained pulverized powder was put into a wind classifying device (50 ATP) manufactured by Hosokawa Micron, and the classifying rotor was speed-classified at 15,000 rpm to obtain a powder having a light bulk density of 187 g / L.

(気相コートによる炭素被覆)
風力分級により得られた粉体を石英管内にセットし、ロータリーポンプにより管内を真空引きした後に管内に200SCCMの流量の窒素ガス及び、100SCCMの流量のエチレンガスを流し、電気ヒーターで1000℃まで加熱し、その状態を2時間保持する事で炭素被覆を行った。炭素被覆による重量増は7.8%であり、これによりこれにより、黒鉛の含有量46質量部、Si含有量21質量部、炭素質物33質量部(フェノール樹脂由来のハードカーボンの含有量4質量部、コールタールピッチ、気相コート由来のソフトカーボンの含有量29質量部)からなるリチウム二次電池用複合活物質を得た。
(Carbon coating with vapor phase coat)
The powder obtained by wind classification is set in a quartz pipe, the inside of the pipe is evacuated by a rotary pump, nitrogen gas having a flow rate of 200 SCCM and ethylene gas having a flow rate of 100 SCCM are flowed into the pipe, and heated to 1000 ° C. with an electric heater. Then, carbon coating was performed by holding the state for 2 hours. The weight increase due to the carbon coating was 7.8%, which resulted in a graphite content of 46 parts by mass, a Si content of 21 parts by mass, and a carbonaceous material of 33 parts by mass (4% by mass of hard carbon derived from phenol resin). A composite active material for a lithium secondary battery was obtained, which consisted of parts, coal tar pitch, and a soft carbon content of 29 parts by mass derived from the vapor phase coat).

その物性は以下の通りである。粒度分布D50:11.2μm、D90:19.8μm、BET比表面積:5.2m/g、平均細孔径:13.5nm、開気孔体積:0.021cm/g、形状:略球状。 Its physical characteristics are as follows. Particle size distribution D50: 11.2 μm, D90: 19.8 μm, BET specific surface area: 5.2 m 2 / g, average pore diameter: 13.5 nm, open pore volume: 0.021 cm 3 / g, shape: substantially spherical.

SEM(走査型電子顕微鏡)による、複合活物質の粒子断面の二次電子像を図1に示す。 A secondary electron image of the particle cross section of the composite active material by SEM (scanning electron microscope) is shown in FIG.

得られたリチウム二次電池用複合活物質の断面SEM観察を行ない、SEM画像から空隙率((粒子内空隙の断面積/粒子全体の断面積)X100)を求めたところ、4%であった。 The cross-sectional SEM observation of the obtained composite active material for a lithium secondary battery was performed, and the void ratio ((cross-sectional area of intraparticle voids / cross-sectional area of the entire particle) X100) was determined from the SEM image and found to be 4%. ..

(リチウム二次電池用負極の作製」
得られた複合活物質95.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてゲル化ポリアクリル酸4重量%と水とを混合して負極合剤含有スラリーを調製した。
(Manufacturing of negative electrode for lithium secondary battery)
With respect to 95.5% by weight of the obtained composite active material (content in the total solid content; the same applies hereinafter), 0.5% by weight of acetylene black as a conductive auxiliary agent and 4% by weight of gelled polyacrylic acid as a binder. % And water were mixed to prepare a slurry containing a negative electrode mixture.

得られたスラリーを、アプリケータを用いて固形分塗布量が2.8mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて2時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で3時間熱処理して、厚みが29μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。 The obtained slurry was applied to a copper foil having a thickness of 18 μm using an applicator so that the amount of solid content applied was 2.8 mg / cm 2, and dried at 110 ° C. for 2 hours in a vacuum dryer. After drying, it is punched into a circular shape of 14 mmφ , uniaxially pressed under the condition of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 3 hours under vacuum to form a negative electrode mixture layer having a thickness of 29 μm. A negative electrode for the next battery was obtained.

「評価用セルの作製」
評価用セルは、グローブボックス中でスクリューセルに上記負極、24mmφのポリプロピレン製セパレータ、21mmφのガラスフィルター、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、にFEC(フルオロエチレンカーボネイト)とし、LiPFを1.2vol/Lの濃度になるように溶解させたものを使用した。評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置に接続した。
"Preparation of evaluation cell"
In the glove box, the negative electrode, the polypropylene separator of 24 mmφ, the glass filter of 21 mmφ, the metallic lithium of 18 mmφ and the thickness of 0.2 mm, and the stainless steel foil of the base material are dipped into the electrolytic solution in the screw cell in the glove box. Then, they were laminated in this order, and finally the lid was screwed in to prepare. As the electrolytic solution, ethylene carbonate and diethyl carbonate were used as a mixed solvent having a volume ratio of 1: 1 and FEC (fluoroethylene carbonate) was used, and LiPF 6 was dissolved at a concentration of 1.2 vol / L. The evaluation cell was further placed in a closed glass container containing silica gel, and an electrode passed through a silicon rubber lid was connected to the charging / discharging device.

評価用セルは25℃の恒温室にて、0.44mAの定電流で0.005Vまで0.1Cで充電後、0.005Vの定電圧で電流値が0.02mAになるまで0.05Cで行ったところ、初回充電容量は887mAh/gとなった。 その後、グローブボックス内アルゴン雰囲気内で評価用セルを解体し、電極膜厚をマイクロメーターで測定し、初回充電膨張率((充電後電極膜厚/充電前電極膜厚 x100))は135%であった。
<実施例2>
膨張黒鉛の調製および混合工程は<実施例1>と同様である。
The evaluation cell is charged at a constant current of 0.44 mA at 0.1 C to 0.005 V in a constant temperature room at 25 ° C., and then charged at a constant voltage of 0.005 V at 0.05 C until the current value reaches 0.02 mA. As a result, the initial charge capacity was 887 mAh / g. After that, the evaluation cell was disassembled in the argon atmosphere in the glove box, the electrode film thickness was measured with a micrometer, and the initial charge expansion rate ((post-charge electrode film thickness / pre-charge electrode film thickness x100)) was 135%. there were.
<Example 2>
The steps of preparing and mixing the expanded graphite are the same as in <Example 1>.

調製した膨張黒鉛21g、スクロース29gと純水500mLを撹拌容器に入れ、インラインミキサーで10分間撹拌混合した。その後、混合液をロータリーエバポレーターの容器に移し、回転しながら温浴で80℃に加熱し、真空ポンプで減圧して大部分の水を除去して膨張黒鉛とスクロースの混合ケーキとした。その後、混合ケーキを乾燥オーブンにて130℃で5時間乾燥させ膨張黒鉛−スクロース混合物を得た。 The prepared expanded graphite (21 g), sucrose (29 g) and pure water (500 mL) were placed in a stirring container, and the mixture was stirred and mixed with an in-line mixer for 10 minutes. Then, the mixed solution was transferred to a container of a rotary evaporator, heated to 80 ° C. in a warm bath while rotating, and depressurized by a vacuum pump to remove most of the water to obtain a mixed cake of expanded graphite and sucrose. Then, the mixed cake was dried in a drying oven at 130 ° C. for 5 hours to obtain an expanded graphite-sucrose mixture.

前述した超微粒子Siスラリーを120g、上記膨張黒鉛−スクロース混合物を70g、グリセリンを6.3g、エタノール1Lを撹拌容器に入れ、インラインミキサーで22分混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で40℃に加熱し、真空ポンプで減圧し、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、96gの混合乾燥物(軽装かさ密度178g/L)を得た。 120 g of the above-mentioned ultrafine Si slurry, 70 g of the above expanded graphite-sucrose mixture, 6.3 g of glycerin and 1 L of ethanol were placed in a stirring container, and the mixture was mixed and stirred with an in-line mixer for 22 minutes. Then, the mixed solution was transferred to a rotary evaporator, heated to 40 ° C. in a warm bath while rotating, and depressurized by a vacuum pump to remove the solvent. Then, it was spread on a vat in a draft and dried for 2 hours while being exhausted, passed through a mesh having a mesh size of 2 mm, and dried for another day to obtain 96 g of a mixed dry matter (light bulk density 178 g / L).

(プレス工程)
この混合乾燥物を3本ロールミルに2回通し、目開き1mmの篩を通し、軽装かさ密度362g/Lに造粒・圧密化した。
(Press process)
This mixed dried product was passed through a three-roll mill twice, passed through a sieve having an opening of 1 mm, and granulated and compacted to a light bulk density of 362 g / L.

(球形化工程)
次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、21000rpmで360秒粉砕し、同時に球形化し、軽装かさ密度425g/Lの略球状複合粉末を得
た。
(Spheroidization process)
Next, this granulated / consolidated product was placed in a new power mill and pulverized at 21000 rpm for 360 seconds while being water-cooled, and at the same time sphericalized to obtain a substantially spherical composite powder having a light bulk density of 425 g / L.

(焼成工程)
得られた粉末を石英ボートに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成する事で空隙形成材であるグリセリンの気化とスクロースの炭化を同時に行った。これにより、黒鉛の含有量61質量部、Si含有量30質量部、炭素質物9質量部(スクロース由来のハードカーボン含有量)からなる略球状焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired at a maximum temperature of 900 ° C. for 1 hour while flowing nitrogen gas in a tubular furnace to vaporize glycerin, which is a void forming material, and carbonize sucrose at the same time. As a result, a substantially spherical calcined powder consisting of 61 parts by mass of graphite, 30 parts by mass of Si content, and 9 parts by mass of carbonaceous material (hard carbon content derived from sucrose) was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度444g/Lの略球状焼成粉を得た。
(コールタールピッチによる炭素被覆)
得らえた略球状焼成粉47gとコールタールピッチ37gを混合した後、キノリン37gを加え、10分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。
Then, a mesh having a mesh size of 45 μm was passed through the powder to obtain a substantially spherical calcined powder having a light bulk density of 444 g / L.
(Carbon coating with coal tar pitch)
After mixing 47 g of the obtained substantially spherical calcined powder and 37 g of coal tar pitch, 37 g of quinoline was added, and the mixture was stirred for 10 minutes, and then calcined and coated by the following method.

