JP6013743B2 - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor device Download PDFInfo
- Publication number
- JP6013743B2 JP6013743B2 JP2012040148A JP2012040148A JP6013743B2 JP 6013743 B2 JP6013743 B2 JP 6013743B2 JP 2012040148 A JP2012040148 A JP 2012040148A JP 2012040148 A JP2012040148 A JP 2012040148A JP 6013743 B2 JP6013743 B2 JP 6013743B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- semiconductor layer
- plane
- compound semiconductor
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
- C30B25/205—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer the substrate being of insulating material
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02428—Structure
- H01L21/0243—Surface structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Recrystallisation Techniques (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Description
本発明は、半導体装置及びその製造方法、並びに自立基板の製造方法に関する。 The present invention relates to a semiconductor device, a method for manufacturing the same, and a method for manufacturing a free-standing substrate.
基板表面に微細凹凸を形成した加工基板の上に半導体層を形成する半導体装置の製造方法が知られている(例えば特許文献1)。 A method for manufacturing a semiconductor device is known in which a semiconductor layer is formed on a processed substrate having fine irregularities formed on the surface of the substrate (for example, Patent Document 1).
また、主面がc面であるGaN(以下「c面GaN」等のようにも表記する。)は、膜厚が10-1μmのオーダーから102μmのオーダーに渡って、膜厚が厚くなるに従って欠陥密度が小さくなることが知られている(例えば非特許文献1)。 GaN whose principal surface is c-plane (hereinafter also referred to as “c-plane GaN”) has a film thickness ranging from the order of 10 −1 μm to the order of 10 2 μm. It is known that the defect density decreases as the thickness increases (for example, Non-Patent Document 1).
ところが、c面GaNは、c面が極性面であることから、発光素子に用いた場合、自発分極やピエゾ分極のために発光効率が低く、そのため当該用途に用いるのは不利であると考えられている。 However, since the c-plane GaN is a c-polar plane, the c-plane GaN has a low luminous efficiency due to spontaneous polarization and piezo-polarization when used in a light-emitting element, and is therefore considered disadvantageous for use in this application. ing.
一方、サファイア基板の加工基板上に結晶成長した主面がc面以外である非極性面又は半極性面のGaNでは、少なくとも10μmのオーダーまでは、膜厚と欠陥密度との相関関係はなく、c面GaNのような膜厚が厚くなるのに伴う欠陥密度の低減効果は見られない。 On the other hand, in the case of GaN having a nonpolar or semipolar surface whose principal surface is crystal plane grown on the processed substrate of the sapphire substrate, there is no correlation between the film thickness and the defect density up to the order of 10 μm, There is no effect of reducing the defect density as the film thickness of c-plane GaN increases.
本発明の課題は、主面が非極性面又は半極性面であり且つ表面の欠陥密度が小さいIII-V族化合物半導体層を得ることである。 An object of the present invention is to obtain a III-V group compound semiconductor layer whose main surface is a nonpolar surface or a semipolar surface and whose surface defect density is small.
本発明は、基板表面が、基板主面部分と、該基板主面部分とは面方位が異なると共にIII-V族化合物半導体の結晶成長が可能な結晶成長面部分と、を有するベース基板を用い、該ベース基板の該基板表面における該結晶成長面部分を起点として該III-V族化合物半導体を層状に結晶成長させることにより主面が非極性面又は半極性面であるIII-V族化合物半導体層を形成する半導体層形成工程を有する半導体装置の製造方法であって、
上記半導体層形成工程において、III-V族化合物半導体層を厚さ300μm以上に形成し、そして、得られるIII-V族化合物半導体層の表面の欠陥密度が1×10 7 /cm 2 以下である。
The present invention uses a base substrate having a substrate surface having a substrate main surface portion and a crystal growth surface portion capable of crystal growth of a III-V compound semiconductor having a different plane orientation from the substrate main surface portion. A III-V group compound semiconductor whose principal surface is a nonpolar plane or a semipolar plane by growing the group III-V compound semiconductor in layers from the crystal growth plane portion on the substrate surface of the base substrate A method of manufacturing a semiconductor device including a semiconductor layer forming step of forming a layer,
In the semiconductor layer forming step is performed to form the above thickness 3 00Myuemu group III-V compound semiconductor layer, and the defect density of the surface of the resulting group III-V compound semiconductor layer is in 1 × 10 7 / cm 2 or less There is .
本発明によれば、III-V族化合物半導体層を厚さ100μm以上に形成することにより、主面が非極性面又は半極性面であり且つ表面の欠陥密度が小さいIII-V族化合物半導体層を得ることができる。 According to the present invention, the III-V group compound semiconductor layer is formed to a thickness of 100 μm or more, whereby the main surface is a nonpolar plane or a semipolar plane and the surface defect density is small. Can be obtained.
以下、実施形態について図面に基づいて詳細に説明する。 Hereinafter, embodiments will be described in detail based on the drawings.
本実施形態に係る半導体装置の製造方法は、図1に示すように、加工基板のベース基板10を用い、その上にIII-V族化合物半導体を層状に結晶成長させることにより主面が非極性面又は半極性面であるIII-V族化合物半導体層20(以下「半導体層」という。)を形成する半導体層形成工程を有する。
As shown in FIG. 1, the manufacturing method of the semiconductor device according to the present embodiment uses a
ここで、ベース基板10としては、特に限定されるものではなく、例えば、サファイア基板(Al2O3のコランダム構造の単結晶の基板)、ZnO基板、SiC基板等が挙げられる。これらのうちサファイア基板が好ましい。
Here, the
ベース基板10は、加工基板であるが、例えば、図2(a)に示すような基板表面11にエッチング等により微細凹凸を形成した加工基板等が挙げられる。基板表面11は、基板主面部分11aと、その基板主面部分11aとは面方位が異なると共にIII-V族化合物半導体の結晶成長が可能な結晶成長面部分11bとを有する。ベース基板10は、図2(b)に示すように結晶成長面部分11b以外がSiO2等からなる結晶成長阻害層12で被覆されたものであってもよい。
The
基板主面部分11aは、a面<{11−20}面>、c面<{0001}面>、m面<{1−100}面>、及びr面<{1−102}面>のいずれであってもよく、また、他の面方位の結晶面であってもよい。結晶成長面部分11bは、a面<{11−20}面>、c面<{0001}面>、m面<{1−100}面>、及びr面<{1−102}面>のいずれであってもよく、また、他の面方位の結晶面であってもよい。ベース基板10の基板表面11における結晶成長面部分11bを起点としてIII-V族化合物半導体を結晶成長させるが、そのIII-V族化合物半導体におけるIII族元素としてはアルミニウム(Al)、ガリウム(Ga)、インジウム(In)が挙げられ、V族元素としては窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)が挙げられる。III-V族化合物半導体としては、典型的にはIII族窒化物半導体が挙げられ、具体的には、例えば、GaN、AlGaN、InGaN、InAlGaN、InAlN、InN等が挙げられる。これらのうちGaNが好ましい。
Substrate
半導体層20の主面は、非極性面又は半極性面であり、a面<{11−20}面>、m面<{1−100}面>、及びr面<{1−102}面>のいずれであってもよく、また、{10−11}面、{11−22}面、{20−21}面等の他の面方位の結晶面であってもよい。これらのうち半導体層20を厚さ100μm以上にした際の転位低減効果が著しいことから半極性面の{10−11}面が特に好ましい。ベース基板10上へのIII-V族化合物半導体の結晶成長はエピタキシャル成長であることが好ましい。
The main surface of the
結晶成長手段としては、例えば、ハイドライド気相成長法(HVPE法)、有機金属化学気相成長法(MOCVD法)、分子線エピタキシャル法(MBE法)等の気相成長手段が挙げられる。高速で厚膜の高品質な半導体層20が形成可能であるという観点からはハイドライド気相成長法が好ましい。結晶成長は、単一手段で行ってもよく、また、複数の手段を組み合わせて行ってもよい。例えば、まず、ベース基板10上に、有機金属化学気相成長法により、III-V族化合物半導体を結晶成長させて厚さの薄い半導体層を形成したテンプレートを作製し、そのテンプレートを用いて結晶成長速度が速いハイドライド気相成長法によりIII-V族化合物半導体を結晶成長させて半導体層20を形成することが考えられる。
Examples of the crystal growth means include vapor phase growth means such as hydride vapor phase epitaxy (HVPE), metal organic chemical vapor deposition (MOCVD), and molecular beam epitaxy (MBE). From the viewpoint that a high-
結晶成長条件としては、例えば、ハイドライド気相成長法によりベース基板10としてのサファイア基板上にIII-V族化合物半導体のGaNを結晶成長させる場合、反応容器内の圧力は10〜120kPa、及びサファイア基板の温度は900〜1150℃であり、また、キャリアガスには水素ガスや窒素ガス或いはそれらの混合ガスを用い、さらに、GaClを形成するための塩化水素ガス、及び窒素源のアンモニアガスの流量比(NH3/HCl)は2〜100である。なお、半導体層20を形成する前に、有機金属化学気相成長法等によりベース基板10の表面に厚さ20〜30nm程度のIII-V族化合物半導体からなる低温バッファ層及びまたは1〜10μmのIII-V族化合物半導体を設けてもよい。
As the crystal growth conditions, for example, when GaN of a III-V group compound semiconductor is grown on a sapphire substrate as the
そして、本実施形態に係る半導体装置の製造方法では、その半導体層形成工程において、半導体層20を厚さ100μm以上に形成する。このように半導体層20を厚さ100μm以上に形成することにより、主面が非極性面又は半極性面であり且つ表面の欠陥密度が小さい半導体層20を得ることができる。なお、半導体層20を厚さとは、ベース基板10の表面の微細凹凸における凸部の上端面から半導体層20表面までの寸法である。
And in the manufacturing method of the semiconductor device concerning this embodiment, in the semiconductor layer formation process,
上記作用効果の観点からは、III-V族化合物半導体を結晶成長させて形成する半導体層20の厚さは好ましくは300μm以上であり、より好ましくは400μm以上である。なお、半導体層20の厚さの上限は特に限定されないが、例えば10cm以下である。
From the viewpoint of the above effects, the thickness of the
得られる半導体層20の欠陥密度は、好ましくは1×107/cm2以下であり、より好ましくは1×106/cm2以下である。欠陥密度はカソードルミネッセンスによる暗点測定やKHOエッチングによるピット密度測定により算出できる。
The defect density of the obtained
本実施形態に係る半導体装置の製造方法では、ベース基板10上に形成した半導体層20の上に各種の機能層を設けて半導体装置を製造してもよい。この場合、半導体装置として、基板表面11が、基板主面部分11aと、基板主面部分11aとは面方位が異なると共にIII-V族化合物半導体の結晶成長が可能な結晶成長面部分11bとを有するベース基板10と、ベース基板10の基板表面11における結晶成長面部分11bを起点としてIII-V族化合物半導体が層状に結晶成長して形成された主面が非極性面又は半極性面である半導体層20とを備え、半導体層20の厚さが100μm以上である構成のものを得ることができる。
In the method for manufacturing a semiconductor device according to this embodiment, the semiconductor device may be manufactured by providing various functional layers on the
また、本実施形態に係る半導体装置の製造方法では、半導体層20の全部又は一部をベース基板10から分離して自立基板を製造し(基板分離工程)、その自立基板上に各種の機能層を設けて半導体装置を製造してもよい。
In the method for manufacturing a semiconductor device according to the present embodiment, all or part of the
本実施形態で製造される半導体装置としては、欠陥密度の小さい半導体層20が得られ、従って、その上に発光層を設ければ高い発光効率を得ることができることから、特に半導体レーザや発光ダイオード等の半導体発光素子が好適である。
As the semiconductor device manufactured in the present embodiment, the
(半導体層の形成)
r面サファイア基板、n面サファイア基板({11−23}面サファイア基板)、{22−43}面サファイア基板の表面に、c軸に垂直で、且つ側面にc面近傍の結晶成長面部分が露出するようにストライプ状に溝加工を施すと共に、基板主面部分をSiO2からなる結晶成長阻害層で被覆した加工基板を作製した。溝間の凸部幅及び溝幅をいずれも2μmに形成し、また、溝深さを1μmに形成した。
(Formation of semiconductor layer)
On the surface of the r-plane sapphire substrate, n-plane sapphire substrate ({11-23} plane sapphire substrate), {22-43} plane sapphire substrate, there is a crystal growth surface portion perpendicular to the c-axis and near the c-plane on the side surface. A processed substrate was produced in which grooves were formed in stripes so as to be exposed, and the main surface portion of the substrate was coated with a crystal growth inhibiting layer made of SiO 2 . The protrusion width and groove width between the grooves were both 2 μm, and the groove depth was 1 μm.
