JP6011254B2 - Electronic component having joint with solder alloy containing Bi as main component - Google Patents

Electronic component having joint with solder alloy containing Bi as main component Download PDF

Info

Publication number
JP6011254B2
JP6011254B2 JP2012243192A JP2012243192A JP6011254B2 JP 6011254 B2 JP6011254 B2 JP 6011254B2 JP 2012243192 A JP2012243192 A JP 2012243192A JP 2012243192 A JP2012243192 A JP 2012243192A JP 6011254 B2 JP6011254 B2 JP 6011254B2
Authority
JP
Japan
Prior art keywords
solder
thickness
joint
oxide layer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012243192A
Other languages
Japanese (ja)
Other versions
JP2014091149A (en
Inventor
井関 隆士
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012243192A priority Critical patent/JP6011254B2/en
Publication of JP2014091149A publication Critical patent/JP2014091149A/en
Application granted granted Critical
Publication of JP6011254B2 publication Critical patent/JP6011254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、Pbフリーはんだ合金を用いて接合される接合部を有する電子部品に関し、特に高温用はんだ合金として好適なBiを主成分とするPbフリーはんだ合金を用いて接合される接合部を有する電子部品に関する。   The present invention relates to an electronic component having a joint portion that is joined using a Pb-free solder alloy, and particularly has a joint portion that is joined using a Pb-free solder alloy mainly composed of Bi that is suitable as a high-temperature solder alloy. It relates to electronic components.

近年、環境に有害な化学物質に対する規制がますます厳しくなってきており、この規制は電子部品等を基板に接合する目的で使用されるはんだ材料に対しても例外ではない。はんだ材料には古くからPb(鉛)が主成分として使われ続けてきたが、すでにRoHS指令などで規制対象物質になっている。このため、Pbフリーはんだの開発が盛んに行われている。   In recent years, regulations on chemical substances harmful to the environment have become stricter, and this regulation is no exception for solder materials used for the purpose of joining electronic components and the like to a substrate. Pb (lead) has been used as a main component for solder materials for a long time, but it has already been regulated by the RoHS directive. For this reason, Pb-free solder has been actively developed.

電子部品を基板に接合する際に使用するはんだは、その使用限界温度によって高温用(約260℃〜400℃)と中低温用(約140℃〜230℃)に大別され、それらのうち、中低温用(約140〜230℃)のはんだ合金に関しては、Snを主成分とするPbフリーはんだ合金が既に実用化されている。例えば、特許文献1には、Snを主成分とし、Agを1.0〜4.0質量%、Cuを2.0質量%以下、Niを0.5質量%以下、Pを0.2質量%以下含有するPbフリーはんだ合金が記載されている。また、特許文献2には、Agを0.5〜3.5質量%、Cuを0.5〜2.0質量%含有し、残部がSnからなるPbフリーはんだ合金が記載されている。   Solders used when bonding electronic components to a substrate are roughly classified into high temperature (about 260 ° C. to 400 ° C.) and medium / low temperature (about 140 ° C. to 230 ° C.) depending on the limit temperature of use. As for a solder alloy for medium and low temperatures (about 140 to 230 ° C.), a Pb-free solder alloy containing Sn as a main component has already been put into practical use. For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0 mass%, Cu is 2.0 mass% or less, Ni is 0.5 mass% or less, and P is 0.2 mass%. % Pb-free solder alloy is described. Patent Document 2 describes a Pb-free solder alloy containing 0.5 to 3.5% by mass of Ag, 0.5 to 2.0% by mass of Cu, and the balance being Sn.

一方、高温用のはんだ合金に関しても、Pbフリーを実現するため、様々な機関で開発が行われている。例えば特許文献3には、Biを30〜80質量%含有し、溶融温度が350〜500℃であるBi/Ag系のろう材が開示されている。しかしながら、特許文献3に記載のBi/Ag系ろう材は、液相線温度が400〜700℃と高いため、接合時の作業温度も400〜700℃以上になると推測され、接合される電子デバイスや基板が耐えうる温度を超えていると考えられる。   On the other hand, development of various high-temperature solder alloys has been carried out in various organizations in order to realize Pb-free. For example, Patent Document 3 discloses a Bi / Ag brazing material containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. However, since the Bi / Ag brazing material described in Patent Document 3 has a high liquidus temperature of 400 to 700 ° C., the working temperature at the time of bonding is estimated to be 400 to 700 ° C. or higher, and the electronic device to be bonded It is thought that the temperature exceeds the temperature that the substrate can withstand.

特開平11−077366号公報Japanese Patent Laid-Open No. 11-077366 特開平8−215880号公報JP-A-8-215880 特開2002−160089号公報JP 2002-160089 A

高温用のPbフリーはんだ材料に関しては、上記のようにさまざまな機関で開発されてはいるものの、一般に高温用はんだには、高い固相線温度、適度な液相線温度、低温と高温のヒートサイクルに対する高耐久性、良好な熱応力緩和特性、良好な濡れ広がり性など多くの特性が求められている。このため、未だ実用化の面で十分に満足できる特性を有するはんだ材料は見つかっていないのが実情である。   Although high-temperature Pb-free solder materials have been developed by various organizations as described above, generally high-temperature solder has high solidus temperature, moderate liquidus temperature, low-temperature and high-temperature heat. Many characteristics such as high durability against cycles, good thermal stress relaxation characteristics, and good wetting and spreading properties are required. For this reason, the actual situation is that a solder material having characteristics that are sufficiently satisfactory in terms of practical use has not yet been found.

本発明は上記した従来の事情に鑑みてなされたものであり、Biを主成分とするBi系のPbフリーはんだを用いて接合される接合部を有するSiチップ等の電子部品において、はんだ接合する際の濡れ性と接合性を優れたものにすることにより、高い接合信頼性を得ることを目的としている。   The present invention has been made in view of the above-described conventional circumstances, and is used for solder bonding in an electronic component such as a Si chip having a bonding portion bonded using Bi-based Pb-free solder containing Bi as a main component. It aims at obtaining high joint reliability by making the wettability and joining property excellent at the time.

上記目的を達成するため、本発明者は、はんだ組成以外の要因で濡れ性と接合性を向上させる手段について検討し、電子部品におけるはんだ接合面の状態に着目した結果、当該接合面の表面粗さおよび接合面に存在する酸化物層の厚みが、濡れ性と接合性に大きな影響を及ぼすことを見出し、本発明をなすに至った。   In order to achieve the above object, the present inventor examined means for improving wettability and bondability due to factors other than the solder composition, and as a result of focusing on the state of the solder joint surface in the electronic component, the surface roughness of the joint surface was In addition, the present inventors have found that the thickness of the oxide layer existing on the bonding surface and the wettability and bonding properties have a great influence on the wettability and bonding properties.

すなわち、本発明の第1の実施形態の電子部品は、Zn、Al、Sn、Sb、およびPのうち1種以上を各々5.0質量%以下含有し、残部がBiであり、且つはんだ合金全体においてBiを85質量%以上含有するはんだ合金によって接合される接合部を有し、該接合部の最上層がAu、Ag、NiおよびCuのうちのいずれか1種を主成分とし、該最上層のはんだ接合面の中心線平均粗さが1.0μm以上5.0μm以下であることを特徴としている。 That is, the electronic component of the first embodiment of the present invention contains 5.0% by mass or less of one or more of Zn, Al, Sn, Sb, and P, with the balance being Bi, and a solder alloy. It has a joint part joined by a solder alloy containing Bi in an amount of 85% by mass or more, and the uppermost layer of the joint part is mainly composed of any one of Au, Ag, Ni and Cu, The center line average roughness of the upper layer solder joint surface is 1.0 μm or more and 5.0 μm or less.

