JP6014538B2 - 光学モジュール、光観察装置、及び光照射装置 - Google Patents

光学モジュール、光観察装置、及び光照射装置 Download PDF

Info

Publication number
JP6014538B2
JP6014538B2 JP2013079806A JP2013079806A JP6014538B2 JP 6014538 B2 JP6014538 B2 JP 6014538B2 JP 2013079806 A JP2013079806 A JP 2013079806A JP 2013079806 A JP2013079806 A JP 2013079806A JP 6014538 B2 JP6014538 B2 JP 6014538B2
Authority
JP
Japan
Prior art keywords
light
polarizing element
incident
beam splitter
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013079806A
Other languages
English (en)
Other versions
JP2014202958A (ja
Inventor
卓 井上
卓 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2013079806A priority Critical patent/JP6014538B2/ja
Priority to PCT/JP2014/058290 priority patent/WO2014162927A1/ja
Priority to US14/782,021 priority patent/US10175552B2/en
Publication of JP2014202958A publication Critical patent/JP2014202958A/ja
Application granted granted Critical
Publication of JP6014538B2 publication Critical patent/JP6014538B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Polarising Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、光学モジュール、光観察装置、及び光照射装置に関するものである。
非特許文献1には、2個の位相変調型の空間光変調器(Spatial Light Modulator;SLM)を用いたレンズレス光相関器が記載されている。この文献に記載された光相関器は、レーザ光を出力するHe−Neレーザ光源と、該レーザ光を変調する第1の反射型SLMと、第1の反射型SLMに対して平行に配置され、第1の反射型SLMから出力された光を更に変調する第2の反射型SLMと、第2の反射型SLMから出力された光を撮像するCCDカメラとを備えている。
Xu Zeng, Takashi Inoue, Norihiro Fukuchi, and Jian Bai, "Parallellensless optical correlator based on two phase-only spatial light modulators", OPTICSEXPRESS, Volume 19, Number 13, pp.12594-12604, 20 June 2011
近年、SLMを用いて光の強度分布や位相分布を任意に変調し、レーザ加工、観察対象物の照明、レンズレス光相関器等に使用する技術が研究されている。このような技術において、例えば非特許文献1に記載されているように、2個以上のSLMが光学的に直列に配置される場合がある。例えば、一つのSLMに凸レンズ状の位相分布を表示し、別のSLMに凹レンズ状の位相分布を表示すると、平行光の光径を任意に拡大・縮小するビームエキスパンダを構成することができる。或いは、2つのSLMそれぞれに凸レンズ状の位相分布を表示すると、ズームレンズを構成することができる。
一般的に、SLMには透過型と反射型とが存在する。上述したように2個のSLMを光学的に直列に配置する場合、透過型SLMを用いることによって構成が簡素になり、光学系全体を小型化することができる。しかしながら、透過型SLMは、反射型SLMと比較して光損失が大きく、SLMの数が多いほど、変調後の光の強度が低下するという問題がある。
一方、反射型SLMを光学的に直列に配置する場合、従来の方式では、変調面の法線に対して傾斜した方向から変調面に光が入射するように、複数の反射型SLMの相対位置および相対角度が調整される(例えば非特許文献1を参照)。このような配置では、複数の反射型SLMを含む光学系全体の構成が複雑となり、小型化が困難となる。
本発明は、このような問題点に鑑みてなされたものであり、複数のSLMが光学的に直列に配置される光学モジュール、光観察装置、及び光照射装置において、光学系全体の小型化を可能とすることを目的とする。
上述した課題を解決するために、本発明による第1の光学モジュールは、s偏光成分を反射してp偏光成分を透過する光分岐面を有し、p偏光成分を含む入射光を光分岐面に受ける偏光ビームスプリッタと、光分岐面を透過した入射光の偏光面を回転させる非相反性の光学活性を有する第1の偏光素子と、第1の偏光素子を通過した入射光を変調して第1の変調光を生成するとともに、第1の変調光を第1の偏光素子へ反射する第1の反射型空間光変調器と、第1の偏光素子を再び通過し、光分岐面において反射された第1の変調光の偏光面を回転させる非相反性の光学活性を有する第2の偏光素子と、第2の偏光素子を通過した第1の変調光を変調して第2の変調光を生成するとともに、第2の変調光を第2の偏光素子へ反射する第2の反射型空間光変調器と、を備え、第2の変調光は、第2の偏光素子を再び通過した後、光分岐面を透過して出力されることを特徴とする。
また、本発明による第2の光学モジュールは、s偏光成分を反射してp偏光成分を透過する光分岐面を有し、s偏光成分を含む入射光を光分岐面に受ける偏光ビームスプリッタと、光分岐面において反射された入射光の偏光面を回転させる非相反性の光学活性を有する第1の偏光素子と、第1の偏光素子を通過した入射光を変調して第1の変調光を生成するとともに、第1の変調光を第1の偏光素子へ反射する第1の反射型空間光変調器と、第1の偏光素子を再び通過し、光分岐面を透過した第1の変調光の偏光面を回転させる非相反性の光学活性を有する第2の偏光素子と、第2の偏光素子を通過した第1の変調光を変調して第2の変調光を生成するとともに、第2の変調光を第2の偏光素子へ反射する第2の反射型空間光変調器と、を備え、第2の変調光は、第2の偏光素子を再び通過した後、光分岐面において反射されて出力されることを特徴とする。