(焼成)
窒素を流しながら(13.4L/min)、、混合物を600℃で2時間加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛の含有量47質量部、Si含有量23質量部、炭素質物30質量部(スクロース由来のハードカーボンの含有量7質量部、コールタールピッチ由来のソフトカーボンの含有量23質量部)からなる複合活物質を得た。
(Baking)
The coal tar pitch was denatured to soft carbon by heating the mixture at 600 ° C. for 2 hours with flowing nitrogen (13.4 L / min). As a result, the graphite content is 47 parts by mass, the Si content is 23 parts by mass, and the carbon material is 30 parts by mass (7 parts by mass of hard carbon derived from sucrose, 23 parts by mass of soft carbon derived from coal tar pitch). A composite active material consisting of

(解砕・篩)
得られた複合活物質をスタンプミルにて解砕した後にボールミルによって粉砕し、目開き45μmのメッシュを通し、軽装かさ密度385g/Lの粉砕粉を得た。
(風力分級)
得られた粉砕粉をホソカワミクロン製風力分級装置(50ATP)に投入し、分級ローター回転数を15000rpmとし風力分級し、軽装かさ密度154g/Lの粉体を得た。
(Crushing / sieving)
The obtained composite active material was crushed by a stamp mill and then pulverized by a ball mill, and passed through a mesh having a mesh size of 45 μm to obtain a pulverized powder having a light bulk density of 385 g / L.
(Wind power classification)
The obtained pulverized powder was put into a wind classifying device (50 ATP) manufactured by Hosokawa Micron, and the classifying rotor was speed-classified at 15,000 rpm to obtain a powder having a light bulk density of 154 g / L.

(気相コートによる炭素被覆)
風力分級により得られた粉体を石英管内にセットし、ロータリーポンプにより管内を真空引きした後に管内に200SCCMの流量の窒素ガス及び、100SCCMの流量のエチレンガスを流し、電気ヒーターで1000℃まで加熱し、その状態を時間保持する事で炭素被覆を行った。炭素被覆による重量増は15.2%であり、これによりこれにより、黒鉛の含有量41質量部、、Si含有量20質量部、炭素質物39質量部(スクロース由来のハードカーボンの含有量6質量部、コールタールピッチ、気相コート由来のソフトカーボンの含有量33質量部)からなるリチウム二次電池用複合活物質を得た。
(Carbon coating with vapor phase coat)
The powder obtained by wind classification is set in a quartz pipe, the inside of the pipe is evacuated by a rotary pump, nitrogen gas having a flow rate of 200 SCCM and ethylene gas having a flow rate of 100 SCCM are flowed into the pipe, and heated to 1000 ° C. with an electric heater. Then, carbon coating was performed by maintaining the state for a long time. The weight increase due to the carbon coating was 15.2%, which resulted in a graphite content of 41 parts by mass, a Si content of 20 parts by mass, and a carbonaceous material of 39 parts by mass (6 mass of hard carbon derived from sucrose). A composite active material for a lithium secondary battery was obtained, which consisted of parts, coal tar pitch, and a soft carbon content of 33 parts by mass derived from the vapor phase coat).

その物性は以下の通りである。粒度分布D50:12.1μm、D90:24.4μm、BET比表面積:5.7m/g、平均細孔径:13.6nm、開気孔体積:0.023
cm/g、軽装かさ密度が203g/L、形状:略球状のリチウム二次電池用複合活物質を得た。
Its physical characteristics are as follows. Particle size distribution D50: 12.1 μm, D90: 24.4 μm, BET specific surface area: 5.7 m 2 / g, average pore diameter: 13.6 nm, open pore volume: 0.023
A composite active material for a lithium secondary battery having a cm of 3 / g, a light bulk density of 203 g / L, and a shape: substantially spherical shape was obtained.

SEM(走査型電子顕微鏡)による、複合活物質の粒子断面の二次電子像を図2に示す。 A secondary electron image of the particle cross section of the composite active material by SEM (scanning electron microscope) is shown in FIG.

得られたリチウム二次電池用複合活物質の断面SEM観察を行ない、SEM画像から空隙率((粒子内空隙の断面積/粒子全体の断面積)x100)を求めたところ、8%であった。 The cross-sectional SEM observation of the obtained composite active material for a lithium secondary battery was performed, and the void ratio ((cross-sectional area of intraparticle voids / cross-sectional area of the entire particle) x 100) was determined from the SEM image and found to be 8%. ..

(リチウムイオン2次電池用負極の作製」
得られた複合活物質95.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてゲル化ポリアクリル酸4重量%と水とを混合して負極合剤含有スラリーを調製した。
(Manufacturing of negative electrode for lithium ion secondary battery)
With respect to 95.5% by weight of the obtained composite active material (content in the total solid content; the same applies hereinafter), 0.5% by weight of acetylene black as a conductive auxiliary agent and 4% by weight of gelled polyacrylic acid as a binder. % And water were mixed to prepare a slurry containing a negative electrode mixture.

得られたスラリーを、アプリケータを用いて固形分塗布量が2.7mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて2時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが30μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。 The obtained slurry was applied to a copper foil having a thickness of 18 μm using an applicator so that the amount of solid content applied was 2.7 mg / cm 2, and dried at 110 ° C. for 2 hours in a vacuum dryer. After drying, it is punched into a circular shape of 14 mmφ , uniaxially pressed under the condition of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a negative electrode mixture layer having a thickness of 30 μm. A negative electrode for the next battery was obtained.

「評価用セルの作製」
評価用セルは25℃の恒温室にて、0.44mAの定電流で0.005Vまで0.1Cで充電後、0.005Vの定電圧で電流値が0.02mAになるまで0.05Cで行ったところ、初回充電容量は890mAh/gとなった。 その後、グローブボックス内アルゴン雰囲気内で評価用セルを解体し、電極膜厚をマイクロメーターで測定し、初回充電膨張率((充電後電極膜厚/充電前電極膜厚 x100))は137%であった。
<実施例3>
膨張黒鉛の調製および混合工程は<実施例1>と同様である。
超微粒子Siスラリーを 80g、膨張黒鉛を23g、スクロースを24g、メントールを12g、エタノール1Lを撹拌容器に入れ、インラインミキサーで10分混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で40℃に加熱し、真空ポンプで減圧して溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、80gの混合乾燥物(軽装かさ密度209g/L)を得た。
"Preparation of evaluation cell"
The evaluation cell is charged at a constant current of 0.44 mA at 0.1 C to 0.005 V in a constant temperature room at 25 ° C., and then charged at a constant voltage of 0.005 V at 0.05 C until the current value reaches 0.02 mA. As a result, the initial charge capacity was 890 mAh / g. After that, the evaluation cell was disassembled in the argon atmosphere in the glove box, the electrode film thickness was measured with a micrometer, and the initial charge expansion rate ((post-charge electrode film thickness / pre-charge electrode film thickness x100)) was 137%. there were.
<Example 3>
The steps of preparing and mixing the expanded graphite are the same as in <Example 1>.
80 g of ultrafine Si slurry, 23 g of expanded graphite, 24 g of sucrose, 12 g of menthol and 1 L of ethanol were placed in a stirring container, and the mixture was mixed and stirred with an in-line mixer for 10 minutes. Then, the mixed solution was transferred to a rotary evaporator, heated to 40 ° C. in a warm bath while rotating, and depressurized by a vacuum pump to remove the solvent. Then, it was spread on a vat in a draft and dried for 2 hours while being exhausted, passed through a mesh having a mesh size of 2 mm, and dried for another day to obtain 80 g of a mixed dry matter (light bulk density 209 g / L).

(プレス工程)
この混合乾燥物を3本ロールミルに2回通し、目開き1mmの篩を通し、軽装かさ密度215g/Lに造粒・圧密化した。
(Press process)
This mixed dried product was passed through a three-roll mill twice, passed through a sieve having an opening of 1 mm, and granulated and compacted to a light bulk density of 215 g / L.

(球形化工程)
次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、21000rpmで360秒粉砕し、同時に球形化し、軽装かさ密度278g/Lの略球状複合粉末を得た。
(Spheroidization process)
Next, this granulated / consolidated product was placed in a new power mill and pulverized at 21000 rpm for 360 seconds while being water-cooled, and at the same time sphericalized to obtain a substantially spherical composite powder having a light bulk density of 278 g / L.

(焼成工程)
得られた粉末を石英ボートに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成する事で空隙形成材であるメントールの気化とスクロースの炭化を行った。これにより、黒鉛の含有量58質量部、Si含有量30質量部、炭素質物12質量部(スクロース樹脂由来のハードカーボン含有量)からなる略球状焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired at a maximum temperature of 900 ° C. for 1 hour while flowing nitrogen gas in a tubular furnace to vaporize menthol, which is a void forming material, and carbonize sucrose. As a result, a substantially spherical fired powder consisting of 58 parts by mass of graphite, 30 parts by mass of Si content, and 12 parts by mass of carbonaceous material (hard carbon content derived from sucrose resin) was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度157g/L、平均粒径(D50)が 10.1μmの略球状焼成粉を得た。 Then, a mesh having a mesh size of 45 μm was passed through to obtain a substantially spherical calcined powder having a light bulk density of 157 g / L and an average particle size (D50) of 10.1 μm.

(コールタールピッチによる炭素被覆)
得らえた略球状焼成粉12gとコールタールピッチ9.4gを混合した後、キノリン25gを加え、10分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。
(Carbon coating with coal tar pitch)
After mixing 12 g of the obtained substantially spherical calcined powder and 9.4 g of coal tar pitch, 25 g of quinoline was added, and the mixture was stirred for 10 minutes, and then calcined and coated by the following method.

(焼成)
窒素を流しながら(13.4L/min)、混合物を600℃で2時間加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛の含有量45質量部、Si含有量23質量部、炭素質物32質量部(スクロース由来のハードカーボンの含有量9質量部、コールタールピッチ由来のソフトカーボンの含有量23質量部)からなる複合活物質を得た。
(Baking)
The coal tar pitch was denatured to soft carbon by heating the mixture at 600 ° C. for 2 hours with flowing nitrogen (13.4 L / min). As a result, the graphite content is 45 parts by mass, the Si content is 23 parts by mass, and the carbon material is 32 parts by mass (9 parts by mass of hard carbon derived from sucrose, 23 parts by mass of soft carbon derived from coal tar pitch). A composite active material consisting of

(解砕・篩)
得られた複合活物質を乳鉢にて粉砕し、目開き45μmのメッシュを通し、軽装かさ密度279g/L、平均粒径(D50)が9.2μmの粉砕粉を得た。
(Crushing / sieving)
The obtained composite active material was pulverized in a mortar and passed through a mesh having an opening of 45 μm to obtain a pulverized powder having a light bulk density of 279 g / L and an average particle size (D50) of 9.2 μm.

(気相コートによる炭素被覆)
得られた粉体を石英管内にセットし、ロータリーポンプにより管内を真空引きした後に管内に200SCCMの流量の窒素ガス及び、100SCCMの流量のエチレンガスを流し、電気ヒーターで1000℃まで加熱し、その状態を時間保持する事で炭素被覆を行った。炭素被覆による重量増は14.9%であり、これによりこれにより、黒鉛の含有量39質量部、Si含有量20質量部、炭素質物41質量部(スクロース由来のハードカーボンの含有量8質量部、コールタールピッチ、気相コート由来のソフトカーボンの含有量33質量部)からなるリチウム二次電池用複合活物質を得た。
(Carbon coating with vapor phase coat)
The obtained powder is set in a quartz tube, the inside of the tube is evacuated by a rotary pump, nitrogen gas having a flow rate of 200 SCCM and ethylene gas having a flow rate of 100 SCCM are flowed into the tube, and the mixture is heated to 1000 ° C. with an electric heater. Carbon coating was performed by maintaining the state for a long time. The weight increase due to the carbon coating was 14.9%, which resulted in a graphite content of 39 parts by mass, a Si content of 20 parts by mass, and a carbonaceous material of 41 parts by mass (8 parts by mass of hard carbon derived from sucrose). , Coultal pitch, and a composite active material for a lithium secondary battery, which comprises 33 parts by mass of soft carbon derived from a vapor phase coat).

SEM(走査型電子顕微鏡)による、複合活物質の二次電子像を図3に示す。 A secondary electron image of the composite active material by SEM (scanning electron microscope) is shown in FIG.

得られたリチウム二次電池用複合活物質の断面SEM画像から空隙率((粒子内空隙の断面積/粒子全体の断面積)x 100)を求めたところ、24%であった。
「リチウムイオン2次電池用負極の作製」
得られた複合活物質89.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてゲル化ポリアクリル酸10重量%と水とを混合して負極合剤含有スラリーを調製した。
The void ratio ((cross-sectional area of intraparticle voids / cross-sectional area of the entire particle) x 100) was determined from the cross-sectional SEM image of the obtained composite active material for a lithium secondary battery and found to be 24%.
"Manufacturing a negative electrode for a lithium ion secondary battery"
With respect to the obtained composite active material of 89.5% by weight (content in the total solid content; the same applies hereinafter), 0.5% by weight of acetylene black as a conductive auxiliary agent and 10% by weight of gelled polyacrylic acid as a binder. % And water were mixed to prepare a slurry containing a negative electrode mixture.

得られたスラリーを、アプリケータを用いて固形分塗布量が2.1mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが23μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。 The obtained slurry was applied to a copper foil having a thickness of 18 μm using an applicator so that the amount of solid content applied was 2.1 mg / cm 2, and dried at 110 ° C. in a vacuum dryer for 0.5 hours. .. After drying, it is punched into a circular shape of 14 mmφ , uniaxially pressed under the condition of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a negative electrode mixture layer having a thickness of 23 μm. A negative electrode for the next battery was obtained.

「評価用セルの作製」
評価用セルは25℃の恒温室にて、0.44mAの定電流で0.005Vまで0.1Cで充電後、0.005Vの定電圧で電流値が0.02mAになるまで0.05Cで行ったところ、初回充電容量は1075mAh/gとなった。 その後、グローブボックス内アルゴン雰囲気内で評価用セルを解体し、電極膜厚をマイクロメーターで測定し、初回充電膨張率((充電後電極膜厚/充電前電極膜厚 x100))は141%であった。
<比較例1>
(膨張黒鉛の調製)
膨張黒鉛の調製および混合工程は<実施例1>と同様である。
"Preparation of evaluation cell"
The evaluation cell is charged at a constant current of 0.44 mA at 0.1 C to 0.005 V in a constant temperature room at 25 ° C., and then charged at a constant voltage of 0.005 V at 0.05 C until the current value reaches 0.02 mA. As a result, the initial charge capacity was 1075 mAh / g. After that, the evaluation cell was disassembled in the argon atmosphere in the glove box, the electrode film thickness was measured with a micrometer, and the initial charge expansion rate ((post-charge electrode film thickness / pre-charge electrode film thickness x100)) was 141%. there were.
<Comparative example 1>
(Preparation of expanded graphite)
The steps of preparing and mixing the expanded graphite are the same as in <Example 1>.

上記超微粒子Siスラリーを945g、上記膨張黒鉛を240g、レゾール型のフェノール樹脂(重量平均分子量(Mw)=230)を100g、エタノール4Lを撹拌容器に入れ、インラインミキサーで22分混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で40℃に加熱し、真空ポンプで減圧し、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、471gの混合乾燥物(軽装かさ密度201g/L)を得た。 945 g of the ultrafine Si slurry, 240 g of the expanded graphite, 100 g of a resole-type phenol resin (weight average molecular weight (Mw) = 230), and 4 L of ethanol were placed in a stirring container, and the mixture was mixed and stirred with an in-line mixer for 22 minutes. Then, the mixed solution was transferred to a rotary evaporator, heated to 40 ° C. in a warm bath while rotating, and depressurized by a vacuum pump to remove the solvent. Then, it was spread on a vat in a draft and dried for 2 hours while being exhausted, passed through a mesh having a mesh size of 2 mm, and dried for another day to obtain 471 g of a mixed dry matter (light bulk density 201 g / L).

(プレス工程)
この混合乾燥物を3本ロールミルに2回通し、目開き1mmの篩を通し、軽装かさ密度419g/Lに造粒・圧密化した。
(Press process)
This mixed dried product was passed through a three-roll mill twice, passed through a sieve having an opening of 1 mm, and granulated and compacted to a light bulk density of 419 g / L.

(球形化工程)
次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、21000rpmで360秒粉砕し、同時に球形化し、軽装かさ密度439g/Lの略球状複合粉末を得た。
(Spheroidization process)
Next, this granulated / consolidated product was placed in a new power mill and pulverized at 21000 rpm for 360 seconds while being water-cooled, and at the same time sphericalized to obtain a substantially spherical composite powder having a light bulk density of 439 g / L.

(焼成工程)
得られた粉末を石英ボートに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成する事でフェノール樹脂の炭化を同時に行った。これにより、黒鉛の含有量60質量部、Si含有量30質量部、炭素質物10質量部(フェノール樹脂由来のハードカーボン含有量)からなる略球状焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and calcined at a maximum temperature of 900 ° C. for 1 hour while flowing nitrogen gas in a tubular furnace to simultaneously carbonize the phenol resin. As a result, a substantially spherical fired powder consisting of 60 parts by mass of graphite, 30 parts by mass of Si content, and 10 parts by mass of carbonaceous material (hard carbon content derived from phenol resin) was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度505g/の略球状焼成粉を得た。 Then, a mesh having a mesh size of 45 μm was passed through the powder to obtain a substantially spherical calcined powder having a light bulk density of 505 g /.

(コールタールピッチによる炭素被覆)
得らえた略球状焼成粉50gとコールタールピッチ40gを混合した後、キノリン40gを加え、10分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。
(Carbon coating with coal tar pitch)
After mixing 50 g of the obtained substantially spherical calcined powder and 40 g of coal tar pitch, 40 g of quinoline was added, and the mixture was stirred for 10 minutes, and then calcined and coated by the following method.

(焼成)
窒素を流しながら(13.4L/min)、混合物を600℃で2時間加熱することで、コールタールピッチをソフトカーボンへ変性させた。これにより、黒鉛の含有量46質量部、Si含有量23質量部、炭素質物31質量部(フェノール樹脂由来のハードカーボンの含有量8質量部、コールタールピッチ由来のソフトカーボンの含有量23質量部)からなる複合活物質を得た。
(Baking)
The coal tar pitch was denatured to soft carbon by heating the mixture at 600 ° C. for 2 hours with flowing nitrogen (13.4 L / min). As a result, the graphite content is 46 parts by mass, the Si content is 23 parts by mass, and the carbon material is 31 parts by mass (hard carbon content derived from phenol resin is 8 parts by mass, and soft carbon content derived from coal tar pitch is 23 parts by mass). ) Was obtained.

(解砕・篩)
得られた複合活物質をスタンプミルにて解砕した後にボールミルによって粉砕し、目開き45μmのメッシュを通し、軽装かさ密度453g/L、平均粒径(D50)が12.5μmの粉砕粉を得た。
(Crushing / sieving)
The obtained composite active material is crushed by a stamp mill and then crushed by a ball mill, and passed through a mesh having a mesh size of 45 μm to obtain a pulverized powder having a light bulk density of 453 g / L and an average particle size (D50) of 12.5 μm. rice field.

(気相コートによる炭素被覆)
得られた粉体を石英管内にセットし、ロータリーポンプにより管内を真空引きした後に管内に200SCCMの流量の窒素ガス及び、100SCCMの流量のエチレンガスを流し、電気ヒーターで1000℃まで加熱し、その状態を時間保持する事で炭素被覆を行った。炭素被覆による重量増は8.2%であり、これによりこれにより、黒鉛の含有量43質量部、、Si含有量21質量部、炭素質物36質量部(フェノール由来のハードカーボンの含有量7質量部、コールタールピッチ、気相コート由来のソフトカーボンの含有量29質量部)からなるリチウム二次電池用複合活物質を得た。
(Carbon coating with vapor phase coat)
The obtained powder is set in a quartz tube, the inside of the tube is evacuated by a rotary pump, nitrogen gas having a flow rate of 200 SCCM and ethylene gas having a flow rate of 100 SCCM are flowed into the tube, and the mixture is heated to 1000 ° C. with an electric heater. Carbon coating was performed by maintaining the state for a long time. The weight increase due to the carbon coating was 8.2%, which resulted in a graphite content of 43 parts by mass, a Si content of 21 parts by mass, and a carbonaceous material of 36 parts by mass (7 mass of hard carbon derived from phenol). A composite active material for a lithium secondary battery was obtained, which consisted of parts, coal tar pitch, and a soft carbon content of 29 parts by mass derived from the vapor phase coat).

その物性は以下の通りである。粒度分布D50:24.2μm、D90:44.9μm、BET比表面積:6.1m/g、平均細孔径:15.6nm、開気孔体積:0.028cm/g、形状:略球状。 Its physical characteristics are as follows. Particle size distribution D50: 24.2 μm, D90: 44.9 μm, BET specific surface area: 6.1 m 2 / g, average pore diameter: 15.6 nm, open pore volume: 0.028 cm 3 / g, shape: substantially spherical.

SEM(走査型電子顕微鏡)による、複合活物質の粒子断面の二次電子像を図4に示す。 A secondary electron image of the particle cross section of the composite active material by SEM (scanning electron microscope) is shown in FIG.

得られたリチウム二次電池用複合活物質の断面SEM観察を行ない、SEM画像から空隙率((粒子内空隙の断面積/粒子全体の断面積)x100)を求めたところ、1%であった。
「リチウムイオン2次電池用負極の作製」
得られた複合活物質95.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてゲル化ポリアクリル酸4重量%と水とを混合して負極合剤含有スラリーを調製した。
The cross-sectional SEM observation of the obtained composite active material for a lithium secondary battery was performed, and the void ratio ((cross-sectional area of intraparticle voids / cross-sectional area of the entire particle) x 100) was determined from the SEM image and found to be 1%. ..
"Manufacturing a negative electrode for a lithium ion secondary battery"
With respect to 95.5% by weight of the obtained composite active material (content in the total solid content; the same applies hereinafter), 0.5% by weight of acetylene black as a conductive auxiliary agent and 4% by weight of gelled polyacrylic acid as a binder. % And water were mixed to prepare a slurry containing a negative electrode mixture.

得られたスラリーを、アプリケータを用いて固形分塗布量が2.6mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが20μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。 The obtained slurry was applied to a copper foil having a thickness of 18 μm using an applicator so that the amount of solid content applied was 2.6 mg / cm 2, and dried at 110 ° C. in a vacuum dryer for 0.5 hours. .. After drying, it is punched into a circular shape of 14 mmφ , uniaxially pressed under the condition of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a negative electrode mixture layer having a thickness of 20 μm. A negative electrode for the next battery was obtained.

「評価用セルの作製」
評価用セルは25℃の恒温室にて、0.44mAの定電流で0.005Vまで0.1Cで充電後、0.005Vの定電圧で電流値が0.02mAになるまで0.05Cで行ったところ、初回充電容量は1075mAh/gとなった。 その後、グローブボックス内アルゴン雰囲気内で評価用セルを解体し、電極膜厚をマイクロメーターで測定し、初回充電膨張率((充電後電極膜厚/充電前電極膜厚 x100))は200%であった。
"Preparation of evaluation cell"
The evaluation cell is charged at a constant current of 0.44 mA at 0.1 C to 0.005 V in a constant temperature room at 25 ° C., and then charged at a constant voltage of 0.005 V at 0.05 C until the current value reaches 0.02 mA. As a result, the initial charge capacity was 1075 mAh / g. After that, the evaluation cell was disassembled in the argon atmosphere in the glove box, the electrode film thickness was measured with a micrometer, and the initial charge expansion rate ((post-charge electrode film thickness / pre-charge electrode film thickness x100)) was 200%. there were.

Figure 0006961980
Figure 0006961980

Claims (9)

SiまたはSi合金、黒鉛及び炭素質物を含み黒鉛薄層とSiまたはSi合金の間、黒鉛薄層と黒鉛薄層間及びSiまたはSi合金とSiまたはSi合金間の1か所以上に空隙を有し、空隙率が2〜50%であり、活物質の平均粒径(D50)が1〜40μm、比表面積が0.5〜45m /g、平均細孔径が10〜40nm、開気孔体積が0.06cm /g以下であるリチウム二次電池用複合活物質。 It contains Si or Si alloy , graphite and carbonaceous material, and has voids in one or more places between the graphite thin layer and Si or Si alloy, between the graphite thin layer and the graphite thin layer, and between Si or Si alloy and Si or Si alloy. It has a porosity of 2 to 50%, an average particle size (D50) of the active material of 1 to 40 μm, a specific surface area of 0.5 to 45 m 2 / g, an average pore diameter of 10 to 40 nm, and an open pore volume. A composite active material for a lithium secondary battery having a specific surface area of 0.06 cm 3 / g or less. 前記SiまたはSi合金の平均粒径(D50)が0.01〜5μmであり、炭素が少なくとも活物質表面を覆っていることを特徴とする請求項1に記載のリチウム二次電池用複合活物質。 The composite active material for a lithium secondary battery according to claim 1, wherein the Si or Si alloy has an average particle size (D50) of 0.01 to 5 μm, and carbon covers at least the surface of the active material. .. 前記SiまたはSi合金が、炭素と共に0.2μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して活物質粒子を覆っており、最外層の表面を炭素が覆っていることを特徴とする請求項1に記載のリチウム二次電池用複合活物質。 The Si or Si alloy has a structure sandwiched between thin graphite layers having a thickness of 0.2 μm or less together with carbon, and the structure spreads in a laminated and / or mesh pattern, and the thin graphite layers are active material particles. The composite active material for a lithium secondary battery according to claim 1, wherein the compound active material is curved near the surface of the graphite and covers the active material particles, and the surface of the outermost layer is covered with carbon. 前記SiまたはSi合金の含有量が10〜80質量部、黒鉛の含有量が5〜60質量部、炭素質物20〜80重量部であることを特徴とする請求項1〜のいずれかに記載のリチウム二次電池用複合活物質。 10 to 80 parts by weight the content of the Si or Si alloy, 5-60 parts by weight the content of graphite, according to any one of claims 1 to 3, characterized in that 20 to 80 parts by weight carbonaceous material Lithium secondary battery composite active material. SiまたはSi合金、炭素前駆体、空隙形成材、黒鉛を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程、該複合粒子を不活性雰囲気中で焼成する工程と、炭素前駆体と焼成粉とを混合する工程及びその混合物を不活性雰囲気中で加熱する事で炭素膜を炭素被覆した複合粒子を得る工程を含むことを特徴とする請求項1〜のいずれかに記載のリチウム二次電池用複合活物質の製造方法。 A step of mixing Si or Si alloy, a carbon precursor, a void forming material, and graphite, a step of granulating and compacting, and a step of crushing and spheroidizing the mixture to form substantially spherical composite particles, the composite. Includes a step of calcining the particles in an inert atmosphere, a step of mixing the carbon precursor and the calcined powder, and a step of heating the mixture in the inert atmosphere to obtain composite particles having a carbon film coated with carbon. The method for producing a composite active material for a lithium secondary battery according to any one of claims 1 to 4. 請求項で得られた炭素被覆した複合粒子、と炭素前駆体とを不活性雰囲気中で焼成し炭素膜を複合粒子の内外に被覆する工程を行うことを特徴とする請求項に記載のリチウム二次電池用複合活物質の製造方法。 Composite particles of carbon coated obtained in claim 5, and according to claim 5, characterized in that a step of coating the calcined carbon film in and out of the composite particles and a carbon precursor in an inert atmosphere A method for producing a composite active material for a lithium secondary battery. 気相で被覆する工程の後、粉砕および球形処理した粉体もしくは焼成粉もしくは炭素被覆した粉体を風力分級する工程を行うことを特徴とする請求項5又は6に記載のリチウム二次電池用複合活物質の製造方法。 The lithium secondary battery according to claim 5 or 6 , wherein after the step of coating with a gas phase, a step of wind-classifying the pulverized and spherically treated powder or calcined powder or carbon-coated powder is performed. Method for producing composite active material. 複合粒子を炭素前駆体と共に不活性雰囲気中で焼成する工程及び炭素前駆体を不活性雰囲気中で加熱する事で炭素膜を炭素被覆した焼成粉の内外に気相で被覆する工程の温度が、それぞれ300〜1200℃であることを特徴とする請求項5〜7のいずれかに記載のリチウム二次電池用複合活物質の製造方法。 The temperature of the step of firing the composite particles together with the carbon precursor in an inert atmosphere and the step of heating the carbon precursor in an inert atmosphere to coat the inside and outside of the calcined powder in which the carbon film is carbon-coated with a vapor phase is set. The method for producing a composite active material for a lithium secondary battery according to any one of claims 5 to 7, wherein the temperature is 300 to 1200 ° C., respectively. 請求項1〜のいずれかに記載のリチウム二次電池用複合活物質を含むリチウム二次電池。 A lithium secondary battery containing the composite active material for a lithium secondary battery according to any one of claims 1 to 4.
JP2017068998A 2017-03-30 2017-03-30 Composite active material for lithium secondary battery and its manufacturing method Active JP6961980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017068998A JP6961980B2 (en) 2017-03-30 2017-03-30 Composite active material for lithium secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068998A JP6961980B2 (en) 2017-03-30 2017-03-30 Composite active material for lithium secondary battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018170246A JP2018170246A (en) 2018-11-01
JP6961980B2 true JP6961980B2 (en) 2021-11-05

Family

ID=64020554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068998A Active JP6961980B2 (en) 2017-03-30 2017-03-30 Composite active material for lithium secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6961980B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449423A (en) * 2018-11-13 2019-03-08 东莞市凯金新能源科技股份有限公司 Hollow/porous structure the silicon based composite material of one kind and its preparation method
KR102179975B1 (en) * 2018-11-30 2020-11-17 주식회사 포스코 Negative electrode active material for rechargeable lithium battery, method for manufacturing of the same, and rechargeable lithium battery including the same
KR102243610B1 (en) * 2018-12-17 2021-04-27 주식회사 티씨케이 Negative active material, method for preparing the same and lithium secondary battery comprising the same
WO2022140982A1 (en) * 2020-12-28 2022-07-07 宁德新能源科技有限公司 Negative electrode sheet, electrochemical device comprising negative electrode sheet, and electronic device
CN112928264A (en) * 2021-02-24 2021-06-08 内蒙古凯金新能源科技有限公司 Artificial graphite-silicon composite material and preparation method thereof
KR20230160126A (en) * 2022-05-16 2023-11-23 주식회사 동진쎄미켐 Anode material, anode and secondary battery comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995050B2 (en) * 2003-09-26 2007-10-24 Jfeケミカル株式会社 Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5348878B2 (en) * 2007-02-21 2013-11-20 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2018170246A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
EP3131140B1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
JP6961948B2 (en) Composite active material for silicon-based lithium secondary batteries and its manufacturing method
JP6961980B2 (en) Composite active material for lithium secondary battery and its manufacturing method
JP5473886B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101920806B1 (en) Composite active material for lithium secondary batteries and method for producing same
JP6508870B2 (en) Composite active material for lithium secondary battery and method of manufacturing the same
JP6759527B2 (en) Negative electrode active material for lithium ion secondary batteries and its manufacturing method
WO2016125819A1 (en) Composite active material for lithium secondary cell and method for manufacturing same
JP7452599B2 (en) Composite active material for lithium secondary batteries
JP6617403B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2004213927A (en) Negative electrode material for nonaqueous lithium ion secondary battery, negative electrode, and nonaqueous lithium ion secondary battery
CN115667136B (en) Composite carbon particles and uses thereof
JP6808959B2 (en) Composite active material for lithium-ion secondary battery and its manufacturing method
JP6961981B2 (en) Composite active material for lithium secondary battery and its manufacturing method
JP6451071B2 (en) Carbon silicon negative electrode active material for lithium ion secondary battery and method for producing the same
JP6759583B2 (en) Composite active material for lithium secondary battery and its manufacturing method, lithium secondary battery
JP2017134937A (en) Composite active material for lithium secondary battery and method of producing the same
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JP7009255B2 (en) Binder and negative electrode material for negative electrode of lithium ion secondary battery
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2017112057A (en) Silicon-based particle, lithium ion secondary battery negative electrode active material including the same, and manufacturing methods thereof
WO2021193662A1 (en) Composite active material for lithium secondary battery, electrode composition for lithium secondary battery, lithium secondary battery electrode, and method for manufacturing composite active material for lithium secondary battery
KR101942654B1 (en) Metal/carbon crystal particle composite, method for producing the same, and energy storage device having the same
JP2021180124A (en) Silicon or silicon alloy, composite active material for lithium secondary battery containing the same, and manufacturing method thereof
JP2017168376A (en) Composite active material for lithium secondary battery and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R151 Written notification of patent or utility model registration

Ref document number: 6961980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151