JP2014165156A - Nonaqueous electrolyte secondary battery and manufacturing method of negative electrode plate of the nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery and manufacturing method of negative electrode plate of the nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014165156A
JP2014165156A JP2013038129A JP2013038129A JP2014165156A JP 2014165156 A JP2014165156 A JP 2014165156A JP 2013038129 A JP2013038129 A JP 2013038129A JP 2013038129 A JP2013038129 A JP 2013038129A JP 2014165156 A JP2014165156 A JP 2014165156A
Authority
JP
Japan
Prior art keywords
negative electrode
mixture layer
secondary battery
electrode mixture
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013038129A
Other languages
Japanese (ja)
Inventor
Takao Kuromiya
孝雄 黒宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013038129A priority Critical patent/JP2014165156A/en
Publication of JP2014165156A publication Critical patent/JP2014165156A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with a superior high input performance.SOLUTION: The manufacturing method of the negative electrode plate of the nonaqueous electrolyte secondary battery includes the steps of: preparing a negative electrode mixture coating 7 which includes at least graphite powder and binder mixed together with a solvent in a range from 55 Wt% to 85 Wt% at a solid weight ratio; forming a wet state negative electrode mixture layer 2 by applying the negative electrode mixture coating 7 to at least one surface of a negative electrode collector 1; and allowing the solvent to evaporate from the wet state negative electrode mixture layer 2 to dry the same.

Description

本発明は、非水電解液二次電池、特に高出力型のリチウムイオン二次電池および非水電解液二次電池の負極板の製造方法に関するものである。   The present invention relates to a method for producing a non-aqueous electrolyte secondary battery, in particular, a high-power lithium ion secondary battery and a negative electrode plate for the non-aqueous electrolyte secondary battery.

近年、リチウムイオン二次電池は高い作動電圧と高エネルギー密度を有する二次電池と
して携帯電話やノート型パソコン、携帯電話などのモバイル電子機器の駆動用電源として実用化され、急速な成長を遂げ、小型二次電池をリードする電池系として生産量は増え続けている。
In recent years, lithium-ion secondary batteries have been put into practical use as power sources for mobile electronic devices such as mobile phones, notebook computers and mobile phones as secondary batteries with high operating voltage and high energy density, and have achieved rapid growth. Production volume continues to increase as a battery system that leads small secondary batteries.

最近では、これら小型民生用途のみならず、電力貯蔵用や電気自動車用など大容量の二次池への技術展開も加速してきている。特にハイブリッド電気自動車( H E V )ではリチウムイオン二次電池を搭載した車両が既に量産ベースで市販されるまでに至っている。また、将来的には燃料電池自動車の普及が予想されているが、燃料電池をアシストするための高出入力が可能な二次電池としてもリチウムイオン二次電池が有望視されている。   Recently, not only these small-sized consumer applications, but also technology development for high-capacity secondary ponds for power storage and electric vehicles has been accelerated. In particular, in hybrid electric vehicles (HEV), vehicles equipped with lithium ion secondary batteries have already been marketed on a mass production basis. In addition, although fuel cell vehicles are expected to spread in the future, lithium ion secondary batteries are promising as secondary batteries capable of high input / output for assisting fuel cells.

このような車両用途に用いられるリチウムイオン二次電池は、その用途、要求性能が
小型民生用途のものとは大きく異なり、限られた容量で瞬時にエンジンのパワーアシスト
あるいは回生を行う必要があり、かなりの高出入力が求められる。従って、電池として
は高エネルギー密度化よりもむしろ高出入力密度化が優先され、電池の内部抵抗を極力最
小にする必要がある。そのために、活物質や電解液の開発、選定のみならず、電極の集電
構造の見直しなど電池構造部品抵抗の低減や電極の薄型長尺化による電極反応面積の増加
などにより大幅な高出入力化が図られている。
Lithium ion secondary batteries used for such vehicle applications differ greatly from those for small consumer applications in terms of their application and required performance, and it is necessary to instantaneously perform power assist or regeneration of the engine with a limited capacity. A fairly high output is required. Accordingly, priority is given to higher input / output density rather than higher energy density for the battery, and it is necessary to minimize the internal resistance of the battery as much as possible. For this purpose, not only the development and selection of active materials and electrolytes, but also a significant increase in input / output due to the reduction of battery structural component resistance, such as a review of the current collection structure of the electrodes, and the increase of the electrode reaction area due to the thin and long electrodes It is planned.

高出入力仕様の非水電解質二次電池を設計する場合、上述のように、集電構造の見直しや、構造部品の抵抗の低減が、重要な因子となる。また、活物質の改良もしくは選定も重要な因子となる。特に低温環境下では、後者の因子が、電池の高出入力特性に大きく影響する。なかでも、負極に用いる炭素材料のリチウムを吸蔵および放出する能力は、重要である。この能力を高めることが、電池の高出入力化の達成に大きく貢献する。   When designing a non-aqueous electrolyte secondary battery with high input / output specifications, as described above, reviewing the current collecting structure and reducing the resistance of structural components are important factors. In addition, improvement or selection of the active material is an important factor. In particular, in the low temperature environment, the latter factor greatly affects the high input / output characteristics of the battery. Among these, the ability of the carbon material used for the negative electrode to occlude and release lithium is important. Increasing this capability greatly contributes to the achievement of higher battery input / output.

従来、リチウムイオン二次電池の負極には、リチウムイオンを吸蔵および放出し得る炭素材料が一般に用いられている。なかでもフラットな放電電位と高容量密度を実現する観点から、黒鉛材料が主流を占めている。黒鉛材料においても様々な改良が試みられており、例えば、特許文献1では、二種の物性の異なる黒鉛材料を混合して用いることで、負極合剤層における黒鉛材料の充填密度を高めている。   Conventionally, a carbon material capable of occluding and releasing lithium ions is generally used for the negative electrode of a lithium ion secondary battery. Among these, graphite materials are dominant from the viewpoint of realizing a flat discharge potential and a high capacity density. Various improvements have also been attempted in the graphite material. For example, in Patent Document 1, two types of graphite materials having different physical properties are mixed and used to increase the packing density of the graphite material in the negative electrode mixture layer. .

特開2010−92649号公報JP 2010-92649 A

しかしながら、前記二種の物性の異なる黒鉛材料を混合することで負極合剤層の黒鉛材料の充填密度を高めた負極板を用いたリチウムイオン二次電池では、小型民生用途で求められる容量密度の向上は可能となるが、負極合剤層中に保持できる電解液、およびリチウムイオンの量が少なくなり、黒鉛粉末と電解液との間でリチウムイオンの受け渡しをする速度が低下し、車両用途で求められる高出入力特性の向上は望めないという課題を有している。   However, in the lithium ion secondary battery using the negative electrode plate in which the packing density of the graphite material of the negative electrode mixture layer is increased by mixing the two kinds of graphite materials having different physical properties, the capacity density required for small consumer applications is low. It is possible to improve, but the amount of electrolyte and lithium ions that can be held in the negative electrode mixture layer is reduced, and the speed at which lithium ions are transferred between the graphite powder and the electrolyte decreases. There is a problem that the required high output power characteristics cannot be improved.

本発明は、前記従来の課題を解決するもので、出入力特性に優れた非水電解液二次電池、および非水電解液二次電池の負極板の製造方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a non-aqueous electrolyte secondary battery excellent in input / output characteristics and a method for manufacturing a negative electrode plate of the non-aqueous electrolyte secondary battery. .

第1の本発明は、
正極集電体の少なくとも何れか一方の表面に正極合剤層を設けた正極板と、負極集電体の少なくとも何れか一方の表面に負極合剤層を設けた負極板と、前記正極板と前記負極板の間に設けたセパレータとを、非水電解液とともにケースに収納した非水電解液二次電池であって、
前記負極合剤層は、少なくとも負極活物質としての黒鉛粉末と、前記黒鉛粉末を前記負極集電体の表面に固定化するためのバインダとを含み、
前記黒鉛粉末の吸油量が50cm/100g以上から100cm/100g以下であることを特徴とする非水電解液二次電池である。
The first aspect of the present invention is
A positive electrode plate provided with a positive electrode mixture layer on at least one surface of the positive electrode current collector; a negative electrode plate provided with a negative electrode mixture layer on at least one surface of the negative electrode current collector; and the positive electrode plate; A non-aqueous electrolyte secondary battery in which a separator provided between the negative electrode plates is housed in a case together with a non-aqueous electrolyte,
The negative electrode mixture layer includes at least graphite powder as a negative electrode active material, and a binder for fixing the graphite powder to the surface of the negative electrode current collector,
A non-aqueous electrolyte secondary battery, wherein the oil absorption of the graphite powder is less than 100 cm 3/100 g from 50 cm 3/100 g or more.

また、第2の本発明は、
前記負極合剤層において、前記負極合剤層の厚みのうち前記負極集電体の表面側の1/2の厚みの第1領域の密度Aと、前記負極合剤層の厚みのうち前記負極合剤層の表面側の1/2の厚みの第2領域の密度Bとの比率A/Bが、0.5以上から2.0以下であることを特徴とする上記第1の本発明の非水電解液二次電池である。
The second aspect of the present invention
In the negative electrode mixture layer, the density A of the first region having a thickness of ½ of the thickness of the negative electrode mixture layer on the surface side of the negative electrode current collector, and the negative electrode of the thickness of the negative electrode mixture layer The ratio A / B with the density B of the second region having a thickness of 1/2 on the surface side of the mixture layer is 0.5 or more and 2.0 or less. It is a non-aqueous electrolyte secondary battery.