また、本発明の第2の実施形態の電子部品は、Zn、Al、Sn、Sb、およびPのうち1種以上を各々5.0質量%以下含有し、残部がBiであり、且つはんだ合金全体においてBiを85質量%以上含有するはんだ合金によって接合される接合部を有し、該接合部の最上層がAu、Ag、NiおよびCuのうちのいずれか1種を主成分とし、表面から深さ方向に1000nm入った部分の酸素量を0%にすると共に該表面から深さ1000nmの間の最高酸素濃度を100%にして酸素濃度が10%まで低下した表面からの進入深さを酸化物層の厚みと定義した時、該最上層のはんだ接合面が厚み0.2nm以上30nm以下の酸化物層で覆われていることを特徴としている。 The electronic component according to the second embodiment of the present invention contains 5.0% by mass or less of one or more of Zn, Al, Sn, Sb, and P, the balance being Bi, and a solder alloy. It has a joint part joined by a solder alloy containing Bi in an amount of 85% by mass or more, and the uppermost layer of the joint part is mainly composed of any one of Au, Ag, Ni, and Cu, and from the surface Oxygen depth at the depth of 1000 nm is reduced to 0%, the maximum oxygen concentration between the surface and 1000 nm depth is set to 100%, and the depth of penetration from the surface where the oxygen concentration is reduced to 10% is oxidized. When defined as the thickness of the physical layer, the solder joint surface of the uppermost layer is covered with an oxide layer having a thickness of 0.2 nm to 30 nm.

さらに本発明の第3の実施形態の電子部品は、Zn、Al、Sn、Sb、およびPのうち1種以上を各々5.0質量%以下含有し、残部としてBiがBiであり、且つはんだ合金全体においてBiを85質量%以上含有するはんだ合金によって接合される接合部を有し、該接合部の最上層がAu、Ag、NiおよびCuのうちのいずれか1種を主成分とし、該最上層のはんだ接合面の中心線平均粗さが1.0μm以上5.0μm以下であり、かつ表面から深さ方向に1000nm入った部分の酸素量を0%にすると共に該表面から深さ1000nmの間の最高酸素濃度を100%にして酸素濃度が10%まで低下した表面からの進入深さを酸化物層の厚みと定義した時、該最上層の該はんだ接合面が厚み0.2nm以上30nm以下の酸化物層で覆われていることを特徴としている。 Furthermore, the electronic component according to the third embodiment of the present invention contains 5.0% by mass or less of one or more of Zn, Al, Sn, Sb, and P, with Bi being Bi as the balance , and solder. The entire alloy has a joint part joined by a solder alloy containing Bi of 85% by mass or more, and the uppermost layer of the joint part is mainly composed of any one of Au, Ag, Ni and Cu, The center line average roughness of the solder joint surface of the uppermost layer is 1.0 μm or more and 5.0 μm or less, and the oxygen content of the portion entering 1000 nm in the depth direction from the surface is reduced to 0% and the depth from the surface is 1000 nm. When the maximum oxygen concentration during the period is defined as 100% and the penetration depth from the surface where the oxygen concentration is reduced to 10% is defined as the thickness of the oxide layer, the solder joint surface of the uppermost layer has a thickness of 0.2 nm or more. Cover with oxide layer of 30nm or less It is characterized in that it is.

また、本発明の電子装置の製造方法は、最上層がAu、Ag、NiおよびCuのうちのいずれか1種を主成分とするはんだ接合部を有する電子部品に対して、Zn、Al、Sn、Sb、およびPのうち1種以上を各々5.0質量%以下含有し、残部がBiであり、且つはんだ合金全体においてBiを85質量%以上含有するはんだ合金を用いてはんだ付けして電子装置を製造する方法であって、該最上層のはんだ接合面の中心線平均粗さが1.0μm以上5.0μm以下であるか、もしくは表面から深さ方向に1000nm入った部分の酸素量を0%にすると共に該表面から深さ1000nmの間の最高酸素濃度を100%にして酸素濃度が10%まで低下した表面からの進入深さを酸化物層の厚みと定義した時、該最上層の該はんだ接合面が厚み0.2nm以上厚さ30nm以下の酸化物層で覆われているか、または該はんだ接合面の中心線平均粗さが1.0μm以上5.0μm以下であって且つ該はんだ接合面が前記定義した厚み0.2nm以上30nm以下の酸化物層で覆われていることを特徴としている。 In addition, the electronic device manufacturing method according to the present invention is applicable to an electronic component having a solder joint whose uppermost layer is mainly composed of any one of Au, Ag, Ni, and Cu. , Sb, and P are each contained in an amount of 5.0% by mass or less, the remainder is Bi, and solder is soldered using a solder alloy containing 85% by mass or more of Bi in the entire solder alloy. A method of manufacturing an apparatus, wherein the center line average roughness of the solder joint surface of the uppermost layer is 1.0 μm or more and 5.0 μm or less, or the amount of oxygen in a portion entering 1000 nm in the depth direction from the surface is measured. When the depth of penetration from the surface where the maximum oxygen concentration between the surface and the depth of 1000 nm from the surface is set to 100% and the oxygen concentration is reduced to 10% is defined as the thickness of the oxide layer, The solder joint surface of It is covered with an oxide layer having a thickness of 0.2 nm or more and 30 nm or less, or the center line average roughness of the solder joint surface is 1.0 μm or more and 5.0 μm or less, and the solder joint surface is defined above It is characterized by being covered with an oxide layer having a thickness of 0.2 nm to 30 nm.

本発明によれば、電子部品のはんだ接合にBi系のPbフリーはんだを用いる場合であっても、濡れ性と接合性に優れたはんだ接合を実現することができ、よって高い接合信頼性を有する電子装置を得ることができる。   According to the present invention, even when Bi-based Pb-free solder is used for solder bonding of electronic components, solder bonding excellent in wettability and bondability can be realized, and thus has high bonding reliability. An electronic device can be obtained.

酸化物層の厚みの定義を説明するグラフである。It is a graph explaining the definition of the thickness of an oxide layer.

Siチップ、SiCチップ、GaNチップなどの電子デバイスや基板において、はんだとの接合部の表面粗さが大きかったり、該表面に形成される酸化物層が厚かったりすると、はんだの濡れ性が著しく低下してしまう。すなわち、表面が粗いとはんだ接合面の実質的な表面積が増えてしまうため、電子部品のはんだ接合部とはんだとの界面に存在する酸化物等が増えて濡れ性を低下させてしまう。さらに、表面が粗いと不純物を巻き込みやすくなる。また、上記接合部のはんだ接合面に形成される酸化物層が厚かったり、該接合面に付着する不純物が多かったりすると該接合部を構成する金属とはんだ合金とが直接接することが困難になり、濡れ性や接合強度を低下させてしまう。   In electronic devices and substrates such as Si chips, SiC chips, and GaN chips, if the surface roughness of the joint with the solder is large or the oxide layer formed on the surface is thick, the wettability of the solder is significantly reduced. Resulting in. That is, if the surface is rough, the substantial surface area of the solder joint surface increases, so that the oxides and the like present at the interface between the solder joint portion of the electronic component and the solder increase, thereby reducing the wettability. Further, when the surface is rough, it becomes easy to entrap impurities. Also, if the oxide layer formed on the solder joint surface of the joint is thick or if there are many impurities adhering to the joint surface, it becomes difficult for the metal constituting the joint and the solder alloy to directly contact each other. , Reducing wettability and bonding strength.

そこで、はんだの濡れ性や接合性を低下させないため、本発明の電子部品では、はんだとの接合がなされる接合面の平均粗さやそこに形成される酸化物層の厚さを所定の値以下に限定している。これにより、一般的に濡れ性が良好であるとはいえないBiを主成分とするはんだを用いても、濡れ性が改善された信頼性の高いはんだ接合が可能となる。また、表面粗さを小さくすることで不純物を付着しづらくすると共に、付着した不純物を除去し易くすることも可能となる。   Therefore, in order to prevent deterioration of the wettability and bondability of the solder, in the electronic component of the present invention, the average roughness of the bonding surface where the solder is bonded and the thickness of the oxide layer formed thereon are below a predetermined value. It is limited to. Thereby, even if it uses the solder which has Bi as a main component which cannot generally be said to be good in wettability, the highly reliable solder joint in which wettability was improved is attained. Further, by reducing the surface roughness, it is possible to make it difficult for impurities to adhere and to easily remove the adhered impurities.