これらの光学モジュールでは、一つの偏光ビームスプリッタの周囲に第1及び第2の反射型SLMが配置されている。そして、第1の反射型SLMへの入射光は偏光ビームスプリッタから入射し、変調後の光(第1の変調光)は偏光ビームスプリッタに向けて反射される。同様に、第2の反射型SLMへの入射光は偏光ビームスプリッタから入射し、変調後の光(第2の変調光)は偏光ビームスプリッタに向けて反射される。このような構成により、第1及び第2の反射型SLMの各変調面の法線方向に沿って入射光を入射させ且つ変調光を反射させることができるので、法線に対して傾斜した方向から入射光を入射させる構成(例えば非特許文献1を参照)と比較して、光学系全体の構成を簡素にでき、小型化が可能となる。
また、偏光ビームスプリッタに代えて通常のビームスプリッタ(ハーフミラー等)を用いる方式も考えられる。しかし、例えば反射型SLMが平行配向ネマティック液晶を用いたものである場合、振動方向が液晶の配向方向と平行である直線偏光成分しか変調されないため、通常のビームスプリッタを用いて変調面の法線方向から光を入射させると、光利用効率(入射光強度と変調光強度との比)が極めて小さく(例えば25%未満に)なってしまう。これに対し、上記の光学モジュールによれば、偏光ビームスプリッタと第1及び第2の偏光素子とを組み合わせることによって、光利用効率を高く維持しつつ、変調面の法線方向から光を好適に入射させることができる。
また、第1及び第2の光学モジュールは、偏光ビームスプリッタが、入射光を受ける光入射面と、第2の変調光を出力する光出射面と、第1の偏光素子と光学的に結合された第1の面と、第2の偏光素子と光学的に結合された第2の面とを有することを特徴としてもよい。そして、この場合、第1の光学モジュールでは、光入射面と第1の面とが第1の方向に並んで配置され、光出射面と第2の面とが、第1の方向と交差する第2の方向に並んで配置されていることが好ましい。また、第2の光学モジュールでは、光入射面と光出射面とが第1の方向に並んで配置されており、第1の面と第2の面とが第2の方向に並んで配置されていることが好ましい。
また、第1の光学モジュールでは、光入射面と光学的に結合された第3の偏光素子が、入射光がp偏光成分を含むように入射光の偏光面を回転させてもよい。また、第2の光学モジュールでは、光入射面と光学的に結合された第3の偏光素子が、入射光がs偏光成分を含むように入射光の偏光面を回転させてもよい。
また、第1及び第2の光学モジュールは、偏光ビームスプリッタと第1の反射型空間光変調器との間、もしくは偏光ビームスプリッタと第2の反射型空間光変調器との間のうちいずれか一方に配置された2分の1波長板を更に備えることを特徴としてもよい。
また、本発明による光観察装置は、上記いずれかの光学モジュールと、観察対象物が載置される載置台と、観察対象物からの光を入射光として偏光ビームスプリッタに導く第1の導光光学系と、偏光ビームスプリッタから出射された第2の変調光を導光する第2の導光光学系と、第2の導光光学系によって導かれた第2の変調光を撮像する撮像装置とを備えることを特徴とする。
また、本発明による光照射装置は、上記いずれかの光学モジュールと、照射対象物が載置される載置台と、偏光ビームスプリッタに入射する入射光を出力する光源と、偏光ビームスプリッタから出射された第2の変調光を照射対象物に導く導光光学系とを備えることを特徴とする。
本発明によれば、複数のSLMが光学的に直列に配置される光学モジュール、光観察装置、及び光照射装置において、光学系全体の小型化を可能にできる。
本発明の第1実施形態に係る光学モジュールの構成を示す図である。 比較のため、第1実施形態の光学モジュールの光路を直線状に展開したときの等価光路を示す図である。 第1実施形態の一変形例として、光学モジュールの構成を示す図である。 本発明の第2実施形態に係る光学モジュールの構成を示す図である。 第2実施形態の一変形例として、光学モジュールの構成を示す図である。 本発明の第3実施形態に係る光学モジュールの構成を示す図である。 光観察装置の構成例を示す図である。 光照射装置の構成例を示す図である。
以下、添付図面を参照しながら本発明による光学モジュールの実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1の実施の形態)
図1は、本発明の第1実施形態に係る光学モジュール1Aの構成を示す図である。なお、理解の容易のため、図1にはXYZ直交座標系が併せて示されている。また、図1では、理解の容易のため、光L2の光軸と光L3の光軸とが離れているが、実際には光L2の光軸と光L3の光軸とは一部で重なっている。光L2及び光L3についても同様である。図1に示されるように、この光学モジュール1Aは、偏光ビームスプリッタ10と、第1の偏光素子20と、第1の反射型SLM30と、第2の偏光素子40と、第2の反射型SLM50とを備えている。
偏光ビームスプリッタ10は、光分岐面11を有する光学部品である。光分岐面11は、第1の方向(本実施形態ではX軸方向)、及び第1の方向と交差する第2の方向(本実施形態ではY軸方向)の双方に対して傾斜しており、その傾斜角は例えば45°である。光分岐面11は、これらの方向から入射した光のs偏光成分を反射し、p偏光成分を透過する。光分岐面11は、光学モジュール1Aの外部からX軸方向に沿って入射された入射光L1を受ける。この入射光L1は、p偏光成分を含む光であって、好ましくはp偏光成分のみから成る直線偏光状態の光である。
また、XY平面に沿った偏光ビームスプリッタ10の断面形状は矩形状を呈している。そして、偏光ビームスプリッタ10は、この断面に現れる光入射面12、光出射面13、第1の面14および第2の面15を有している。光入射面12は、X軸方向と交差する平面に沿っており、入射光L1を受ける。光出射面13は、Y軸方向と交差する平面に沿っており、変調光L3を出力する。第1の面14はX軸方向と交差する平面に沿っており、光入射面12及び第1の面14はX軸方向に並んで配置されている。第2の面15はY軸方向と交差する平面に沿っており、光出射面13及び第2の面15はY軸方向に並んで配置されている。これら4つの面のうち、光入射面12および光出射面13は光分岐面11の一方の面側に配置されており、第1の面14および第2の面15は光分岐面11の他方の面側に配置されている。
第1の偏光素子20は、偏光ビームスプリッタ10の第1の面14と光学的に結合されている。換言すれば、第1の偏光素子20は、偏光ビームスプリッタ10の光分岐面11に対してX軸方向に並んで配置されている。第1の偏光素子20は、光分岐面11を透過した入射光L1の偏光面を回転させるための非相反性の光学活性を有する。ここで、非相反性の光学活性とは、順方向に進む光の回転の向きと、逆方向に進む光の回転の向きとが互いに等しい非相反的な偏光特性を意味する。例えば、或る方向から第1の偏光素子20を通過した光の偏光面が所定の向きに45°回転する場合、逆方向から第1の偏光素子20を通過した光の偏光面は、上記の所定の向きに更に45°回転する。この場合、第1の偏光素子20を光が往復すると、その光の偏光面は90°回転することとなる。第1の偏光素子20は、一例ではファラデーローテータによって好適に構成される。
なお、光学結晶から成る2分の1波長板も通過光の偏光面を回転させるものであるが、2分の1波長板では順方向に進む光の回転の向きと逆方向に進む光の回転の向きとが互いに逆である相反性の光学活性を有するため、光が往復すると、その光の偏光面は元に戻ってしまう。したがって、2分の1波長板は、非相反性の光学活性を有しておらず、第1の偏光素子20としては用いられない。
第1の反射型SLM30は、第1の偏光素子20を通過した入射光L1を変調して第1の変調光L2を生成するとともに、第1の変調光L2を第1の偏光素子20へ反射する。第1の反射型SLM30としては、位相変調型、強度変調(振幅変調)型、或いは偏光変調型といった種々のSLMが適用される。第1の反射型SLM30は、一次元又は二次元に配列された複数の領域(画素)を含む変調面31を有する。第1の反射型SLM30は、その複数の領域毎に入射光L1の位相、強度等を変調することにより、第1の変調光L2を生成する。一例では、第1の反射型SLM30は、平行配向ネマティック液晶を有するLCOS(Liquid Crystal on Silicon)型のSLMである。第1の反射型SLM30は、電気アドレス型の液晶素子に限られず、例えば光アドレス型の液晶素子や、可変鏡型の光変調器であってもよい。
第2の偏光素子40は、偏光ビームスプリッタ10の第2の面15と光学的に結合されている。換言すれば、第2の偏光素子40は、偏光ビームスプリッタ10の光分岐面11に対してY軸方向に並んで配置されている。第2の面15からは、第1の反射型SLM30から出射されたのち第1の偏光素子20を再び通過し、光分岐面11においてY軸方向に反射された第1の変調光L2が出射される。第2の偏光素子40は、第2の面15から出射される第1の変調光L2の偏光面を回転させるための非相反性の光学活性を有する。なお、非相反性の光学活性の定義は前述した第1の偏光素子20と同様である。第2の偏光素子40は、一例ではファラデーローテータによって好適に構成される。
第2の反射型SLM50は、第2の偏光素子40を通過した第1の変調光L2を変調して第2の変調光L3を生成するとともに、第2の変調光L3を第2の偏光素子40へ反射する。第2の反射型SLM50としては、第1の反射型SLM30と同様に、位相変調型、強度変調(振幅変調)型、或いは偏光変調型といった種々のSLMが適用される。第2の反射型SLM50は、一次元又は二次元に配列された複数の領域(画素)を含む変調面51を有する。第2の反射型SLM50は、その複数の領域毎に第1の変調光L2の位相、強度等を変調することにより、第2の変調光L3を生成する。一例では、第2の反射型SLM50は、平行配向ネマティック液晶を有するLCOS型のSLMである。第2の反射型SLM50は、電気アドレス型の液晶素子に限られず、例えば光アドレス型の液晶素子や、可変鏡型の光変調器であってもよい。
なお、反射型SLM30,50がLCOS型のSLMである場合、振動方向が液晶の配向方向と平行である直線偏光成分しか変調されないため、偏光素子20,40による回転後の偏光面の角度に合わせて反射型SLM30,50を配置するとよい。
以上の構成を備える光学モジュール1Aの動作について、図1を参照しつつ説明する。X軸方向に沿って偏光ビームスプリッタ10の光入射面12に入射した入射光L1は、光分岐面11を透過し、第1の面14から出射される。次に、入射光L1は第1の偏光素子20を通過する。このとき、入射光L1の偏光面は、第1の偏光素子20によってp偏光面から所定の向きに例えば45°回転する。その後、入射光L1は、第1の反射型SLM30によって変調されて第1の変調光L2と成り、同時に第1の偏光素子20に向けて反射される。第1の変調光L2は、第1の偏光素子20を再び通過する。このとき、第1の変調光L2の偏光面は、第1の偏光素子20によって上記所定の向きに例えば45°回転する。その結果、第1の変調光L2はs偏光成分を主に含む(或いは、s偏光成分のみから成る)こととなる。これにより、第1の変調光L2は、光分岐面11において反射され、第2の面15から出射される。
続いて、第1の変調光L2は第2の偏光素子40を通過する。このとき、第1の変調光L2の偏光面は、第2の偏光素子40によってs偏光面から所定の向きに例えば45°回転する。その後、第1の変調光L2は、第2の反射型SLM50によって変調されて第2の変調光L3と成り、同時に第2の偏光素子40に向けて反射される。第2の変調光L3は、第2の偏光素子40を再び通過する。このとき、第2の変調光L3の偏光面は、第2の偏光素子40によって上記所定の向きに例えば45°回転する。その結果、第2の変調光L3はp偏光成分を主に含む(或いは、p偏光成分のみから成る)こととなる。これにより、第2の変調光L3は、光分岐面11を透過し、光出射面13から光学モジュール1Aの外部へ出力される。
以上に説明した本実施形態の光学モジュール1Aによって得られる効果について説明する。光学モジュール1Aでは、一つの偏光ビームスプリッタ10の周囲に2つの反射型SLM30,50が配置されている。そして、第1の反射型SLM30への入射光(入射光L1)は偏光ビームスプリッタ10から入射し、変調後の光(第1の変調光L2)は偏光ビームスプリッタ10に向けて反射される。同様に、第2の反射型SLM50への入射光(第1の変調光L2)は偏光ビームスプリッタ10から入射し、変調後の光(第2の変調光L3)は偏光ビームスプリッタ10に向けて反射される。このような構成により、反射型SLM30,50の各変調面31,51の法線方向に沿って光を入射及び反射させることができるので、光軸の調整が容易であり、SLMへの入射効率、およびSLMからの出射効率を高めることができる。したがって、この光学モジュール1Aによれば、光利用効率を高めることができる。また、入射光L1の光軸と出射光(第2の変調光L3)の光軸とが斜めではなく直角であるため、他の光学系との接続を容易にすることができ、また収差の発生を低減することができる。更に、一部の光路において光を往復させるので、光学系全体の構成を簡素にでき、小型化が可能となる。なお、図2は、比較のため、光学モジュール1Aの光路を直線状に展開したときの等価光路を示す図である。図2に示された構成と比較して、本実施形態の光学モジュール1Aが小型に構成されていることがわかる。
また、本実施形態とは異なる方式として、偏光ビームスプリッタ10に代えて通常のビームスプリッタ(ハーフミラー等)を用いる方式も考えられる。しかし、例えば反射型SLM30,50が平行配向ネマティック液晶を用いたものである場合、振動方向が液晶の配向方向と平行である直線偏光成分しか変調されないため、通常のビームスプリッタを用いて変調面の法線方向から光を入射させると、光利用効率が極めて小さく(例えば25%未満に)なってしまう。これに対し、本実施形態の光学モジュール1Aによれば、偏光ビームスプリッタ10と第1及び第2の偏光素子20,40とを組み合わせることによって、光利用効率を高く維持しつつ、変調面31,51の法線方向から入射光L1及び第1の変調光L2を好適に入射させることができる。
(第1の変形例)
図3は、上記実施形態の一変形例として、光学モジュール1Bの構成を示す図である。この光学モジュール1Bは、図1に示された光学モジュール1Aの構成に加えて、第3の偏光素子60を更に備えている。第3の偏光素子60は、偏光ビームスプリッタ10の光入射面12と光学的に結合されており、入射光L1がp偏光成分を含むように、入射光L1の偏光面を回転させる。なお、第3の偏光素子60としては、第1及び第2の偏光素子20,40と同様に、非相反性の光学活性を有する偏光素子として、例えばファラデーローテータを適用することができる。本変形例によれば、入射光L1の偏光面を調整して、光分岐面11を好適に透過させることができる。
また、図3に示される光学モジュール1Bは、上記実施形態の光学モジュール1Aの構成に加えて、相反性の光学活性を有する偏光素子である1/2波長板16を更に備えている。本変形例では、1/2波長板16は偏光ビームスプリッタ10と第1の反射型SLM30との間の光路上に配置されており、図には偏光ビームスプリッタ10と第1の偏光素子20との間の光路上に配置された例が示されている。
この例において、偏光ビームスプリッタ10の光分岐面11を透過した入射光L1は、1/2波長板16を通過する。このとき、入射光L1の偏光面は、1/2波長板16によってp偏光面から或る回転方向に90°回転する。その後、入射光L1は、第1の偏光素子20と第1の反射型SLM30との間を往復して第1の変調光L2となり、1/2波長板16を再び通過する。このとき、第1の変調光L2の偏光面は、1/2波長板16によって上記とは逆の向きに90°回転する。その結果、偏光ビームスプリッタ10に入射するときの第1の変調光L2の偏光面は、s偏光成分を主に含む(或いは、s偏光成分のみから成る)こととなる。これにより、第1の変調光L2は、光分岐面11において反射され、第2の面15から出射される。
本変形例では、第1の反射型SLM30に入射する際の入射光L1の偏光面を90°回転させている。これにより、第1の反射型SLM30に入射する直前の入射光L1の偏光面の角度を任意に制御することができる。したがって、例えば第1及び第2の反射型SLM30,50が液晶型SLMである場合に、第1の反射型SLM30の液晶の配向方向を任意に設定することができる。これにより、例えば第1の反射型SLM30の液晶の配向方向と第2の反射型SLM50の液晶の配向方向とを揃える(互いに平行にする)ことが可能となり、第1及び第2の反射型SLM30,50のそれぞれに入力される変調データを共通化することが可能になる。
なお、1/2波長板16は、第1の偏光素子20と第1の反射型SLM30との間の光路上に配置されてもよく、或いは、偏光ビームスプリッタ10と第2の反射型SLM50との間(偏光ビームスプリッタ10と第2の偏光素子40との間、もしくは第2の偏光素子40と第2の反射型SLM50との間)の光路上に配置されてもよい。1/2波長板16が偏光ビームスプリッタ10と第2の反射型SLM50との間の光路上に配置される場合、第2の反射型SLM50に入射する直前の第1の変調光L2の偏光面の角度を任意に制御することができ、上述した効果を同様に奏することができる。
(第2の実施の形態)
図4は、本発明の第2実施形態に係る光学モジュール1Cの構成を示す図である。なお、理解の容易のため、図4にはXYZ直交座標系が併せて示されている。また、図4では、理解の容易のため、光L4の光軸と光L5の光軸とが離れているが、実際には光L4の光軸と光L5の光軸とは一部で重なっている。光L5及び光L6についても同様である。図4に示されるように、この光学モジュール1Cは、偏光ビームスプリッタ70と、第1の偏光素子22と、第1の反射型SLM32と、第2の偏光素子42と、第2の反射型SLM52とを備えている。
偏光ビームスプリッタ70は、光分岐面71を有する光学部品である。光分岐面71は、第1の方向(本実施形態ではX軸方向)、及び第1の方向と交差する第2の方向(本実施形態ではY軸方向)の双方に対して傾斜しており、その傾斜角は例えば45°である。光分岐面71は、これらの方向から入射した光のs偏光成分を反射し、p偏光成分を透過する。光分岐面71は、光学モジュール1Cの外部からX軸方向に沿って入射された入射光L4を受ける。この入射光L4は、s偏光成分を含む光であって、好ましくはs偏光成分のみから成る直線偏光状態の光である。
本実施形態の偏光ビームスプリッタ70としては、第1実施形態の偏光ビームスプリッタ10と同じものが使用され得るが、偏光ビームスプリッタ10とは光分岐面の向きが異なっている。具体的には、XY平面に沿った偏光ビームスプリッタ70の断面形状は矩形状を呈しており、偏光ビームスプリッタ70は、この断面に現れる光入射面72、光出射面73、第1の面74および第2の面75を有している。光入射面72は、X軸方向と交差する平面に沿っており、入射光L4を受ける。光出射面73はX軸方向と交差する平面に沿っており、光入射面72及び光出射面73はX軸方向に並んで配置されている。第1の面74は、Y軸方向と交差する平面に沿っている。第2の面75はY軸方向と交差する平面に沿っており、第1の面74及び第2の面75はY軸方向に並んで配置されている。これら4つの面のうち、光入射面72および第1の面74は光分岐面71の一方の面側に配置されており、光出射面73および第2の面75は光分岐面71の他方の面側に配置されている。
第1の偏光素子22は、偏光ビームスプリッタ70の第1の面74と光学的に結合されている。換言すれば、第1の偏光素子22は、偏光ビームスプリッタ70の光分岐面71に対してY軸方向に並んで配置されている。第1の偏光素子22は、光分岐面71を透過した入射光L4の偏光面を回転させるための非相反性の光学活性を有する。なお、非相反性の光学活性の定義は、第1実施形態の第1の偏光素子20と同様である。第1の偏光素子22は、一例ではファラデーローテータによって好適に構成される。
第1の反射型SLM32は、第1の偏光素子22を通過した入射光L4を変調して第1の変調光L5を生成するとともに、第1の変調光L5を第1の偏光素子22へ反射する。第1の反射型SLM32としては、位相変調型、強度変調(振幅変調)型、或いは偏光変調型といった種々のSLMが適用される。第1の反射型SLM32は、一次元又は二次元に配列された複数の領域(画素)を含む変調面33を有する。第1の反射型SLM32は、その複数の領域毎に入射光L4の位相、強度等を変調することにより、第1の変調光L5を生成する。一例では、第1の反射型SLM32は、平行配向ネマティック液晶を有するLCOS型のSLMである。第1の反射型SLM32は、電気アドレス型の液晶素子に限られず、例えば光アドレス型の液晶素子や、可変鏡型の光変調器であってもよい。
第2の偏光素子42は、偏光ビームスプリッタ70の第2の面75と光学的に結合されている。換言すれば、第2の偏光素子42は、第1の偏光素子22との間に偏光ビームスプリッタ70の光分岐面71が位置するように、光分岐面71に対してY軸方向に並んで配置されている。第2の面75からは、第1の反射型SLM32から出射されたのち第1の偏光素子22を再び通過し、光分岐面71を透過した第1の変調光L5が出射される。第2の偏光素子42は、第2の面75から出射される第1の変調光L5の偏光面を回転させるための非相反性の光学活性を有する。なお、非相反性の光学活性の定義は第1実施形態の第1の偏光素子20と同様である。第2の偏光素子42は、一例ではファラデーローテータによって好適に構成される。
第2の反射型SLM52は、第2の偏光素子42を通過した第1の変調光L5を変調して第2の変調光L6を生成するとともに、第2の変調光L6を第2の偏光素子42へ反射する。第2の反射型SLM52としては、第1の反射型SLM32と同様に、位相変調型、強度変調(振幅変調)型、或いは偏光変調型といった種々のSLMが適用される。第2の反射型SLM52は、一次元又は二次元に配列された複数の領域(画素)を含む変調面53を有する。第2の反射型SLM52は、その複数の領域毎に第1の変調光L5の位相、強度等を変調することにより、第2の変調光L6を生成する。一例では、第2の反射型SLM52は、平行配向ネマティック液晶を有するLCOS型のSLMである。なお、第2の反射型SLM52は、電気アドレス型の液晶素子に限られず、例えば光アドレス型の液晶素子や、可変鏡型の光変調器であってもよい。
以上の構成を備える光学モジュール1Cの動作について、図4を参照しつつ説明する。X軸方向に沿って偏光ビームスプリッタ70の光入射面72に入射した入射光L4は、光分岐面71においてY軸方向へ反射され、第1の面74から出射される。次に、入射光L4は第1の偏光素子22を通過する。このとき、入射光L4の偏光面は、第1の偏光素子22によってs偏光面から所定の向きに例えば45°回転する。その後、入射光L4は、第1の反射型SLM32によって変調されて第1の変調光L5と成り、同時に第1の偏光素子22に向けて反射される。第1の変調光L5は、第1の偏光素子22を再び通過する。このとき、第1の変調光L5の偏光面は、第1の偏光素子22によって上記所定の向きに例えば45°回転する。その結果、第1の変調光L5はp偏光成分を主に含む(或いは、p偏光成分のみから成る)こととなる。これにより、第1の変調光L5は、光分岐面71を透過し、第2の面75から出射される。
続いて、第1の変調光L5は第2の偏光素子42を通過する。このとき、第1の変調光L5の偏光面は、第2の偏光素子42によってp偏光面から所定の向きに例えば45°回転する。その後、第1の変調光L5は、第2の反射型SLM52によって変調されて第2の変調光L6と成り、同時に第2の偏光素子42に向けて反射される。第2の変調光L6は、第2の偏光素子42を再び通過する。このとき、第2の変調光L6の偏光面は、第2の偏光素子42によって上記所定の向きに例えば45°回転する。その結果、第2の変調光L6はs偏光成分を主に含む(或いは、s偏光成分のみから成る)こととなる。これにより、第2の変調光L6は、光分岐面71においてX軸方向へ反射され、光出射面73から光学モジュール1Cの外部へ出力される。
以上に説明した本実施形態の光学モジュール1Cによれば、前述した第1実施形態の光学モジュール1Aと同様の効果が得られる。すなわち、光学モジュール1Cでは、一つの偏光ビームスプリッタ70の周囲に2つの反射型SLM32,52が配置されている。そして、第1の反射型SLM32への入射光(入射光L4)は偏光ビームスプリッタ70から入射し、変調後の光(第1の変調光L5)は偏光ビームスプリッタ70に向けて反射される。同様に、第2の反射型SLM52への入射光(第1の変調光L5)は偏光ビームスプリッタ70から入射し、変調後の光(第2の変調光L6)は偏光ビームスプリッタ70に向けて反射される。このような構成により、反射型SLM32,52の各変調面33,53の法線方向に沿って光を入射及び反射させることができるので、光軸の調整が容易であり、SLMへの入射効率、およびSLMからの出射効率を高めることができ、光利用効率を高めることができる。また、入射光L4の光軸と出射光(第2の変調光L6)の光軸とが斜めではなく直角であるため、他の光学系との接続を容易にすることができ、また収差の発生を低減することができる。更に、一部の光路において光を往復させるので、光学系全体の構成を簡素にでき、小型化が可能となる。
また、本実施形態においても、ハーフミラー等の通常のビームスプリッタではなく偏光ビームスプリッタ70と第1及び第2の偏光素子22,42とを組み合わせた構成を備えることによって、光利用効率を高く維持しつつ、変調面33,53の法線方向から入射光L4及び第1の変調光L5を好適に入射させることができる。
(第2の変形例)
図5は、上記実施形態の一変形例として、光学モジュール1Dの構成を示す図である。この光学モジュール1Dは、図4に示された光学モジュール1Cの構成に加えて、第3の偏光素子62を更に備えている。第3の偏光素子62は、偏光ビームスプリッタ70の光入射面72と光学的に結合されており、入射光L4がs偏光成分を含むように、入射光L4の偏光面を回転させる。なお、第3の偏光素子62としては、第1及び第2の偏光素子22,42と同様に、非相反性の光学活性を有する偏光素子として、例えばファラデーローテータを適用することができる。本変形例によれば、入射光L4の偏光面を調整して、光分岐面71において好適に反射させることができる。
また、図5に示される光学モジュール1Dは、上記実施形態の光学モジュール1Cの構成に加えて、相反性の光学活性を有する偏光素子である1/2波長板76を更に備えている。本変形例では、1/2波長板76は偏光ビームスプリッタ70と第1の反射型SLM32との間の光路上に配置されており、図には偏光ビームスプリッタ70と第1の偏光素子22との間の光路上に配置された例が示されている。
この例において、偏光ビームスプリッタ70の光分岐面71を反射した入射光L4は、1/2波長板76を通過する。このとき、入射光L4の偏光面は、1/2波長板76によってs偏光面から或る回転方向に90°回転する。その後、入射光L4は、第1の偏光素子22と第1の反射型SLM32との間を往復して第1の変調光L5となり、1/2波長板76を再び通過する。このとき、第1の変調光L5の偏光面は、1/2波長板76によって上記とは逆の向きに90°回転する。その結果、偏光ビームスプリッタ70に入射するときの第1の変調光L5の偏光面は、p偏光成分を主に含む(或いは、p偏光成分のみから成る)こととなる。これにより、第1の変調光L5は、光分岐面71を透過し、第2の面75から出射される。
本変形例では、第1の反射型SLM32に入射する際の入射光L4の偏光面を90°回転させている。これにより、第1の反射型SLM32に入射する直前の入射光L4の偏光面の角度を任意に制御することができる。したがって、例えば第1及び第2の反射型SLM32,52が液晶型SLMである場合に、第1の反射型SLM32の液晶の配向方向を任意に設定することができる。これにより、例えば第1の反射型SLM32の液晶の配向方向と第2の反射型SLM52の液晶の配向方向とを揃える(互いに平行にする)ことが可能となり、第1及び第2の反射型SLM32,52のそれぞれに入力される変調データを共通化することが可能になる。
なお、1/2波長板76は、第1の偏光素子22と第1の反射型SLM32との間の光路上に配置されてもよく、或いは、偏光ビームスプリッタ70と第2の反射型SLM52との間(偏光ビームスプリッタ70と第2の偏光素子42との間、もしくは第2の偏光素子42と第2の反射型SLM52との間)の光路上に配置されてもよい。1/2波長板76が偏光ビームスプリッタ70と第2の反射型SLM52との間の光路上に配置される場合、第2の反射型SLM52に入射する直前の第1の変調光L5の偏光面の角度を任意に制御することができ、上述した効果を同様に奏することができる。
(第3の実施の形態)
図6は、本発明の第3実施形態に係る光学モジュール1Eの構成を示す図である。図6に示されるように、この光学モジュール1Eは、図1に示された光学モジュール1Aを2つ組み合わせて構成されている。すなわち、一方の光学モジュール1Aの光出射面13と、他方の光学モジュール1Aの光入射面12とが光学的に結合されており、一方の光学モジュール1Aから出力された第2の変調光L3が、他方の光学モジュール1Aへ入射光L1として入力される。
本実施形態のように、光学モジュールは、前述した各実施形態および各変形例の光学モジュール1A〜1Dが多段に組み合わされて構成されてもよい。その場合、同一の構成を備える光学モジュール同士を組み合わせてもよく、互いに異なる構成を備える光学モジュール同士を組み合わせてもよい。これにより、3個以上のSLMを光学的に直列に配置することが可能となる。
本発明による光学モジュールは、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上述した各実施形態および各変形例では、偏光ビームスプリッタとして断面矩形状(キューブ型)のものを例示したが、本発明では、例えばプレート型といった様々な形状の偏光ビームスプリッタを適用することができる。
また、上述した各実施形態および各変形例では、偏光ビームスプリッタへの入射光の光軸に対して出射光(第2の変調光)の光軸が90°若しくは0°を成しているが、これらの光軸がその他の角度を成すようにSLMや偏光素子を配置してもよい。
また、上述した各実施形態および各変形例では、上記のように断面矩形状(キューブ型)の偏光ビームスプリッタを用いているが、キューブ型の偏光ビームスプリッタの光分岐面はプレート型のものと比較して平面度が低く、光分岐面に形状歪みが存在し、反射光に波面収差を加えることがある。また、SLMの変調面も同様に、歪みによって変調光に波面収差を生じせしめる場合がある。これらのように、本発明の光学モジュールにおいて収差を発生させる要因がある場合、その収差を予め求めておき、この収差を除去し得るような位相変調パターンを各SLMの所望の位相変調パターンに加えるとよい。これにより、収差に影響され難い変調動作を実現することができる。
また、上述した各実施形態および各変形例において、光学モジュールの用途によっては、SLMと偏光ビームスプリッタとの間隔調整を要する場合がある。そのような場合、光軸方向における偏光ビームスプリッタとの間隔を可変にする移動手段をSLMに設けることが望ましい。
また、上述した各実施形態および各変形例の光学モジュールの用途としては、観察対象物からの光を撮像する光観察装置が挙げられる。図7は、光観察装置2Aの構成例を示す図である。この光観察装置2Aは、上述した各実施形態および各変形例の光学モジュール(図には第1実施形態の光学モジュール1Aを例示)、観察対象物84が載置される載置台87、観察対象物84からの光を入射光L1(またはL4)として偏光ビームスプリッタ10(または70)に導く第1の導光光学系85、偏光ビームスプリッタ10(または70)から出射された第2の変調光L3(またはL6)を導光する第2の導光光学系86、第2の導光光学系86によって導かれた第2の変調光L3(またはL6)を撮像する撮像装置88を備えている。第1の導光光学系85は、例えば、対物レンズなどから構成される。また、第2の導光光学系86は、例えば、結像レンズやリレーレンズといった光学素子によって構成される。さらに、撮像装置88は、CCDイメージセンサやCMOSイメージセンサなどの撮像素子によって構成される。あるいは、第2の導光光学系86がビームスキャナとリレーレンズ、結像レンズで構成され、撮像装置88がピンホールと単一光検出器で構成されていても良い。
また、上述した各実施形態および各変形例の光学モジュールの別の用途としては、照射対象物に光を照射する光照射装置が挙げられる。図8は、光照射装置2Bの構成例を示す図である。この光照射装置2Bは、上述した各実施形態および各変形例の光学モジュール(図には第1実施形態の光学モジュール1Aを例示)、照射対象物94を載置する載置台97、偏光ビームスプリッタ10(または70)に入射する入射光L1(またはL4)を出力する光源93、偏光ビームスプリッタ10(または70)から出射された第2の変調光L3(またはL6)を照射対象物94に導く導光光学系95を備える。光源93としては、半導体レーザ素子などのレーザ光源やLEDやSLD、ランプ系の光源などが挙げられる。また、導光光学系95としては、対物レンズなどが挙げられる。
1A,1B,1C,1D,1E…光学モジュール、10,70…偏光ビームスプリッタ、11,71…光分岐面、12,72…光入射面、13,73…光出射面、14,74…第1の面、15,75…第2の面、16,76…1/2波長板、20,22…第1の偏光素子、30,32…第1の反射型SLM、31,33…変調面、40,42…第2の偏光素子、50,52…第2の反射型SLM、51,53…変調面、60,62…第3の偏光素子、L1,L4…入射光、L2,L5…第1の変調光、L3,L6…第2の変調光。

Claims (11)

  1. s偏光成分を反射してp偏光成分を透過する光分岐面を有し、p偏光成分を含む入射光を前記光分岐面に受ける偏光ビームスプリッタと、
    前記光分岐面を透過した前記入射光の偏光面を回転させる非相反性の光学活性を有する第1の偏光素子と、
    前記第1の偏光素子を通過した前記入射光を変調して第1の変調光を生成するとともに、前記第1の変調光を前記第1の偏光素子へ反射する第1の反射型空間光変調器と、
    前記第1の偏光素子を再び通過し、前記光分岐面において反射された前記第1の変調光の偏光面を回転させる非相反性の光学活性を有する第2の偏光素子と、
    前記第2の偏光素子を通過した前記第1の変調光を変調して第2の変調光を生成するとともに、前記第2の変調光を前記第2の偏光素子へ反射する第2の反射型空間光変調器と、を備え、
    前記第2の変調光は、前記第2の偏光素子を再び通過した後、前記光分岐面を透過して出力されることを特徴とする、光学モジュール。
  2. 前記偏光ビームスプリッタが、
    前記入射光を受ける光入射面と、
    前記第2の変調光を出力する光出射面と、
    前記第1の偏光素子と光学的に結合された第1の面と、
    前記第2の偏光素子と光学的に結合された第2の面と
    を有することを特徴とする、請求項1に記載の光学モジュール。
  3. 前記光入射面と前記第1の面とが第1の方向に並んで配置されており、
    前記光出射面と前記第2の面とが、前記第1の方向と交差する第2の方向に並んで配置されていることを特徴とする、請求項2に記載の光学モジュール。
  4. 前記光入射面と光学的に結合された第3の偏光素子を更に備え、
    前記第3の偏光素子は、前記入射光がp偏光成分を含むように前記入射光の偏光面を回転させることを特徴とする、請求項2または3に記載の光学モジュール。
  5. s偏光成分を反射してp偏光成分を透過する光分岐面を有し、s偏光成分を含む入射光を前記光分岐面に受ける偏光ビームスプリッタと、
    前記光分岐面において反射された前記入射光の偏光面を回転させる非相反性の光学活性を有する第1の偏光素子と、
    前記第1の偏光素子を通過した前記入射光を変調して第1の変調光を生成するとともに、前記第1の変調光を前記第1の偏光素子へ反射する第1の反射型空間光変調器と、
    前記第1の偏光素子を再び通過し、前記光分岐面を透過した前記第1の変調光の偏光面を回転させる非相反性の光学活性を有する第2の偏光素子と、
    前記第2の偏光素子を通過した前記第1の変調光を変調して第2の変調光を生成するとともに、前記第2の変調光を前記第2の偏光素子へ反射する第2の反射型空間光変調器と、を備え、
    前記第2の変調光は、前記第2の偏光素子を再び通過した後、前記光分岐面において反射されて出力されることを特徴とする、光学モジュール。
  6. 前記偏光ビームスプリッタが、
    前記入射光を受ける光入射面と、
    前記第2の変調光を出力する光出射面と、
    前記第1の偏光素子と光学的に結合された第1の面と、
    前記第2の偏光素子と光学的に結合された第2の面と
    を有することを特徴とする、請求項5に記載の光学モジュール。
  7. 前記光入射面と前記光出射面とが第1の方向に並んで配置されており、
    前記第1の面と前記第2の面とが、前記第1の方向と交差する第2の方向に並んで配置されていることを特徴とする、請求項6に記載の光学モジュール。
  8. 前記光入射面と光学的に結合された第3の偏光素子を更に備え、
    前記第3の偏光素子は、前記入射光がs偏光成分を含むように前記入射光の偏光面を回転させることを特徴とする、請求項6または7に記載の光学モジュール。
  9. 前記偏光ビームスプリッタと前記第1の反射型空間光変調器との間、もしくは前記偏光ビームスプリッタと前記第2の反射型空間光変調器との間のうちいずれか一方に配置された2分の1波長板を更に備えることを特徴とする、請求項1〜8のいずれか一項に記載の光学モジュール。
  10. 請求項1〜9のいずれか一項に記載された光学モジュールと、
    観察対象物が載置される載置台と、
    前記観察対象物からの光を前記入射光として前記偏光ビームスプリッタに導く第1の導光光学系と、
    前記偏光ビームスプリッタから出射された前記第2の変調光を導光する第2の導光光学系と、
    前記第2の導光光学系によって導かれた前記第2の変調光を撮像する撮像装置と
    を備えることを特徴とする、光観察装置。
  11. 請求項1〜9のいずれか一項に記載された光学モジュールと、
    照射対象物が載置される載置台と、
    前記偏光ビームスプリッタに入射する前記入射光を出力する光源と、
    前記偏光ビームスプリッタから出射された前記第2の変調光を前記照射対象物に導く導光光学系と
    を備えることを特徴とする、光照射装置。
JP2013079806A 2013-04-05 2013-04-05 光学モジュール、光観察装置、及び光照射装置 Active JP6014538B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013079806A JP6014538B2 (ja) 2013-04-05 2013-04-05 光学モジュール、光観察装置、及び光照射装置
PCT/JP2014/058290 WO2014162927A1 (ja) 2013-04-05 2014-03-25 光学モジュール、光観察装置、及び光照射装置
US14/782,021 US10175552B2 (en) 2013-04-05 2014-03-25 Optical module, optical observation device, and light exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013079806A JP6014538B2 (ja) 2013-04-05 2013-04-05 光学モジュール、光観察装置、及び光照射装置

Publications (2)

Publication Number Publication Date
JP2014202958A JP2014202958A (ja) 2014-10-27
JP6014538B2 true JP6014538B2 (ja) 2016-10-25

Family

ID=51658225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013079806A Active JP6014538B2 (ja) 2013-04-05 2013-04-05 光学モジュール、光観察装置、及び光照射装置

Country Status (3)

Country Link
US (1) US10175552B2 (ja)
JP (1) JP6014538B2 (ja)
WO (1) WO2014162927A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6585530B2 (ja) 2016-03-16 2019-10-02 浜松ホトニクス株式会社 光学モジュール
CN109188700B (zh) * 2018-10-30 2021-05-11 京东方科技集团股份有限公司 光学显示系统及ar/vr显示装置
CN112683192A (zh) * 2019-10-18 2021-04-20 三赢科技(深圳)有限公司 非接触式的待测件外形尺寸测量装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479722A (en) * 1987-09-22 1989-03-24 Matsushita Electric Ind Co Ltd Optical isolator
EP0483827B1 (en) 1990-10-31 1997-01-02 Dainippon Screen Mfg. Co., Ltd. Apparatus for scanning drum inner face and method of scanning therefor
JPH05257110A (ja) 1992-03-13 1993-10-08 Sharp Corp 投射型液晶表示装置
JP3573190B2 (ja) 1998-07-03 2004-10-06 株式会社富士通ゼネラル 液晶プロジェクタ装置
JP2001091842A (ja) 1999-09-21 2001-04-06 Olympus Optical Co Ltd 共焦点顕微鏡
IL133052A0 (en) 1999-11-19 2001-03-19 Unic View Ltd Imaging system
US6625181B1 (en) 2000-10-23 2003-09-23 U.C. Laser Ltd. Method and apparatus for multi-beam laser machining
JP3858723B2 (ja) 2002-02-26 2006-12-20 株式会社日立製作所 光学ユニット及びそれを用いた投射型プロジェクタ装置
JP3730582B2 (ja) 2002-03-04 2006-01-05 株式会社日立製作所 色分離合成光学系及びそれを用いた投写型液晶表示装置
US6924893B2 (en) 2002-05-13 2005-08-02 Marine Biological Laboratory Enhancing polarized light microscopy
DE10227120A1 (de) 2002-06-15 2004-03-04 Carl Zeiss Jena Gmbh Mikroskop, insbesondere Laserscanningmikroskop mit adaptiver optischer Einrichtung
JP2005144524A (ja) 2003-11-19 2005-06-09 Laserfront Technologies Inc レーザ加工装置
WO2006058187A2 (en) 2004-11-23 2006-06-01 Robert Eric Betzig Optical lattice microscopy
TW200639474A (en) 2005-05-10 2006-11-16 Univ Nat Chiao Tung Optical system design
JP2009234915A (ja) 2006-07-19 2009-10-15 Univ Of Tokyo 化合物又はその塩、それらの製造方法、芳香族アゾ化合物及び蛍光材料
JP4877963B2 (ja) 2006-10-26 2012-02-15 三菱鉛筆株式会社 複合部材
JP4245041B2 (ja) 2006-11-27 2009-03-25 セイコーエプソン株式会社 照明装置及びプロジェクタ
HU0700132D0 (en) 2007-02-06 2007-05-02 Bayer Innovation Gmbh Phase modulator system comprising a beam splitter and a linear polarisation mode phase modulator and method for separating a light beam travelling toward and reflected back from such a phase modulator
WO2008105312A1 (ja) * 2007-02-26 2008-09-04 Hamamatsu Photonics K.K. 光源装置、観察装置および加工装置
JP5090783B2 (ja) * 2007-05-02 2012-12-05 日本電信電話株式会社 可変光減衰器、可変光減衰器内蔵受信器および光減衰方法
JP5108661B2 (ja) 2008-07-03 2012-12-26 浜松ホトニクス株式会社 レーザ加工装置およびレーザ加工方法
US8820937B2 (en) 2010-08-17 2014-09-02 Lc-Tec Displays Ab Optical polarization state modulator assembly for use in stereoscopic three-dimensional image projection system
DE102010039950B4 (de) 2010-08-30 2021-07-22 Leica Microsystems Cms Gmbh Mikroskop mit Mikro- und Makro-Objektiven
JP5675330B2 (ja) 2010-12-27 2015-02-25 キヤノン株式会社 画像表示装置

Also Published As

Publication number Publication date
US20160048069A1 (en) 2016-02-18
JP2014202958A (ja) 2014-10-27
WO2014162927A1 (ja) 2014-10-09
US10175552B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
US11561406B2 (en) Image projector
JP6014537B2 (ja) 光学モジュールおよび観察装置
US6594090B2 (en) Laser projection display system
JP6043228B2 (ja) 光学モジュールおよび光照射装置
TW202142947A (zh) 使用相位圖像生成器的圖像投影儀
US9535401B2 (en) Electronic holographic display device
KR20140054072A (ko) 콤팩트한 배면 초점 거리를 갖는 광학 시스템
WO2018191696A1 (en) Methods and apparatus employing angular and spatial modulation of light
JP6014538B2 (ja) 光学モジュール、光観察装置、及び光照射装置
JP2009175441A (ja) 観察装置
WO2016150095A1 (zh) 一种抑制激光散斑的方法和装置
WO2013183156A1 (ja) 投写型表示装置
US9268077B2 (en) Projection device
CN111338094A (zh) 一种基于多元复合消散斑的激光光源
KR100828365B1 (ko) 레이저 디스플레이장치
KR102265872B1 (ko) 광학 검사 시스템 및 그 방법
US7564509B2 (en) Illumination of objects using spatial light modulators
JP2009169108A (ja) 観察装置
JP2023007531A (ja) インコヒーレントデジタルホログラフィ撮像装置および撮像方法
JP2023056369A (ja) ホログラム撮像装置
Lee et al. 2D/3D imaging screen using spatially multiplexed holographic optical elements
JP2004126561A (ja) デジタル投影におけるポジ像およびネガ像生成のための配置
EP1744198A1 (en) Illumination of objects using spatial light modulators
JP2011128569A (ja) 画像投射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6014538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150