また、第3の本発明は、
前記負極合剤層において、前記負極合剤層の厚みのうち前記負極集電体の表面側の1/2の厚みの第1領域に含まれる前記バインダの量Cと、前記負極合剤層のうち前記負極合剤層の表面側の1/2の厚みの第2領域に含まれる前記バインダの量Dとの比率C/Dが、0.67以上から1.5以下であることを特徴とする上記第1の本発明の非水電解液二次電池である。
The third aspect of the present invention
In the negative electrode mixture layer, the amount C of the binder contained in the first region having a thickness of ½ of the thickness of the negative electrode mixture layer on the surface side of the negative electrode current collector, and the negative electrode mixture layer Of these, the ratio C / D to the amount D of the binder contained in the second region having a thickness of ½ on the surface side of the negative electrode mixture layer is 0.67 or more and 1.5 or less. The nonaqueous electrolyte secondary battery according to the first aspect of the present invention.

また、第4の本発明は、
前記黒鉛粉末は、円形度が0.5以上のものを90%以上含むことを特徴とする上記第1〜3の何れか一つの本発明の非水電解液二次電池である。
The fourth aspect of the present invention is
The graphite powder according to any one of the first to third aspects of the present invention, wherein the graphite powder contains 90% or more of those having a circularity of 0.5 or more.

また、第5の本発明は、
前記黒鉛粉末は、平均粒子径が3μm以上から30μm以下のものを90%以上含むことを特徴とする上記第1〜4の何れか一つの本発明の非水電解液二次電池である。
The fifth aspect of the present invention provides
The non-aqueous electrolyte secondary battery according to any one of the first to fourth aspects, wherein the graphite powder contains 90% or more of particles having an average particle diameter of 3 μm to 30 μm.

また、第6の本発明は、
前記負極合剤層の密度が0.8g/cm以上から1.6g/cm以下であることを特徴とする上記第1〜5の何れか一つの本発明の非水電解液二次電池である。
The sixth aspect of the present invention provides
The nonaqueous electrolyte secondary battery according to any one of the first to fifth aspects, wherein the density of the negative electrode mixture layer is 0.8 g / cm 3 or more and 1.6 g / cm 3 or less. It is.

また、第7の本発明は、
前記上記第1〜6の何れか一つの本発明の非水電解液二次電池の負極板の製造方法であって、
少なくとも前記黒鉛粉末と前記バインダを溶媒とともに固形分重量比率55Wt%以上から85Wt%以下の範囲で混合した負極合剤塗料を作製する工程と、
前記負極合剤塗料を前記負極集電体の少なくとも一方の表面に塗布して湿潤状態の前記負極合剤層を設ける工程と、
前記湿潤状態の負極合剤層から前記溶媒を揮発乾燥させる工程と、を備えたことを特徴とする、非水電解液二次電池の負極板の製造方法である。
The seventh aspect of the present invention
A method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery according to any one of the first to sixth aspects,
Producing a negative electrode mixture paint in which at least the graphite powder and the binder are mixed together with a solvent in a solid weight ratio of 55 Wt% to 85 Wt%;
Applying the negative electrode mixture paint to at least one surface of the negative electrode current collector to provide the wet negative electrode mixture layer;
And a step of evaporating and drying the solvent from the wet negative electrode mixture layer. A method for producing a negative electrode plate of a non-aqueous electrolyte secondary battery.

また、第8の本発明は、
前記負極合剤塗料を塗布する手段として、前記負極集電体を支持する第1のロールと、前記負極集電体を介して前記第1のロールに対向して配した第2のロールの少なくとも2本のロールを用いることを特徴とする上記第7の本発明の非水電解液二次電池の負極板の製造方法である。
In addition, the eighth aspect of the present invention
As a means for applying the negative electrode mixture paint, at least one of a first roll supporting the negative electrode current collector and a second roll disposed to face the first roll through the negative electrode current collector It is a manufacturing method of the negative electrode plate of the nonaqueous electrolyte secondary battery according to the seventh aspect of the present invention, wherein two rolls are used.

また、第9の本発明は、
前記第1のロールと前記第2のロールは、いずれも前記負極集電体の走行方向と同一の方向に回転させることを特徴とする上記第8の本発明の非水電解液二次電池の負極板の製造方法である。
The ninth aspect of the present invention provides
The first roll and the second roll are both rotated in the same direction as the traveling direction of the negative electrode current collector, The nonaqueous electrolyte secondary battery according to the eighth aspect of the present invention, It is a manufacturing method of a negative electrode plate.

また、第10の本発明は、
前記第1のロール周速と前記負極集電体の走行速度が同一であり、かつ前記第2のロールの周速は、前記第1のロールの周速および前記負極集電体の走行速度と異なることを特徴とする上記第9の本発明の非水電解液二次電池の負極板の製造方法である。
The tenth aspect of the present invention is
The circumferential speed of the first roll is the same as the traveling speed of the negative electrode current collector, and the circumferential speed of the second roll is the circumferential speed of the first roll and the traveling speed of the negative electrode current collector. It is a manufacturing method of the negative electrode plate of the nonaqueous electrolyte secondary battery according to the ninth aspect of the present invention, which is different.

また、第11の本発明は、
前記第1のロール周速と前記負極集電体の走行速度に比べて、前記第2のロールの周速が小さいことを特徴とする上記第10の本発明の非水電解液二次電池の負極板の製造方法である。
The eleventh aspect of the present invention is
The non-aqueous electrolyte secondary battery according to the tenth aspect of the present invention is characterized in that a peripheral speed of the second roll is smaller than a peripheral speed of the first roll and a traveling speed of the negative electrode current collector. It is a manufacturing method of a negative electrode plate.

また、第12の本発明は、
前記湿潤状態の負極合剤層から前記溶媒を揮発乾燥させる工程の後、前記負極合剤層をプレス処理しないことを特徴とする、上記第8〜11の何れか一つの本発明の非水電解液二次電池の負極板の製造方法である。
The twelfth aspect of the present invention is
The nonaqueous electrolysis according to any one of the eighth to eleventh aspects, wherein the negative electrode mixture layer is not pressed after the step of volatilizing and drying the solvent from the wet negative electrode mixture layer. It is a manufacturing method of the negative electrode plate of a liquid secondary battery.

本発明によれば、出入力特性に優れた非水電解液二次電池、および非水電解液二次電池の負極板の製造方法を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the negative electrode plate of the nonaqueous electrolyte secondary battery excellent in the input / output characteristic and a nonaqueous electrolyte secondary battery can be provided.

本発明の一実施の形態の負極板の構造を示す断面模式図Schematic cross-sectional view showing the structure of a negative electrode plate according to an embodiment of the present invention. (a)〜(d):粒子の円形度の算出例を示す図(A)-(d): The figure which shows the example of calculation of the circularity of particle | grains 本発明の一実施の形態における塗布装置を示す断面模式図Schematic cross-sectional view showing a coating apparatus according to an embodiment of the present invention. 本発明の別の実施の形態における塗布装置を示す断面模式図Cross-sectional schematic diagram showing a coating apparatus in another embodiment of the present invention

以下に本発明の一実施の形態の非水電解液二次電池について、詳細に説明する。   The nonaqueous electrolyte secondary battery according to one embodiment of the present invention will be described in detail below.

本発明の非水電解液二次電池は、正極板と負極板とセパレータからなる電極体と、非水電解液と、それらを収納するケースとを具備する。   The non-aqueous electrolyte secondary battery of the present invention includes an electrode body composed of a positive electrode plate, a negative electrode plate, and a separator, a non-aqueous electrolyte solution, and a case for housing them.

本発明では、上記の正極板、セパレータ、非水電解液、およびケースは特に限定されるものではないが、例えば、以下に記載するものを用いることができる。   In the present invention, the positive electrode plate, the separator, the nonaqueous electrolytic solution, and the case are not particularly limited, but for example, those described below can be used.

正極板は、導電性を有するフィルムからなる正極集電体と、前記正極集電体の少なくとも一つの表面に設けられた正極合剤層とからなる。   The positive electrode plate includes a positive electrode current collector made of a conductive film and a positive electrode mixture layer provided on at least one surface of the positive electrode current collector.

正極集電体は、例えば、アルミニウム、アルミニウム合金、チタン、銅、ニッケルなどの金属箔やエキスパンドメタルや、PETなどの高分子フィルムの表面に金属を蒸着した積層体、導電性高分子フィルムなど従来と同様のものを用いることができるが、特に限定されるものではない。   The positive electrode current collector is, for example, a metal foil or expanded metal such as aluminum, aluminum alloy, titanium, copper, or nickel, a laminate obtained by depositing metal on the surface of a polymer film such as PET, or a conductive polymer film. Although the thing similar to can be used, it is not specifically limited.

正極合剤層は、少なくとも正極活物質と導電助材とバインダとからなる。   The positive electrode mixture layer includes at least a positive electrode active material, a conductive additive, and a binder.

正極活物質は、例えば、リチウムニッケル酸化物、リチウムコバルト酸化物、リチウムマンガン酸化物(これらは、通常、LiNiO2、LiCoO2、LiMn2O4で表されるが、LiとNiの比、LiとCoの比、LiとMnの比は化学量論組成からずれている場合が多い)などのリチウム含有複合金属酸化物を用いることができる。また、これらは単独でまたは2種以上の混合物として、あるいはそれらの固溶体として用いることができるが、特に限定されるものではない。   The positive electrode active material is, for example, lithium nickel oxide, lithium cobalt oxide, lithium manganese oxide (these are usually represented by LiNiO2, LiCoO2, LiMn2O4, the ratio of Li to Ni, the ratio of Li to Co, Lithium-containing composite metal oxides such as the ratio of Li to Mn often deviates from the stoichiometric composition can be used. These can be used alone, as a mixture of two or more kinds, or as a solid solution thereof, but is not particularly limited.

導電助材は、例えば、ケッチェンブラック、アセチレンブラック等のカーボンブラック、ファイバー状カーボン、燐片状黒鉛を用いることができるが、特に限定されるものではない。   For example, carbon black such as ketjen black and acetylene black, fiber-like carbon, and flake graphite can be used as the conductive aid, but it is not particularly limited.

バインダは、例えば、熱可塑性樹脂、ゴム弾性を有するポリマーおよび多糖類の単独、あるいは混合物を用いることができる。具体的にはポリテトラフルオロエチレン、ポリフッ化ビニリデンや、ヘキサフルオロプロペンとの共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエン共重合体、スチレン−ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシド、ポリビニルピロリドン、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ、ポリビニルアルコール、ヒドロキシプロピルセルロース、カルボキシメチルセルロースなどのセルロース樹脂などを用いることができるが、特に限定されるものではない。   As the binder, for example, a thermoplastic resin, a polymer having rubber elasticity, and a polysaccharide alone or a mixture thereof can be used. Specifically, polytetrafluoroethylene, polyvinylidene fluoride, copolymer with hexafluoropropene, polyethylene, polypropylene, ethylene-propylene-diene copolymer, styrene-butadiene rubber, polybutadiene, fluororubber, polyethylene oxide, polyvinyl Cellulose resins such as pyrrolidone, polyester resin, acrylic resin, phenol resin, epoxy, polyvinyl alcohol, hydroxypropyl cellulose, and carboxymethyl cellulose can be used, but are not particularly limited.

また、セパレータは、正極板と負極板とを絶縁し、かつその内部(セパレータを構成する材料内またはセパレータ内に形成された空孔内)をリチウムイオンが移動できるものであり、かつリチウムイオン電池の使用時に安定な素材であれば特に限定されず、例えば、ポリエチレンやポリプロピレンからなる絶縁性の高分子多孔フィルムや、セルロースからなる絶縁性の不織布である。また、セパレータは、アルミナ、シリカ、酸化マグネシウム、酸化チタン、ジルコニア、炭化ケイ素、窒化ケイ素などの無機物粒子や、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、ポリメチルメタクリレート、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミドなどの有機物粒子、前記無機物粒子と有機物粒子との混合物、結着材、溶媒、各種添加剤などを混合したものを、塗布し、乾燥させ、圧延することにより形成することもできる。セパレータの厚みは、特に限定されないが、例えば10〜50μmである。   Further, the separator insulates the positive electrode plate from the negative electrode plate, and allows lithium ions to move inside (in the material constituting the separator or in the pores formed in the separator), and a lithium ion battery The material is not particularly limited as long as it is a stable material when used, for example, an insulating polymer porous film made of polyethylene or polypropylene, or an insulating nonwoven fabric made of cellulose. The separator is made of inorganic particles such as alumina, silica, magnesium oxide, titanium oxide, zirconia, silicon carbide, silicon nitride, polyethylene, polypropylene, polystyrene, polyacrylonitrile, polymethyl methacrylate, polyvinylidene fluoride, polytetrafluoroethylene, It can also be formed by coating, drying, and rolling organic particles such as polyimide, a mixture of the inorganic particles and organic particles, a binder, a solvent, various additives, and the like. Although the thickness of a separator is not specifically limited, For example, it is 10-50 micrometers.

非水電解液は、非水溶媒と電解質とからなる。   The nonaqueous electrolytic solution is composed of a nonaqueous solvent and an electrolyte.

非水溶媒は、特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、γーブチロラクトン、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γーブチロラクトンなどである。これらの非水溶媒は、単独で使用されてもよいし、2種以上を混合して使用されてもよい。また、正極および負極上に良好な皮膜を形成するため、または過充電時の安定性を確保するために、ビニレンカーボネート(VC)、またはシクロヘキシルベンゼン(CHB)およびその変性体を用いることも好ましい。   The non-aqueous solvent is not particularly limited. For example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3- Dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone and the like. These nonaqueous solvents may be used alone or in combination of two or more. It is also preferable to use vinylene carbonate (VC), cyclohexylbenzene (CHB), or a modified product thereof in order to form a good film on the positive electrode and the negative electrode, or to ensure stability during overcharge.

電解質は、特に限定されないが、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO2)2]などのリチウム塩などである。   The electrolyte is not particularly limited. For example, lithium perchlorate (LiClO 4), lithium hexafluorophosphate (LiPF 6), lithium borofluoride (LiBF 4), lithium hexafluoroarsenide (LiAsF 6), lithium trifluorometasulfonate Lithium salts such as (LiCF3SO3) and bistrifluoromethylsulfonylimide lithium [LiN (CF3SO2) 2].

ケースは、例えば、アルミニウム、鉄、ステンレスなどの金属を成形したものや、アルミニウムなどの金属層と高分子層を積層したフィルムなどを用いることができるが、特に限定されるものではない。   For example, a case in which a metal such as aluminum, iron, or stainless steel is formed, or a film in which a metal layer such as aluminum and a polymer layer are laminated can be used, but the case is not particularly limited.

次に、本発明において、特徴的な負極板、およびその製造方法について、図面を参照して、以下に詳細に説明する。   Next, a characteristic negative electrode plate and a manufacturing method thereof in the present invention will be described in detail below with reference to the drawings.

負極板は、図1に示されるような、導電性を有するフィルムからなる負極集電体1と、前記負極集電体1の少なくとも一つの表面に設けられた負極合剤層2とからなる。   The negative electrode plate is composed of a negative electrode current collector 1 made of a conductive film as shown in FIG. 1 and a negative electrode mixture layer 2 provided on at least one surface of the negative electrode current collector 1.

負極集電体1は、例えば、銅、アルミニウム、アルミニウム合金、チタン、ニッケルなどの金属箔やエキスパンドメタルや、PETなどの高分子フィルムの表面に金属を蒸着した積層体、導電性高分子フィルムなど従来と同様のものを用いることができるが、特に限定されるものではない。   The negative electrode current collector 1 is, for example, a metal foil or expanded metal such as copper, aluminum, an aluminum alloy, titanium, or nickel, a laminate in which metal is deposited on the surface of a polymer film such as PET, a conductive polymer film, or the like. Although the same thing as the past can be used, it is not specifically limited.

負極合剤層2は、少なくとも負極活物質3と、前記負極活物質3を前記負極集電体1の表面に固定化するためのバインダ4とからなる。   The negative electrode mixture layer 2 includes at least a negative electrode active material 3 and a binder 4 for immobilizing the negative electrode active material 3 on the surface of the negative electrode current collector 1.

バインダ4は、正極板と同様のものを用いることができ、例えば、熱可塑性樹脂、ゴム弾性を有するポリマーおよび多糖類の単独、あるいは混合物を用いることができる。具体的にはポリテトラフルオロエチレン、ポリフッ化ビニリデンや、ヘキサフルオロプロペンとの共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエン共重合体、スチレン−ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシド、ポリビニルピロリドン、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ、ポリビニルアルコール、ヒドロキシプロピルセルロース、カルボキシメチルセルロースなどのセルロース樹脂などを用いることができるが、特に限定されるものではない。   The binder 4 can be the same as that of the positive electrode plate. For example, a thermoplastic resin, a polymer having rubber elasticity, and a polysaccharide can be used singly or as a mixture. Specifically, polytetrafluoroethylene, polyvinylidene fluoride, copolymer with hexafluoropropene, polyethylene, polypropylene, ethylene-propylene-diene copolymer, styrene-butadiene rubber, polybutadiene, fluororubber, polyethylene oxide, polyvinyl Cellulose resins such as pyrrolidone, polyester resin, acrylic resin, phenol resin, epoxy, polyvinyl alcohol, hydroxypropyl cellulose, and carboxymethyl cellulose can be used, but are not particularly limited.

負極活物質3としては、黒鉛粉末を用い、かつ、吸油量が50cm/100g以上から100cm/100g以下であるものを用いる。 Negative electrode active as the material 3, using a graphite powder, and used as the oil absorption is 100 cm 3/100 g or less from 50 cm 3/100 g or more.

吸油量とは、粉末の性能を表す特性因子の一つであり、100gの粉末にオイルを少しずつ加え、練り合わせながら粉末の状態を確認し、ばらばらに散らばった状態から固まりの状態になる点を見出し、そのときのオイルの体積を吸油量と称する。吸油量は、粉末の大きさと形に大きく影響し、粒径が小さいほど、不規則な形であるほど、吸油量が大きく、ゴム用カーボンブラックでは、オイルとしてDBPを用いる測定法が、JIS K6217−4に定義されている。本発明における吸油量測定は、JIS K6217−4に準拠した吸収量測定器(株式会社あさひ総研製S−410)により、亜麻仁油を用いて行った。   Oil absorption is one of the characteristic factors that express the performance of powder. Add oil little by little to 100g of powder, check the state of powder while kneading, and the point where it becomes a solid state from scattered state. The volume of the oil at that time is called the oil absorption. The amount of oil absorption greatly affects the size and shape of the powder. The smaller the particle size, the more irregular the shape, the larger the amount of oil absorption. For carbon black for rubber, the measurement method using DBP as the oil is JIS K6217. -4. The oil absorption amount measurement in the present invention was performed using linseed oil by an absorption amount measuring device (S-410, manufactured by Asahi Research Institute, Ltd.) based on JIS K6217-4.

吸油量が50cm/100g以上である黒鉛粉末を負極活物質として用いることで、より多量の電解液を黒鉛粉末の表面近傍に保持することができ、黒鉛粉末からのリチウムイオンの吸蔵および放出が容易になり、出入力特性に優れた非水電解液二次電池が実現できる。しかし、吸油量が100cm/100gを超える黒鉛粉末を負極活物質として用いると、負極活物質とバインダと溶媒とを混合してなる負極合剤塗料に必要となる溶媒量が多くなり過ぎ、溶媒の揮発乾燥工程に長時間を要する、または、長大な乾燥炉が必要となり、生産性が低下するとともに、溶媒の揮発乾燥後の合剤層の密度が低くなるため、電池の高入出力特性も低下する。 By oil absorption used graphite powder is 50 cm 3/100 g or more as an anode active material, and more amounts of electrolyte can be held in the vicinity of the surface of the graphite powder, insertion and extraction of lithium ions from the graphite powder This makes it easy to realize a non-aqueous electrolyte secondary battery with excellent input / output characteristics. However, the use of graphite powder oil absorption of greater than 100 cm 3/100 g as a negative active material, too much amount of solvent required for the negative electrode mixture-coating material obtained by mixing a negative electrode active material, a binder and a solvent, the solvent The volatile drying process takes a long time or requires a long drying furnace, which reduces productivity and reduces the density of the mixture layer after volatile drying of the solvent. descend.

また、黒鉛粉末の表面近傍に十分な量の電解液を保持するためには、局所的に黒鉛粉末間の空隙が小さくなっている状態を避ける、すなわち前記負極合剤層の密度は層内で均等であることが望ましい。特に、異なる物性を有する二種類以上の黒鉛粉末を混合すると、充填性が向上し、局所的に黒鉛粉末が密に充填された状態になりやすい。このような異粒子混合による局所的な充填性向上を回避するため、本発明の黒鉛粉末としては、上述の吸油量値に加えて、球形に近い円形度0.5以上のものを90%以上含むようにすることが望ましい。前記の球形に近く充填性の高い円形度0.5以上の黒鉛粉末に対して、充填性の低い円形度0.5未満の黒鉛粉末が10%より多く含まれると、負極合剤層内で局所的に充填性が低下するため、負極合剤層内に粗密が生じてしまう。また、充填性の低い円形度が0.5未満の黒鉛粉末を主として用いる場合、前記黒鉛粉末の平均粒子径が3μm未満の微小なものになると、黒鉛粉末が局所的に密に充填されてしまう。ここで、本発明の目的とする入出力特性の優れた電池においては、負極集電体から負極合剤層の表面までの距離を短くする、すなわち負極合剤層の厚みを薄くすることが必要で、最小で30μmまで薄く設計するため、前記黒鉛粉末の平均粒子径は大きくとも30μmとすることが望ましい。よって、前記の円形度が0.5未満の黒鉛粉末を主として用いる場合は、さらに黒鉛粉末の平均粒子径が3μm以上から30μm以下のものを用いることが望ましい。   Also, in order to keep a sufficient amount of electrolyte near the surface of the graphite powder, avoid a state where the voids between the graphite powders are locally small, that is, the density of the negative electrode mixture layer is within the layer. It is desirable to be equal. In particular, when two or more types of graphite powder having different physical properties are mixed, the filling property is improved, and the graphite powder tends to be in a state of being densely packed locally. In order to avoid such local filling improvement due to the mixing of different particles, the graphite powder of the present invention includes 90% or more of a powder having a circularity of 0.5 or more close to a sphere in addition to the oil absorption value described above. It is desirable to include it. If more than 10% of graphite powder having a low degree of circularity of less than 0.5 is contained in the negative electrode mixture layer with respect to the graphite powder having a degree of circularity of 0.5 or more, which is close to a spherical shape and has a high degree of filling, Since the filling property is locally reduced, the density of the negative electrode mixture layer is increased. In addition, when graphite powder having a low circularity of less than 0.5 is mainly used, if the average particle diameter of the graphite powder is as small as less than 3 μm, the graphite powder is locally and densely packed. . Here, in the battery having excellent input / output characteristics as an object of the present invention, it is necessary to shorten the distance from the negative electrode current collector to the surface of the negative electrode mixture layer, that is, to reduce the thickness of the negative electrode mixture layer. Therefore, it is desirable that the average particle diameter of the graphite powder be at most 30 μm in order to design the thin film to a minimum of 30 μm. Therefore, when the graphite powder having a circularity of less than 0.5 is mainly used, it is desirable to use a graphite powder having an average particle diameter of 3 μm to 30 μm.

ここで、円形度とは、粒子の、最も少ない面積となる投影方向の投影面積Sと等しい面積の円の周囲長を、粒子断面の周囲長Lで割った値であり、   Here, the circularity is a value obtained by dividing the circumference of a circle having an area equal to the projected area S in the projection direction, which is the smallest area of the particle, by the circumference L of the particle cross section.

上記(式1)で求められ、真円の場合に1となり、不規則な形になるほど小さくなるものである。最近では、市販の画像解析ソフトなどで簡単に算出することができ、参考として、数種類の粒子について円形度を求めた例を図2(a)〜(d)に示す。 It is obtained by the above (formula 1) and becomes 1 in the case of a perfect circle, and becomes smaller as the shape becomes irregular. Recently, it can be easily calculated with commercially available image analysis software or the like, and for reference, an example in which the circularity of several types of particles is obtained is shown in FIGS.

即ち、図2(a)は円形度0.81の例、図2(b)は円形度0.73の例、図2(c)は円形度0.47の例、図2(d)は円形度0.30の例である。   2A is an example with a circularity of 0.81, FIG. 2B is an example with a circularity of 0.73, FIG. 2C is an example with a circularity of 0.47, and FIG. This is an example of a circularity of 0.30.

なお、前記黒鉛粉末は、上述の吸油量を満足するものであれば、特に限定されるものではなく、例えば、天然黒鉛原鉱を粉砕、洗浄、造粒して球形化する製法によるものや、コークス等の炭素基材をタールピッチ等で造粒し、焼成, 黒鉛化、続いて粉砕,粒度調整する製法によるもの、タールピッチから抽出したメソフェーズ小球体を焼成,黒鉛化し、解砕,粒度調整する製法によるものなどを用いることができる。   The graphite powder is not particularly limited as long as it satisfies the above oil absorption, for example, by a method of pulverizing, washing, granulating natural graphite ore, and making it spherical, A carbon base material such as coke is granulated with tar pitch, etc., calcined, graphitized, then pulverized, particle size adjusted, mesophase spherules extracted from tar pitch are calcined, graphitized, crushed, particle size adjusted It is possible to use a method according to the manufacturing method.

さらに、本発明において、黒鉛粉末の表面に十分な量の電解液を保持するためには、黒鉛粉末自体の物性以外にも、黒鉛粉末の集合体としての負極合剤層の状態も重要であり、負極合剤層の密度は0.8g/cm以上から1.6g/cm以下の範囲とすることが望ましい。負極合剤層の密度が1.6g/cmを超えると、黒鉛粉末の周囲に十分な量の電解液を保持するだけの空間を有することが難しくなり、逆に、0.8g/cm未満となると、黒鉛粉末の周囲に保持される電解液の量は潤沢にはなるが、黒鉛粉末間の接触が不足し、負極合剤層の電子伝導性が低下してしまう。 Furthermore, in the present invention, in order to retain a sufficient amount of electrolyte on the surface of the graphite powder, in addition to the physical properties of the graphite powder itself, the state of the negative electrode mixture layer as an aggregate of the graphite powder is also important. The density of the negative electrode mixture layer is desirably in the range of 0.8 g / cm 3 to 1.6 g / cm 3 . When the density of the negative electrode mixture layer exceeds 1.6 g / cm 3 , it becomes difficult to have a space sufficient to hold a sufficient amount of electrolyte around the graphite powder, and conversely, 0.8 g / cm 3. If it is less than this, the amount of the electrolyte solution retained around the graphite powder will be ample, but the contact between the graphite powders will be insufficient, and the electronic conductivity of the negative electrode mixture layer will be reduced.

さらには、負極合剤層断面において、負極合剤層の厚みのうち負極集電体に近接する側の1/2の厚みの第1領域の密度Aと、負極合剤層の厚みのうち負極合剤層の表面側の1/2の厚みの第2領域における密度Bとの比A/Bが0.5以上2.0以下にあることが望ましい。   Further, in the cross section of the negative electrode mixture layer, the density A of the first region having a thickness of ½ of the thickness of the negative electrode mixture layer on the side close to the negative electrode current collector, and the negative electrode of the thickness of the negative electrode mixture layer It is desirable that the ratio A / B with the density B in the second region having a thickness of 1/2 on the surface side of the mixture layer is 0.5 or more and 2.0 or less.

負極合剤層内で負極集電体に近接する側と表面側の密度比が2.0を超える、すなわち、負極合剤層の表面側が粗な状態になると、負極集電体から離れているため、もともと集電しにくい負極合剤層の表面側の電子伝導性が著しく不足し、電池の高出入力特性が大きく低下する。   In the negative electrode mixture layer, when the density ratio between the side close to the negative electrode current collector and the surface side exceeds 2.0, that is, when the surface side of the negative electrode mixture layer is in a rough state, it is separated from the negative electrode current collector. Therefore, the electron conductivity on the surface side of the negative electrode mixture layer, which is originally difficult to collect current, is remarkably insufficient, and the high input / output characteristics of the battery are greatly deteriorated.

逆に、負極合剤層内で負極集電体に近接する側と表面側の密度比が0.5未満、すなわち、負極合剤層の表面側が密な状態になっても、セパレータを通じて正極板と負極板との間で行き来する電解液中のリチウムイオンの移動が、負極合剤層の表面で遮られ、負極合剤層の内部へ移動し難くなるため、電池の高出入力特性が低下してしまう。   Conversely, the density ratio between the side close to the negative electrode current collector and the surface side in the negative electrode mixture layer is less than 0.5, that is, the positive electrode plate passes through the separator even if the surface side of the negative electrode mixture layer becomes dense. The movement of lithium ions in the electrolyte solution going back and forth between the battery and the negative electrode plate is blocked by the surface of the negative electrode mixture layer, making it difficult to move to the inside of the negative electrode mixture layer. Resulting in.

また、負極合剤層に含まれるバインダの存在状態についても、黒鉛粉末の周囲にバインダが局所的に偏在して、リチウムイオンの吸蔵および放出を阻害することがないように、負極合剤層断面において、負極合剤層の厚みのうち負極集電体に近接する側の1/2の厚みの第1領域に含まれるバインダの量Cと、負極合剤層のうち負極合剤層の表面側の1/2の厚みの第2領域に含まれるバインダの量Dとの比C/Dが0.67以上1.5以下にあることが望ましい。   In addition, regarding the existence state of the binder contained in the negative electrode mixture layer, the cross section of the negative electrode mixture layer is not to prevent the binder from being unevenly distributed around the graphite powder and hindering the occlusion and release of lithium ions. In the negative electrode mixture layer, the amount C of the binder contained in the first region having a thickness of ½ of the thickness close to the negative electrode current collector, and the surface side of the negative electrode mixture layer of the negative electrode mixture layer It is desirable that the ratio C / D with the amount D of the binder contained in the second region having a thickness of ½ is 0.67 or more and 1.5 or less.

特に、負極合剤層の集電体側と表面側とのバインダ量の比が0.67未満となる、負極合剤層の表面側にバインダが大きく偏在した状態は、上述の負極合剤層の表面側の密度が大きい状態と同様に、負極合剤層内部へのリチウムイオンの移動の障害となり、電池の高出入力特性が大きく低下する。   In particular, the ratio of the binder amount between the current collector side and the surface side of the negative electrode mixture layer is less than 0.67, and the binder is unevenly distributed on the surface side of the negative electrode mixture layer. As in the state where the density on the surface side is large, the lithium ion migration into the negative electrode mixture layer becomes an obstacle, and the high input / output characteristics of the battery are greatly deteriorated.

また、負極合剤層の集電体側と表面側とのバインダ量の比が2.0を超える、すなわち、負極合剤層の集電体側にバインダ量が大きく偏在状態になると、集電体側の黒鉛粉末からのリチウムイオンの受け渡しが悪くなり、電池の高出入力特性が低下する。   Further, when the ratio of the binder amount between the current collector side and the surface side of the negative electrode mixture layer exceeds 2.0, that is, when the binder amount is greatly unevenly distributed on the current collector side of the negative electrode mixture layer, The delivery of lithium ions from the graphite powder is deteriorated, and the high input / output characteristics of the battery are deteriorated.

次に、本発明の一実施の形態である、非水電解液二次電池の負極板の製造方法、すなわち上述の黒鉛粉末およびバインダから少なくともなる負極合剤層を負極集電体の表面に設けるための方法について、以下に詳細に説明する。   Next, a method for producing a negative electrode plate of a non-aqueous electrolyte secondary battery, which is an embodiment of the present invention, that is, a negative electrode mixture layer comprising at least the above-described graphite powder and binder is provided on the surface of the negative electrode current collector. The method for this will be described in detail below.

まず、負極活物質としての前記黒鉛粉末とバインダを溶媒とともに、固形分重量比率で55Wt%以上から85Wt%以下の範囲にて混合して、負極合剤塗料を作製する。ここで、固形分重量比率(Wt%)とは、黒鉛粉末とバインダと溶媒を含めて100とした場合の、黒鉛粉末とバインダの占める重量比率である。   First, the graphite powder as a negative electrode active material and a binder are mixed together with a solvent in a solid weight ratio of 55 Wt% or more to 85 Wt% or less to prepare a negative electrode mixture paint. Here, the solid content weight ratio (Wt%) is the weight ratio occupied by the graphite powder and the binder when the graphite powder, the binder and the solvent are set to 100.

溶媒としては、例えば、水や、エタノール、N−メチル−2−ピロリドンなどの各種アルコール、有機溶剤を単独、または混合して用いることができ、特に限定されるものではない。また、本発明では、負極合剤塗料の製造方法は、上記の固形分重量比率の範囲内であれば、特に限定されるものではないが、例えば、プラネタリーミキサーや三本ロールミル、ハイスピードミキサー、押出混練機といった高粘度材料の混練および分散が可能な各種の装置を用いることができ、得られた負極合剤塗料に対して、フィルタリング、磁選、解砕、整粒、造粒といった処理を施すことにも何ら問題はない。   As the solvent, for example, water, various alcohols such as ethanol and N-methyl-2-pyrrolidone, and organic solvents can be used alone or in combination, and are not particularly limited. Further, in the present invention, the method for producing the negative electrode mixture paint is not particularly limited as long as it is within the range of the solid content weight ratio. For example, a planetary mixer, a three-roll mill, a high-speed mixer Various devices capable of kneading and dispersing a high-viscosity material such as an extrusion kneader can be used, and the obtained negative electrode mixture paint is subjected to processing such as filtering, magnetic separation, pulverization, granulation, and granulation. There is no problem with the application.

続いて、前記負極合剤塗料を塗布して、負極集電体の表面に湿潤状態の合剤層を形成する。   Subsequently, the negative electrode mixture paint is applied to form a wet mixture layer on the surface of the negative electrode current collector.

本発明で用いられる負極合剤塗料は、固形分重量比率を55Wt%以上として、著しく高粘性の粘土状の状態としているため、従来の流動性に富む塗料を塗布する際に用いられるダイ方式のような塗布方法では求められる膜厚精度を満足することが困難である。   The negative electrode mixture paint used in the present invention has a solid weight ratio of 55 Wt% or more and is in a remarkably highly viscous clay-like state. With such a coating method, it is difficult to satisfy the required film thickness accuracy.

このため、本発明では、図3に示す塗布装置100により、走行する被塗布物である負極集電体1を巻き掛けて回転支持する第1のロール5と、この負極集電体1を介して第1ロール5に対向して配した第2ロール6の少なくとも2本のロール間に負極合剤塗料7を通して、負極集電体1の表面に負極合剤層2を形成することが望ましい。本発明で好ましい塗布装置としては、図4に示す塗布装置200のように、図3の塗布装置100に第3ロール8を加えた、3本以上のロールを備えた構成であっても良い。   For this reason, in the present invention, the coating apparatus 100 shown in FIG. 3 wraps the negative electrode current collector 1 that is the object to be traveled around the first roll 5 that rotates and supports the negative electrode current collector 1. Thus, it is desirable to form the negative electrode mixture layer 2 on the surface of the negative electrode current collector 1 by passing the negative electrode mixture paint 7 between at least two rolls of the second roll 6 arranged to face the first roll 5. As a coating apparatus preferable in the present invention, a configuration including three or more rolls in which the third roll 8 is added to the coating apparatus 100 of FIG. 3 may be used as in the coating apparatus 200 illustrated in FIG. 4.

さらには、図3および図4に示すように、第1ロール5と第2ロール6の両方を、負極集電体1の走行方向と同一の方向に回転させることによって、本発明の著しく高粘性の負極合剤塗料を、高い膜厚精度で塗布することが可能となる。   Further, as shown in FIGS. 3 and 4, both the first roll 5 and the second roll 6 are rotated in the same direction as the traveling direction of the negative electrode current collector 1, thereby significantly increasing the viscosity of the present invention. This negative electrode mixture paint can be applied with high film thickness accuracy.

また、本発明の非水電解液二次電池は、高い出入力性能を実現するために、小型民生用途に比して、負極板に設けられた合剤層の厚みは薄い。このような薄い負極合剤層を高い膜厚精度で形成するための方法として、負極集電体1を巻き掛けて回転支持しつつ、負極集電体1と同一の周速で回転する第1ロール5に比して、第2ロール6の周速を小さくすることによって、第1ロール5と第2ロール6とのギャップhを著しく狭めることなく、薄い負極合剤層5の形成層が可能であり、回転ロール間のギャップ精度が1μm以下の著しく厳しいレベルで確保できるような特殊な装置を用いずとも、高い膜厚精度が実現できる。   In the nonaqueous electrolyte secondary battery of the present invention, the thickness of the mixture layer provided on the negative electrode plate is smaller than that for small consumer applications in order to achieve high input / output performance. As a method for forming such a thin negative electrode mixture layer with high film thickness accuracy, the first negative electrode current collector 1 is wound around and supported at the same peripheral speed as the negative electrode current collector 1 while being rotated and supported. By making the peripheral speed of the second roll 6 smaller than that of the roll 5, a thin negative electrode mixture layer 5 can be formed without significantly narrowing the gap h between the first roll 5 and the second roll 6. Therefore, high film thickness accuracy can be realized without using a special apparatus that can ensure the gap accuracy between rotating rolls at a remarkably severe level of 1 μm or less.

上述の負極集電体の表面に負極合剤層を形成した時点では、合剤層は溶媒を含んだ湿潤状態にあり、この合剤層中の溶媒を、熱風、スチーム、赤外線、電磁誘導、マイクロ波といった任意の方法により、揮発乾燥させる。溶媒の揮発乾燥の方法およびその条件についても、特に限定されるものではなく、上述の方法を単独または複合して用いても良い。本発明の負極合剤塗料は、固形分重量比率を55Wt%以上として、黒鉛粉末の周囲に存在する溶媒量が非常に少ない。このため、上述の湿潤状態の負極合剤層からの溶媒の揮発乾燥工程の最初の時点から、負極合剤層内でバインダがほぼ固定化された状態にあり、溶媒の揮発乾燥を終了した負極合剤層において、均一なバインダの分布を実現することが可能となり、この負極板を用いたリチウムイオン二次電池では高い出入力特性が得られる。   At the time of forming the negative electrode mixture layer on the surface of the negative electrode current collector, the mixture layer is in a wet state containing a solvent, and the solvent in the mixture layer is heated, steam, infrared, electromagnetic induction, It volatilizes and drys by arbitrary methods, such as a microwave. The method for volatile drying of the solvent and its conditions are not particularly limited, and the above methods may be used alone or in combination. The negative electrode mixture paint of the present invention has a solid content weight ratio of 55 Wt% or more, and the amount of solvent present around the graphite powder is very small. For this reason, the negative electrode that has been in a state in which the binder is substantially fixed in the negative electrode mixture layer from the initial stage of the volatile drying step of the solvent from the wet negative electrode mixture layer, and has completed the volatile drying of the solvent. In the mixture layer, a uniform binder distribution can be realized, and a high input / output characteristic can be obtained in a lithium ion secondary battery using this negative electrode plate.

これに対し、本発明の高い吸油量の黒鉛粉末を用いて、ダイ方式のような一般的な塗布方法が適用できる粘性の負極合剤塗料とするためには、上述の本発明の負極合剤塗料に用いる溶媒量に比して、1.5倍〜4倍程度の溶媒が必要となり、溶媒の揮発乾燥過程において、負極合剤層の表面へと向かうバインダの移動が生じ、溶媒の揮発乾燥が終了した負極合剤層において表面近傍にバインダが偏在した状態となり、電池の出入力特性が低下する。さらには、含有する溶媒量が多いため、揮発乾燥の終了までに長時間を要し、長大な乾燥炉が必要となる、もしくは、生産性が著しく低下する。   On the other hand, in order to obtain a viscous negative electrode mixture paint to which a general coating method such as a die method can be applied using the high oil absorption graphite powder of the present invention, the above-described negative electrode mixture of the present invention is used. Compared to the amount of solvent used in the paint, a solvent of about 1.5 to 4 times is required, and in the process of volatile drying of the solvent, the binder moves toward the surface of the negative electrode mixture layer, resulting in volatile drying of the solvent. In the negative electrode mixture layer in which is finished, the binder is unevenly distributed in the vicinity of the surface, and the input / output characteristics of the battery are deteriorated. Furthermore, since the amount of the solvent to be contained is large, it takes a long time to complete the volatile drying, and a long drying furnace is required, or the productivity is remarkably reduced.

また、先に説明したように、電池の優れた高出入力特性を実現するためには、本発明の負極合剤層の密度は0.8g/cm以上から1.6g/cm以下とすることが望ましい。そして、上述の本発明の方法によって得られる、溶媒の揮発乾燥後の負極合剤層の密度は、一般的なダイ方式で得られる負極合剤層の密度に比して高くなるため、揮発乾燥後の負極合剤層に対してプレス処理を施すことなく、上述の範囲内の合剤層の密度を実現できる。 Further, as described above, in order to realize the excellent high input / output characteristics of the battery, the density of the negative electrode mixture layer of the present invention is 0.8 g / cm 3 or more to 1.6 g / cm 3 or less. It is desirable to do. The density of the negative electrode mixture layer obtained by the above-described method of the present invention after volatile drying of the solvent is higher than the density of the negative electrode mixture layer obtained by a general die method. The density of the mixture layer within the above-described range can be realized without subjecting the subsequent negative electrode mixture layer to press treatment.

ここで、負極合剤層の固形分重量比率を55Wt%未満とした場合に得られる負極合剤層では揮発乾燥後のプレス処理が必要となる。負極合剤層に対してプレス処理を施した場合、負極集電体に近接する負極合剤層は圧縮され難いが、表面側は圧縮され易いため、負極合剤層内に粗密が生じ、表面近傍の密度が高い。すなわち、黒鉛粉末間の空隙が少ない状態となり、電池の出入力特性が低下する。   Here, the negative electrode mixture layer obtained when the solid content weight ratio of the negative electrode mixture layer is less than 55 Wt% requires press treatment after volatile drying. When the negative electrode mixture layer is subjected to press treatment, the negative electrode mixture layer adjacent to the negative electrode current collector is difficult to compress, but the surface side is easily compressed. The density in the vicinity is high. That is, there are few voids between the graphite powders, and the input / output characteristics of the battery deteriorate.

また、負極合剤塗料の固形分重量率が85Wt%を超えると、全ての黒鉛粉末の表面を溶媒で湿潤させることが困難であり、塗布直後の負極合剤層内の一部には黒鉛粉末間に溶媒が存在しない状態となり、この部分の溶媒の揮発乾燥後の密度が高くなってしまい、結果として、負極合剤層内に粗密が生じ、電池の高出入力特性が低下する。   Moreover, when the solid content weight ratio of the negative electrode mixture paint exceeds 85 Wt%, it is difficult to wet the surface of all graphite powder with a solvent. There is no solvent in between, and the density of this portion of the solvent after volatile drying increases, resulting in coarseness and density in the negative electrode mixture layer, which degrades the high input / output characteristics of the battery.

これに対し、本発明の製造方法では、上述のように、プレス処理を施すことなく、高い密度が実現できるため、負極合剤層内における密度を場所に依らず均一にできるため、電池の優れた高出入力特性が実現できる。   On the other hand, in the production method of the present invention, as described above, since high density can be realized without performing press treatment, the density in the negative electrode mixture layer can be made uniform regardless of the location, so that the battery is excellent. High input / output characteristics can be realized.

以下、本発明の一実施の形態における実施例および比較例を示すが、本発明はこれらに限定されるものではない。   Hereinafter, although the Example and comparative example in one embodiment of this invention are shown, this invention is not limited to these.

以下の実施例1〜6および比較例1、2において、正極板、セパレータ、非水電解液、ケースはいずれの場合においても同じものを用いた。   In Examples 1 to 6 and Comparative Examples 1 and 2 below, the same positive electrode plate, separator, non-aqueous electrolyte, and case were used in all cases.

正極板は、正極集電体として、厚み15μmのアルミニウム箔を用い、その両表面に設けた正極合剤層は、活物質としてのコバルト酸リチウム100重量部、導電助材としてのアセチレンブラック5重量部、バインダとしてのポリフッ化ビニリデン5重量部からなり、片面厚み30μmとしたものである。   The positive electrode plate uses a 15 μm-thick aluminum foil as the positive electrode current collector, and the positive electrode mixture layer provided on both surfaces thereof is 100 parts by weight of lithium cobaltate as an active material, and 5 weights of acetylene black as a conductive additive. Part, and 5 parts by weight of polyvinylidene fluoride as a binder, with a single-sided thickness of 30 μm.

セパレータは、厚み27μmのポリプロピレン製の微多孔膜を用い、非水電解液としては、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを1:1:1の重量比率で混合した溶媒に、溶質として1モル/Lの六フッ化リン酸リチウムを溶解したものを用いた。また、ケースとしては、直径26mm、高さ65mmの円筒型のものを用いた。   The separator uses a microporous membrane made of polypropylene having a thickness of 27 μm, and the non-aqueous electrolyte is 1 mol as a solute in a solvent in which ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate are mixed at a weight ratio of 1: 1: 1. A solution in which / L lithium hexafluorophosphate was dissolved was used. As the case, a cylindrical case having a diameter of 26 mm and a height of 65 mm was used.

負極板については、負極集電体として、厚み10μmの電解銅箔を用い、その両表面に設けた負極合剤層は、活物質としての黒鉛粉末100重量部、バインダとしてのカルボキシルメチルセルロース1重量部、スチレン−ブタジエンゴム2重量部からなり、片面厚み50μmとしたことは、実施例、比較例の各場合において同じとし、本発明の特徴的な条件である、黒鉛粉末の吸油量、円形度、平均粒子径、負極合剤塗料としての固形分重量比率、溶媒揮発乾燥後の負極合剤層の平均密度、集電体側と表面側のバインダ量および密度の比、については、実施例および比較例の各場合で用いた条件を表1にまとめた。ここで、負極集電体の表面への負極合剤層の形成方法としては、負極合剤塗料の固形分率が55Wt%以上85Wt%以下の範囲にある実施例1〜6については、実施の形態にて説明した2本の速度の異なるロールを用いた塗布方法を用い、負極合剤塗料の固形分重量比率が55Wt%未満である比較例1および2については、一般的なダイ方式による塗布方法を用いた。   For the negative electrode plate, an electrolytic copper foil having a thickness of 10 μm was used as a negative electrode current collector, and the negative electrode mixture layer provided on both surfaces thereof was 100 parts by weight of graphite powder as an active material and 1 part by weight of carboxymethyl cellulose as a binder. It is composed of 2 parts by weight of styrene-butadiene rubber, and the single-sided thickness of 50 μm is the same in each case of the examples and comparative examples, and is the characteristic condition of the present invention, the oil absorption amount of the graphite powder, the circularity, About average particle diameter, solid content weight ratio as negative electrode mixture paint, average density of negative electrode mixture layer after solvent volatilization drying, ratio of binder amount and density on current collector side and surface side, examples and comparative examples The conditions used in each case are summarized in Table 1. Here, as a method for forming the negative electrode mixture layer on the surface of the negative electrode current collector, Examples 1 to 6 in which the solid content ratio of the negative electrode mixture paint is in the range of 55 Wt% to 85 Wt% For the comparative examples 1 and 2 in which the solid content weight ratio of the negative electrode mixture paint is less than 55 Wt%, using the coating method using two rolls with different speeds described in the embodiment, coating by a general die method The method was used.

上述の正極板と負極板をセパレータを介して重ねて捲回した電極体を、非水電解液とともにケース内に収納して、実施例1〜6、および比較例1、2のリチウムイオン電池を作製した。   The electrode body in which the above-described positive electrode plate and negative electrode plate are overlapped and wound through a separator is housed in a case together with a non-aqueous electrolyte, and the lithium ion batteries of Examples 1 to 6 and Comparative Examples 1 and 2 are manufactured. Produced.

以上の各電池の充放電を、25℃環境下において、400mAの定電流、充電上限電圧4.2V、放電下限電圧2.5Vの条件下で、3サイクル繰り返した後、25℃および0℃の環境下において、パルス充放電試験を行い、電池の直流内部抵抗(DC−IR)を測定した。直流内部抵抗(DC−IR)の測定結果も、表1に伴わせて記載した。   The above charging / discharging of each battery was repeated for 3 cycles under the conditions of a constant current of 400 mA, a charging upper limit voltage of 4.2 V, and a discharging lower limit voltage of 2.5 V in a 25 ° C. environment. Under the environment, a pulse charge / discharge test was performed, and the direct current internal resistance (DC-IR) of the battery was measured. The measurement results of direct current internal resistance (DC-IR) are also shown in Table 1.

以上の結果から明らかなように、本発明の実施例1〜6の電池のいずれにおいても、常温、低温の両方で低い直流抵抗を実現し、車両用途で求められる優れた高出入力特性を実現可能である。これに対して、本発明の範囲外となる比較例1、2のいずれにおいても、常温、低温のいずれの環境下においても、直流抵抗が高く、車両用途で求められる高出入力特性を満足できるものではない。 As is clear from the above results, in any of the batteries of Examples 1 to 6 of the present invention, low DC resistance is realized at both normal temperature and low temperature, and excellent high input / output characteristics required for vehicle applications are realized. Is possible. On the other hand, in any of Comparative Examples 1 and 2 that are out of the scope of the present invention, the direct current resistance is high in any environment at normal temperature or low temperature, and the high input / output characteristics required for vehicle use can be satisfied. It is not a thing.

なお、上記実施の形態では、本発明の非水電解液二次電池の一例としてリチウムイオン電池について説明したが、各実施の形態で説明したリチウムイオン電池の負極板の構成は、他の非水電解液二次電池の負極板として適用できることは言うまでもない。例えば、本発明は、MgイオンやNaイオンなどを使った非水電解液二次電池にも適用できる。   In the above embodiment, the lithium ion battery has been described as an example of the nonaqueous electrolyte secondary battery of the present invention. However, the configuration of the negative electrode plate of the lithium ion battery described in each embodiment is different from that of other nonaqueous batteries. Needless to say, it can be applied as a negative electrode plate of an electrolyte secondary battery. For example, the present invention can also be applied to a nonaqueous electrolyte secondary battery using Mg ions, Na ions, or the like.

本発明は、非水電解液二次電池、特に、出入力特性に優れたリチウムイオン二次電池に適用できるとともに、その製造方法については、非水電解液二次電池のみならず、構造の類似した電極板を有する、各種電池、キャパシタなどのエネルギ貯蔵素子に適用できる。   The present invention can be applied to a non-aqueous electrolyte secondary battery, in particular, a lithium ion secondary battery having excellent input / output characteristics. The present invention can be applied to energy storage elements having various electrode plates, such as various batteries and capacitors.

1 負極集電体
2 負極合剤層
3 負極活物質
4 バインダ
5 第1ロール
6 第2ロール
7 負極合剤塗料
8 第3ロール
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Negative electrode mixture layer 3 Negative electrode active material 4 Binder 5 1st roll 6 2nd roll 7 Negative electrode mixture paint 8 3rd roll

Claims (12)

正極集電体の少なくとも何れか一方の表面に正極合剤層を設けた正極板と、負極集電体の少なくとも何れか一方の表面に負極合剤層を設けた負極板と、前記正極板と前記負極板の間に設けたセパレータとを、非水電解液とともにケースに収納した非水電解液二次電池であって、
前記負極合剤層は、少なくとも負極活物質としての黒鉛粉末と、前記黒鉛粉末を前記負極集電体の表面に固定化するためのバインダとを含み、
前記黒鉛粉末の吸油量が50cm/100g以上から100cm/100g以下であることを特徴とする非水電解液二次電池。
A positive electrode plate provided with a positive electrode mixture layer on at least one surface of the positive electrode current collector; a negative electrode plate provided with a negative electrode mixture layer on at least one surface of the negative electrode current collector; and the positive electrode plate; A non-aqueous electrolyte secondary battery in which a separator provided between the negative electrode plates is housed in a case together with a non-aqueous electrolyte,
The negative electrode mixture layer includes at least graphite powder as a negative electrode active material, and a binder for fixing the graphite powder to the surface of the negative electrode current collector,
Non-aqueous electrolyte secondary battery, wherein the oil absorption of the graphite powder is 100 cm 3/100 g or less from 50 cm 3/100 g or more.
前記負極合剤層において、前記負極合剤層の厚みのうち前記負極集電体の表面側の1/2の厚みの第1領域の密度Aと、前記負極合剤層の厚みのうち前記負極合剤層の表面側の1/2の厚みの第2領域の密度Bとの比率A/Bが、0.5以上から2.0以下であることを特徴とする請求項1記載の非水電解液二次電池。   In the negative electrode mixture layer, the density A of the first region having a thickness of ½ of the thickness of the negative electrode mixture layer on the surface side of the negative electrode current collector, and the negative electrode of the thickness of the negative electrode mixture layer 2. The non-aqueous solution according to claim 1, wherein the ratio A / B with the density B of the second region having a thickness of ½ on the surface side of the mixture layer is 0.5 or more and 2.0 or less. Electrolyte secondary battery. 前記負極合剤層において、前記負極合剤層の厚みのうち前記負極集電体の表面側の1/2の厚みの第1領域に含まれる前記バインダの量Cと、前記負極合剤層のうち前記負極合剤層の表面側の1/2の厚みの第2領域に含まれる前記バインダの量Dとの比率C/Dが、0.67以上から1.5以下であることを特徴とする請求項1記載の非水電解液二次電池。   In the negative electrode mixture layer, the amount C of the binder contained in the first region having a thickness of ½ of the thickness of the negative electrode mixture layer on the surface side of the negative electrode current collector, and the negative electrode mixture layer Of these, the ratio C / D to the amount D of the binder contained in the second region having a thickness of ½ on the surface side of the negative electrode mixture layer is 0.67 or more and 1.5 or less. The nonaqueous electrolyte secondary battery according to claim 1. 前記黒鉛粉末は、円形度が0.5以上のものを90%以上含むことを特徴とする請求項1〜3の何れか一つに記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the graphite powder includes 90% or more of those having a circularity of 0.5 or more. 前記黒鉛粉末は、平均粒子径が3μm以上から30μm以下のものを90%以上含むことを特徴とする請求項1〜4の何れか一つに記載の非水電解液二次電池。   5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite powder contains 90% or more of particles having an average particle diameter of 3 μm to 30 μm. 前記負極合剤層の密度が0.8g/cm以上から1.6g/cm以下であることを特徴とする請求項1〜5の何れか一つに記載の非水電解液二次電池。 The density of the said negative mix layer is 0.8 g / cm < 3 > or more and 1.6 g / cm < 3 > or less, The nonaqueous electrolyte secondary battery as described in any one of Claims 1-5 characterized by the above-mentioned. . 前記請求項1〜6の何れか一つに記載の非水電解液二次電池の負極板の製造方法であって、
少なくとも前記黒鉛粉末と前記バインダを溶媒とともに固形分重量比率55Wt%以上から85Wt%以下の範囲で混合した負極合剤塗料を作製する工程と、
前記負極合剤塗料を前記負極集電体の少なくとも一方の表面に塗布して湿潤状態の前記負極合剤層を設ける工程と、
前記湿潤状態の負極合剤層から前記溶媒を揮発乾燥させる工程と、を備えたことを特徴とする、非水電解液二次電池の負極板の製造方法。
A method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6,
Producing a negative electrode mixture paint in which at least the graphite powder and the binder are mixed together with a solvent in a solid weight ratio of 55 Wt% to 85 Wt%;
Applying the negative electrode mixture paint to at least one surface of the negative electrode current collector to provide the wet negative electrode mixture layer;
And a step of evaporating and drying the solvent from the wet negative electrode mixture layer. A method for producing a negative electrode plate of a non-aqueous electrolyte secondary battery.
前記負極合剤塗料を塗布する手段として、前記負極集電体を支持する第1のロールと、前記負極集電体を介して前記第1のロールに対向して配した第2のロールの少なくとも2本のロールを用いることを特徴とする請求項7記載の非水電解液二次電池の負極板の製造方法。   As a means for applying the negative electrode mixture paint, at least one of a first roll supporting the negative electrode current collector and a second roll disposed to face the first roll through the negative electrode current collector The method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery according to claim 7, wherein two rolls are used. 前記第1のロールと前記第2のロールは、いずれも前記負極集電体の走行方向と同一の方向に回転させることを特徴とする請求項8記載の非水電解液二次電池の負極板の製造方法。   The negative electrode plate for a non-aqueous electrolyte secondary battery according to claim 8, wherein both the first roll and the second roll are rotated in the same direction as the traveling direction of the negative electrode current collector. Manufacturing method. 前記第1のロール周速と前記負極集電体の走行速度が同一であり、かつ前記第2のロールの周速は、前記第1のロールの周速および前記負極集電体の走行速度と異なることを特徴とする請求項9記載の非水電解液二次電池の負極板の製造方法。   The circumferential speed of the first roll is the same as the traveling speed of the negative electrode current collector, and the circumferential speed of the second roll is the circumferential speed of the first roll and the traveling speed of the negative electrode current collector. The method for producing a negative electrode plate for a non-aqueous electrolyte secondary battery according to claim 9, wherein the method is different. 前記第1のロール周速と前記負極集電体の走行速度に比べて、前記第2のロールの周速が小さいことを特徴とする請求項10記載の非水電解液二次電池の負極板の製造方法。   The negative electrode plate of a non-aqueous electrolyte secondary battery according to claim 10, wherein a peripheral speed of the second roll is smaller than a peripheral speed of the first roll and a traveling speed of the negative electrode current collector. Manufacturing method. 前記湿潤状態の負極合剤層から前記溶媒を揮発乾燥させる工程の後、前記負極合剤層をプレス処理しないことを特徴とする、請求項8〜11の何れか一つに記載の非水電解液二次電池の負極板の製造方法。   The nonaqueous electrolysis according to any one of claims 8 to 11, wherein the negative electrode mixture layer is not pressed after the step of volatilizing and drying the solvent from the wet negative electrode mixture layer. Manufacturing method of negative electrode plate of liquid secondary battery.
JP2013038129A 2013-02-28 2013-02-28 Nonaqueous electrolyte secondary battery and manufacturing method of negative electrode plate of the nonaqueous electrolyte secondary battery Pending JP2014165156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038129A JP2014165156A (en) 2013-02-28 2013-02-28 Nonaqueous electrolyte secondary battery and manufacturing method of negative electrode plate of the nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038129A JP2014165156A (en) 2013-02-28 2013-02-28 Nonaqueous electrolyte secondary battery and manufacturing method of negative electrode plate of the nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014165156A true JP2014165156A (en) 2014-09-08

Family

ID=51615559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038129A Pending JP2014165156A (en) 2013-02-28 2013-02-28 Nonaqueous electrolyte secondary battery and manufacturing method of negative electrode plate of the nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014165156A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115578A (en) * 2014-12-16 2016-06-23 トヨタ自動車株式会社 Electrode manufacturing method and electrode manufacturing device
KR20170042175A (en) * 2015-10-08 2017-04-18 주식회사 엘지화학 Method for measuring distribution of binder in electrode
JP2018137087A (en) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 Method for manufacturing electrode
WO2018207410A1 (en) * 2017-05-11 2018-11-15 日立化成株式会社 Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode material production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
WO2020054708A1 (en) * 2018-09-11 2020-03-19 株式会社Gsユアサ Electricity storage element and method for producing electricity storage element
CN115084441A (en) * 2021-03-12 2022-09-20 泰星能源解决方案有限公司 Method for manufacturing electrode for secondary battery, electrode, and secondary battery provided with electrode
JP7280913B2 (en) 2021-04-26 2023-05-24 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery and battery module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144196A (en) * 1994-11-16 1996-06-04 Nippon Paper Ind Co Ltd Coating method and coating apparatus
JP2001076712A (en) * 1999-09-06 2001-03-23 Toyota Central Res & Dev Lab Inc Coating method of electrode paste for battery
JP2001196051A (en) * 2000-01-11 2001-07-19 At Battery:Kk Nonaqueous secondary battery and its manufacturing method
JP2010092649A (en) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode
JP2010170810A (en) * 2009-01-22 2010-08-05 Panasonic Corp Method of manufacturing electrode board for lithium-ion secondary battery
JP2011146154A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Manufacturing method of anode paste, manufacturing method of anode plate, and manufacturing method of lithium secondary battery
JP2013030441A (en) * 2011-07-29 2013-02-07 Toyota Motor Corp Lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144196A (en) * 1994-11-16 1996-06-04 Nippon Paper Ind Co Ltd Coating method and coating apparatus
JP2001076712A (en) * 1999-09-06 2001-03-23 Toyota Central Res & Dev Lab Inc Coating method of electrode paste for battery
JP2001196051A (en) * 2000-01-11 2001-07-19 At Battery:Kk Nonaqueous secondary battery and its manufacturing method
JP2010092649A (en) * 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode
JP2010170810A (en) * 2009-01-22 2010-08-05 Panasonic Corp Method of manufacturing electrode board for lithium-ion secondary battery
JP2011146154A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Manufacturing method of anode paste, manufacturing method of anode plate, and manufacturing method of lithium secondary battery
JP2013030441A (en) * 2011-07-29 2013-02-07 Toyota Motor Corp Lithium ion secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115578A (en) * 2014-12-16 2016-06-23 トヨタ自動車株式会社 Electrode manufacturing method and electrode manufacturing device
US10663528B2 (en) 2015-10-08 2020-05-26 Lg Chem, Ltd. Method of measuring distribution of binder in electrode
KR20170042175A (en) * 2015-10-08 2017-04-18 주식회사 엘지화학 Method for measuring distribution of binder in electrode
CN107925130A (en) * 2015-10-08 2018-04-17 株式会社Lg化学 The method of adhesive distribution in measuring electrode
KR101982571B1 (en) * 2015-10-08 2019-05-27 주식회사 엘지화학 Method for measuring distribution of binder in electrode
CN107925130B (en) * 2015-10-08 2020-07-31 株式会社Lg化学 Method for measuring binder distribution in electrode
JP2018137087A (en) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 Method for manufacturing electrode
WO2018207410A1 (en) * 2017-05-11 2018-11-15 日立化成株式会社 Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode material production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JPWO2018207410A1 (en) * 2017-05-11 2020-05-14 日立化成株式会社 Lithium-ion secondary battery negative electrode material, method for manufacturing lithium-ion secondary battery negative electrode material, lithium-ion secondary battery negative electrode, and lithium-ion secondary battery
US11605818B2 (en) 2017-05-11 2023-03-14 Showa Denko Materials Co., Ltd. Anode material for lithium ion secondary battery, method of producing anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
WO2020054708A1 (en) * 2018-09-11 2020-03-19 株式会社Gsユアサ Electricity storage element and method for producing electricity storage element
EP3836255A4 (en) * 2018-09-11 2022-05-25 GS Yuasa International Ltd. Electricity storage element and method for producing electricity storage element
JP7424295B2 (en) 2018-09-11 2024-01-30 株式会社Gsユアサ Energy storage element and method for manufacturing energy storage element
CN115084441A (en) * 2021-03-12 2022-09-20 泰星能源解决方案有限公司 Method for manufacturing electrode for secondary battery, electrode, and secondary battery provided with electrode
JP2022139879A (en) * 2021-03-12 2022-09-26 プライムプラネットエナジー&ソリューションズ株式会社 Method of manufacturing secondary battery electrode, electrode, and secondary battery comprising the electrode
JP7320010B2 (en) 2021-03-12 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 METHOD FOR MANUFACTURING ELECTRODE FOR SECONDARY BATTERY, ELECTRODE AND SECONDARY BATTERY HAVING SAME
CN115084441B (en) * 2021-03-12 2023-10-31 泰星能源解决方案有限公司 Method for manufacturing electrode for secondary battery, electrode, and secondary battery provided with electrode
JP7280913B2 (en) 2021-04-26 2023-05-24 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery and battery module

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
CN106207250B (en) Lithium ion secondary battery
US9508992B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6304774B2 (en) Method for producing paste for negative electrode production, method for producing negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN113207316A (en) Artificial graphite, secondary battery, preparation method and device
JP2014165156A (en) Nonaqueous electrolyte secondary battery and manufacturing method of negative electrode plate of the nonaqueous electrolyte secondary battery
JP7337049B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP6995738B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
JP2018514918A (en) Negative electrode active material and negative electrode including the same
JP2004171901A (en) Nonaqueous secondary battery, negative electrode therefor, manufacturing method thereof, and electronic device using nonaqueous secondary battery
CN116014120A (en) Nonaqueous electrolyte secondary battery and method for producing same
JP6946694B2 (en) Lithium ion secondary battery
JP4513385B2 (en) Negative electrode for secondary battery and secondary battery
JP2023538082A (en) Negative electrode and secondary battery containing the same
JP2012221951A (en) Negative electrode material for lithium secondary battery, method for manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2009146811A (en) Positive electrode body for lithium-ion secondary battery and lithium-ion secondary battery
JP2007242348A (en) Lithium-ion secondary battery
JP6709991B2 (en) Lithium ion secondary battery
JP2015176744A (en) Method of manufacturing secondary battery
JP2013247022A (en) Electrode material, method for producing the same, and secondary battery
JP2018063755A (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP2017228438A (en) Lithium secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161018