より具体的に説明すると、本発明の一具体例の電子部品は、Biを主成分とするPbフリーはんだ合金との接合がなされる接合部のはんだ接合面の中心線平均粗さが5.0μm以下である。はんだ接合面の表面粗さを上記の値以下に限定することによって、はんだの濡れ性や接合性が向上する。前述したように、はんだとの接合がなされる接合部のはんだ接合面において、はんだの濡れ性や接合性を低下させる大きな原因の一つに該接合面に形成される酸化物層がある。特に、はんだ表面近傍に存在する酸化物量が濡れ性や接合性に大きく影響を及ぼす。すなわち、酸化物層がいくら薄くても、表面が粗くて凹凸が多ければ、はんだ表面(近傍)に存在する酸化物量が多くなってしまい、実質的に酸化物層が厚い場合と同じ現象が起き、濡れ性や接合性を大きく低下させてしまう。   More specifically, the electronic component according to one specific example of the present invention has a center line average roughness of the solder joint surface of the joint portion where the joint with the Pb-free solder alloy containing Bi as a main component is 5.0 μm. It is as follows. By limiting the surface roughness of the solder joint surface to the above value or less, solder wettability and jointability are improved. As described above, an oxide layer formed on the joint surface is one of the major causes of lowering the wettability and jointability of the solder in the solder joint surface of the joint where the joint is made with the solder. In particular, the amount of oxide present in the vicinity of the solder surface greatly affects wettability and bondability. That is, no matter how thin the oxide layer is, if the surface is rough and there are many irregularities, the amount of oxide present on the solder surface (near) increases and the same phenomenon occurs as when the oxide layer is substantially thick. , The wettability and bondability are greatly reduced.

さらに悪いことに、はんだ接合面の表面粗さが大きい場合、単に酸化物量が多くなるだけではなく、電子部品においてはんだとはんだ接合面との接触面積が小さくなる。例えば、はんだで半導体素子と基板とを接合しようとした場合、実質的な接触面積は濡れ性等に非常に大きく影響する。接合面の表面粗さが非常に小さい場合は、接合面上に広がった面積が実質的な接合面積となる。一方、表面粗さが大きい場合、極端にいえば、はんだと半導体素子等との接合面は複数の点だけで接することになり、実質的な接合面積が極めて小さくなってしまう。このような場合、いくら酸化物層が薄くても接している面積が少ないので、所望の接合強度を得ることが困難になる。   To make matters worse, when the surface roughness of the solder joint surface is large, not only the amount of oxide increases, but also the contact area between the solder and the solder joint surface in the electronic component becomes small. For example, when trying to join a semiconductor element and a substrate with solder, the substantial contact area greatly affects wettability and the like. When the surface roughness of the bonding surface is very small, the area spread on the bonding surface is a substantial bonding area. On the other hand, when the surface roughness is large, extremely speaking, the joint surface between the solder and the semiconductor element or the like comes into contact only at a plurality of points, and the substantial joint area becomes extremely small. In such a case, even if the oxide layer is thin, the contact area is small and it is difficult to obtain a desired bonding strength.

このため、本発明の一具体例の電子部品では、はんだ接合面の中心線平均粗さを5.0μm以下、より好ましくは3.0μm以下としている。この値は実験的に得た結果であり、表面粗さを小さくする定性的な理由はすでに説明したとおりである。すなわち、実験的には中心線平均粗さが5.0μmを超えてしまうとBiを主成分とするはんだの濡れ性が著しく低下してしまい、条件によって接合できなかったが、5.0μm以下、より好ましくは3.0μm以下にすることにより高い接合強度を有する優れた信頼性を得ることができる。   Therefore, in the electronic component of one specific example of the present invention, the center line average roughness of the solder joint surface is 5.0 μm or less, more preferably 3.0 μm or less. This value is an experimental result, and the qualitative reason for reducing the surface roughness is as already described. That is, experimentally, when the center line average roughness exceeds 5.0 μm, the wettability of the solder containing Bi as a main component is remarkably lowered, and it was impossible to join depending on the conditions. More preferably, when the thickness is 3.0 μm or less, excellent reliability having high bonding strength can be obtained.

次に、本発明の他の具体例の電子部品について説明する。この他の具体例の電子部品は、はんだとの接合部のはんだ接合面に形成される酸化物層の厚さが30nm以下である。この場合、はんだ接合面の中心線平均粗さは5.0μm以下であることが好ましい。様々な用途に使用されるはんだの濡れ性や接合性に関する不良に対応するには、接合面の酸化物層を薄くすることが効果的である。つまり、濡れ性や接合性を低下させてしまう主要な原因は、半導体素子等の接合部のはんだ接合面とはんだ母相との間に存在する酸化物である。   Next, an electronic component according to another specific example of the present invention will be described. In the electronic component of another specific example, the thickness of the oxide layer formed on the solder joint surface of the joint with the solder is 30 nm or less. In this case, the center line average roughness of the solder joint surface is preferably 5.0 μm or less. In order to cope with defects related to the wettability and bonding properties of solder used in various applications, it is effective to make the oxide layer on the bonding surface thinner. That is, the main cause of reducing wettability and bondability is an oxide present between the solder joint surface of the joint portion of the semiconductor element or the like and the solder matrix.

通常、金属同士は適切な材料を選択をすれば合金化する。しかし、一般的な金属元素の酸化物は接合温度(例えば200℃〜450℃)では依然として固体のままであるため、接合面ではほとんど反応しない。そのため、はんだ金属と基板の最上層とが良好に接触できず、その結果、所望の接合強度が得られなくなる。つまり、はんだ接合面にできるだけ酸化物層を存在させないことが、Bi系はんだを用いてはんだ接合するための重要な条件の一つになる。   Usually, metals are alloyed if an appropriate material is selected. However, general metal element oxides remain solid at the bonding temperature (for example, 200 ° C. to 450 ° C.), and thus hardly react at the bonding surface. For this reason, the solder metal and the uppermost layer of the substrate cannot be satisfactorily contacted, and as a result, a desired joint strength cannot be obtained. That is, it is one of the important conditions for solder joining using Bi-based solder that the oxide layer is not present as much as possible on the solder joint surface.

このため、半導体素子などの電子デバイスや基板等の電子部品が有する接合部のはんだ接続面に形成される酸化物層の厚さを30nm以下とする。前述したように、酸化物層は濡れ性等を大きく下げるが、全く存在させないことは困難であり、さらにある程度の厚さであれば、はんだ接合の条件等を適宜調整することで酸化物層の悪影響を抑えることができる。   For this reason, the thickness of the oxide layer formed on the solder connection surface of the joint portion of the electronic device such as a semiconductor element or the electronic component such as the substrate is set to 30 nm or less. As described above, the oxide layer greatly reduces wettability and the like, but it is difficult not to exist at all, and if it is a certain thickness, the oxide layer can be appropriately adjusted by appropriately adjusting the soldering conditions and the like. Adverse effects can be suppressed.

Bi系はんだを接合材として用いる場合、含有元素にも左右されるものの30nm以下の酸化物層であれば、接合時に酸化物層が破れてはんだ溶融金属が基板等の金属面と直接接することが可能となり、良好な接合が可能となる。このように、酸化物層を介さずにはんだと金属面とを直接はんだ接合できれば、接合強度を高くできるので、電子部品をはんだ接合して得られる電子装置において、過酷な環境下で使用しても十分に耐え得る優れた接合信頼性を得ることができる。   When Bi-based solder is used as a bonding material, although it depends on the contained elements, if the oxide layer is 30 nm or less, the oxide layer may be broken at the time of bonding, and the solder molten metal may be in direct contact with a metal surface such as a substrate. It becomes possible, and good joining is possible. In this way, if the solder and the metal surface can be directly soldered without using an oxide layer, the bonding strength can be increased. Therefore, in an electronic device obtained by soldering an electronic component, it can be used in a harsh environment. In addition, it is possible to obtain excellent bonding reliability that can sufficiently withstand.

<電子部品の製造方法>
本発明の電子部品の製造方法はとくに限定がない。電子部品の一例として、基板について説明する。基板は一般的にCu板を圧延して製造され、その圧延には冷間圧延、温間圧延、熱間圧延などを用いることができる。圧延する際は、最初から最終の工程まで冷間圧延だけで行ってもよいが、2種類以上の圧延を組み合わせることにより、圧延中にクラックやバリが入りづらくなって品質が向上するうえ、圧延速度を上げることで生産効率を高めることができる。
<Method for manufacturing electronic parts>
There are no particular limitations on the method of manufacturing the electronic component of the present invention. A substrate will be described as an example of an electronic component. The substrate is generally produced by rolling a Cu plate, and cold rolling, warm rolling, hot rolling or the like can be used for the rolling. When rolling, it may be performed only by cold rolling from the beginning to the final step, but by combining two or more types of rolling, cracks and burrs are difficult to enter during rolling, and quality is improved. Increasing the speed can increase production efficiency.

ただし、温間圧延や熱間圧延を行うと基板表面に酸化膜(酸化物層)が形成され易いため、2種類以上の圧延を組み合わせるときは、最初に温間圧延や熱間圧延を行い、これにより形成された酸化物層を可能な範囲で除去した後、仕上げとして冷間圧延を行うことが好ましい。このように最終工程を冷間とすることで酸化物層を薄くすることが可能となる。仕上げの冷間圧延には表面仕上げを行った鏡面ロールを用いることが好ましく、中心線平均粗さが5.0μm以下のロールを用いることがより好ましい。このようなロールを用いることによって、表面粗さの小さい基板が製造可能となる。   However, when warm rolling or hot rolling is performed, an oxide film (oxide layer) is easily formed on the substrate surface, so when combining two or more types of rolling, first perform warm rolling or hot rolling, After removing the oxide layer thus formed as much as possible, it is preferable to perform cold rolling as a finish. Thus, it becomes possible to make an oxide layer thin by making the last process cold. For finishing cold rolling, it is preferable to use a mirror-finished roll having a surface finish, and it is more preferable to use a roll having a center line average roughness of 5.0 μm or less. By using such a roll, a substrate having a small surface roughness can be manufactured.

温間圧延や熱間圧延後の酸化物層の除去は、例えば酸洗浄や研磨、研削などで行うことができる。これら酸洗浄や研磨などにより基板表面の酸化物層を薄くできることに加えて、表面粗さを小さくすることも可能となる。さらに、基板表面の異物等を除去する効果も期待できる。酸洗浄の際に使用する酸の種類に限定はないが、強酸を薄めた溶液や弱酸の溶液を用いることが好ましい。強酸の原液を用いて洗浄を行ってしまうと、基板の酸溶液への溶解速度が速くなりすぎ、部分的に溶解が進んだり、表面粗さが大きくなったりする可能性が高い。したがって、強酸を数%含む水溶液または弱酸の水溶液を用いて、状況に応じて時間を長めに調整して洗浄することが好ましい。   Removal of the oxide layer after warm rolling or hot rolling can be performed, for example, by acid cleaning, polishing, grinding, or the like. In addition to reducing the thickness of the oxide layer on the substrate surface by acid cleaning or polishing, the surface roughness can be reduced. Furthermore, an effect of removing foreign matters on the substrate surface can be expected. There is no limitation on the type of acid used in the acid cleaning, but it is preferable to use a solution in which a strong acid is diluted or a solution in a weak acid. If washing is performed using a stock solution of strong acid, the dissolution rate of the substrate in the acid solution becomes too fast, and there is a high possibility that the dissolution proceeds partially or the surface roughness increases. Accordingly, it is preferable to use an aqueous solution containing several percent of a strong acid or an aqueous solution of a weak acid, and adjust the cleaning time to be longer depending on the situation.

基板の研磨の方法についてもとくに限定はない。例えば、自動研磨装置を用いてバフ研磨を行ってよい。この際、使用する吐粒の粒度は0.1μm以下であることが好ましい。このような細かい吐粒を用いることによって、表面粗さを小さく抑えることができる。そして、基板の研磨の際、研磨手段を回転運動させるか、基板の進行方法に対して垂直方向に往復動させて研磨するのが好ましく、これによりムラのない均一な研磨が可能となる。   There is no particular limitation on the method for polishing the substrate. For example, buffing may be performed using an automatic polishing apparatus. At this time, the particle size of the ejected particles used is preferably 0.1 μm or less. By using such fine particles, the surface roughness can be kept small. In polishing the substrate, it is preferable to polish the substrate by rotating the polishing means or by reciprocating in the direction perpendicular to the method of moving the substrate, thereby enabling uniform polishing without unevenness.

このように、電子部品としての基板の作製の際は、酸化物層が薄い基板か、もしくは表面粗さの小さい基板か、または酸化物層が薄く且つ表面粗さの小さい基板を作製すべく、基板の表面を研磨したり、酸洗浄したりするのが好ましく、その後、基板のロール圧延、特に表面粗さ5.0μm以下のロールでロール圧延するのが好ましい。特にこれら研磨等による酸化物層の除去処理とロール圧延処理とを組み合わせることがより好ましい。   As described above, in the production of a substrate as an electronic component, in order to produce a substrate having a thin oxide layer, a substrate having a small surface roughness, or a substrate having a thin oxide layer and a small surface roughness, The surface of the substrate is preferably polished or acid-washed, and then the substrate is roll-rolled, particularly roll-rolled with a roll having a surface roughness of 5.0 μm or less. In particular, it is more preferable to combine the oxide layer removing process by polishing or the like with a roll rolling process.

次に、電子部品のはんだ接合部において最上層として形成されるメタライズ層について説明する。メタライズ層の形成方法はとくに限定がなく、例えば、メッキ法、真空蒸着法、スパッタ法などで行ってよい。これらの中では真空蒸着法が比較的安価であり、形成させるメタライズ層の厚さを制御しやすいのでより好ましい。   Next, the metallized layer formed as the uppermost layer in the solder joint portion of the electronic component will be described. The method for forming the metallized layer is not particularly limited, and may be performed by, for example, a plating method, a vacuum evaporation method, a sputtering method, or the like. Among these, the vacuum deposition method is more preferable because it is relatively inexpensive and the thickness of the metallized layer to be formed can be easily controlled.

ただし、表面粗さを小さく抑えるためには十分な注意を要する。例えば、蒸着速度が遅すぎると蒸着に時間がかかるとともに、蒸着場所によって層厚のバラツキが大きくなってしまう。一方、蒸着速度が速すぎると層厚がばらつくことに加え、表面粗さも大きくなってしまい好ましくない。最適な蒸着速度は装置依存性が大きいものの、概ね15〜50Å/秒である。   However, sufficient care is required to keep the surface roughness small. For example, if the vapor deposition rate is too slow, it takes time for vapor deposition, and the variation in layer thickness varies depending on the vapor deposition location. On the other hand, if the deposition rate is too high, the layer thickness varies, and the surface roughness increases, which is not preferable. The optimum deposition rate is generally 15 to 50 liters / second, although it is highly device dependent.

また、蒸着速度と同様に重要なパラメーターをとして真空度がある。真空引きが不十分で真空度が低いと装置内に酸素等が存在するため、酸化膜が形成されたり、残存ガスによって均一な膜(層)形成ができなかったり、ポーラスな膜になったりする。そして、それらが複合的に生じた結果、層の厚みや表面粗さが大きくバラついてしまうおそれがある。   Moreover, there is a degree of vacuum as an important parameter as well as the deposition rate. If the vacuuming is insufficient and the degree of vacuum is low, oxygen or the like exists in the apparatus, so that an oxide film is formed, a uniform film (layer) cannot be formed due to the residual gas, or a porous film is formed. . And as a result of generating them in combination, the thickness and surface roughness of the layer may vary greatly.

これを避けるための好ましい真空度は概ね6×10−3Pa以下である。この程度の真空度で蒸着を行うことができれば、均一で表面粗さの小さい層を形成し易い。さらに高い真空度を達成することができるのであれば、より好ましい層形成が可能になるが、コストがかかりすぎたりするため、必要とされる層の品質とコストのバランスを考えて装置、製造条件等を適宜選定すればよい。なお、上記した蒸着速度や真空度などの条件は小型真空蒸着装置での試験結果をベースとして見出しものであるが、これらは量産設備にも十分に適用できる条件である。 A preferable degree of vacuum for avoiding this is approximately 6 × 10 −3 Pa or less. If vapor deposition can be performed at such a degree of vacuum, it is easy to form a uniform layer with a small surface roughness. If a higher degree of vacuum can be achieved, a more preferable layer can be formed, but it is too costly, so the equipment and manufacturing conditions take into account the balance between the required layer quality and cost. Etc. may be appropriately selected. In addition, although conditions, such as an above-described vapor deposition rate and a vacuum degree, are found based on the test result in a small vacuum vapor deposition apparatus, these are conditions which can fully be applied also to mass production equipment.

<はんだ組成>
本発明の電子部品のはんだ接合に使用するはんだ合金はBi系合金であり、その組成としては、Biを85質量%以上含有している。さらに第2元素群を含有してもよく、Zn、Al、Cu、Sn、Sb、およびPのうち1種以上を含有するのが好ましい。ただし、これら第2元素群は、各元素の含有量が5.0質量%以下とする。これは、Biの含有量が85質量%未満であったり、第2元素群の各元素が5.0質量%を超えて含有したりすると、液相線温度が250〜270℃の範囲から外れる場合が多く、融点が高温用はんだとしては適さなくなるからである。
<Solder composition>
The solder alloy used for the solder joint of the electronic component of the present invention is a Bi-based alloy, and the composition contains Bi of 85% by mass or more. Furthermore, it may contain a second element group, and preferably contains one or more of Zn, Al, Cu, Sn, Sb, and P. However, the content of each element in the second element group is 5.0 mass% or less. This is because if the Bi content is less than 85% by mass or each element of the second element group exceeds 5.0% by mass, the liquidus temperature is out of the range of 250 to 270 ° C. In many cases, the melting point is not suitable as a high-temperature solder.

原料として、それぞれ純度99.9重量%以上のBi、Zn、Al、Cu、Sn、Sb、およびPを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく、均一になるように留意しながら、切断および粉砕などにより3mm以下の大きさに細かくした。次に、これら原料から所定量を秤量して、高周波溶解炉用のグラファイト製坩堝に入れた。   Bi, Zn, Al, Cu, Sn, Sb, and P each having a purity of 99.9% by weight or more were prepared as raw materials. Large flakes and bulk-shaped raw materials were reduced to a size of 3 mm or less by cutting and crushing while paying attention to ensure that the alloy after melting did not vary in composition depending on the sampling location. Next, a predetermined amount of these raw materials was weighed and put into a graphite crucible for a high-frequency melting furnace.

上記各原料の入った坩堝を高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7リットル/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融しはじめたら混合棒でよく撹拌し、局所的な組成のばらつきが起きないように均一に混ぜた。十分溶融したことを確認した後、高周波電源を切り、速やかに坩堝を取り出し、坩堝内の溶湯をはんだ母合金の鋳型に流し込んだ。鋳型は、はんだ母合金の製造の際に一般的に使用している形状と同様のものを使用した。   The crucible containing the raw materials was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 liter / min or more per kg of the raw materials in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly taken out, and the molten metal in the crucible was poured into the mold of the solder mother alloy. A mold having the same shape as that generally used in the production of a solder mother alloy was used.

このようにして、様々な混合比率を有する試料1A〜23Aのはんだ母合金を作製した。これら試料1A〜23Aのはんだ母合金に対して、ICP発光分光分析器(SHIMAZU S−8100)を用いて組成を分析した。その分析結果を下記表1に示す。   In this way, solder mother alloys of Samples 1A to 23A having various mixing ratios were produced. The compositions of the solder mother alloys of Samples 1A to 23A were analyzed using an ICP emission spectroscopic analyzer (SHIMAZU S-8100). The analysis results are shown in Table 1 below.

Figure 0006011254
Figure 0006011254

<シート形状への加工>
圧延機を用いて上記試料1A〜23Aのはんだ母合金をシート状に加工した。具体的に説明すると、各はんだ母合金(厚さ5mmの板状インゴット)を、熱間圧延機を用いて厚さ約300μmまで粗圧延した。その際、インゴットの送り速度を調整し、クラック等が発生しないように注意しながら圧延していった。粗圧延した試料をアルコールで洗浄した後、冷間圧延機を用いて厚さ0.70mmまで圧延した。その後、スリッター加工により25mmの幅に裁断し、さらに自動洗浄器を通して洗浄し、真空炉で常温真空乾燥した。このようにして得たはんだに対して濡れ性評価やシェア強度試験などを行うため、基板とSiCチップを下記の方法で準備した。
<Processing into sheet shape>
The solder mother alloys of Samples 1A to 23A were processed into a sheet using a rolling mill. Specifically, each solder mother alloy (a plate ingot having a thickness of 5 mm) was roughly rolled to a thickness of about 300 μm using a hot rolling mill. At that time, the ingot feed speed was adjusted and rolled while taking care not to cause cracks. The coarsely rolled sample was washed with alcohol and then rolled to a thickness of 0.70 mm using a cold rolling mill. Then, it cut | judged to the width of 25 mm by slitter process, and also wash | cleaned through the automatic washing machine, and dried at room temperature vacuum in the vacuum furnace. In order to perform wettability evaluation and shear strength test on the solder thus obtained, a substrate and a SiC chip were prepared by the following method.

<基板の作製>
基板の材料として、厚さ10mm、純度99.99質量%の複数のCu板を準備した。これらCu板を50〜90℃で温間圧延を行い、厚さ2mmにした。次に、5%酢酸水溶液を用いて1〜10分間洗浄し、さらに水洗して十分に酸を洗い流した。そして、真空オーブンによる常温真空乾燥か、常温窒素雰囲気中での乾燥か、あるいは150℃大気中での加熱乾燥により乾燥した。得られた複数のCu板に対して、中心線平均粗さが0.1〜3μmのロールを用いて冷間圧延を行い、厚さ0.60mmまで薄くした。
<Production of substrate>
As a substrate material, a plurality of Cu plates having a thickness of 10 mm and a purity of 99.99% by mass were prepared. These Cu plates were warm-rolled at 50 to 90 ° C. to a thickness of 2 mm. Next, it was washed for 1 to 10 minutes using a 5% aqueous acetic acid solution, and further washed with water to sufficiently wash out the acid. And it dried by the normal temperature vacuum drying by a vacuum oven, the drying in normal temperature nitrogen atmosphere, or the heat drying in 150 degreeC air | atmosphere. The obtained plurality of Cu plates were cold-rolled using a roll having a center line average roughness of 0.1 to 3 μm and thinned to a thickness of 0.60 mm.

次に、冷間圧延を行ったこれら複数のCu板に対して様々に条件を変えてメタライズを施し、Ni、Ag、Au、またはCuからなる最上層を形成した。このようにして、最上層のはんだ接合面の中心線平均粗さが1.0〜8.0μm程度であって当該接合面が厚さ0.2〜50nm程度の酸化物層で覆われた複数の基板を準備した。なお、通常、電子部品の構成要素である基板は常温で圧延することが多く、酸洗浄を行う場合も5%酢酸水溶液を使うとは限らないが、本実施例では酸化物層や表面粗さ等を調整するために故意にこのような条件で製造した。   Next, the plurality of Cu plates subjected to cold rolling were subjected to metallization under various conditions to form an uppermost layer made of Ni, Ag, Au, or Cu. In this way, the center line average roughness of the uppermost solder joint surface is about 1.0 to 8.0 μm, and the joint surface is covered with an oxide layer having a thickness of about 0.2 to 50 nm. A substrate was prepared. Usually, the substrate which is a component of the electronic component is often rolled at room temperature, and even when performing acid cleaning, a 5% aqueous acetic acid solution is not always used, but in this embodiment, an oxide layer and surface roughness are used. In order to adjust etc., it manufactured on such conditions intentionally.

<SiCチップの表面粗さの調整>
基板にはんだ接合される電子デバイスとして、大きさ2×2mm、はんだ接合部がNiで構成される複数のSiCチップを準備した。これらSiCチップを研磨紙(粗さ:#240、#1000、#8000)による研磨、そしてバフ研磨(砥粒の粒度:0.1μm)によってNi面の表面粗さを調整後、真空蒸着機でNi、Ag、Au、またはCuを蒸着させて最上層を形成した。真空度は3×10−4〜5×10−2Pa、蒸着速度は15〜100Å/秒とした。このようにして、最上層のはんだ接合面の中心線平均粗さが1.0〜8.0μm程度、当該接合面が酸化物層が厚さ0.2〜50nm程度の酸化物層で覆われた複数のSiCチップを準備した。
<Adjustment of surface roughness of SiC chip>
As an electronic device to be soldered to the substrate, a plurality of SiC chips each having a size of 2 × 2 mm and a solder joint portion made of Ni were prepared. These SiC chips are polished with polishing paper (roughness: # 240, # 1000, # 8000), and the surface roughness of the Ni surface is adjusted by buffing (abrasive grain size: 0.1 μm). Ni, Ag, Au, or Cu was deposited to form the uppermost layer. The degree of vacuum was 3 × 10 −4 to 5 × 10 −2 Pa, and the deposition rate was 15 to 100 kg / second. Thus, the center line average roughness of the solder joint surface of the uppermost layer is about 1.0 to 8.0 μm, and the joint surface is covered with the oxide layer having a thickness of about 0.2 to 50 nm. A plurality of SiC chips were prepared.

以上のようにして作製した複数の基板および複数のSiCチップの各々に対して、酸化物層の厚さと表面粗さを測定した。酸化物層の厚さは界放射型オージェ電子分光装置(ULVAC−PHI製、型式:SAM−4300)を用いて測定し、表面粗さは表面粗さ測定装置(東京精密株式会社製、型式:サーフコム470A)を用いて測定した。そして、これら複数の基板と複数のSiC基板とを表2に示すように組み合わせて試料24B〜59Bとした。   The thickness and surface roughness of the oxide layer were measured for each of the plurality of substrates and the plurality of SiC chips produced as described above. The thickness of the oxide layer is measured using a field emission Auger electron spectrometer (manufactured by ULVAC-PHI, model: SAM-4300), and the surface roughness is a surface roughness measuring apparatus (manufactured by Tokyo Seimitsu Co., Ltd., model: Measured using Surfcom 470A). These plural substrates and plural SiC substrates were combined as shown in Table 2 to obtain samples 24B to 59B.

なお、酸化物層の厚さについては次のように定義した。すなわち、はんだ表面から深さ方向(はんだ表面に対して垂直)に1000nm入った部分の酸素量を0%にすると共に、はんだ表面から深さ1000nmの間の最高酸素濃度を100%にして、酸素濃度が10%まで低下したはんだ表面からの進入深さを酸化物層の厚みと定義した(図1参照)。   The thickness of the oxide layer was defined as follows. That is, the oxygen content in the portion 1000 nm in the depth direction (perpendicular to the solder surface) from the solder surface is set to 0%, and the maximum oxygen concentration between the solder surface and the depth of 1000 nm is set to 100%. The penetration depth from the solder surface where the concentration was reduced to 10% was defined as the thickness of the oxide layer (see FIG. 1).

Figure 0006011254
Figure 0006011254

上記のごとくシート状に加工した試料1A〜23Aのはんだ合金と、試料24B〜59Bの基板とSiCチップとを用いてはんだ接合体を作製し、濡れ性(接合性)、シェア強度、およびヒートサイクル試験による信頼性を評価した。先ず第1の評価として、表2に示す試料のうち、試料28Bの基板とSiCチップとからなる組み合わせを23セット用意し、それぞれ表1に示すシート状に加工した試料1A〜試料23Aのはんだ合金を使ってはんだ接合した。これにより24個のはんだ接合体の試料を作製した。このとき、試料1Aのはんだ合金を用いて接合したはんだ接合体を試料1とし、以下順に試料2A〜23Aのはんだ合金を用いて接合したはんだ接合体をそれぞれ試料2〜23とした。そして、これら試料1〜23のはんだ接合体の各々に対して下記に示す濡れ性等の評価を行った。   A solder joint is produced using the solder alloys of Samples 1A to 23A processed as described above, the substrates of Samples 24B to 59B and the SiC chip, and wettability (joinability), shear strength, and heat cycle. Reliability by testing was evaluated. First, as a first evaluation, among the samples shown in Table 2, 23 sets of combinations including the substrate of the sample 28B and the SiC chip were prepared, and each of the solder alloys of Samples 1A to 23A processed into a sheet shape shown in Table 1 Soldered using In this way, 24 solder joint samples were produced. At this time, the solder joined body joined using the solder alloy of sample 1A was designated as sample 1, and the solder joined bodies joined using the solder alloy of samples 2A-23A in the following order were designated as samples 2-23, respectively. And evaluation of the wettability etc. which were shown below was performed with respect to each of these solder joined bodies of samples 1-23.

次に第2の評価として、表1に示す試料2Aを使って、表2に示す試料24B〜試料59Bの基板とSiCチップとを接合して36個のはんだ接合体の試料を作製した。このとき、試料24Bの基板とSiCチップからなるはんだ接合体を試料24とし、以下順に試料25B〜59Bの基板とSiCチップからなるはんだ接合体をそれぞれ試料25〜59とした。そして、これら試料24〜59のはんだ接合体の各々に対して上記第1の評価と同様に下記に示す濡れ性等の評価を行った。   Next, as a second evaluation, using the sample 2A shown in Table 1, the substrates of Samples 24B to 59B shown in Table 2 and the SiC chip were joined to prepare 36 solder joined samples. At this time, the sample 24B was made of a solder joint made of a substrate and a SiC chip as a sample 24, and the samples 25B to 59B were made of a solder joint made of a SiC chip and samples 25 to 59, respectively. Then, the following evaluations of wettability and the like were performed on each of the solder joints of Samples 24 to 59 in the same manner as the first evaluation.

<濡れ性(接合性)の評価>
まず、濡れ性試験機のヒーター部に二重のカバーをして、ヒーター部の周囲4箇所から窒素を12リットル/分の流量で流しながら、ヒーター設定温度を410℃にして加熱した。設定したヒーター温度が安定した後、各試料の基板をヒーター部にセッティングして25秒間加熱した。次に、各試料のはんだ合金を基板の上に載せ、25秒加熱し、さらにはんだの上に各試料のSiCチップを載せ、10秒加熱した。
<Evaluation of wettability (bondability)>
First, the heater part of the wettability tester was covered with a double cover, and heated at a heater set temperature of 410 ° C. while flowing nitrogen at a flow rate of 12 liters / minute from four locations around the heater part. After the set heater temperature was stabilized, the substrate of each sample was set in the heater section and heated for 25 seconds. Next, the solder alloy of each sample was placed on the substrate and heated for 25 seconds, and then the SiC chip of each sample was placed on the solder and heated for 10 seconds.

加熱が完了した後、はんだ接合された基板とSiCチップとからなる接合体をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦設置して冷却した。十分に冷却した後、大気中に取り出した。このようにして得た各接合体のはんだ合金と基板およびSiCチップの接合部分を目視で確認し、接合できなかった場合を「×」、接合できたが濡れ広がりが悪い場合(はんだがはSiCチップ四辺端部からはみ出していない状態)を「△」、接合でき且つ濡れ広がりが良い場合(はんだが薄く濡れ広がりSiCチップ四辺端部からはみ出している状態)を「○」と評価した。   After the heating was completed, the joined body composed of the solder-bonded substrate and the SiC chip was taken up from the heater portion, and once installed in a place where the nitrogen atmosphere was maintained, it was cooled. After sufficiently cooling, it was taken out into the atmosphere. The solder alloy, the substrate and the SiC chip of each joined body obtained in this way were visually inspected, and “x” indicates that the joint could not be joined. The case where the chip was not protruded from the four sides of the chip was evaluated as “Δ”, and the case where the bonding was possible and the wet spread was good (the solder was thinly wet and spread out from the four ends of the SiC chip) was evaluated as “◯”.

<シェア強度評価>
はんだ接合の接合強度を評価するために、シェア強度測定器(Xyztec社製、Condor EZ ボンドテスタ)を用いてシェア強度の測定を行った。なお、この試験は、上記した濡れ性の評価において、はんだ合金によって基板とSiCチップが接合できた試料(濡れ性の評価が○の試料および△の試料)を各3個ずつ用いて行い、平均値をその試料のシェア強度とした。
<Share strength evaluation>
In order to evaluate the joint strength of the solder joint, the shear strength was measured using a shear strength measuring device (Xyztec, Condor EZ bond tester). In addition, this test was performed using three samples each of which the substrate and the SiC chip could be joined with a solder alloy (samples with a wettability evaluation of ◯ and samples with a Δ) in the above-described evaluation of wettability. The value was defined as the shear strength of the sample.

具体的なシェア強度の測定方法は以下のとおりである。すなわち、シェア強度測定器のワークホルダ(試料を固定する部分)にSiCチップ面を上にして各試料の接合体を固定し、はんだにせん断応力を加えるためシェアツールをSiCチップの側面に当てた。そして、自動測定によりシェアツールを接合体のSiCチップの側面から荷重をかけていき、はんだ、またはSiCチップが破壊するまで荷重をかけ、シェア強度を測定した。   The specific method for measuring the share strength is as follows. That is, the bonded body of each sample was fixed to the work holder (part for fixing the sample) of the shear strength measuring device with the SiC chip surface facing upward, and the shear tool was applied to the side surface of the SiC chip to apply a shear stress to the solder. . Then, a load was applied to the shear tool from the side surface of the bonded SiC chip by automatic measurement, and the shear strength was measured by applying a load until the solder or the SiC chip was broken.

<ヒートサイクル試験>
はんだ接合の信頼性を評価するためにヒートサイクル試験を行った。なお、この試験は、上記した濡れ性の評価において、はんだ合金によってCu基板とSiCチップが接合できた試料(濡れ性の評価が○の試料および△の試料)を各2個ずつ用いて行った。すなわち、はんだ合金で接合された基板とSiCチップとからなる各試料の接合体2個に対して、−40℃の冷却と+150℃の加熱を1サイクルとするヒートサイクル試験を実施した。各試料のヒートサイクル試験において、2個の接合体のうち1個は途中確認のため300サイクルまで、残りの1個は500サイクルまでヒートサイクル試験を繰り返した。
<Heat cycle test>
A heat cycle test was conducted to evaluate the reliability of solder joints. In addition, this test was performed using two samples each of which the Cu substrate and the SiC chip could be joined with the solder alloy (samples with a wettability evaluation of ◯ and samples with a Δ) in the above-described evaluation of wettability. . That is, a heat cycle test in which a cycle of cooling at −40 ° C. and heating at + 150 ° C. was performed on two bonded bodies of each sample composed of a substrate bonded with a solder alloy and a SiC chip. In the heat cycle test of each sample, one of the two joined bodies was repeated up to 300 cycles for confirmation on the way, and the remaining one was repeated up to 500 cycles.

このようにして、ヒートサイクル試験が行われた各接合体を樹脂に埋め込んだ後、断面研磨を行ってSEM(装置名:HITACHI S−4800)により接合面の観察を行った。はんだと基板やSiCチップの接合面に剥れが生じたり、はんだ母相接合面にクラックが入った場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」と評価した。これらの評価結果を下記表3−1(第1の評価)及び表3−2(第2の評価)に示す。   In this way, after each bonded body subjected to the heat cycle test was embedded in the resin, cross-section polishing was performed, and the bonded surface was observed by SEM (device name: HITACHI S-4800). When the solder / substrate / SiC chip joint surface was peeled off or the solder mother phase joint surface was cracked, “x”, there was no such defect, and the same joint surface as in the initial state was maintained. The case was evaluated as “◯”. These evaluation results are shown in the following Table 3-1 (first evaluation) and Table 3-2 (second evaluation).

Figure 0006011254
Figure 0006011254

Figure 0006011254
Figure 0006011254

上記の表3−1および3−2の結果から分かるように、本発明の要件を満たす試料1〜17および試料24〜43の接合体は、全ての評価項目において良好な特性を示している。すなわち、濡れ性、シェア強度、および信頼性のいずれにおいても良好な評価結果が得られた。濡れ性が良好であった理由は、基板やSiCチップの酸化膜層そして表面粗さのみならず、はんだの組成が本発明の要件を満たしていたためである考えられる。このように酸化物に邪魔されることなく、良好な濡れ性を示しているため接合強度、つまりシェア強度も高く、その結果、高い信頼性が得られたと考えられる。   As can be seen from the results in Tables 3-1 and 3-2 above, the joined bodies of Samples 1 to 17 and Samples 24 to 43 that satisfy the requirements of the present invention exhibit good characteristics in all the evaluation items. That is, good evaluation results were obtained in any of wettability, shear strength, and reliability. The reason why the wettability was good is thought to be that not only the oxide film layer and surface roughness of the substrate and SiC chip, but also the solder composition satisfied the requirements of the present invention. Thus, since it exhibits good wettability without being obstructed by the oxide, the bonding strength, that is, the shear strength is also high. As a result, it is considered that high reliability was obtained.

一方、本発明の要件を満たしていない試料18〜23および試料44〜59の接合体は、はんだ組成が好ましくないことや、基板やSiCチップの酸化物層の厚さや表面粗さがが適正でないことに起因して好ましくない結果となった。具体的には、これらの試料では、濡れ性評価においては全ての試料において良好な濡れ性は得られていない。シェア強度試験に至った試料でも、試料1〜17や試料24〜43の接合体よりもシェア強度が低く、ヒートサイクル試験では500回までに全ての試料(接合できなかった試料18、20〜22、48〜51、56〜59を除く)で不良が発生した。   On the other hand, in the joined bodies of Samples 18 to 23 and Samples 44 to 59 that do not satisfy the requirements of the present invention, the solder composition is not preferable, and the thickness and surface roughness of the oxide layer of the substrate and the SiC chip are not appropriate. This resulted in an unfavorable result. Specifically, in these samples, good wettability is not obtained in all samples in the wettability evaluation. Even in the samples that have reached the shear strength test, the shear strength is lower than the bonded bodies of Samples 1 to 17 and Samples 24 to 43, and in the heat cycle test, all samples (samples 18, 20 to 22 that could not be bonded) , 48-51, and 56-59).

Claims (4)

Zn、Al、Sn、Sb、およびPのうち1種以上を各々5.0質量%以下含有し、残部がBiであり、且つはんだ合金全体においてBiを85質量%以上含有するはんだ合金によって接合される接合部を有し、該接合部の最上層がAu、Ag、NiおよびCuのうちのいずれか1種を主成分とし、該最上層のはんだ接合面の中心線平均粗さが1.0μm以上5.0μm以下であることを特徴とする電子部品。 One or more of Zn, Al, Sn, Sb, and P are each contained by 5.0% by mass or less, the remainder is Bi, and the entire solder alloy is joined by a solder alloy containing Bi by 85% by mass or more. The uppermost layer of the joint is mainly composed of any one of Au, Ag, Ni and Cu, and the center line average roughness of the solder joint surface of the uppermost layer is 1.0 μm. An electronic component having a thickness of 5.0 μm or less. Zn、Al、Sn、Sb、およびPのうち1種以上を各々5.0質量%以下含有し、残部がBiであり、且つはんだ合金全体においてBiを85質量%以上含有するはんだ合金によって接合される接合部を有し、該接合部の最上層がAu、Ag、NiおよびCuのうちのいずれか1種を主成分とし、表面から深さ方向に1000nm入った部分の酸素量を0%にすると共に該表面から深さ1000nmの間の最高酸素濃度を100%にして酸素濃度が10%まで低下した表面からの進入深さを酸化物層の厚みと定義した時、該最上層のはんだ接合面が厚み0.2nm以上30nm以下の酸化物層で覆われていることを特徴とする電子部品。 One or more of Zn, Al, Sn, Sb, and P are each contained by 5.0% by mass or less, the remainder is Bi, and the entire solder alloy is joined by a solder alloy containing Bi by 85% by mass or more. The uppermost layer of the joint is composed mainly of any one of Au, Ag, Ni and Cu, and the oxygen content in the part 1000 nm deep from the surface is reduced to 0% When the maximum oxygen concentration between the surface and the depth of 1000 nm is 100% and the penetration depth from the surface where the oxygen concentration is reduced to 10% is defined as the thickness of the oxide layer, the solder joint of the uppermost layer An electronic component, wherein the surface is covered with an oxide layer having a thickness of 0.2 nm to 30 nm. Zn、Al、Sn、Sb、およびPのうち1種以上を各々5.0質量%以下含有し、残部がBiであり、且つはんだ合金全体においてBiを85質量%以上含有するはんだ合金によって接合される接合部を有し、該接合部の最上層がAu、Ag、NiおよびCuのうちのいずれか1種を主成分とし、該最上層のはんだ接合面の中心線平均粗さが1.0μm以上5.0μm以下であり、かつ表面から深さ方向に1000nm入った部分の酸素量を0%にすると共に該表面から深さ1000nmの間の最高酸素濃度を100%にして酸素濃度が10%まで低下した表面からの進入深さを酸化物層の厚みと定義した時、該最上層の該はんだ接合面が厚み0.2nm以上30nm以下の酸化物層で覆われていることを特徴とする電子部品。 One or more of Zn, Al, Sn, Sb, and P are each contained by 5.0% by mass or less, the remainder is Bi, and the entire solder alloy is joined by a solder alloy containing Bi by 85% by mass or more. The uppermost layer of the joint is mainly composed of any one of Au, Ag, Ni and Cu, and the center line average roughness of the solder joint surface of the uppermost layer is 1.0 μm. More than 5.0 μm and the oxygen content of the portion 1000 nm deep from the surface is reduced to 0%, the maximum oxygen concentration between the surface and the depth of 1000 nm is set to 100%, and the oxygen concentration is 10%. When the depth of penetration from the surface reduced to the thickness is defined as the thickness of the oxide layer, the solder joint surface of the uppermost layer is covered with an oxide layer having a thickness of 0.2 nm to 30 nm. Electronic components. 最上層がAu、Ag、NiおよびCuのうちのいずれか1種を主成分とするはんだ接合部を有する電子部品に対して、Zn、Al、Sn、Sb、およびPのうち1種以上を各々5.0質量%以下含有し、残部がBiであり、且つはんだ合金全体においてBiを85質量%以上含有するはんだ合金を用いてはんだ付けして電子装置を製造する方法であって、該最上層のはんだ接合面の中心線平均粗さが1.0μm以上5.0μm以下であるか、もしくは表面から深さ方向に1000nm入った部分の酸素量を0%にすると共に該表面から深さ1000nmの間の最高酸素濃度を100%にして酸素濃度が10%まで低下した表面からの進入深さを酸化物層の厚みと定義した時、該最上層のはんだ接合面が厚み0.2nm以上30nm以下の酸化物層で覆われているか、または該はんだ接合面の中心線平均粗さが1.0μm以上5.0μm以下であって且つ該はんだ接合面が前記定義した厚み0.2nm以上30nm以下の酸化物層で覆われていることを特徴とする電子装置の製造方法。 For an electronic component having a solder joint whose uppermost layer is mainly composed of any one of Au, Ag, Ni and Cu, one or more of Zn, Al, Sn, Sb and P A method of manufacturing an electronic device by soldering using a solder alloy containing 5.0% by mass or less, the balance being Bi, and containing 85% by mass or more of Bi in the entire solder alloy, The center line average roughness of the solder joint surface is 1.0 μm or more and 5.0 μm or less, or the oxygen content of the portion entering 1000 nm in the depth direction from the surface is reduced to 0% and the depth from the surface is 1000 nm. When the depth of penetration from the surface where the maximum oxygen concentration is 100% and the oxygen concentration is reduced to 10% is defined as the thickness of the oxide layer, the solder joint surface of the uppermost layer has a thickness of 0.2 nm to 30 nm. In the oxide layer Or the center line average roughness of the solder joint surface is 1.0 μm or more and 5.0 μm or less, and the solder joint surface is covered with an oxide layer having a thickness of 0.2 nm or more and 30 nm or less as defined above. A method of manufacturing an electronic device.
JP2012243192A 2012-11-02 2012-11-02 Electronic component having joint with solder alloy containing Bi as main component Expired - Fee Related JP6011254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012243192A JP6011254B2 (en) 2012-11-02 2012-11-02 Electronic component having joint with solder alloy containing Bi as main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012243192A JP6011254B2 (en) 2012-11-02 2012-11-02 Electronic component having joint with solder alloy containing Bi as main component

Publications (2)

Publication Number Publication Date
JP2014091149A JP2014091149A (en) 2014-05-19
JP6011254B2 true JP6011254B2 (en) 2016-10-19

Family

ID=50935621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012243192A Expired - Fee Related JP6011254B2 (en) 2012-11-02 2012-11-02 Electronic component having joint with solder alloy containing Bi as main component

Country Status (1)

Country Link
JP (1) JP6011254B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270809B2 (en) * 2017-03-16 2022-03-08 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
CN114395292B (en) 2017-07-27 2023-03-10 旭化成株式会社 Article with conductive pattern

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4437769B2 (en) * 2005-05-30 2010-03-24 住友金属工業株式会社 Nickel composition and solder joint member provided with nickel composition
WO2009157130A1 (en) * 2008-06-23 2009-12-30 パナソニック株式会社 Joint structure and electronic component
EP2589459B1 (en) * 2010-06-30 2017-08-09 Senju Metal Industry Co., Ltd Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
JP5589642B2 (en) * 2010-07-23 2014-09-17 住友金属鉱山株式会社 Pb-free solder alloy with excellent stress relaxation
JP5655641B2 (en) * 2011-03-08 2015-01-21 住友金属鉱山株式会社 Pb-free solder paste

Also Published As

Publication number Publication date
JP2014091149A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
WO2014017568A1 (en) Solder alloy
JP5206779B2 (en) Pb-free solder alloy based on Zn
TWI401132B (en) Pb-free solder alloy
JP6892568B2 (en) A method for selecting a solder alloy containing Sn as a main component, which has excellent surface properties.
TW201522667A (en) Au-sn-ag series solder alloy, electronic component sealed using same au-sn-ag series solder alloy, and electronic component-equipped device
JP5633816B2 (en) Au-Sn alloy solder
JP5861559B2 (en) Pb-free In solder alloy
JP5962461B2 (en) Au-Ge-Sn solder alloy
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
JP5672132B2 (en) Pb-free solder alloy mainly composed of Zn and method for producing the same
JP6011254B2 (en) Electronic component having joint with solder alloy containing Bi as main component
JP2014093425A (en) ELECTRONIC COMPONENT HAVING JUNCTION WITH SOLDER ALLOY MAINLY COMPOSED OF Zn
JP2011251330A (en) High-temperature lead-free solder paste
JP2013123741A (en) Pb-free solder alloy having excellent plastic deformation property
JP2017136628A (en) In-BASED CLAD MATERIAL
JP2016016453A (en) Au-Ge-Sn-based solder alloy
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP2017147285A (en) CONJUGATE JOINED BY CLAD MATERIAL OF Pb-free Zn-Al-based ALLOY SOLDER AND METAL BASE MATERIAL
JP2014024109A (en) Bi-Sb-BASED Pb-FREE SOLDER ALLOY
JP5655714B2 (en) Semiconductor device using Bi solder
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2017185520A (en) Au-Sn-BASED SOLDER ALLOY
JP2015042409A (en) CLAD MATERIAL OF Pb-FREE-Zn-Al ALLOY SOLDER AND METAL BASE MATERIAL, AND MANUFACTURING METHOD THEREOF
JP2017104898A (en) Pb-free Zn solder alloy
JP2017124426A (en) JOINT BODY OF Cu-BASES BASE MATERIAL WITH Zn-Al BASES ALLOY JOINTED BY CLAD MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R150 Certificate of patent or registration of utility model

Ref document number: 6011254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees