JP6024309B2 - ポリカーボネート樹脂組成物及びその成形品 - Google Patents

ポリカーボネート樹脂組成物及びその成形品 Download PDF

Info

Publication number
JP6024309B2
JP6024309B2 JP2012195345A JP2012195345A JP6024309B2 JP 6024309 B2 JP6024309 B2 JP 6024309B2 JP 2012195345 A JP2012195345 A JP 2012195345A JP 2012195345 A JP2012195345 A JP 2012195345A JP 6024309 B2 JP6024309 B2 JP 6024309B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
compound
resin composition
group
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012195345A
Other languages
English (en)
Other versions
JP2014051558A (ja
Inventor
達也 人見
達也 人見
聡 小菅
聡 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012195345A priority Critical patent/JP6024309B2/ja
Publication of JP2014051558A publication Critical patent/JP2014051558A/ja
Application granted granted Critical
Publication of JP6024309B2 publication Critical patent/JP6024309B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、耐候性、色相、耐熱性、熱安定性、機械的強度などに優れたポリカーボネート樹脂組成物及びその成形品に関する。
ポリカーボネート樹脂は、一般的にビスフェノール類をモノマー成分とし、透明性、耐熱性、機械的強度等の優位性を生かし、電気・電子部品、自動車用部品、医療用部品、建材、フィルム、シート、ボトル、光学記録媒体、レンズ等の分野でいわゆるエンジニアリングプラスチックスとして広く利用されている。
しかしながら、従来のポリカーボネート樹脂は、長時間紫外線や可視光に曝露される場所で使用すると、色相や透明性、機械的強度が悪化するため、屋外や照明装置の近傍での使用に制限があった。
このような問題を解決するために、ベンゾフェノン系紫外線吸収剤やベンゾトリアゾール系紫外線吸収剤、ベンゾオキサジン系紫外線吸収剤をポリカーボネート樹脂に添加する方法が広く知られている(例えば非特許文献1)。
ところが、このような紫外線吸収剤を添加した場合、紫外線照射後の色相などの改良は認められるものの、多量の紫外線吸収剤を必要とするため、そもそもの樹脂の色相や耐熱性、透明性の悪化を招いたり、また成型時に揮発して金型を汚染する等の問題があった。
従来のポリカーボネート樹脂に使用されるビスフェノール化合物は、ベンゼン環構造を有するために紫外線吸収が大きく、このことがポリカーボネート樹脂の耐候性悪化を招くため、分子骨格中にベンゼン環構造を持たない脂肪族ジヒドロキシ化合物や脂環式ジヒドロキシ化合物、イソソルビドのように分子内にエーテル結合を持つ環状ジヒドロキシ化合物モノマーユニットを使用すれば、原理的には耐候性が改良されることが期待される。中でも、バイオマス資源から得られるイソソルビドをモノマーとしたポリカーボネート樹脂は、耐熱性や機械的強度が優れていることから、近年数多くの検討がなされるようになってきた(例えば、特許文献1〜6)。
上記のようなポリカーボネートの製造において、実際のプラントでは多品種の組成のポリカーボネートを製造する場合、製造の切り替え時に別組成のポリカーボネートやその原料が混入する可能性がある。この問題に対しては製造方法の変更や洗浄強化により、別組成のポリカーボネートやその原料のコンタミを減少させる方法が挙げられる。
しかし、別組成のポリカーボネートやその原料が混入してしまったポリカーボネートの再利用を可能とする方法については、未だ報告がない。
国際公開第04/111106号パンフレット 特開2006−232897号公報 特開2006−28441号公報 特開2008−24919号公報 特開2009−91404号公報 特開2009−91417号公報
ポリカーボネート樹脂ハンドブック(1992年8月28日 日刊工業新聞社発行 本間精一編)
本発明者らは、脂肪族ポリカーボネート樹脂が別組成のポリカーボネートやその原料として芳香族ジヒドロキシ化合物を含有している場合、耐候性に不良が生じること、また、脂肪族ポリカーボネート樹脂が芳香族ジヒドロキシ化合物を含有していても添加剤として紫外線吸収剤を特定量で用いることで耐候性低下の問題を解決できることを見出した。
本発明の目的は、製造段階で芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物が混入したポリカーボネート樹脂組成物を耐候性良く使いこなすことを可能とすることである。
本発明者は、上記課題を解決するべく、鋭意検討を重ねた結果、分子内に下記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位を少なくとも含む脂肪族ポリカーボネート樹脂と、特定量の芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物および特定量の紫外線吸収剤とを含んでなるポリカーボネート樹脂組成物であり、脂肪族ポリカーボネート樹脂が芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物を含有していても優れた耐候性を有するだけでなく、優れた耐候性、色相、耐熱性、熱安定性、機械的強度などを有することを見出し本発明に到達した。
すなわち本発明は、次の[1]から[5]にかかる発明に関するものである。
[1] 下記式(2)で表されるジヒドロキシ化合物に由来する構造単位を有する脂肪族ポリカーボネート樹脂を含有するポリカーボネート樹脂組成物であって、前記ポリカーボネート樹脂組成物が、下記式(3)で表される芳香族ジヒドロキシ化合物を0.1〜700重量ppm、および紫外線吸収剤を5〜10000重量ppm含有してなるポリカーボネート樹脂組成物。

Figure 0006024309
Figure 0006024309
(ただし、上記式(3)において、R1〜R4はそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜炭素数20のアルキル基、置換若しくは無置換の炭素数6〜炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6〜炭素数20のアリール基を表し、各ベンゼン環に4つある置換基のそれぞれに同一の又は異なる基が配されている。Xは置換若しくは無置換の炭素数2〜炭素数10のアルキレン基、置換若しくは無置換の炭素数6〜炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6〜炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0〜5の整数である。)
[2] 前記脂肪族ポリカーボネート樹脂が、前記式(2)で表されるジヒドロキシ化合物以外の脂肪族ジヒドロキシ化合物に由来する構造単位を更に含む前記[1]に記載のポリカーボネート樹脂組成物。
[3] 前記脂肪族ポリカーボネート樹脂が、前記式(2)で表されるジヒドロキシ化合物を含むジヒドロキシ化合物と下記式(4)で表される炭酸ジエステルとの重縮合により得られてなる前記[1]または[2]に記載のポリカーボネート樹脂組成物。
Figure 0006024309

(上記式(4)において、A1及びA2は、それぞれ独立に、置換若しくは無置換の炭素数1〜炭素数18の脂肪族炭化水素基、または、置換若しくは無置換の芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。)
[4] 前記重縮合エステル交換反応触媒がリチウム及び長周期型周期表第2族の金属からなる群より選ばれる少なくとも1種の金属化合物であり、かつこれらの金属化合物の合計量が、用いたジヒドロキシ化合物1mol当たり、金属量として20μmol以下である、前記[3]に記載のポリカーボネート樹脂組成物。
[5] 前記[1]から[4]のいずれかに記載のポリカーボネート樹脂組成物を成形してなるポリカーボネート樹脂成形品。
本発明によれば、優れた耐候性を有するだけでなく、優れた色相、耐熱性、熱安定性、及び機械的強度に優れ、電気・電子部品、自動車用部品等の射出成形分野、フィルム、シート分野、ボトル、容器分野など幅広い分野へ適用可能なポリカーボネート樹脂組成物を提供することができ、特に屋外や照明部品等の紫外線を含む光線に曝露される用途に適したポリカーボネート樹脂組成物を提供することが可能になる。尚、本発明においては、耐候性以外は必ずしもすべての効果を発現することを必須とするものではない。
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。尚、本明細書において「〜」と記載している場合、その前後の数値または物理量を含む表現として用いるものとする。
1.ポリカーボネート樹脂組成物
本発明のポリカーボネート樹脂組成物は、下記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位を有する脂肪族ポリカーボネート樹脂を少なくとも含有するポリカーボネート樹脂組成物であって、前記ポリカーボネート樹脂組成物が、芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物を0.1〜700重量ppm、および紫外線吸収剤を5〜10000重量ppm含有してなることを特徴とする。
Figure 0006024309

(ただし、上記式(1)で表される部位が−CH2−O−Hを構成する部位である場合を除く。)
本発明のポリカーボネート樹脂組成物は、耐候性の点から、これを成形体(厚さ3mm)として、反射光で測定したASTM D1925−70に準拠した初期のイエローインデックス(YI)値をYI1、63℃、相対湿度50%の環境下にて、メタルハライドランプを用い、波長300nm〜400nmの放射照度1.5kW/m2で、100時間照射処理した後のイエローインデックス(YI)値をYI2とした場合、ΔYI(=|YI1―YI2|)が、6.0以下であることが好ましく、ΔYIが5.0以下であることがより好ましく、4.0以下であることが更に好ましい。尚、本発明におけるメタルハライドランプを用いた照射処理は、後述する実施例におけるメタルハライドランプ照射試験を意味する。
前述のメタルハライドランプ照射前後でのYI値の絶対値の差を小さくする、即ちポリカーボネート樹脂組成物の耐候性を優れたものとするためには、例えば、本発明に用いるポリカーボネート樹脂製造時に使用する触媒の種類と量を適宜選択する、ポリカーボネート樹脂重縮合時の温度及び時間を適宜選択する、ポリカーボネート樹脂中の紫外線吸収能を有する化合物、例えば、残存フェノール、残存ジフェニルカーボネートを減らす、ジヒドロキシ化合物などの原料モノマーとして紫外領域に吸収を持つ物質の使用量を減らす、原料中の不純物として含まれる紫外領域に吸収を持つ物質の使用量を減らす等して製造することができる。特に、触媒の種類と量、重縮合時の温度及び時間が重要であり、特に、後述のポリカーボネート樹脂の説明で好ましいとする条件を採用し、ポリカーボネート樹脂組成物全体でのリチウム及び長周期型周期表第2族の金属を特定量以下で含有するものとすることが好ましい。
また、本発明のポリカーボネート樹脂組成物は、耐候性の観点から、これを成形体(厚さ3mm)として、後述の実施例に記載の方法にてメタルハライドランプ照射前後でのヘーズ値(%)を測定し、照射後のヘーズ値から照射前のヘーズ値を引いた差が、18%以下であることが好ましく、15%以下であることがより好ましく、11%以下であることが更に好ましい。
更に、本発明のポリカーボネート樹脂組成物は、色相の観点から下記式(4)で表される炭酸ジエステルが60重量ppm以下であることが好ましい。下記式(4)で表される炭酸ジエステルは主としてポリカーボネート樹脂の原料に由来するものであるため、詳細についてはポリカーボネート樹脂の説明において述べることとする。
Figure 0006024309
(上記式(4)において、A1及びA2は、それぞれ独立に、置換若しくは無置換の炭素数1〜炭素数18の脂肪族炭化水素基、または、置換若しくは無置換の芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。)
また、本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂組成物全体に対して、芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物の含有量が0.1〜700重量ppm以下である。好ましい範囲は0.5〜300重量ppm、より好ましい範囲は1〜100重量ppm、さらに好ましい範囲は3〜50重量ppm、特に好ましい範囲は5〜30重量ppmである。
芳香族ポリカーボネート樹脂と脂肪族ポリカーボネート樹脂を並産するプラントにおける脂肪族ポリカーボネート樹脂中の芳香族ジヒドロキシ化合物量が0.1重量ppm未満にするには系内洗浄に多大なる時間を費やす必要があり、一方、700重量ppmを超える場合には、紫外線吸収剤による耐候性低下を防ぐ事が困難となるため好ましくない。
芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物は、主に原料のポリカーボネート樹脂中に含まれる芳香族ジヒドロキシ化合物に由来してポリカーボネート樹脂組成物中に含まれてくるものであり、芳香族ジヒドロキシ化合物については、以下のポリカーボネート樹脂に関する説明において詳述する。但し、ポリカーボネート樹脂組成物中に含まれる芳香族ジヒドロキシ化合物とは、「酸化防止剤」としてポリカーボネート樹脂組成物に含まれる可能性があるものを除く意味で用いるものとする。
2.脂肪族ポリカーボネート樹脂
本発明のポリカーボネート樹脂組成物に配合される脂肪族ポリカーボネート樹脂(以下、「本発明に用いるポリカーボネート樹脂」と称することがある。)およびその製造方法について、以下に詳述する。なお、本発明でいう脂肪族ポリカーボネート樹脂は、後述するジヒドロキシ化合物が脂環式でもよく、構造中にエーテル結合のようなヘテロ原子を有するものでも良い。
<原料>
(ジヒドロキシ化合物)
本発明に用いるポリカーボネート樹脂は、構造の一部に下記式(1)で表される部位を有するジヒドロキシ化合物(以下、「本発明に用いるジヒドロキシ化合物」と称することがある。)に由来する構造単位を少なくとも含む。 即ち、本発明に用いるジヒドロキシ化合物は、2つのヒドロキシル基と、更に下記式(1)で表される部位を少なくとも含むものをいう。
Figure 0006024309
(但し、上記式(1)で表される部位が−CH2−O−Hを構成する部位である場合を除く。)
本発明に用いるジヒドロキシ化合物としては、構造の一部に上記式(1)で表される部位を有するジヒドロキシ化合物であれば特に限定されるものではないが、具体的には、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのオキシアルキレングリコール類、下記式(2)で表されるジヒドロキシ化合物、下記式(5)で表されるジヒドロキシ化合物、下記式(6)で表されるジヒドロキシ化合物等の環状エーテル構造を有する化合物が挙げられる。中でも、入手のし易さ、ハンドリング、重合時の反応性、得られるポリカーボネート樹脂の色相の観点から、ジエチレングリコール、トリエチレングリコールが好ましく、耐熱性の観点からは、環状エーテル構造を有する化合物が好ましく、構造の物理的安定性の観点から下記式(2)で表されるジヒドロキシ化合物、下記式(5)で表されるジヒドロキシ化合物などの環状エーテル構造を2つ有するジヒドロキシ化合物が更に好ましく、下記式(2)で表されるジヒドロキシ化合物に代表される無水糖アルコールが特に好ましい。
これらジヒドロキシ化合物は得られるポリカーボネート樹脂の要求性能に応じて、1種のみで用いてもよく、2種以上を組み合わせて用いてもよい。
Figure 0006024309

Figure 0006024309

Figure 0006024309
上記式(2)で表されるジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド、イソマンニド、イソイデットが挙げられ、これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらのジヒドロキシ化合物のうち、芳香環構造を有しないジヒドロキシ化合物を用いることがポリカーボネート樹脂の耐候性の観点から好ましく、中でも植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手及び製造のし易さ、耐候性、光学特性、成形性、耐熱性、カーボンニュートラルの面から最も好ましい。
本発明に用いるポリカーボネート樹脂は、上記本発明に用いるジヒドロキシ化合物以外のジヒドロキシ化合物(以下「その他のジヒドロキシ化合物」と称す場合がある。)に由来する構造単位を更に含んでいてもよく、その他のジヒドロキシ化合物としては、鎖状脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物等の脂肪族ジヒドロキシ化合物、芳香族ビスフェノール類等が挙げられる。これらの中でも脂肪族ジヒドロキシ化合物が好ましく、脂環式ジヒドロキシ化合物がより好ましい。
鎖状脂肪族ジヒドロキシ化合物とは、鎖状構造の炭化水素骨格と2つのヒドロキシル基とを有する化合物であり、ヒドロキシル基を除いてはエーテル基などの酸素原子を有する化合物は含まれない。鎖状脂肪族ジヒドロキシ化合物には、直鎖脂肪族ジヒドロキシ化合物と分岐鎖状脂肪族ジヒドロキシ化合物とがある。直鎖脂肪族ジヒドロキシ化合物としては、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,2−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,5−ヘプタンジオール、1,10−デカンジオール、1,12−ドデカンジオールなどが挙げられる。分岐鎖状脂肪族ジヒドロキシ化合物としては、ネオペンチルグリコール、ヘキシレングリコール等が挙げられる。
脂環式ジヒドロキシ化合物は、環状構造の炭化水素骨格と2つのヒドロキシル基とを有する化合物であり、そのヒドロキシル基は、環状構造に直接結合していてよいし、アルキレン基のような置換基を介して環状構造に結合していてもよい。また、環状構造は単環であっても、多環であってもよい。脂環式ジヒドロキシ化合物の好適なものとしては、以下に挙げる5員環構造を有する脂環式ジヒドロキシ化合物や6員環構造を有する脂環式ジヒドロキシ化合物が挙げられる。脂環式ジヒドロキシ化合物として、5員環構造を有する脂環式ジヒドロキシ化合物や6員環構造を有する脂環式ジヒドロキシ化合物を用いることで得られるポリカーボネート樹脂の剛性を高めることができるために好ましい。脂環式ジヒドロキシ化合物の炭素数は通常70以下であり、好ましくは50以下、更に好ましくは30以下である。この炭素数が多いほど、得られるポリカーボネート樹脂の耐熱性が高くなる傾向にあるが、炭素数が少ないほど、精製し易く、また、原料調達が容易である。
5員環構造を有する脂環式ジヒドロキシ化合物としては、トリシクロデカンジオール類、ペンタシクロペンタデカンジオール類、1,3−シクロペンタンジオール等のシクロペンタンジオール類、1,3−シクロペンタンジメタノール等のシクロペンタンジメタノール類、2,6−デカリンジオール、1,5−デカリンジオール、2,3−デカリンジオール等のデカリンジオール類、1,5−デカリンジメタノール、2,6−デカリンジメタノール、2,3−デカリンジメタノール等のデカリンジメタノール類、トリシクロデカンジオール類、トリシクロデカンジメタノール類、ペンタシクロペンタデカンジメタノール類等が挙げられる。
6員環構造を有する脂環式ジヒドロキシ化合物としては、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、2−メチル−1,4−シクロヘキサンジオール等のシクロヘキサンジオール類、4−シクロヘキセン−1,2−ジオール等のシクロヘキセンジオール類、2,3−ノルボルナンジオール、2,5−ノルボルナンジオール等のノルボルナンジオール類、1,3−アダマンタンジオール、2,2−アダマンタンジオール等のアダマンタンジオール類、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール等のシクロヘキサンジメタノール類、4−シクロヘキセン−1,2ジオール等のシクロヘキセンジオール類、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール等のノルボルナンジメタノール類、1,3−アダマンタンジメタノール、2,2−アダマンタンジメタノール等のアダマンタンジメタノール類等が挙げられる。
以上に挙げたその他のジヒドロキシ化合物の中でも、ポリカーボネート樹脂組成物の耐候性の観点からは、鎖状脂肪族ジヒドロキシ化合物及び脂環式ジヒドロキシ化合物等のジヒドロキシ化合物を用いることが好ましく、脂環式ジヒドロキシ化合物を用いることがより好ましい。鎖状脂肪族ジヒドロキシ化合物としては、特に1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオールが好ましく、脂環式ジヒドロキシ化合物としては、特に1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノールが好ましい。
これらのその他のジヒドロキシ化合物を併用することにより、ポリカーボネート樹脂の柔軟性の改善、耐熱性の向上、成形性の改善などの効果を得ることも可能であるが、その他のジヒドロキシ化合物に由来する構造単位の含有割合が多過ぎると、機械的物性の低下や、耐熱性の低下を招くことがある。このため、本発明のポリカーボネート樹脂組成物においては、前記式(1)で表される部位を有するジヒドロキシ化合物に由来する構造単位を有する脂肪族ポリカーボネート樹脂が必須成分であり、全ジヒドロキシ化合物に由来する構造単位に対する本発明に用いるジヒドロキシ化合物に由来する構造単位の割合は、20モル%以上が好ましく、30モル%以上がより好ましく、50モル%以上であることが特に好ましい。
本発明に用いるジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤、熱安定剤等の安定剤を含んでいても良く、特に酸性下で本発明に用いるジヒドロキシ化合物は変質しやすいことから、塩基性安定剤を含むことが好ましい。塩基性安定剤としては、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005)における1族または2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩、脂肪酸塩や、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン等のアミン系化合物が挙げられる。その中でも、その効果と後述する蒸留除去のしやすさから、ナトリウムまたはカリウムのリン酸塩、亜リン酸塩が好ましく、中でもリン酸水素2ナトリウム、亜リン酸水素2ナトリウムが好ましい。
これら塩基性安定剤の、本発明に用いるジヒドロキシ化合物中の含有量に特に制限はないが、少なすぎると本発明に用いるジヒドロキシ化合物の変質を防止する効果が得られない可能性があり、多すぎると本発明に用いるジヒドロキシ化合物の変性を招く場合があるので、通常、本発明に用いるジヒドロキシ化合物に対して、0.0001重量%〜1重量%、好ましくは0.001重量%〜0.1重量%である。
また、これら塩基性安定剤を含有した本発明に用いるジヒドロキシ化合物をポリカーボネート樹脂の製造原料として用いると、塩基性安定剤自体が重合触媒となり、重合速度や品質の制御が困難になるだけでなく、初期色相の悪化を招き、結果的に成形品の耐候性を悪化させるため、ポリカーボネート樹脂の製造原料として使用する前に塩基性安定剤をイオン交換樹脂や蒸留等で除去することが好ましい。
本発明に用いるジヒドロキシ化合物がイソソルビド等、環状エーテル構造を有する場合には、酸素によって徐々に酸化されやすいので、保管や、製造時には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤等を用いたり、窒素雰囲気下で取り扱うことが肝要である。イソソルビドが酸化されると、蟻酸等の分解物が発生する場合がある。例えば、これら分解物を含むイソソルビドをポリカーボネート樹脂の製造原料として使用すると、得られるポリカーボネート樹脂の着色を招く可能性があり、又、物性を著しく劣化させる可能性があるだけではなく、重縮合反応に影響を与え、高分子量の重合体が得られない場合がある。
上記酸化分解物を含まない本発明に用いるジヒドロキシ化合物を得るために、また、前述の塩基性安定剤を除去するためには、蒸留精製を行うことが好ましい。この場合の蒸留とは単蒸留であっても、連続蒸留であってもよく、特に限定されない。蒸留の条件としてはアルゴンや窒素などの不活性ガス雰囲気において、減圧下で蒸留を実施することが好ましく、熱による変性を抑制するためには、250℃以下、好ましくは200℃以下、特には180℃以下の条件で行うことが好ましい。
このような蒸留精製で、本発明に用いるジヒドロキシ化合物中の蟻酸含有量を好ましくは20重量ppm以下、より好ましくは10重量ppm以下、特に好ましくは5重量ppm以下にすることにより、前記本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物をポリカーボネート樹脂の製造原料として使用した際に、重縮合反応性を損なうことなく色相や熱安定性に優れたポリカーボネート樹脂の製造が可能となる。蟻酸含有量の測定はイオンクロマトグラフィーで行う。
(炭酸ジエステル)
本発明に用いるポリカーボネート樹脂は、上述した式(1)で表される部位を有するジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルを原料として、エステル交換反応により重縮合させて得ることができる。用いられる炭酸ジエステルとしては、通常、下記式(4)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Figure 0006024309
(上記式(4)において、A1及びA2は、それぞれ独立に、置換若しくは無置換の炭素数1〜炭素数18の脂肪族炭化水素基、または、置換若しくは無置換の芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。)
上記式(4)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート、ジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート及びジ−t−ブチルカーボネート等が例示されるが、好ましくはジフェニルカーボネート、置換ジフェルカーボネートであり、特に好ましくはジフェニルカーボネートである。ここで上記式(4)に関する「置換」とは分子量200以下の置換基により置換されていることを意味する。なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、重合反応を阻害したり、得られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
<エステル交換反応触媒>
本発明に用いるポリカーボネート樹脂は、上述のように本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルをエステル交換反応させてポリカーボネート樹脂を製造する。より詳細には、エステル交換させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。この場合、通常、エステル交換反応触媒存在下でエステル交換反応により重縮合を行う。
本発明に用いるポリカーボネート樹脂の製造時に使用し得るエステル交換反応触媒(以下、単に「触媒」、「重合触媒」と言うことがある。)は、特に波長350nmにおける光線透過率や、イエローインデックス(YI)値に影響を与え得る。従って本発明において使用可能な触媒としては、耐候性を満足させ得る、即ち上記した波長350nmにおける光線透過率や、イエローインデックスを所定の値にし得るものであることが好ましく、リチウム及び長周期型周期表第2族の金属からなる群より選ばれる少なくとも1種の金属を含む化合物が、本発明に用いるポリカーボネート樹脂の製造において好適に用いられる。
触媒として使用されるリチウム及び長周期型周期表第2族の金属からなる群より選ばれる少なくとも1種の金属を含む化合物と共に、補助的に、リチウム以外の長周期型周期表第1族の金属を含む化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、長周期型周期表第1族金属化合物及び/又は長周期型周期表第2族金属化合物のみを使用することがより好ましく、リチウム及び長周期型周期表第2族の金属からなる群より選ばれる少なくとも1種の金属を含む化合物のみを使用することが特に好ましい。
また、長周期型周期表第1族の金属を含む化合物や長周期型周期表第2族の金属を含む化合物の形態としては通常、水酸化物、又は炭酸塩、カルボン酸塩、フェノール塩といった塩の形態で用いられるが、入手のし易さ、取扱いの容易さから、水酸化物、炭酸塩、酢酸塩が好ましく、色相と重合活性の観点からは酢酸塩が好ましい。
触媒として使用可能なリチウムを含む化合物として水酸化リチウム、炭酸水素リチウム、炭酸リチウム、酢酸リチウム、ステアリン酸リチウム、水素化ホウ素リチウム、フェニル化ホウ素リチウム、安息香酸リチウム、リン酸水素2リチウム、フェニルリン酸2リチウム、リチウムのアルコレート若しくはフェノレート、ビスフェノールAの2リチウム塩等が挙げられる。
また、触媒として使用可能なリチウム以外の長周期型周期表第1族の金属を含む化合物としては、例えば、水酸化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、酢酸ナトリウム、ステアリン酸ナトリウム、水素化ホウ素ナトリウム、フェニル化ホウ素ナトリウム、安息香酸ナトリウム、リン酸水素2ナトリウム、フェニルリン酸2ナトリウム、ナトリウムのアルコレート若しくはフェノレート、ビスフェノールAの2ナトリウム塩等のナトリウム化合物、水酸化カリウム、炭酸水素カリウム、炭酸カリウム、酢酸カリウム、ステアリン酸カリウム、水素化ホウ素カリウム、フェニル化ホウ素カリウム、安息香酸カリウム、リン酸水素2カリウム、フェニルリン酸2カリウム、カリウムのアルコレート若しくはフェノレート、ビスフェノールAの2カリウム塩等のカリウム化合物、水酸化セシウム、炭酸水素セシウム、炭酸セシウム、酢酸セシウム、ステアリン酸セシウム、水素化ホウ素セシウム、フェニル化ホウ素セシウム、安息香酸セシウム、リン酸水素2セシウム、フェニルリン酸2セシウム、セシウムのアルコレート若しくはフェノレート、ビスフェノールAの2セシウム塩等のセシウム化合物等が挙げられる。
触媒として使用可能な長周期型周期表第2族の金属を含む化合物としては、例えば、水酸化カルシウム、炭酸水素カルシウム、炭酸カルシウム、酢酸カルシウム、ステアリン酸カルシウム等のカルシウム化合物、水酸化バリウム、炭酸水素バリウム、炭酸バリウム、酢酸バリウム、ステアリン酸バリウム等のバリウム化合物、水酸化マグネシウム、炭酸水素マグネシウム、炭酸マグネシウム、酢酸マグネシウム、ステアリン酸マグネシウム等のマグネシウム化合物、水酸化ストロンチウム、炭酸水素ストロンチウム、炭酸ストロンチウム、酢酸ストロンチウム、ステアリン酸ストロンチウム等のストロンチウム化合物等が挙げられ、中でもマグネシウム化合物、カルシウム化合物、バリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物及びカルシウム化合物からなる群より選ばれる少なくとも1種の金属化合物が更に好ましく、最も好ましくはカルシウム化合物である。
塩基性ホウ素化合物としては、例えば、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、バリウム塩、マグネシウム塩、あるいはストロンチウム塩等が挙げられる。
塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン、あるいは四級ホスホニウム塩等が挙げられる。
塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
アミン系化合物としては、例えば、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン等が挙げられる。
上記の中でも、本発明のポリカーボネート樹脂、ひいてはポリカーボネート樹脂組成物の透明性、色相、耐候性を特に優れたものとするために、触媒が、マグネシウム化合物及びカルシウム化合物からなる群より選ばれる少なくとも1種の金属を含む化合物であるのが好ましい。
上記重合触媒の使用量は、通常、用いた全ジヒドロキシ化合物1mol当たり0.1μmol〜300μmol、好ましくは0.5μmol〜100μmolであり、中でもリチウム及び長周期型周期表第2族の金属からなる群より選ばれる少なくとも1種の金属化合物を用いる場合、特にはマグネシウム化合物及びカルシウム化合物からなる群より選ばれる少なくとも1種の金属化合物を用いる場合、用いた全ジヒドロキシ化合物1mol当たり、金属量として、20μmol以下が好ましく、より好ましくは10μmol以下であり、さらに好ましくは3μmol以下であり、特に好ましくは1.5μmol以下である。
また、金属量は、用いた全ジヒドロキシ化合物1mol当たり、通常、0.1μmol以上、好ましくは0.5μmol以上、特に好ましくは0.7μmol以上である。
触媒量が少なすぎると、重合速度が遅くなるため結果的に所望の分子量のポリカーボネート樹脂を得ようとすると、重縮合温度を高くせざるを得なくなり、得られたポリカーボネート樹脂の色相や耐候性が悪化したり、未反応の原料が重合途中で揮発して本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルのモル比率が崩れ、所望の分子量に到達しない可能性がある。一方、重合触媒の使用量が多すぎると、得られるポリカーボネート樹脂の色相の悪化を招き、ポリカーボネート樹脂の耐候性が悪化する可能性がある。
また、本発明に用いるポリカーボネート樹脂には、長周期型周期表第1族の金属、中でもナトリウム、カリウム及びセシウムは、補助的に使用する触媒からのみではなく、ジヒドロキシ化合物などの原料や反応装置から混入する場合があるが、これらの金属がポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性があるため、該金属は補助的に使用する触媒からのみではなく、原料や反応装置から混入する場合があるため、ポリカーボネート樹脂中のこれらの化合物の合計量は、少ないほうが好ましく、金属量として、通常1重量ppm以下、好ましくは0.8重量ppm以下、より好ましくは0.7重量ppm以下である。
ポリカーボネート樹脂中の金属量は、従来公知の種々の方法により測定可能であるが、湿式灰化などの方法でポリカーボネート樹脂中の金属を回収した後、原子発光、原子吸光、Inductively Coupled Plasma(ICP)等の方法を使用して測定することが出来る。尚、本発明においては、特別に触媒等の金属を除去する操作を行わない限り、ポリカーボネート樹脂中の金属はすべてポリカーボネート樹脂組成物中に残っているものとみなすことができる。
(芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物)
本発明において、芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物とは、芳香族ジヒドロキシ化合物あるいはその重合体を意味する。即ち、芳香族ジヒドロキシ化合物は、モノマーとしてポリカーボネート樹脂組成物に含まれていても良く、あるいはオリゴマーやポリマーの形態としてポリカーボネート樹脂組成物に含まれていても良い。
なお、ポリマー主鎖中に一分子でも芳香族化合物の構成単位を有していた場合も芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物とする。
本発明の芳香族ジヒドロキシ化合物としては、具体的には、9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−フェニルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチル−6−メチルフェニル)フルオレン、9,9−ビス(4−(3−ヒドロキシ−2,2−ジメチルプロポキシ)フェニル)フルオレン等、側鎖に芳香族基を有し、主鎖に芳香族基に結合したエーテル基を有する化合物、2,2−ビス(4−ヒドロキシフェニル)プロパン[=ビスフェノールA]、2,2−ビス(4−ヒドロキシ−3−メチル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3,5−ジフェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,4’−ジヒドロキシ−ジフェニルメタン、ビス(4−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシ−5−ニトロフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン、2,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)スルフィド、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジクロロジフェニルエーテル等の芳香族ビスフェノール類が挙げられる。
芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物として、本発明の耐候性改良効果が高いのは、少なくともフルオレン部位を有するジヒドロキシ化合物である特定ジヒドロキシ化合物を含むものである。この特定ジヒドロキシ化合物の好ましいものとしては、下記式(3)で表される化合物(以下、「ジヒドロキシ化合物(3)」ともいう。)が挙げられる。
Figure 0006024309
前記式(3)中、R1〜R4はそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜炭素数20のアルキル基、置換若しくは無置換の炭素数6〜炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6〜炭素数20のアリール基を表し、各ベンゼン環に4つある置換基のそれぞれに同一の又は異なる基が配されている。Xは置換若しくは無置換の炭素数2〜炭素数10のアルキレン基、置換若しくは無置換の炭素数6〜炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6〜炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0〜5の整数である。
1〜R4はそれぞれ独立に水素原子又は無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲンが置換した炭素数1〜6のアルキル基であるのが好ましく、水素原子又は炭素数1〜6のアルキル基であるのがより好ましい。
Xは無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲンが置換した炭素数2〜炭素数10のアルキレン基、無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲンが置換した炭素数6〜炭素数20のシクロアルキレン基、または、無置換若しくはエステル基、エーテル基、カルボン酸、アミド基、ハロゲンが置換した炭素数6〜炭素数20のアリーレン基が好ましく、炭素数2〜6のアルキレン基であるのがより好ましい。又、m及びnはそれぞれ独立に0〜2の整数であるのが好ましく、中でも0又は1が好ましい。
このような化合物としては、具体的には、例えば、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)−3−メチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−tert−ブチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−tert−ブチル−6−メチルフェニル]フルオレン、9,9−ビス[4−(3−ヒドロキシ−2,2−ジメチルプロポキシ)フェニル]フルオレン、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−2−メチルフェニル)フルオレンなどが挙げられる。
また、前記式(3)以外の特定ジヒドロキシ化合物としては、例えば、9,9−ビス(2−ヒドロキシエチル)フルオレンおよび9,9−ビス(3−ヒドロキシプロピル)フルオレンなどが挙げられる。
これらの特定ジヒドロキシ化合物は、単独で用いてもよいし、必要に応じて複数種を混合して用いてもよい。これらの中でも、製造コスト、重合反応性、およびポリカーボネートの成形加工性または色相などの観点から、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレンが特に好ましい。
上記式(3)に記載の特定ジヒドロキシ化合物には、製造時に触媒として用いられる硫黄化合物が混入する可能性があり、ポリカーボネート製造時に重合触媒を失活させるなど、悪影響を及ぼす場合がある。よって硫黄元素量が前記特定ジヒドロキシ化合物1molに対して100μmol以下であることが好ましく、70μmol以下がより好ましく、50μmol以下が更に好ましい。
前記ジヒドロキシ化合物(3)は沸点が非常に高いため、蒸留による精製は困難であり、一般的には水による洗浄、再結晶、イオン交換樹脂または活性炭などを使用して精製を行う。含有する全硫黄量はイオンクロマトグラフィーで測定することができる。
<製造方法>
本発明に用いるポリカーボネート樹脂は、本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとをエステル交換反応により重縮合させることによって得られるが、原料であるジヒドロキシ化合物と炭酸ジエステルは、エステル交換反応前に均一に混合することが好ましい。
混合の温度は通常80℃以上、好ましくは90℃以上であり、その上限は通常250℃以下、好ましくは200℃以下、更に好ましくは150℃以下である。中でも95℃以上120℃以下が好適である。混合の温度が低すぎると溶解速度が遅かったり、溶解度が不足する可能性があり、しばしば固化等の不具合を招き、混合の温度が高すぎるとジヒドロキシ化合物の熱劣化を招く場合があり、結果的に得られるポリカーボネート樹脂の色相が悪化し、耐候性に悪影響を及ぼす可能性がある。
本発明のポリカーボネート樹脂の原料である本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを混合する操作は、酸素濃度10体積%以下、更には0.0001体積%〜10体積%、中でも0.0001体積%〜5体積%、特には0.0001体積%〜1体積%の雰囲気下で行うことが、色相悪化防止の観点から好ましい。
本発明に用いるポリカーボネート樹脂を得るためには、炭酸ジエステルは、反応に用いる本発明に用いるジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、0.90〜1.20のモル比率で用いることが好ましく、さらに好ましくは、0.95〜1.10のモル比率である。このモル比率が小さくなると、製造されたポリカーボネート樹脂の末端水酸基が増加して、ポリマーの熱安定性が悪化し、成型時に着色を招いたり、エステル交換反応の速度が低下したり、所望する高分子量体が得られない可能性がある。また、このモル比率が大きくなると、エステル交換反応の速度が低下したり、所望とする分子量のポリカーボネートの製造が困難となる場合がある。エステル交換反応速度の低下は、重合反応時の熱履歴を増大させ、結果的に得られたポリカーボネート樹脂の色相や耐候性を悪化させる可能性がある。
更には、本発明に用いるジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、炭酸ジエステルのモル比率が増大すると、得られるポリカーボネート樹脂中の残存炭酸ジエステル量が増加し、これらが紫外線を吸収してポリカーボネート樹脂の耐候性を悪化させる場合がある。本発明に用いるポリカーボネート樹脂に残存する前記式(4)で表される炭酸ジエステルの濃度は、好ましくは200重量ppm以下、更に好ましくは100重量ppm以下、特に好ましくは60重量ppm以下、中でも30重量ppm以下が好適である。現実的にポリカーボネート樹脂は未反応の炭酸ジエステルを含むことがあり、濃度の下限値は通常1重量ppmである。
本発明において、ジヒドロキシ化合物と炭酸ジエステルとを重縮合させる方法は、上述の触媒存在下、通常、複数の反応器を用いて多段階で実施される。反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせのいずれの方法でもよい。
重合初期においては、相対的に低温、低真空でプレポリマーを得、重合後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましいが、各分子量段階でのジャケット温度と内温、反応系内の圧力を適切に選択することが色相や耐候性の観点から重要である。例えば、重合反応が所定の値に到達する前に温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比率を狂わせ、重合速度の低下を招くおそれがある。
更には、留出するモノマーの量を抑制するために、重合反応器に還流冷却器を用いることは有効であり、特に未反応モノマー成分が多い重合初期の反応器でその効果は大きい。還流冷却器に導入される冷媒の温度は使用するモノマーに応じて適宜選択することができるが、通常、還流冷却器に導入される冷媒の温度は該還流冷却器の入口において45℃〜180℃であり、好ましくは、80℃〜150℃、特に好ましくは100℃〜130℃である。冷媒の温度が高すぎると還流量が減り、その効果が低下し、逆に低すぎると、本来留去すべきモノヒドロキシ化合物の留去効率が低下する傾向にある。冷媒としては、温水、蒸気、熱媒オイル等が用いられ、蒸気、熱媒オイルが好ましい。
重合速度を適切に維持し、モノマーの留出を抑制しながら、最終的なポリカーボネート樹脂の色相や熱安定性、耐候性等を損なわないようにするためには、前述の触媒の種類と量の選定が重要である。
本発明に用いるポリカーボネート樹脂は、触媒を用いて、複数の反応器を用いて多段階で重合させて製造することが好ましいが、重合を複数の反応器で実施する理由は、重合反応初期においては、反応液中に含まれるモノマーが多いために、必要な重合速度を維持しつつ、モノマーの揮散を抑制してやることが重要であり、重合反応後期においては、平衡を重合側にシフトさせるために、副生するモノヒドロキシ化合物を十分留去させることが重要になるためである。このように、異なった重合反応条件を設定するには、直列に配置された複数の重合反応器を用いることが、生産効率の観点から好ましい。
本発明の方法で使用される反応器は、上述の通り、少なくとも2基以上であればよいが、生産効率などの観点からは、3基以上、好ましくは3〜5基、特に好ましくは、4基である。本発明において、反応器が2基以上であれば、その反応器中で、更に条件の異なる反応段階を複数持たせる、連続的に温度・圧力を変えていくなどしてもよい。
本発明において、重合触媒は原料調製槽、原料貯槽に添加することもできるし、重合槽に直接添加することもできるが、供給の安定性、重合の制御の観点からは、重合槽に供給される前の原料ラインの途中に触媒供給ラインを設置し、好ましくは水溶液で供給する。
重合反応の温度は、低すぎると生産性の低下や製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、ポリカーボネート樹脂の分解や着色を助長する可能性がある。
具体的には、第1段目の反応は、重合反応器の内温の最高温度として、140℃〜270℃、好ましくは180℃〜240℃、更に好ましくは200℃〜230℃で、110kPa〜10kPa、好ましくは70kPa〜5kPa、更に好ましくは30kPa〜1kPa(絶対圧力)の圧力下、0.1時間〜10時間、好ましくは0.5時間〜3時間、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施される。
第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を200Pa以下にして、内温の最高温度210℃〜270℃、好ましくは220℃〜250℃で、通常0.1時間〜10時間、好ましくは、0.5時間〜6時間、特に好ましくは1時間〜3時間行う。
特にポリカーボネート樹脂の着色や熱劣化を抑制し、色相や耐候性の良好なポリカーボネート樹脂を得るには、全反応段階における内温の最高温度が250℃未満、特に225℃〜245℃であることが好ましい。また、重合反応後半の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重合の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。
所定の分子量のポリカーボネート樹脂を得るために、重合温度を高く、重合時間を長くし過ぎると、紫外線透過率は下がり、YI値は大きくなる傾向にある。
副生したモノヒドロキシ化合物は、資源有効活用の観点から、必要に応じ精製を行った後、炭酸ジフェニルやビスフェノールA等の原料として再利用することが好ましい。
本発明に用いるポリカーボネート樹脂は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化される。
ペレット化の方法は限定されるものではないが、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。
その際、押出機中で、残存モノマーの減圧脱揮や、通常知られている、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤等を添加、混練することも出来る。
押出機中の、溶融混練温度は、ポリカーボネート樹脂のガラス転移温度や分子量に依存するが、通常150℃〜300℃、好ましくは200℃〜270℃、更に好ましくは230℃〜260℃である。溶融混練温度が150℃より低いと、ポリカーボネート樹脂の溶融粘度が高く、押出機への負荷が大きくなり、生産性が低下するおそれがある。300℃より高いと、ポリカーボネートの熱劣化が激しくなり、分子量の低下による機械的強度の低下や着色、ガスの発生を招くおそれがある。
本発明に用いるポリカーボネート樹脂を製造する際には、異物の混入を防止するため、フィルターを設置することが望ましい。フィルターの設置位置は押出機の下流側が好ましく、フィルターの異物除去の大きさ(目開き)は、99%除去の濾過精度として100μm以下が好ましい。特に、フィルム用途等で微少な異物の混入を嫌う場合は、40μm以下、さらには10μm以下が好ましい。
本発明に用いるポリカーボネート樹脂の押出は、押出後の異物混入を防止するために、好ましくはJISB 9920(2002年)に定義されるクラス7、更に好ましくはクラス6より清浄度の高いクリーンルーム中で実施することが望ましい。
また、押出されたポリカーボネート樹脂を冷却しチップ化する際は、空冷、水冷等の冷却方法を使用するのが好ましい。空冷の際に使用する空気は、ヘパフィルター等で空気中の異物を事前に取り除いた空気を使用し、空気中の異物の再付着を防ぐのが望ましい。水冷を使用する際は、イオン交換樹脂等で水中の金属分を取り除き、さらにフィルターにて、水中の異物を取り除いた水を使用することが望ましい。用いるフィルターの目開きは、99%除去の濾過精度として10μm〜0.45μmであることが好ましい。
<物性>
このようにして得られた本発明に用いるポリカーボネート樹脂の分子量は、還元粘度で表すことができ、還元粘度は、通常0.30dL/g以上であり、0.35dL/g以上が好ましく、通常1.20dL/g以下であり、1.00dL/g以下がより好ましく、0.80dL/g以下が更に好ましい。
ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械的強度が小さい可能性があり、大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下させる傾向がある。
尚、還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定する。
更に本発明に用いるポリカーボネート樹脂の下記式(7)で表される末端基の濃度(本明細書において、「末端フェニル基濃度」と称することがある。)の下限量は、通常20μeq/g、好ましくは40μeq/g、特に好ましくは50μeq/gであり、上限は通常160μeq/g、好ましくは140μeq/g、特に好ましくは100μeq/gである。
Figure 0006024309
上記式(7)で表される末端基の濃度が、高すぎると重合直後や成型時の色相が良くても、紫外線曝露後の色相の悪化を招く可能性があり、逆に低すぎると熱安定性が低下する恐れがある。
上記式(7)で表される末端基の濃度を制御するには、原料である本発明に用いるジヒドロキシ化合物を含むジヒドロキシ化合物に対する炭酸ジエステルのモル比率を制御する他、エステル交換反応時の触媒の種類や量、重合圧力や重合温度を制御する方法等が挙げられる。
前記式(4)で表される炭酸ジエステルとして、ジフェニルカーボネート、ジトリルカーボネート等の置換ジフェニルカーボネートを用い、本発明に用いるポリカーボネート樹脂を製造する場合は、フェノール、置換フェノールが副生し、ポリカーボネート樹脂中に残存することは避けられないが、フェノール、置換フェノールも芳香環を有することから紫外線を吸収し、耐候性の悪化要因になる場合があるだけでなく、成型時の臭気の原因となる場合がある。ポリカーボネート樹脂中には、通常のバッチ反応後は1000重量ppm以上の副生フェノール等の芳香環を有する芳香族モノヒドロキシ化合物が含まれているが、耐候性や臭気低減の観点からは、脱揮性能に優れた横型反応器や真空ベント付の押出機を用いて、好ましくは700重量ppm以下、更に好ましくは500重量ppm以下、特には300重量ppm以下にすることが好ましい。ただし、工業的に完全に除去することは困難であり、ポリカーボネート樹脂組成物中の芳香族モノヒドロキシ化合物の含有量の下限値は、通常1重量ppmである。
尚、これら芳香族モノヒドロキシ化合物は、用いる原料により、当然置換基を有していてもよく、例えば、炭素数が5以下であるアルキル基などを有していてもよい。
また、本発明に用いるポリカーボネート樹脂の芳香環に結合した水素原子のモル数をX、芳香環以外に結合した水素原子のモル数をYとした場合、芳香環に結合した水素原子のモル数の全水素原子のモル数に対する比率は、X/(X+Y)で表されるが、耐候性には上述のように、紫外線吸収能を有する芳香族環が影響を及ぼす可能性があるため、X/(X+Y)は0.1以下であることが好ましく、更に好ましくは0.05以下、特に好ましくは0.02以下、好適には0.01以下である。X/(X+Y)は、1H−NMRで定量することができる。
本発明に用いるポリカーボネート樹脂は、該ポリカーボネート樹脂から成形された成形体(厚さ3mm)の、波長350nmにおける光線透過率が60%以上であることが好ましく、より好ましくは65%以上、特に好ましくは70%以上である。該波長における光線透過率が60%を下回ると、吸収が大きくなり、耐候性が悪化する場合がある。また、本発明に用いるポリカーボネート樹脂は、該ポリカーボネート樹脂から成形された成形体(厚さ3mmの平板)の波長320nmにおける光線透過率が30%以上であることが好ましく、40%以上が更に好ましく、50%以上が特に好ましい。該波長における光線透過率が30%を下回ると、耐候性が悪化する傾向にある。
3.紫外線吸収剤
本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂組成物に対して紫外線吸収剤を5重量ppm〜10000重量ppm含有していることを特徴としている。
紫外線吸収剤の含有量は、10重量ppm以上が好ましく、25重量ppm以上が更に好ましく、50重量ppm以上が特に好ましい。一方、5000重量ppm以下が好ましく、4000重量ppm以下が更に好ましく、2500重量ppm以下が特に好ましい。紫外線吸収剤の含有量が少なすぎると耐候性の低下を抑制することができず、多すぎると成型時に紫外線吸収剤による金型汚染の問題が生じるおそれがある。
紫外線吸収剤としては、紫外線吸収能を有する化合物であれば特に限定されない。本実施の形態では、紫外線吸収能を有する化合物としては、有機化合物、無機化合物が挙げられる。なかでも有機化合物はポリカーボネート樹脂との親和性を確保しやすく、均一に分散しやすいので好ましい。
紫外線吸収能を有する有機化合物の分子量は特に限定されないが、通常200以上、好ましくは250以上である。また。通常600以下、好ましくは450以下、より好ましくは400以下である。分子量が過度に小さいと、長期間使用での耐紫外線性能の低下を引き起こす可能性がある。分子量が過度に大きいと、長期間使用での樹脂組成物の透明性低下を引き起こす可能性がある。
好ましい紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物、ベンゾエート系化合物、サリチル酸フェニルエステル系化合物、シアノアクリレート系化合物、マロン酸エステル系化合物、シュウ酸アニリド系化合物等が挙げられる。なかでも、ベンゾトリアゾール系化合物、ヒドロキシベンゾフェノン系化合物、マロン酸エステル系化合物が好ましく用いられる。これらは、単独で用いても、2種以上で用いてもよい。
ベンゾトリアゾール系化合物のより具体的な例としては、2−(2’−ヒドロキシ−3’−メチル−5’−ヘキシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−ヘキシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−メチル−5’−t−オクチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ドデシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−メチル−5’−t−ドデシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ブチルフェニル)ベンゾトリアゾール、メチル−3−(3−(2H−ベンゾトリアゾール−2−イル)−5−t−ブチル−4−ヒドロキシフェニル)プロピオネート等が挙げられる。
ヒドロキシベンゾフェノン系化合物としては、2,2’−ジヒドロキシベンゾフェノン、2,2’、4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン等が挙げられる。
マロン酸エステル系化合物としては、2−(1−アリールアルキリデン)マロン酸エステル類、テトラエチル−2,2’−(1,4−フェニレン−ジメチリデン)−ビスマロネートなどが挙げられる。
トリアジン系化合物としては、2−[4−[(2−ヒドロキシ−3−ドデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2,4−ビス(2,4−ジメチルフェニル)−6−(2−ヒドロキシ−4−イソオクチルオキシフェニル)−s−トリアジン、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール(チバガイギー社製、Tinuvin1577FF)などが挙げられる。
シアノアクリレート系化合物としては、エチル−2−シアノ−3,3−ジフェニルアクリレート、2’−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート等が挙げられる。
シュウ酸アニリド系化合物としては、2−エチル−2’−エトキシ−オキサルアニリド(クラリアントジャパン社製、SanduvorVSU)等が挙げられる。
4.酸化防止剤
本発明のポリカーボネート樹脂組成物は更に酸化防止剤を含有することが好ましい。酸化防止剤を用いる場合には、ポリカーボネート樹脂100重量部に対し、通常0.0001重量部以上1重量部以下であり、好ましくは、0.0001重量部以上0.1重量部以下であり、さらに好ましくは0.0002重量部以上0.01重量部以下である。酸化防止剤の含有量がポリカーボネート樹脂100重量部に対し、通常0.0001重量部以上であると成形時の着色抑制効果が良好となる傾向があるが、酸化防止剤の含有量がポリカーボネート樹脂100重量部に対し、1重量部より多いと射出成形時における金型への付着物が多くなったり、押出成形によりフィルムを成形する際にロールへの付着物が多くなったりすることにより、製品の表面外観が損なわれるおそれがある。
酸化防止剤としては、フェノール系酸化防止剤、ホスフェイト系酸化防止剤及びイオウ系酸化防止剤からなる群より選ばれた少なくとも1種であることが好ましく、フェノール系酸化防止剤及び/またはホスフェイト系酸化防止剤が更に好ましい。
フェノール系酸化防止剤としては、例えばペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン等の化合物が挙げられる。
これらの化合物の中でも、炭素数5以上のアルキル基によって1つ以上置換された芳香族モノヒドロキシ化合物が好ましく、具体的には、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン等が好ましく、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートが更に好ましい。
ホスフェイト系酸化防止剤としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、が挙げられる。
これらの中でも、トリスノニルフェニルホスファイト、トリメチルホスフェート、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが好ましく、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイトが更に好ましい。
イオウ系酸化防止剤としては、例えば、ジラウリル−3,3’−チオジプロピオン酸エステル、ジトリデシル−3,3’−チオジプロピオン酸エステル、ジミリスチル−3,3’−チオジプロピオン酸エステル、ジステアリル−3,3’−チオジプロピオン酸エステル、ラウリルステアリル−3,3’−チオジプロピオン酸エステル、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、ビス[2−メチル−4−(3−ラウリルチオプロピオニルオキシ)−5−tert−ブチルフェニル]スルフィド、オクタデシルジスルフィド、メルカプトベンズイミダゾール、2−メルカプト−6−メチルベンズイミダゾール、1,1’−チオビス(2−ナフトール)などが挙げられる。上記のうち、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)が好ましい。
5.その他の成分
本発明のポリカーボネート樹脂組成物には更に酸性化合物を含有していてもよい。酸性化合物を使用する場合には、酸性化合物の配合量は、ポリカーボネート樹脂100重量部に対し、少なくとも1種の酸性化合物0.00001重量部以上0.1重量部以下、好ましくは、0.0001重量部以上0.01重量部以下、さらに好ましくは0.0002重量部以上0.001重量部以下である。酸性化合物の配合量がポリカーボネート樹脂100重量部に対して0.00001重量部以上であると、射出成形する際に、ポリカーボネート樹脂組成物の射出成形機内の滞留時間が長くなった場合における着色抑制の点で好ましいが、酸性化合物の配合量がポリカーボネート樹脂100重量部に対して0.1重量部より多いと、ポリカーボネート樹脂組成物の耐加水分解性が低下する場合がある。
酸性化合物としては、例えば、塩酸、硝酸、ホウ酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、ポリリン酸、アジピン酸、アスコルビン酸、アスパラギン酸、アゼライン酸、アデノシンリン酸、安息香酸、ギ酸、吉草酸、クエン酸、グリコール酸、グルタミン酸、グルタル酸、ケイ皮酸、コハク酸、酢酸、酒石酸、シュウ酸、p−トルエンスルフィン酸、p−トルエンスルホン酸、ナフタレンスルホン酸、ニコチン酸、ピクリン酸、ピコリン酸、フタル酸、テレフタル酸、プロピオン酸、ベンゼンスルフィン酸、ベンゼンスルホン酸、マロン酸、マレイン酸等のブレンステッド酸及びそのエステル類が挙げられる。これらの酸性化合物又はその誘導体の中でも、スルホン酸類又はそのエステル類が好ましく、中でも、p−トルエンスルホン酸、p−トルエンスルホン酸メチル、p−トルエンスルホン酸ブチルが特に好ましい。
これらの酸性化合物は、上述したポリカーボネート樹脂の重縮合反応において使用される塩基性エステル交換触媒を中和する化合物として、ポリカーボネート樹脂組成物の製造工程において添加することができる。
本発明のポリカーボネート樹脂組成物には、本発明の目的を損なわない範囲で離型剤を配合することができる。離型剤としては、特に限定されないが、高級脂肪酸、ステアリン酸エステルなどが挙げられ、好ましくは高級脂肪酸である。
高級脂肪酸としては、置換又は無置換の炭素数10〜炭素数30の飽和脂肪酸が好ましい。このような飽和脂肪酸としては、ミリスチン酸、ラウリン酸、パルミチン酸、ステアリン酸、ベヘニン酸等がより好ましい。なかでもパルミチン酸、ステアリン酸が更に好ましく、ステアリン酸が特に好ましい。
ステアリン酸エステルとしては、置換又は無置換の炭素数1〜炭素数20の一価又は多価アルコールとステアリン酸との部分エステル又は全エステルが好ましい。かかる一価又は多価アルコールとステアリン酸との部分エステル又は全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ステアリン酸ステアリル、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、プロピレングリコールモノステアレート、ステアリルステアレート、ブチルステアレート、ソルビタンモノステアレート、2−エチルヘキシルステアレート等がより好ましい。なかでも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレート、ステアリルステアレートが更に好ましく、ステアリン酸モノグリセリド、ステアリルステアレートが特に好ましい。
これらの離型剤は、1種を単独で用いても良く、2種以上を混合して用いてもよい。離型剤の配合量は、ポリカーボネート樹脂100重量部に対し、0重量部〜2重量部であり、好ましくは0.01重量部〜1重量部であり、更に好ましくは0.1重量部〜0.5重量部である。離型剤の含有量が過度に多いと成型時に金型付着物が増える場合があり、大量に成形を実施した場合には成形機の整備に労力を要する可能性があり、また、成形品は外観不良をきたす可能性がある、離型剤の含有量が100重量部に対し、0.0001重量部以上であると成型時、成形品が金型から離型しやすくなり、成形品が取得しやすいという利点がある。
本実施の形態において、離型剤の添加時期、添加方法は特に限定されない。添加時期としては、例えば、エステル交換法でポリカーボネート樹脂を製造した場合は重合反応終了時;さらに、重合法に関わらず、ポリカーボネート樹脂と他の配合剤との混練途中等のポリカーボネート樹脂が溶融した状態;押出機等を用い、ペレットまたは粉末等の固体状態のポリカーボネート樹脂とブレンド・混練する際等が挙げられる。添加方法としては、ポリカーボネート樹脂に離型剤を直接混合または混練する方法;少量のポリカーボネート樹脂または他の樹脂等と離型剤を用いて作成した高濃度のマスターバッチとして添加することもできる。
本発明のポリカーボネート樹脂組成物には本発明の目的を損なわない範囲で難燃剤を配合することができる。難燃剤の配合量は、難燃剤の種類や難燃性の程度に応じて適宜選択することが可能であるが、本発明においてはポリカーボネート樹脂100重量部に対し、難燃剤が0重量部〜30重量部である。
難燃剤としては、例えば、燐含有化合物系難燃剤、ハロゲン含有化合物系難燃剤、スルホン酸金属塩系難燃剤、珪素含有化合物系難燃剤等が挙げられる。本実施の形態では、これらの群より選ばれた少なくとも1種を使用することができる。これらは単独又は2種以上組み合わせて用いられる。
燐含有化合物系難燃剤としては、例えば、燐酸エステル系化合物、ホスファゼン系化合物、赤燐、被覆された赤燐、ポリ燐酸塩系化合物等が挙げられる。燐含有化合物系難燃剤の配合量は、ポリカーボネート樹脂100重量部に対し、0重量部〜20重量部である。配合量が過度に多いと耐熱性が低下しやすい。
ハロゲン含有化合物系難燃剤としては、例えば、テトラブロモビスフェノールA、トリブロモフェノール、臭素化芳香族トリアジン、テトラブロモビスフェノールAエポキシオリゴマー、テトラブロモビスフェノールAエポキシポリマー、デカブロモジフェニルオキサイド、トリブロモアリルエーテル、テトラブロモビスフェノールAカーボネートオリゴマー、エチレンビステトラブロモフタルイミド、デカブロモジフェニルエタン、臭素化ポリスチレン、ヘキサブロモシクロドデカン等が挙げられる。
ハロゲン含有化合物系難燃剤の配合量は、ポリカーボネート樹脂100重量部に対し、0重量部〜20重量部である。ハロゲン含有化合物系難燃剤の配合量が過度に多いと機械強度が低下し、また難燃剤のブリードによる変色の原因となる場合がある。
スルホン酸金属塩系難燃剤としては、例えば、脂肪族スルホン酸金属塩、芳香族スルホン酸金属塩、パーフルオロアルカン−スルホン酸金属塩等が挙げられる。これら金属塩の金属としては、好ましくは、周期表−1族の金属、周期表2族の金属等が挙げられる。具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属;カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ベリリウム、マグネシウムである。
スルホン酸金属塩系難燃剤の中でも、難燃性と熱安定性の観点から、芳香族スルホンスルホン酸金属塩、パーフルオロアルカン−スルホン酸金属塩等が好ましい。芳香族スルホンスルホン酸金属塩としては、芳香族スルホンスルホン酸アルカリ金属塩、芳香族スルホンスルホン酸アルカリ土類金属塩が好ましい。これらは重合体であってもよい。芳香族スルホンスルホン酸金属塩の具体例としては、例えば、ジフェニルスルホン−3−スルホン酸のナトリウム塩、ジフェニルスルホン−3−スルホン酸のカリウム塩、4,4’−ジブロモジフェニル−スルホン−3−スルホン酸のナトリウム塩、4,4’−ジブロモジフェニル−スルホン−3−スルホンのカリウム塩、4−クロロ−4’−ニトロジフェニルスルホン−3−スルホン酸のカルシウム塩、ジフェニルスルホン−3,3’−ジスルホン酸のジナトリウム塩、ジフェニルスルホン−3,3’−ジスルホン酸のジカリウム塩等が挙げられる。
パーフルオロアルカン−スルホン酸金属塩としては、パーフルオロアルカン−スルホン酸のアルカリ金属塩、パーフルオロアルカン−スルホン酸のアルカリ土類金属塩等が好ましい。さらに、炭素数4〜8のパーフルオロアルカン基を有するスルホン酸アルカリ金属塩、炭素数4〜8のパーフルオロアルカン基を有するスルホン酸アルカリ土類金属塩等がより好ましい。
パーフルオロアルカン−スルホン酸金属塩の具体例としては、例えば、パーフルオロブタン−スルホン酸ナトリウム、パーフルオロブタン−スルホン酸カリウム、パーフルオロメチルブタン−スルホン酸ナトリウム、パーフルオロメチルブタン−スルホン酸カリウム、パーフルオロオクタン−スルホン酸ナトリウム、パーフルオロオクタン−スルホン酸カリウム、パーフルオロブタン−スルホン酸のテトラエチルアンモニウム塩等が挙げられる。
スルホン酸金属塩系難燃剤の配合量は、ポリカーボネート樹脂100重量部に対し、0〜5重量部である。スルホン酸金属塩系難燃剤の配合量が過度に多いと熱安定性が低下しやすい。
珪素含有化合物系難燃剤としては、例えば、シリコーンワニス、ケイ素原子と結合する置換基が芳香族炭化水素基と炭素数2以上の脂肪族炭化水素基とからなるシリコーン樹脂、主鎖が分岐構造でかつ含有する有機官能基中に芳香族基を持つシリコーン化合物、シリカ粉末の表面に官能基を有していてもよいポリジオルガノシロキサン重合体を担持させたシリコーン粉末、オルガノポリシロキサン−ポリカーボネート共重合体等が挙げられる。これらの中で、シリコーンワニスが好ましい。
シリコーンワニスとしては、例えば、主として2官能型単位[R0 2SiO]と3官能型単位[R0SiO1.5]からなり、1官能型単位[R0 3SiO0.5]及び/又は4官能型単位[SiO2]を含むことがある比較的低分子量の溶液状シリコーン樹脂が挙げられる。ここで、R0は、炭素数1〜12の炭化水素基又は一個以上の置換基で置換された炭素数1〜12の炭化水素基である。置換基としてはエポキシ基、アミノ基、ヒドロキシル基及びビニル基等が挙げられる。R0の種類を変えることにより、マトリックス樹脂との相溶性を改善することが可能である。
シリコーンワニスとしては、無溶剤のシリコーンワニス、溶剤を含むシリコーンワニス等が挙げられる。本実施の形態では、溶剤を含まないシリコーンワニスが好ましい。シリコーンワニスは、例えば、アルキルトリアルコキシシラン、ジアルキルジアルコキシシラン、トリアルキルアルコキシシラン、テトラアルコキシシラン等のアルキルアルコキシシランの加水分解により製造することができる。これらの原料のモル比、加水分解速度等を調整することにより分子の構造(架橋度)及び分子量のコントロールが可能である。さらに、製造条件によってはアルコキシシランが残存するが、組成物中に残存するとポリカーボネート樹脂の耐加水分解性が低下する場合が有るため、残存アルコキシシランは少量又は無いことが望ましい。
シリコーンワニスの粘度は、300センチストークス以下が好ましく、より好ましくは250センチストークス以下であり、さらに好ましくは200センチストークス以下である。シリコーンワニスの粘度が過度に大きいと、難燃性が不十分になることがある。
珪素含有化合物系難燃剤の配合量は、ポリカーボネート樹脂100重量部に対し、0〜10重量部である。珪素含有化合物系難燃剤の配合量が過度に多いと耐熱性が低下しやすい。
より高い難燃性を達成するために、滴下防止用ポリテトラフルオロエチレンの併用が好ましい。滴下防止用ポリテトラフルオロエチレンは、重合体中に容易に分散し、かつ重合体同士を結合して繊維状材料を作る傾向を示す。滴下防止用として市販されているものは、例えば、テフロン(登録商標)6J、テフロン(登録商標)30J(三井・デュポンフロロケミカル株式会社)、ポリフロンF201L(ダイキン化学工業株式会社)等が挙げられる。
滴下防止用ポリテトラフルオロエチレンの配合量は、ポリカーボネート樹脂100重量部に対し、好ましくは0重量部より多く2.0重量部以下である。滴下防止用ポリテトラフルオロエチレンの配合量が過度に少ないと、燃焼時の溶融滴下防止効果が不十分であり、過度に多いと、成形品外観が悪くなりやすい。
本実施の形態において、ポリカーボネート樹脂に配合する難燃材の添加時期、添加方法は特に限定されない。添加時期としては、例えば、エステル交換法でポリカーボネート樹脂を製造した場合は重合反応終了時;さらに、重合法に関わらず、ポリカーボネート樹脂と他の配合剤との混練途中等のポリカーボネート樹脂が溶融した状態;押出機等を用い、ペレットまたは粉末等の固体状態のポリカーボネート樹脂とブレンド・混練する際等が挙げられる。添加方法としては、ポリカーボネート樹脂に充填材を直接混合または混練する方法;少量のポリカーボネート樹脂または他の樹脂等と充填材を用いて作成した高濃度のマスターバッチとして添加することもできる。
本発明のポリカーボネート樹脂組成物には本発明の目的を損なわない範囲で充填剤を配合することができる。本発明のポリカーボネート樹脂組成物に配合することのできる充填剤としては無機充填剤及び有機充填剤が挙げられる。
充填剤の配合量は、ポリカーボネート樹脂100重量部に対し、0重量部以上100重量部以下である。充填剤の配合量は、好ましくは50重量部以下、より好ましくは40重量部以下、更に好ましくは35重量部以下である。充填剤を配合することによりポリカーボネート樹脂組成物の補強効果が得られるが、また、100重量部より多く配合すると外観が悪くなる傾向がある。
無機充填剤としては、例えば、ガラス繊維、ガラスミルドファイバー、ガラスフレーク、ガラスビーズ、シリカ、アルミナ、酸化チタン、硫酸カルシウム粉体、石膏、石膏ウィスカー、硫酸バリウム、タルク、マイカ、ワラストナイト等の珪酸カルシウム;カーボンブラック、グラファイト、鉄粉、銅粉、二硫化モリブデン、炭化ケイ素、炭化ケイ素繊維、窒化ケイ素、窒化ケイ素繊維、黄銅繊維、ステンレス繊維、チタン酸カリウム繊維、ウィスカー等が挙げられる。これらの中でも、ガラスの繊維状充填剤、ガラスの粉状充填剤、ガラスのフレーク状充填剤;各種ウィスカー、マイカ、タルクが好ましい。より好ましくは、ガラス繊維、ガラスフレーク、ガラスミルドファイバー、ワラストナイト、マイカ、タルクが挙げられる。特に好ましくはガラス繊維及びタルクから選ばれる少なくとも1種が挙げられる。以上に挙げた無機充填剤は1種のみで用いることもできるが、2種以上を組み合わせて用いることもできる。
また、無機充填剤の中でも、ガラス繊維、ガラスミルドファイバーとしては、熱可塑性樹脂に使用されているものであればいずれも使用できる。特に、無アルカリガラス(Eガラス)が好ましい。ガラス繊維の直径は、好ましくは6μm〜20μmであり、より好ましくは9μm〜14μmである。ガラス繊維の直径が過度に小さいと補強効果が不充分となる傾向がある。また、過度に大きいと、製品外観に悪影響を与えやすい。
また、ガラス繊維としては、好ましくは長さ1mm〜6mmにカットされたチョップドストランド;好ましくは長さ0.01mm〜0.5mmに粉砕されて市販されているガラスミルドファイバーが挙げられる。これらは単独または両者を混合して用いてもよい。
本発明で使用するガラス繊維は、ポリカーボネート樹脂との密着性を向上させるために、アミノシラン、エポキシシラン等のシランカップリング剤等による表面処理、あるいは取扱い性を向上させるために、アクリル系樹脂、ウレタン系樹脂等による集束処理を施して使用してもよい。
ガラスビーズとしては、熱可塑性樹脂に使用されているものであればいずれも使用できる。中でも、無アルカリガラス(Eガラス)が好ましい。ガラスビーズの形状は、粒径10μm〜50μmの球状が好ましい。
ガラスフレークとしては、鱗片状のガラスフレークが挙げられる。ポリカーボネート樹脂を配合後のガラスフレークの最大径は、一般的には1000μm以下、好ましくは1μm〜500μmであり、且つアスペクト比(最大径と厚みとの比)が5以上、好ましくは10以上、さらに好ましくは30以上である。
有機充填剤としては、例えば、木粉、竹粉、ヤシ澱粉、パルプ粉などの粉末状有機充填剤;架橋ポリエステル、ポリスチレン、スチレン・アクリル共重合体、尿素樹脂などのバルーン状・球状有機充填剤;炭素繊維、合成繊維、天然繊維などの繊維状有機充填剤が挙げられる。
炭素繊維としては、特に限定されず、例えば、アクリル繊維、石油又は炭素系特殊ピッチ、セルロース繊維、リグニン等を原料として焼成によって製造されたものであって、耐炎質、炭素質、黒鉛質等の種々のものが挙げられる。炭素繊維のアスペクト比(繊維長/繊維径)の平均は、好ましくは10以上であり、より好ましくは50以上である。アスペクト比の平均が過度に小さいと、ポリカーボネート樹脂組成物の導電性、強度、剛性が低下する傾向がある。炭素繊維の径は3μm〜15μmであり、上記のアスペクト比に調整するために、チョップドストランド、ロービングストランド、ミルドファイバー等のいずれの形状も使用できる。炭素繊維は、1種または2種以上混合して用いることができる。
炭素繊維は、本発明のポリカーボネート樹脂組成物の特性を損なわない限りにおいて、ポリカーボネート樹脂との親和性を増すために、例えばエポキシ処理、ウレタン処理、酸化処理等の表面処理が施されてもよい。
本実施の形態において、ポリカーボネート樹脂に配合する充填剤の添加時期、添加方法は特に限定されない。添加時期としては、例えば、エステル交換法でポリカーボネート樹脂を製造した場合は重合反応終了時;さらに、重合法に関わらず、ポリカーボネート樹脂と他の配合剤との混練途中等のポリカーボネート樹脂が溶融した状態;押出機等を用い、ペレットまたは粉末等の固体状態のポリカーボネート樹脂とブレンド・混練する際等が挙げられる。添加方法としては、ポリカーボネート樹脂に無機充填剤を直接混合または混練する方法;少量のポリカーボネート樹脂または他の樹脂等と無機充填剤を用いて作成した高濃度のマスターバッチとして添加することもできる。
本発明のポリカーボネート樹脂組成物には、重合体や紫外線吸収剤に基づくレンズの黄色味を打ち消すためにブルーイング剤を配合することができる。ブルーイング剤としては、従来、ポリカーボネート樹脂に使用されるものであれば、特に支障なく使用することができる。一般的にはアンスラキノン系染料が入手容易であり好ましい。
具体的なブルーイング剤としては、例えば、一般名Solvent Violet13[CA.No(カラーインデックスNo)60725]、一般名Solvent Violet31[CA.No 68210]、一般名Solvent Violet33[CA.No 60725]、一般名Solvent Blue94[CA.No 61500]、一般名Solvent Violet36[CA.No 68210]、一般名Solvent Blue97[バイエル社製「マクロレックスバイオレットRR」]、一般名Solvent Blue45[CA.No61110]等が代表例として挙げられる。これらのブルーイング剤は、1種を単独で用いても良く、2種以上を併用してもよい。これらブルーイング剤は、通常、ポリカーボネート樹脂を100重量部とした場合、0.1×10-5〜2×10-4重量部の割合で配合される。
本発明のポリカーボネート樹脂組成物には、本発明の目的を損なわない範囲で、光安定剤を含有することができる。かかる安定剤の含有量は、ポリカーボネート樹脂100重量部に対して通常0重量部〜2重量部である。
本発明のポリカーボネート樹脂組成物は、上記成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができる。更に、本発明の目的を損なわない範囲で、樹脂組成物に通常用いられる核剤、衝撃改良剤、発泡剤、染顔料等が含まれても差し支えない。
また、本発明のポリカーボネート樹脂組成物は例えば、芳香族ポリカーボネート、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS樹脂、ASなどの合成樹脂、ポリ乳酸、ポリブチレンスクシネートなどの生分解性樹脂、ゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。
6.ポリカーボネート樹脂成形品
本実施の形態では、上述したポリカーボネート樹脂組成物を成形してなるポリカーボネート樹脂成形品が得られる。ポリカーボネート樹脂成形品の成形方法は特に限定されないが、成形品形状の自由度の観点から射出成形法が好ましい。
本発明のポリカーボネート樹脂成形品は、耐候性、色相、耐熱性及び機械的強度に優れ、電気・電子部品、自動車用部品等として好適に使用される。
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限または下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限または下限の値と、下記実施例の値または実施例同士の値との組み合わせで規定される範囲であってもよい。以下において、ポリカーボネート樹脂及び樹脂組成物の物性ないし特性の評価は次の方法により行った。
1)全光線透過率の測定
ポリカーボネート樹脂のペレットを、窒素雰囲気下、110℃で10時間乾燥した。次に、乾燥したポリカーボネート樹脂のペレットを射出成形機(株式会社日本製鋼所製J75EII型)に供給し、樹脂温度220℃、成形サイクル23秒間の条件で、射出成形片(幅60mm×長さ60mm×厚さ3mm)を成形する操作を繰り返し、10ショット目〜20ショット目で得られた射出成形片の厚み方向の光線透過率を、JIS K7105に準拠し、ヘイズメーター(日本電色工業株式会社製NDH2000)を使用し、D65光源にて射出成形片の全光線透過率(%)を測定した。
2)ポリカーボネート樹脂組成物の初期色相の評価方法
射出成形片の正方形の面に対する透過光におけるイエローインデックス(初期のYI)値をカラーテスタ(コニカミノルタ社製CM−3700d)を用いて測定し、平均値を算出した。YI値が小さい程、黄色味がなく品質が優れることを示す。
3)促進耐候性試験
上記の射出成形品をJIS B7754に準拠(ブラックパネル温度63℃、湿度50%、120分サイクル18分間噴霧)してアトラス社製キセノンウェザオメータ−(Ci4000)を用いて促進暴露試験を行い、処理後のYI値を上記2)と同様に、処理後の全光線透過率を上記1)と同様に、それぞれ測定した。
4)金型汚れの評価方法
ポリカーボネート樹脂組成物のペレットを射出成形機(日本製鋼所社製J50E型)に供給し、樹脂温度240℃、成形サイクル23秒間の条件で、射出成形片(幅60mm×長さ60mm×厚さ3mm)を成形した。
この条件で連続的に射出成形を行い、500ショット実施後の金型を目視で確認し、金型付着物の状況(金型汚染性)を次の判断基準の基づき評価した。
○:金型付着物が認められない。
×:金型付着物が認められる。
以下の実施例の記載の中で用いた化合物の略号は次の通りである。
ISB:イソソルビド(ロケット・フルーレ社製、商品名POLYSORB)
CHDM:1,4−シクロヘキサンジメタノール(新日本理化株式会社製、SKY CHDM)
DEG:ジエチレングリコール(三菱化学株式会社製)
DPC:ジフェニルカーボネート(三菱化学株式会社製)
BPEF:9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン(大阪ガスケミカル株式会社製)
(紫外線吸収剤)
S709:2−(2’−ヒドロキシ−3’−メチル−5’−t−オクチルフェニル)ベンゾトリアゾール(シプロ化成株式会社製)
チヌビン770: ビス(2,2,6,6−テトラメチル−4‐ピペリジル)セバケート(BASFジャパン株式会社製)
PR―25:[(4−メトキシフェニル)-メチレン]マロン酸-ジメチルエステル(クラリアント・ジャパン株式会社製)
B−CAP:α,α’-ビス(エトキシカルボニル)−1,4−ベンゼンジプロペン酸ジエチル(クラリアント・ジャパン株式会社製)
[参考例1]
撹拌翼および100℃に制御された還流冷却器を具備した重合反応装置に、ISBとCHDM、蒸留精製して塩化物イオン濃度を10ppb以下にしたDPCおよび酢酸カルシウム1水和物を、モル比率でISB/CHDM/DPC/酢酸カルシウム1水和物=0.69/0.31/1.00/1.3×10-6になるように仕込み、十分に窒素置換した(酸素濃度0.0005体積%〜0.001体積%)。続いて熱媒で加温を行い、内温が100℃になった時点で撹拌を開始し、内温が100℃になるように制御しながら内容物を融解させ均一にした。その後、昇温を開始し、40分で内温を210℃にし、内温が210℃に到達した時点でこの温度を保持するように制御すると同時に、減圧を開始し、210℃に到達してから90分で13.3kPa(絶対圧力、以下同様)にして、この圧力を保持するようにしながら、さらに60分間保持した。重合反応とともに副生するフェノール蒸気は、還流冷却器への入口温度として100℃に制御された蒸気を冷媒として用いた還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を重合反応器に戻し、凝縮しないフェノール蒸気は続いて45℃の温水を冷媒として用いた凝縮器に導いて回収した。
このようにしてオリゴマー化させた内容物を、一旦大気圧にまで復圧させた後、撹拌翼および上記同様に制御された還流冷却器を具備した別の重合反応装置に移し、昇温および減圧を開始して、60分で内温220℃、圧力200Paにした。その後、20分かけて内温228℃、圧力133Pa以下にして、所定撹拌動力になった時点で復圧し、重合反応装置出口より溶融状態のポリカーボネート樹脂を得た。
更に3ベントおよび注水設備を供えた二軸押出機に連続的に前記溶融状態のポリカーボネート樹脂を供給し、該ポリカーボネート樹脂を二軸押出機に具備された各ベント部にてフェノールなどの低分子量物を減圧脱揮したのち、ペレタイザーによりペレット化を行い、ISB/CHDM=50.0/50.0[mol%]の共重合組成のポリカーボネート樹脂(以下、「ポリカーボネート樹脂A」又は「ポリマーA」と記載する。)を得た。還元粘度は0.56dl/gであった。
[参考例2]
BPEF共重合樹脂:9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン共重合樹脂の製造方法
BPEFとISB、DEG、DPC、および酢酸マグネシウムを、モル比率でBPEF/ISB/DEG/DPC/酢酸マグネシウム=0.348/0.490/0.162/1.005/1.00×10-5になるように仕込んだ以外は、参考例1と同様に行い、BPEF/ISB/DEG=34.8/49.0/16.2[mol%]の共重合組成の9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン共重合樹脂(以下、「BPEF共重合樹脂B」又は「ポリマーB」と記載する。)を得た。還元粘度は0.41dl/gであった。
[実施例1〜13、比較例1〜4]
表1に示す配合組成となるように、ポリカーボネート樹脂Aに対して、芳香族ジヒドロキシ化合物に由来する構成単位を有する化合物として「BPEF:9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン」のモノマーおよびBPEF/ISB/DEG=34.8/49.0/16.2[mol%]の共重合組成のBPEF共重合樹脂B、紫外線吸収剤として「S709(ベントリ)」、「チヌビン770(HALS)」、「PR25(マロン酸エステル)」、「B−CAP(マロン酸エステル)」を表1に記載の所定の割合で添加し、2つのベント口を有する日本製鋼所社製2軸押出機(LABOTEX30HSS−32)を用いて、出口の樹脂温が250℃になるようにストランド状に押し出し、水で冷却固化させた後、回転式カッターでペレット化し、ポリカーボネート樹脂組成物のペレットを得た。この際、ベント口は真空ポンプに連結し、ベント口での圧力が500Paになるように制御した。上記記載の評価方法により、各種物性等を評価した。得られた結果を表1に示す。
Figure 0006024309
上記の表1のΔYI(耐候試験後YI−初期YI)は、大きいほど黄変しており耐候性が悪いと判断できる。一方、Δ全光線透過率(耐候試験後全光線透過率−初期全光線透過率)は、小さいほど耐候性が悪いと判断できる。表1の結果が示すように、実施例のポリカーボネート樹脂組成物はΔYIが小さく、Δ全光線透過率が大きかった。すなわち実施例のポリカーボネート樹脂組成物の成形品は、比較例のポリカーボネート樹脂組成物の成形品よりも耐候性に優れるものであった。
本発明のポリカーボネート樹脂組成物は、耐候性、色相、耐熱性、成形性、及び機械的強度に優れ、電気・電子部品、自動車用部品等の射出成形分野、フィルム、シートなどの押出分野などの幅広い分野への材料提供が可能である。

Claims (5)

  1. 下記式(2)で表されるジヒドロキシ化合物に由来する構造単位を有する脂肪族ポリカーボネート樹脂を含有するポリカーボネート樹脂組成物であって、前記ポリカーボネート樹脂組成物が、下記式(3)で表される芳香族ジヒドロキシ化合物を0.1〜700重量ppm、および紫外線吸収剤を5〜10000重量ppm含有してなることを特徴とするポリカーボネート樹脂組成物。
    Figure 0006024309
    Figure 0006024309
    (ただし、上記式(3)において、R1〜R4はそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜炭素数20のアルキル基、置換若しくは無置換の炭素数6〜炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6〜炭素数20のアリール基を表し、各ベンゼン環に4つある置換基のそれぞれに同一の又は異なる基が配されている。Xは置換若しくは無置換の炭素数2〜炭素数10のアルキレン基、置換若しくは無置換の炭素数6〜炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6〜炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0〜5の整数である。)
  2. 前記脂肪族ポリカーボネート樹脂が、前記式(2)で表されるジヒドロキシ化合物以外の脂肪族ジヒドロキシ化合物に由来する構造単位を更に含む請求項1に記載のポリカーボネート樹脂組成物。
  3. 前記脂肪族ポリカーボネート樹脂が、前記式(2)で表されるジヒドロキシ化合物を含むジヒドロキシ化合物と下記式(4)で表される炭酸ジエステルとの重縮合により得られてなる請求項1または2に記載のポリカーボネート樹脂組成物。
    Figure 0006024309
    (上記式(4)において、A1及びA2は、それぞれ独立に、置換若しくは無置換の炭素数1〜炭素数18の脂肪族炭化水素基、または、置換若しくは無置換の芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。)
  4. 前記重縮合エステル交換反応触媒がリチウム及び長周期型周期表第2族の金属からなる群より選ばれる少なくとも1種の金属化合物であり、かつこれらの金属化合物の合計量が、用いたジヒドロキシ化合物1mol当たり、金属量として20μmol以下である、請求項に記載のポリカーボネート樹脂組成物。
  5. 請求項1からのいずれか1項に記載のポリカーボネート樹脂組成物からなるポリカーボネート樹脂成形品。
JP2012195345A 2012-09-05 2012-09-05 ポリカーボネート樹脂組成物及びその成形品 Active JP6024309B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195345A JP6024309B2 (ja) 2012-09-05 2012-09-05 ポリカーボネート樹脂組成物及びその成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195345A JP6024309B2 (ja) 2012-09-05 2012-09-05 ポリカーボネート樹脂組成物及びその成形品

Publications (2)

Publication Number Publication Date
JP2014051558A JP2014051558A (ja) 2014-03-20
JP6024309B2 true JP6024309B2 (ja) 2016-11-16

Family

ID=50610347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195345A Active JP6024309B2 (ja) 2012-09-05 2012-09-05 ポリカーボネート樹脂組成物及びその成形品

Country Status (1)

Country Link
JP (1) JP6024309B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228804A1 (ja) * 2022-05-27 2023-11-30 三菱ケミカル株式会社 樹脂組成物、フィルム、カード、及びパスポート

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666972B2 (en) * 2007-10-18 2010-02-23 SABIC Innovative Plastics IP B., V. Isosorbide-based polycarbonates, method of making, and articles formed therefrom
US8633265B2 (en) * 2011-01-19 2014-01-21 Sabic Innovative Plastics Ip B.V. UV stabilization of isosorbide polycarbonates

Also Published As

Publication number Publication date
JP2014051558A (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
JP6504119B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP5978555B2 (ja) ポリカーボネート樹脂組成物及びその成形品
JP5970822B2 (ja) ポリカーボネート樹脂組成物及びその成形品
WO2012111718A1 (ja) ポリカーボネート樹脂組成物及び成形品
WO2011071164A1 (ja) ポリカーボネート樹脂組成物及び成形品
JP2013203932A (ja) ポリカーボネート樹脂組成物及び成形品
JP6188272B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP2016156031A (ja) ポリカーボネート樹脂組成物及び成形品
WO2011071163A1 (ja) ポリカーボネート樹脂組成物及び成形品
JP6229781B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP2012197371A (ja) Led信号用部材
JP5958025B2 (ja) ポリカーボネート樹脂組成物、ポリカーボネート樹脂成形品及び光反射部材
JP2012041467A (ja) ポリカーボネート樹脂組成物及び成形品
JP5601267B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP6024309B2 (ja) ポリカーボネート樹脂組成物及びその成形品
JP2014198759A (ja) ポリカーボネート樹脂組成物及び成形品
JP2013136659A (ja) ポリカーボネート樹脂組成物及び成形品
JP5652056B2 (ja) 樹脂組成物及び樹脂成形体
JP6229782B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP6044058B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP6698273B2 (ja) ポリカーボネート樹脂組成物および成形品
JP2013049846A (ja) 遮音部材
JP2013203933A (ja) ポリカーボネート樹脂組成物及び成形品
JP5978554B2 (ja) ポリカーボネート樹脂組成物及び成形品
JP5895581B2 (ja) ポリカーボネート樹脂組成物及び成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6024309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350