上記加工基板に、有機金属化学気相成長法により、結晶成長面部分を基点としてGaNを結晶成長させ、主面が{11−22}面である厚さ5μmのGaN層を形成したGaNテンプレート、主面が{10−11}面である厚さ5μmのGaN層を形成したGaNテンプレート、及び主面が{20−21}面である厚さ8μmのGaN層を形成したGaNテンプレートをそれぞれ作製した。これらのGaNテンプレートのGaN層表面の欠陥密度は約2.0〜3.0×108/cm2であった。 A GaN template in which a GaN layer having a main surface of {11-22} plane and a GaN layer having a thickness of 5 μm is formed on the processed substrate by metalorganic chemical vapor deposition using a crystal growth surface portion as a base point; A GaN template in which a GaN layer having a thickness of 5 μm whose main surface is a {10-11} plane and a GaN template in which a GaN layer having a thickness of 8 μm whose main surface is a {20-21} plane were formed were prepared. . The defect density on the surface of the GaN layer of these GaN templates was about 2.0 to 3.0 × 10 8 / cm 2 .
そして、各GaNテンプレートについて、GaNを結晶成長させて厚さを変えてGaN層を形成し、それぞれについて表面の欠陥密度を測定した。 And about each GaN template, GaN was crystal-grown and thickness was changed, the GaN layer was formed, and the defect density of the surface was measured about each.
なお、GaN層の形成は以下のようにして行った。 The GaN layer was formed as follows.
まず、GaNテンプレートを、縦型ハイドライド気相成長(HVPE)装置(FH702−F型)の反応炉に、GaN層がガスの上流を向くように炭素製試料固定台にセットした。次いで、炉内圧力を101.3kPaに保持して基板領域を昇温した。その後、基板温度が500℃を超えた時点でアンモニアガスの供給を開始し、基板温度が結晶成長温度の1040〜1100℃に達した後、その状態を25分間保持して基板温度を安定させた。続いて、水素ガス及び窒素ガスをキャリアガスとして供給しながら、塩化水素ガスを0.8slm及びアンモニアガスを8〜24slmのそれぞれの流量(流量比=10〜30)で供給してGaNの結晶成長を行った。その後、塩化水素ガスの供給を止め、アンモニアガスを供給しながら自然冷却し、基板温度が200℃以下になった後にアンモニアガスの供給を止め、しかる後、反応炉からGaN層が形成された基板を取り出した。 First, the GaN template was set on a carbon sample fixing base in a reaction furnace of a vertical hydride vapor phase epitaxy (HVPE) apparatus (FH702-F type) so that the GaN layer faced upstream of the gas. Next, the substrate region was heated while maintaining the furnace pressure at 101.3 kPa. Thereafter, supply of ammonia gas was started when the substrate temperature exceeded 500 ° C., and after the substrate temperature reached 1040 to 1100 ° C. of the crystal growth temperature, the state was maintained for 25 minutes to stabilize the substrate temperature. . Subsequently, while supplying hydrogen gas and nitrogen gas as a carrier gas, hydrogen chloride gas is supplied at a flow rate of 0.8 slm and ammonia gas at a flow rate of 8 to 24 slm (flow rate ratio: 10 to 30) to grow GaN crystals. Went. Thereafter, the supply of hydrogen chloride gas is stopped, the substrate is naturally cooled while supplying ammonia gas, the supply of ammonia gas is stopped after the substrate temperature becomes 200 ° C. or less, and then the substrate on which the GaN layer is formed from the reactor. Was taken out.
また、同様に、サファイア基板上に厚さを変えてc面GaN層を形成し、それぞれについて表面の欠陥密度を測定した。 Similarly, c-plane GaN layers were formed on the sapphire substrate with different thicknesses, and the surface defect density was measured for each.
(欠陥密度評価)
得られたGaN層について、走査型電子顕微鏡/カソードルミネッセンス(SEM・CL)装置を用いて、GaN層表面の観察を行った。このときの加速電圧は5kV、観察範囲は20μm×20μmとし、観察範囲内に観察された暗点の総数から欠陥密度を算出した。
(Defect density evaluation)
About the obtained GaN layer, the GaN layer surface was observed using the scanning electron microscope / cathode luminescence (SEM * CL) apparatus. At this time, the acceleration voltage was 5 kV, the observation range was 20 μm × 20 μm, and the defect density was calculated from the total number of dark spots observed in the observation range.
(半導体層の厚さと欠陥密度との関係)
図3はGaN層の厚さと欠陥密度との関係を示す。
(Relationship between semiconductor layer thickness and defect density)
FIG. 3 shows the relationship between the thickness of the GaN layer and the defect density.
図3によれば、極性面のc面GaNでは、膜厚1μmのオーダーから100μmのオーダーに渡って、膜厚が厚くなるに従って欠陥密度が小さくなっていることが分かる。これに対し、半極性面の{11−22}面GaN、{10−11}面GaN、及び{20−21}面GaNでは、膜厚1μmのオーダーから10μmのオーダーにおいては、欠陥密度の膜厚依存性は認められないものの、膜厚100μmのオーダーになると、膜厚が厚くなるに従って欠陥密度が小さくなっていることが分かる。特に、{10−11}面GaNでは、膜厚100μmのオーダーにおける膜厚増加に伴う著しい欠陥密度の減少効果が認められる。 According to FIG. 3, it can be seen that in the c-plane GaN of the polar plane, the defect density decreases as the film thickness increases from the order of 1 μm to 100 μm. On the other hand, in the {11-22} plane GaN, {10-11} plane GaN, and {20-21} plane GaN, which are semipolar planes, a film having a defect density in the order of 1 μm to 10 μm. Although no thickness dependency is observed, it can be seen that when the film thickness is on the order of 100 μm, the defect density decreases as the film thickness increases. In particular, in {10-11} plane GaN, a remarkable effect of reducing the defect density with an increase in film thickness in the order of 100 μm is observed.
本発明は、半導体装置及びその製造方法、並びに自立基板の製造方法について有用である。 The present invention is useful for a semiconductor device, a method for manufacturing the same, and a method for manufacturing a free-standing substrate.
10 ベース基板
11 基板表面
11a 基板主面部分
11b 結晶成長面部分
20 III-V族化合物半導体層(半導体層)
10
Claims (7)
上記半導体層形成工程において、III-V族化合物半導体層を厚さ300μm以上に形成し、そして、得られるIII-V族化合物半導体層の表面の欠陥密度が1×10 7 /cm 2 以下である半導体装置の製造方法。 A base substrate having a substrate surface having a substrate main surface portion and a crystal growth surface portion capable of crystal growth of a group III-V compound semiconductor while having a plane orientation different from that of the substrate main surface portion. The III-V group compound semiconductor layer having a main surface that is a nonpolar plane or a semipolar plane is formed by growing the group III-V compound semiconductor in layers from the crystal growth plane portion of the substrate surface of the substrate. A method of manufacturing a semiconductor device having a semiconductor layer forming step,
In the semiconductor layer forming step is performed to form the above thickness 3 00Myuemu group III-V compound semiconductor layer, and the defect density of the surface of the resulting group III-V compound semiconductor layer is in 1 × 10 7 / cm 2 or less A method of manufacturing a semiconductor device.
上記III-V族化合物半導体がGaNである半導体装置の製造方法。 In the manufacturing method of the semiconductor device according to claim 1,
A method for manufacturing a semiconductor device, wherein the III-V compound semiconductor is GaN.
上記III-V族化合物半導体層の主面が{10−11}面である半導体装置の製造方法。 In the manufacturing method of the semiconductor device according to claim 1 or 2,
A method for manufacturing a semiconductor device, wherein the main surface of the III-V compound semiconductor layer is a {10-11} plane.
上記ベース基板がサファイア基板である半導体装置の製造方法。 In the manufacturing method of the semiconductor device according to any one of claims 1 to 3,
A method for manufacturing a semiconductor device, wherein the base substrate is a sapphire substrate.
上記半導体層形成工程において形成したIII-V族化合物半導体層の全部又は一部を自立基板としてベース基板から分離する基板分離工程をさらに有する半導体装置の製造方法。 In the manufacturing method of the semiconductor device according to any one of claims 1 to 4,
A method of manufacturing a semiconductor device, further comprising a substrate separation step of separating all or part of the III-V compound semiconductor layer formed in the semiconductor layer formation step from a base substrate as a free-standing substrate.
上記ベース基板の上記基板表面における上記結晶成長面部分を起点として上記III-V族化合物半導体が層状に結晶成長して形成された主面が非極性面又は半極性面であるIII-V族化合物半導体層と、
を備えた半導体装置であって、
上記III-V族化合物半導体層は、その厚さが300μm以上であり、且つその表面の欠陥密度が1×10 7 /cm 2 以下である半導体装置。 A base substrate having a substrate surface having a substrate main surface portion and a crystal growth surface portion capable of crystal growth of a group III-V compound semiconductor having a different plane orientation from the substrate main surface portion;
A III-V group compound in which the principal surface formed by crystal growth of the III-V compound semiconductor in a layered manner starting from the crystal growth surface portion on the substrate surface of the base substrate is a nonpolar plane or a semipolar plane A semiconductor layer;
A semiconductor device comprising:
The group III-V compound semiconductor layer has a thickness of 3 00Myuemu least der is, and the semiconductor device defect density of the surface is 1 × 10 7 / cm 2 or less.
上記半導体層形成工程において形成したIII-V族化合物半導体層の全部又は一部を自立基板としてベース基板から分離する基板分離工程と、
を有する自立基板の製造方法であって、
上記半導体層形成工程において、III-V族化合物半導体層を厚さ300μm以上に形成し、そして、得られるIII-V族化合物半導体層の表面の欠陥密度が1×10 7 /cm 2 以下である自立基板の製造方法。 A base substrate having a substrate surface having a substrate main surface portion and a crystal growth surface portion capable of crystal growth of a group III-V compound semiconductor while having a plane orientation different from that of the substrate main surface portion. The III-V group compound semiconductor layer having a main surface that is a nonpolar plane or a semipolar plane is formed by growing the group III-V compound semiconductor in layers from the crystal growth plane portion of the substrate surface of the substrate. A semiconductor layer forming step;
A substrate separating step for separating all or part of the III-V compound semiconductor layer formed in the semiconductor layer forming step from the base substrate as a free-standing substrate;
A self-supporting substrate manufacturing method comprising:
In the semiconductor layer forming step is performed to form the above thickness 3 00Myuemu group III-V compound semiconductor layer, and the defect density of the surface of the resulting group III-V compound semiconductor layer is in 1 × 10 7 / cm 2 or less A method of manufacturing a free-standing substrate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012040148A JP6013743B2 (en) | 2012-02-27 | 2012-02-27 | Manufacturing method of semiconductor device |
PCT/JP2013/001112 WO2013128893A1 (en) | 2012-02-27 | 2013-02-26 | Production method for semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012040148A JP6013743B2 (en) | 2012-02-27 | 2012-02-27 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013175652A JP2013175652A (en) | 2013-09-05 |
JP6013743B2 true JP6013743B2 (en) | 2016-10-25 |
Family
ID=49082106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012040148A Active JP6013743B2 (en) | 2012-02-27 | 2012-02-27 | Manufacturing method of semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6013743B2 (en) |
WO (1) | WO2013128893A1 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003209062A (en) * | 2002-01-17 | 2003-07-25 | Sony Corp | Crystal growth method of compound semiconductor layer and semiconductor element |
JP2003209325A (en) * | 2002-01-17 | 2003-07-25 | Sony Corp | Semiconductor device and forming method thereof |
JP4186603B2 (en) * | 2002-12-05 | 2008-11-26 | 住友電気工業株式会社 | Single crystal gallium nitride substrate, method for manufacturing single crystal gallium nitride substrate, and base substrate for gallium nitride growth |
JP4513446B2 (en) * | 2004-07-23 | 2010-07-28 | 豊田合成株式会社 | Crystal growth method of semiconductor crystal |
JP4713426B2 (en) * | 2006-08-30 | 2011-06-29 | 京セラ株式会社 | Epitaxial substrate and vapor phase growth method |
JP4913674B2 (en) * | 2007-06-07 | 2012-04-11 | 国立大学法人名古屋大学 | Nitride semiconductor structure and manufacturing method thereof |
JP5392855B2 (en) * | 2008-08-25 | 2014-01-22 | 国立大学法人山口大学 | Semiconductor substrate and manufacturing method thereof |
JP5347835B2 (en) * | 2009-08-25 | 2013-11-20 | 豊田合成株式会社 | Group III nitride semiconductor crystal manufacturing method |
-
2012
- 2012-02-27 JP JP2012040148A patent/JP6013743B2/en active Active
-
2013
- 2013-02-26 WO PCT/JP2013/001112 patent/WO2013128893A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2013175652A (en) | 2013-09-05 |
WO2013128893A1 (en) | 2013-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5328931B2 (en) | Low defect density free-standing gallium nitride substrate manufacturing method and device manufactured thereby | |
WO2012121154A1 (en) | Base, substrate with gallium nitride crystal layer, and process for producing same | |
JP2008285364A (en) | GaN SUBSTRATE, AND EPITAXIAL SUBSTRATE AND SEMICONDUCTOR LIGHT-EMITTING ELEMENT USING THE SAME | |
US10312401B2 (en) | Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip | |
KR20080075914A (en) | Process for growth of low dislocation density gan | |
CN104518062A (en) | Method of manufacturing semiconductor light emitting device | |
JP2009018983A (en) | GaN SUBSTRATE, SUBSTRATE WITH EPITAXIAL LAYER, SEMICONDUCTOR DEVICE, AND METHOD FOR PRODUCING GaN SUBSTRATE | |
JP2006232639A (en) | Gas phase growth method of nitride-based semiconductor, nitride-based semiconductor epitaxial substrate, self-standing substrate, and semiconductor device | |
US10043662B2 (en) | Method of forming semiconductor substrate | |
JP2009238772A (en) | Epitaxial substrate, and manufacturing method of epitaxial substrate | |
JP4856792B2 (en) | Method of manufacturing nitride semiconductor device | |
JP6925141B2 (en) | Semiconductor substrates, semiconductor light emitting devices and lamps | |
JP2011051849A (en) | Nitride semiconductor self-supporting substrate and method for manufacturing the same | |
JP2009208991A (en) | Method for producing nitride semiconductor substrate | |
JP5957179B2 (en) | Aluminum carbide thin film, semiconductor substrate on which aluminum carbide thin film is formed, and manufacturing method thereof | |
JP2012204540A (en) | Semiconductor device and method of manufacturing the same | |
JP5814131B2 (en) | Structure and manufacturing method of semiconductor substrate | |
JP7350477B2 (en) | Method for manufacturing semiconductor growth substrate, semiconductor element, semiconductor light emitting device, and semiconductor growth substrate | |
JP5265404B2 (en) | Nitride semiconductor light emitting device and manufacturing method thereof | |
JP4960621B2 (en) | Nitride semiconductor growth substrate and manufacturing method thereof | |
JP2007227803A (en) | Gas phase growth method of nitride group semiconductor, nitride group semiconductor expitaxial substrate using the same, self-standing substrate, and semiconductor device | |
JP6013743B2 (en) | Manufacturing method of semiconductor device | |
JP2006128653A (en) | Group iii-v compound semiconductor, its manufacturing method and its use | |
JP2013040059A (en) | Method for manufacturing group-iii nitride semiconductor crystal, and group-iii nitride semiconductor crystal manufactured by the same | |
JP5488562B2 (en) | Manufacturing method of nitride semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160923 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6013743 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |