JP6005081B2 - Electromagnetic wave attenuation structure and electromagnetic shield structure - Google Patents

Electromagnetic wave attenuation structure and electromagnetic shield structure Download PDF

Info

Publication number
JP6005081B2
JP6005081B2 JP2014018402A JP2014018402A JP6005081B2 JP 6005081 B2 JP6005081 B2 JP 6005081B2 JP 2014018402 A JP2014018402 A JP 2014018402A JP 2014018402 A JP2014018402 A JP 2014018402A JP 6005081 B2 JP6005081 B2 JP 6005081B2
Authority
JP
Japan
Prior art keywords
conductor
electromagnetic wave
conductors
electromagnetic
wave attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014018402A
Other languages
Japanese (ja)
Other versions
JP2015146376A (en
Inventor
諭 米田
諭 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014018402A priority Critical patent/JP6005081B2/en
Publication of JP2015146376A publication Critical patent/JP2015146376A/en
Application granted granted Critical
Publication of JP6005081B2 publication Critical patent/JP6005081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電磁波減衰構造体およびそれを備える電磁シールド構造体に関し、特に任意の方向から入射する電磁波を効果的に減衰することができる電磁波減衰構造体およびこれを備えた電磁シールド構造体に関する。   The present invention relates to an electromagnetic wave attenuation structure and an electromagnetic shield structure including the electromagnetic wave attenuation structure, and more particularly to an electromagnetic wave attenuation structure that can effectively attenuate an electromagnetic wave incident from an arbitrary direction and an electromagnetic shield structure including the electromagnetic wave attenuation structure.

従来の電磁波減衰構造体は、任意の方向に伝播する電磁波を減衰させるために高インピーダンス板を金属壁に電気的に貼付している。高インピーダンス板は、たとえば誘電体基板の裏面と貫通スルーホールで電気的に接続された正六角形の導体パターンを,誘電体基板の表面に2次元的に周期配列して構成する(たとえば特許文献1)。   In the conventional electromagnetic wave attenuation structure, a high impedance plate is electrically attached to a metal wall in order to attenuate an electromagnetic wave propagating in an arbitrary direction. The high-impedance plate is formed by, for example, two-dimensionally periodically arranging regular hexagonal conductor patterns electrically connected to the back surface of the dielectric substrate through through-holes (for example, Patent Document 1). ).

特開2004−022587号公報JP 2004-022587 A

しかしながら、このような電磁波減衰構造においては、減衰効果が得られる周波数帯域が、基板の物性値、2次元的に周期配列された導体パターンの寸法、導体パターンの間隔、貫通スルーホール径、および貫通スルーホールのピッチなどの多くのパラメータの影響を受ける。そのため、所定の周波数帯域において減衰効果が得られるような電磁波減衰構造体を設計するには、これらの多くの上記パラメータを最適化する必要があり、簡易に設計することができないという問題があった。   However, in such an electromagnetic wave attenuating structure, the frequency band where the attenuation effect can be obtained includes the physical property value of the substrate, the size of the conductor pattern periodically arranged in two dimensions, the interval between the conductor patterns, the through-hole diameter, and the penetration It is affected by many parameters such as through-hole pitch. Therefore, in order to design an electromagnetic wave attenuation structure that can obtain an attenuation effect in a predetermined frequency band, it is necessary to optimize many of the above parameters, and there is a problem that the design cannot be easily performed. .

本発明は、上記のような課題を解決するためになされたものである。本発明の主たる目的は、従来の電磁波減衰構造体の設計方法と比べて簡易に設計可能な電磁波減衰構造体および電磁波シールド構造体を提供することにある。   The present invention has been made to solve the above-described problems. A main object of the present invention is to provide an electromagnetic wave attenuating structure and an electromagnetic wave shielding structure that can be easily designed as compared with a conventional method for designing an electromagnetic wave attenuating structure.

本発明に係る電磁波減衰構造体は、第1の主面と前記第1の主面の反対側に位置する第2の主面とを有する誘電体基板と、前記第1の主面上に形成されている第1導体と、前記第2の主面上に形成されている第2導体と、前記第1導体と前記第2導体とを電気的に接続する貫通導体とを備え、前記第2導体には、前記第2の主面が表出している誘電体表出領域が複数形成されており、前記誘電体表出領域は、それぞれ間隔を空けて形成されている複数の前記貫通導体により囲まれている。   An electromagnetic wave attenuation structure according to the present invention is formed on a dielectric substrate having a first main surface and a second main surface located on the opposite side of the first main surface, and on the first main surface. A second conductor formed on the second main surface, and a through conductor that electrically connects the first conductor and the second conductor, the second conductor The conductor is formed with a plurality of dielectric exposed areas where the second main surface is exposed, and the dielectric exposed areas are formed by the plurality of through conductors formed at intervals. being surrounded.

従来の電磁波減衰構造体の設計方法と比べて簡易に設計可能な電磁波減衰構造体および電磁波シールド構造体を提供することができる。   It is possible to provide an electromagnetic wave attenuation structure and an electromagnetic wave shield structure that can be easily designed as compared with the conventional method of designing an electromagnetic wave attenuation structure.

実施の形態1に係る電磁シールド構造体を説明するための図である。It is a figure for demonstrating the electromagnetic shielding structure which concerns on Embodiment 1. FIG. 図1に示す線分II−IIから見た断面図である。It is sectional drawing seen from the line segment II-II shown in FIG. 図2に示す線分III−IIIから見た平面図である。It is the top view seen from line segment III-III shown in FIG. 図3に示す線分IV−IVから見た断面図である。It is sectional drawing seen from the line segment IV-IV shown in FIG. 図3に示す線分V−Vから見た断面図である。It is sectional drawing seen from the line segment VV shown in FIG. 実施の形態1に係る電磁波減衰構造体の電磁シールド特性を説明するためのグラフである。5 is a graph for explaining electromagnetic shielding characteristics of the electromagnetic wave attenuation structure according to Embodiment 1. 図3に示す電磁波減衰構造体の変形例を説明するための平面図である。It is a top view for demonstrating the modification of the electromagnetic wave attenuation | damping structure shown in FIG. 図7に示す線分VIII−VIIIから見た断面図である。It is sectional drawing seen from the line segment VIII-VIII shown in FIG. 実施の形態2に係る電磁波減衰構造体の電磁シールド特性を説明するためのグラフである。6 is a graph for explaining electromagnetic shielding characteristics of an electromagnetic wave attenuation structure according to Embodiment 2. 実施の形態2に係る電磁波減衰構造体の変形例における電磁シールド特性を説明するためのグラフである。6 is a graph for explaining electromagnetic shielding characteristics in a modification of the electromagnetic wave attenuation structure according to Embodiment 2. 実施の形態3に係る電磁シールド構造体を説明するための断面図である。It is sectional drawing for demonstrating the electromagnetic shielding structure which concerns on Embodiment 3. FIG. 実施の形態3に係る電磁波減衰構造体の電磁シールド特性を説明するためのグラフである。6 is a graph for explaining electromagnetic shielding characteristics of an electromagnetic wave attenuating structure according to Embodiment 3. 実施の形態4に係る電磁シールド構造体を説明するための断面図である。It is sectional drawing for demonstrating the electromagnetic shielding structure which concerns on Embodiment 4. FIG. 実施の形態5に係る電磁シールド構造体を説明するための断面図である。It is sectional drawing for demonstrating the electromagnetic shielding structure which concerns on Embodiment 5. FIG. 実施の形態5に係る電磁シールド構造体の変形例を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining a modification of the electromagnetic shield structure according to the fifth embodiment. 実施の形態5に係る電磁シールド構造体の他の変形例を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining another modification of the electromagnetic shield structure according to Embodiment 5.

以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。   Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
はじめに、図1および図2を参照して、実施の形態1に係る電磁シールド構造体100について説明する。電磁シールド構造体100は、電磁シールドとして作用する構造体であって間隙を有する任意の構造体とすることができるが、たとえば電磁シールド扉として構成されている。図1は電磁シールド構造体100の正面図である。図2は、図1における線分II−IIを通るYZ断面図である。電磁シールド構造体100は、扉1と扉枠2とがヒンジ8を介して接続されている。扉1は開閉レバー11により、扉枠2に対して開閉動作が可能な構造となっている。
(Embodiment 1)
First, the electromagnetic shield structure 100 according to Embodiment 1 will be described with reference to FIGS. 1 and 2. The electromagnetic shield structure 100 is a structure that acts as an electromagnetic shield and can be an arbitrary structure having a gap. For example, the electromagnetic shield structure 100 is configured as an electromagnetic shield door. FIG. 1 is a front view of the electromagnetic shield structure 100. 2 is a YZ sectional view taken along line II-II in FIG. In the electromagnetic shield structure 100, the door 1 and the door frame 2 are connected via a hinge 8. The door 1 has a structure that can be opened and closed with respect to the door frame 2 by an opening / closing lever 11.

扉1が閉じている状態において、扉1と扉枠2との間には間隙が設けられている。これにより、扉1の開閉回数が増しても扉1および扉枠2が摩耗して電磁シールド特性が劣化することを防ぐことができる。扉1と扉枠2との間隙において、間隙に面するように扉1上に電磁波減衰構造体10が配置されている。   In the state where the door 1 is closed, a gap is provided between the door 1 and the door frame 2. Thereby, even if the opening / closing frequency | count of the door 1 increases, it can prevent that the door 1 and the door frame 2 wear, and an electromagnetic shielding characteristic deteriorates. In the gap between the door 1 and the door frame 2, the electromagnetic wave attenuation structure 10 is disposed on the door 1 so as to face the gap.

電磁波減衰構造体10は、誘電体基板3(以下、単に基板3という)上に基板集積導波共振器(Substrate Integrated Waveguide Resonators,以下SIW共振器という)が2次元的に多段化された構造を有している。図3は扉1と扉枠2との間隙から見たときの電磁波減衰構造体10の平面図であり、図4は、図3に示す線分IV−IVから見た断面図(YZ平面図)である。図3および図4を参照して、基板3は第1の主面3Aと第2の主面3Bとを有している。基板3は、たとえば任意の樹脂基板とすればよい。第1の主面3A上には第1導体4が形成されており、第2の主面3B上には全面にわたって第2導体5が形成されている。   The electromagnetic wave attenuation structure 10 has a structure in which a substrate integrated waveguide resonator (hereinafter referred to as SIW resonator) is two-dimensionally multi-staged on a dielectric substrate 3 (hereinafter simply referred to as substrate 3). Have. 3 is a plan view of the electromagnetic wave attenuation structure 10 when viewed from the gap between the door 1 and the door frame 2. FIG. 4 is a cross-sectional view (YZ plan view) viewed from the line IV-IV shown in FIG. ). 3 and 4, substrate 3 has a first main surface 3A and a second main surface 3B. The substrate 3 may be an arbitrary resin substrate, for example. A first conductor 4 is formed on the first main surface 3A, and a second conductor 5 is formed on the entire surface of the second main surface 3B.

第1導体4には、第1の主面3Aが表出している誘電体表出領域6が複数形成されている。個々の誘電体表出領域6は、互いに所定の間隔を隔てて設けられている。図3を参照して、個々の誘電体表出領域6の平面形状は、たとえば同一寸法を有する正方形(1辺の長さH1)として設けられている。個々の誘電体表出領域6の間隔は縦横3列ずつで異なり、たとえば図3中紙面左から数えて縦1列目と縦2列目との間隔(Lb+Lc)は、縦2列目と縦3列目との間隔(Ld+Le)よりも長く、紙面上から数えて横1列目と横2列目との間隔(Lh+Li)は横2列目と横3列目との間隔(Lj+Lk)よりも長い。誘電体表出領域6は任意の方法で形成されていればよく、たとえば第1導体4を部分的に剥離または除去することにより形成され得る。たとえば、第1の主面3Aの全面に形成されている第1導体4上において、所定の領域に同一寸法の開口部が形成されているマスクパターンを用いてエッチングすることにより誘電体表出領域6を形成してもよい。   A plurality of dielectric exposed regions 6 where the first main surface 3A is exposed are formed in the first conductor 4. The individual dielectric exposure regions 6 are provided at a predetermined interval from each other. Referring to FIG. 3, the planar shape of each dielectric material exposure region 6 is provided, for example, as a square (length H1 of one side) having the same dimensions. The intervals between the individual dielectric display regions 6 are different in three columns in the vertical and horizontal directions. For example, the distance (Lb + Lc) between the first and second columns from the left in FIG. The distance from the third row (Ld + Le) is longer than the distance from the third row, and the distance between the first row and the second row (Lh + Li) counted from the page is greater than the distance between the second row and the third row (Lj + Lk). Also long. The dielectric exposed region 6 may be formed by any method, and may be formed, for example, by partially peeling or removing the first conductor 4. For example, on the first conductor 4 formed on the entire surface of the first main surface 3A, the dielectric exposed region is etched by using a mask pattern in which an opening having the same size is formed in a predetermined region. 6 may be formed.

基板3には、第1導体4と第2導体5とを電気的に接続する貫通導体7が互いに一定の間隔(ピッチ)を空けて複数形成されている。図4を参照して、貫通導体7は、第1導体4と第1の主面3A上において電気的に接続されているが、図3においては貫通導体7を実線で図示している。各貫通導体7間のピッチは、可能な限り短く密に形成されているのが好ましいが、たとえば1.5mm以下である。複数の貫通導体7は、第1の主面3A上において格子状(貫通導体7の列により形成される方形が周期的に配置されている状態)に配置されており、複数の貫通導体7により区切られてなる個々の方形領域にはそれぞれ1つの誘電体表出領域6が形成されている。言い換えると、複数の貫通導体7は、個々の誘電体表出領域6を1つずつ囲うように形成されており、個々の誘電体表出領域6の各辺から所定の距離だけ離れ、かつ、各辺と平行に延びる直線状に一定のピッチで設けられている。このとき、複数の貫通導体7が直線状に配置されて形成される貫通導体7の縦横の列間隔は、縦横4列ずつで異なる。たとえば図3中紙面左から数えて縦1列目の誘電体表出領域6とこれを囲うように設けられた複数の貫通導体7とにおいて、誘電体表出領域6の左辺と当該左辺と第1導体4を挟んで対向する貫通導体7の列との間隔Laは、誘電体表出領域6の右辺と当該右辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lbより長い。   A plurality of through conductors 7 that electrically connect the first conductor 4 and the second conductor 5 are formed on the substrate 3 at a predetermined interval (pitch). Referring to FIG. 4, the through conductor 7 is electrically connected to the first conductor 4 on the first main surface 3 </ b> A. In FIG. 3, the through conductor 7 is illustrated by a solid line. The pitch between the through conductors 7 is preferably as short and dense as possible, but is, for example, 1.5 mm or less. The plurality of through conductors 7 are arranged on the first main surface 3A in a lattice shape (a state in which squares formed by the rows of the through conductors 7 are periodically arranged). One dielectric exposure region 6 is formed in each of the divided rectangular regions. In other words, the plurality of through conductors 7 are formed so as to surround the individual dielectric exposed regions 6 one by one, separated from each side of the individual dielectric exposed regions 6 by a predetermined distance, and They are provided in a straight line extending in parallel with each side at a constant pitch. At this time, the vertical and horizontal column intervals of the through conductors 7 formed by arranging the plurality of through conductors 7 in a straight line are different for every four vertical and horizontal columns. For example, in the first row of dielectric exposed areas 6 counted from the left in FIG. 3 and the plurality of through conductors 7 provided so as to surround the dielectric exposed areas 6, the left side of the dielectric exposed areas 6, the left side, The distance La between the row of the through conductors 7 facing each other with the one conductor 4 interposed therebetween is larger than the distance Lb between the right side of the dielectric exposed region 6 and the right side and the row of the through conductors 7 facing each other with the first conductor 4 interposed therebetween. long.

さらに、図3中紙面左から数えて縦2列目の誘電体表出領域6とこれを囲うように設けられた複数の貫通導体7とにおいて、誘電体表出領域6の左辺と当該左辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lcは、当該誘電体表出領域6の右辺と当該右辺と第1導体4を挟んで対向する貫通導体7の列との間隔Ldより長く、縦1列目の誘電体表出領域6の右辺と当該右辺と第1導体4を挟んで対向する貫通導体7の列(縦2列目の誘電体表出領域6の左辺と第1導体4を挟んで対向する貫通導体7の列)との間隔Lbよりも短い。   Further, in the dielectric exposed region 6 in the second vertical column counted from the left in FIG. 3 and the plurality of through conductors 7 provided so as to surround the dielectric exposed region 6, the left side of the dielectric exposed region 6 and the left side The distance Lc between the first conductor 4 and the row of through conductors 7 facing each other is the distance between the right side of the dielectric exposed region 6 and the right side of the first conductor 4 and the row of the through conductors 7 facing each other. It is longer than Ld, and the right side of the first row of dielectric exposed areas 6 and the row of through conductors 7 facing the right side with the first conductor 4 (the left side of the second row of dielectric exposed areas 6 and The distance Lb is shorter than the distance Lb between the first conductors 4 and the opposing through conductors 7.

さらに、図3中紙面左から数えて縦3列目の誘電体表出領域6とこれを囲うように設けられた複数の貫通導体7とにおいて、誘電体表出領域6の左辺と当該左辺と第1導体4を挟んで対向する貫通導体7の列との間隔Leは、当該誘電体表出領域6の右辺と当該右辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lfより長く、縦2列目の誘電体表出領域6の右辺と当該右辺と第1導体4を挟んで対向する貫通導体7の列(縦3列目の誘電体表出領域6の左辺と第1導体4を挟んで対向する貫通導体7の列)との間隔Ldよりも短い。   Further, in the dielectric exposed region 6 in the third vertical column counted from the left in FIG. 3 and the plurality of through conductors 7 provided so as to surround the dielectric exposed region 6, the left side of the dielectric exposed region 6 and the left side The distance Le between the rows of through conductors 7 facing each other with the first conductor 4 interposed therebetween is the distance between the right side of the dielectric exposed region 6 and the right side and the row of through conductors 7 facing each other with the first conductor 4 interposed therebetween. It is longer than Lf, and the right side of the dielectric exposure region 6 in the second vertical column and the row of the through conductors 7 facing the right side with the first conductor 4 (the left side of the dielectric exposure region 6 in the third vertical column) The distance Ld is shorter than the distance Ld between the first conductors 4 and the opposing through conductors 7).

また、たとえば図3中紙面上から数えて横1列目の誘電体表出領域6とこれを囲うように設けられた複数の貫通導体7とにおいて、当該誘電体表出領域6の上辺と、当該上辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lgは当該誘電体表出領域6の下辺と当該下辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lhよりも長い。   Further, for example, in the dielectric exposed region 6 in the first horizontal row counted from the paper surface in FIG. 3 and the plurality of through conductors 7 provided so as to surround the dielectric exposed region 6, the upper side of the dielectric exposed region 6; The distance Lg between the upper side and the row of through conductors 7 facing each other with the first conductor 4 interposed therebetween is the lower side of the dielectric exposed region 6 and the row of the through conductors 7 facing the lower side and the first conductor 4 across the first conductor 4. Longer than the interval Lh.

さらに、図3中紙面上から数えて横2列目の誘電体表出領域6とこれを囲うように設けられた複数の貫通導体7とにおいて、誘電体表出領域6の上辺と当該上辺と第1導体4を挟んで対向する貫通導体7の列との間隔Liは、当該誘電体表出領域6の下辺と、当該下辺と第1導体4を挟んで対向する貫通導体7の列との間隔Ljより長く、横1列目の誘電体表出領域6の下辺と当該下辺と第1導体4を挟んで対向する貫通導体7の列(横2列目の誘電体表出領域6の上辺と第1導体4を挟んで対向する貫通導体7の列)との間隔Lhよりも短い。   Further, in the dielectric exposed region 6 in the second horizontal row from the paper surface in FIG. 3 and the plurality of through conductors 7 provided so as to surround the dielectric exposed region 6, the upper side of the dielectric exposed region 6 and the upper side The distance Li between the row of through conductors 7 facing each other across the first conductor 4 is the lower side of the dielectric exposed region 6 and the row of the through conductors 7 facing across the lower side and the first conductor 4. The lower side of the dielectric exposed region 6 in the first horizontal row and the row of through conductors 7 facing the lower side and the first conductor 4 (the upper side of the dielectric exposed region 6 in the second horizontal row) are longer than the distance Lj. And the distance Lh between the first conductors 4 and the row of through conductors 7 facing each other).

さらに、図3中紙面上から数えて横3列目の誘電体表出領域6とこれを囲うように設けられた複数の貫通導体7とにおいて、誘電体表出領域6の上辺と当該上辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lkは、当該誘電体表出領域6の下辺と、当該下辺と第1導体4を挟んで対向する貫通導体7の列との間隔Llより長く、横2列目の誘電体表出領域6の下辺と当該下辺と第1導体4を挟んで対向する貫通導体7の列(横3列目の誘電体表出領域6の上辺と第1導体4を挟んで対向する貫通導体7の列)との間隔Ljよりも短い。なお、本実施の形態において、誘電体表出領域6と貫通導体7との間隔とは、誘電体表出領域6の一辺と当該1辺と第1導体4を挟んで対向する貫通導体7の中心との最短距離を指す。   Furthermore, in the dielectric exposed region 6 in the third horizontal row counted from the paper surface in FIG. 3 and the plurality of through conductors 7 provided so as to surround the dielectric exposed region 6, the upper side of the dielectric exposed region 6 and the upper side The distance Lk between the row of through conductors 7 facing each other with the first conductor 4 interposed therebetween is the lower side of the dielectric exposed region 6 and the row of the through conductors 7 facing each other with the lower side sandwiched between the first conductors 4. The lower side of the dielectric exposed region 6 in the second horizontal row and the row of the through conductors 7 facing the lower side and the first conductor 4 (the upper side of the dielectric exposed region 6 in the third horizontal row) are longer than the interval Ll. And a distance Lj between the first conductor 4 and the row of through conductors 7 facing each other). In the present embodiment, the distance between the dielectric exposed region 6 and the through conductor 7 refers to one side of the dielectric exposed region 6 and the one side of the through conductor 7 facing each other with the first conductor 4 interposed therebetween. The shortest distance from the center.

この場合、基板3の第1の主面3A上において、第1導体4は、一方端が貫通導体7および第2導体5によって短絡されており、他方端が誘電体表出領域6に面した開放端であるショートスタブ9(図4参照)を構成することができる。このとき、ショートスタブ9の線路長は、誘電体表出領域6と貫通導体7との間隔に相当する。つまり、本実施の形態に係る電磁波減衰構造体10では、Y方向において線路長La〜Lfの6通りのショートスタブ9が形成されており、X方向において線路長Lg〜Llの6通りのショートスタブ9が形成されている。   In this case, one end of the first conductor 4 is short-circuited by the through conductor 7 and the second conductor 5 on the first main surface 3A of the substrate 3, and the other end faces the dielectric exposed region 6. The short stub 9 (refer FIG. 4) which is an open end can be comprised. At this time, the line length of the short stub 9 corresponds to the distance between the dielectric exposed region 6 and the through conductor 7. That is, in the electromagnetic wave attenuation structure 10 according to the present exemplary embodiment, six types of short stubs 9 with line lengths La to Lf are formed in the Y direction, and six types of short stubs with line lengths Lg to Ll in the X direction. 9 is formed.

このようにすれば、本実施の形態に係る電磁波シールと構造体100において、扉1と扉枠2との間隙を図1中Y方向(扉1の手前側から扉1の奥側)に伝搬する電磁波は、多段SIW共振器装荷基板として構成されている電磁波減衰構造体10の表面(第1の主面3A)を必ず伝搬する。その際、図4におけるショートスタブ9の線路長Laが1/4波長となる周波数、即ちショートスタブ9の共振周波数では、ショートスタブ9の表面インピーダンスが大きくなって電磁波の伝搬が抑制される。ここで、図4に示すように、基板3の第1の主面3A上にはY方向に線路長La〜Lfの6通りのショートスタブ9が構成されている。そのため、線路長La〜Lfの各ショートスタブ9の共振周波数をそれぞれf1〜f6とし、各共振周波数f1〜f6の間隔(たとえばf1とf2との間隔、あるいはf5とf6との間隔など)がδfで等間隔となるように線路長La〜Lfを分散化して設計すれば、図1中Y方向へ伝搬する電磁波に対する電磁波減衰構造体10の電磁シールド特性は、図6に示すように周波数f1〜f6の帯域においてδf間隔で少なくとも6つの減衰極を有することができる。また、個々の減衰極間に位置する周波数帯においても十分な電磁シールド特性G1を有している。この結果、電磁波減衰構造体10は、Y方向に伝搬する電磁波に対し広い周波数帯域において減衰効果を奏することができる。なお、図6は、電磁波減衰構造体10の電磁波減衰特性を示すグラフであり、横軸は電磁波の周波数を示し、縦軸は電磁シールド特性(単位:dB)を示す。   In this manner, in the electromagnetic wave seal and structure 100 according to the present embodiment, the gap between the door 1 and the door frame 2 propagates in the Y direction in FIG. 1 (from the front side of the door 1 to the back side of the door 1). The electromagnetic wave to be transmitted always propagates on the surface (first main surface 3A) of the electromagnetic wave attenuation structure 10 configured as the multistage SIW resonator loaded substrate. At this time, at the frequency at which the line length La of the short stub 9 in FIG. 4 becomes a quarter wavelength, that is, the resonance frequency of the short stub 9, the surface impedance of the short stub 9 increases and the propagation of electromagnetic waves is suppressed. Here, as shown in FIG. 4, on the first main surface 3A of the substrate 3, six short stubs 9 having line lengths La to Lf are formed in the Y direction. Therefore, the resonance frequencies of the short stubs 9 of the line lengths La to Lf are f1 to f6, respectively, and the interval between the resonance frequencies f1 to f6 (for example, the interval between f1 and f2 or the interval between f5 and f6) is δf. If the line lengths La to Lf are designed to be distributed at equal intervals, the electromagnetic shielding characteristics of the electromagnetic wave attenuating structure 10 against electromagnetic waves propagating in the Y direction in FIG. 1 have frequencies f1 to f1 as shown in FIG. It is possible to have at least six attenuation poles at intervals of δf in the band of f6. Moreover, it has sufficient electromagnetic shielding characteristics G1 in the frequency band located between the individual attenuation poles. As a result, the electromagnetic wave attenuation structure 10 can exhibit an attenuation effect in a wide frequency band with respect to the electromagnetic wave propagating in the Y direction. FIG. 6 is a graph showing the electromagnetic wave attenuation characteristics of the electromagnetic wave attenuation structure 10, wherein the horizontal axis indicates the frequency of the electromagnetic waves, and the vertical axis indicates the electromagnetic shield characteristics (unit: dB).

電磁波減衰構造体10の実施例として、比誘電率4.3、基板厚0.6mm、貫通スルーホール径0.15mm、貫通スルーホールピッチ0.5mmの誘電体基板3を用い、12GHz以上14.5GHz以下の周波数帯域において電磁シールド特性を得ることを目的とする場合には、f1=12GHz,f2=12.5GHz,f3=13GHz,f4=13.5GHz,f5=14GHz,f6=14.5GHz,δf=0.5GHzに対し、La=7.6mm,Lb=7.3mm,Lc=6.9mm,Ld=6.6mm,Le=6.3mm,Lf=6.0mmとすればよい。   As an example of the electromagnetic wave attenuation structure 10, a dielectric substrate 3 having a relative dielectric constant of 4.3, a substrate thickness of 0.6 mm, a through-through hole diameter of 0.15 mm, and a through-through hole pitch of 0.5 mm is used. For the purpose of obtaining electromagnetic shielding characteristics in a frequency band of 5 GHz or less, f1 = 12 GHz, f2 = 12.5 GHz, f3 = 13 GHz, f4 = 13.5 GHz, f5 = 14 GHz, f6 = 14.5 GHz, For δf = 0.5 GHz, La = 7.6 mm, Lb = 7.3 mm, Lc = 6.9 mm, Ld = 6.6 mm, Le = 6.3 mm, and Lf = 6.0 mm.

また、扉1と扉枠2との間隙を図1中X方向に伝搬する電磁波は、多段SIW共振器装荷基板として構成されている電磁波減衰構造体10の表面(第1の主面3A)を伝搬し得る。図5は、図3に示す線分V−Vを通るXZ断面図である。   Further, the electromagnetic wave propagating in the X direction in FIG. 1 through the gap between the door 1 and the door frame 2 passes through the surface (first main surface 3A) of the electromagnetic wave attenuation structure 10 configured as a multistage SIW resonator loaded substrate. Can propagate. FIG. 5 is an XZ sectional view taken along line VV shown in FIG.

図5に示すように、基板3の第1の主面3A上にはX方向に線路長Lg〜Llの6通りのショートスタブ9が構成されている。そのため、線路長Lg〜Llの各ショートスタブ9の共振周波数をそれぞれf1〜f6とし(言い換えると、線路長Lg〜Llは、それぞれ上記Y方向における線路長La〜Lfと同等とし)、各共振周波数f1〜f6の間隔(たとえばf1とf2との間隔、あるいはf5とf6との間隔など)がδfで等間隔となるように線路長Lg〜Llを分散化して設計すれば、図1中Y方向へ伝搬する電磁波に対する電磁波減衰構造体10の電磁シールド特性は、図6に示すY方向における電磁シールド特性G1と同様の6つの減衰極を有することができる。この結果、電磁波減衰構造体10は、X方向に伝搬する電磁波に対しも広い周波数帯域において減衰効果を奏することができる。   As shown in FIG. 5, on the first main surface 3A of the substrate 3, six short stubs 9 having line lengths Lg to Ll are formed in the X direction. Therefore, the resonance frequencies of the respective short stubs 9 having the line lengths Lg to Ll are set to f1 to f6 (in other words, the line lengths Lg to Ll are respectively equivalent to the line lengths La to Lf in the Y direction), and each resonance frequency is set. If the line lengths Lg to Ll are designed to be distributed so that the interval between f1 to f6 (for example, the interval between f1 and f2 or the interval between f5 and f6) is equal to δf, the Y direction in FIG. The electromagnetic shielding characteristics of the electromagnetic wave attenuation structure 10 with respect to the electromagnetic waves propagating to can have six attenuation poles similar to the electromagnetic shielding characteristics G1 in the Y direction shown in FIG. As a result, the electromagnetic wave attenuation structure 10 can exhibit an attenuation effect in a wide frequency band even with respect to the electromagnetic wave propagating in the X direction.

このように、本実施の形態に係る電磁波減衰構造体10によれば、X方向およびY方向において図6に示すようにそれぞれ6つの減衰極を有することができるため、各方向に伝搬する電磁波に対し広い周波数帯域において減衰効果を奏することができる。さらに、X方向およびY方向は互いに直交しているため、電磁波減衰構造体10は、図3中のXY平面上を任意の方向に伝搬する所定の周波数の電磁波に対しても図6に示した電磁シールド特性を有することができる。   As described above, according to the electromagnetic wave attenuation structure 10 according to the present embodiment, each of the X direction and the Y direction can have six attenuation poles as shown in FIG. In contrast, an attenuation effect can be achieved in a wide frequency band. Further, since the X direction and the Y direction are orthogonal to each other, the electromagnetic wave attenuation structure 10 is also shown in FIG. 6 for an electromagnetic wave having a predetermined frequency propagating in an arbitrary direction on the XY plane in FIG. It can have electromagnetic shielding properties.

以上のように、実施の形態1に係る電磁波減衰構造体10によれば、貫通導体7のピッチを可能な限り短く密に形成することにより、個々の貫通導体7が理想的な電気壁として機能することができる。このため、実施の形態1に係る電磁波減衰構造体10は、主にショートスタブ9の線路長を設計パラメータとすれば設計可能であり、貫通導体7の径等の貫通導体7に関するパラメータは電磁波減衰構造体10の共振周波数には寄与しない。その結果、2次元的に周期配列された導体パターンの寸法、導体パターンの間隔、貫通スルーホール径、および貫通スルーホールのピッチなどの多くの設計パラメータを要する従来の電磁波減衰構造体と比べて、実施の形態1に係る電磁波減衰構造体10は簡易に設計されることができる。なお、誘電体表出領域6の寸法は、共振器としての結合度に影響するが、共振周波数にはほとんど影響しない。   As described above, according to the electromagnetic wave attenuating structure 10 according to the first embodiment, each through conductor 7 functions as an ideal electric wall by forming the through conductors 7 with the pitch as short and dense as possible. can do. For this reason, the electromagnetic wave attenuation structure 10 according to the first embodiment can be designed mainly using the line length of the short stub 9 as a design parameter, and parameters relating to the through conductor 7 such as the diameter of the through conductor 7 are electromagnetic wave attenuation. It does not contribute to the resonance frequency of the structure 10. As a result, compared to conventional electromagnetic wave attenuation structures that require many design parameters such as the dimensions of conductor patterns that are two-dimensionally periodically arranged, conductor pattern spacing, through-hole diameter, and through-hole pitch, The electromagnetic wave attenuation structure 10 according to Embodiment 1 can be designed easily. The dimension of the dielectric material exposure region 6 affects the degree of coupling as a resonator, but hardly affects the resonance frequency.

さらに、本実施の形態に係る電磁シールド構造体100は、扉1と扉枠2との間隙に第1の主面3Aが面するように電磁波減衰構造体10が配置されているため、間隙を通って任意の方向に伝搬する電磁波に対し、周波数f1以上f6以下の広い周波数帯域において減衰効果を奏することができる。これに対し、上述した特許文献1に記載の従来の電磁波減衰構造では、減衰効果が得られる周波数帯域の広帯域化を図るためには導体パターンの寸法が異なる複数の導体パターンを2次元的に周期配置する必要があるが、周期性が破綻する箇所が生じてしまう。そのため、従来の電磁波減衰構造では、減衰効果が得られる周波数帯域の広帯域化が困難であるという問題があった。実施の形態1に係る電磁波減衰構造体10は、周期性の破綻を招くことなく複数通りの線路長を有するショートスタブ9を備えることができる。   Furthermore, in the electromagnetic shield structure 100 according to the present embodiment, since the electromagnetic wave attenuation structure 10 is disposed so that the first main surface 3A faces the gap between the door 1 and the door frame 2, the gap is not formed. An attenuation effect can be exerted on electromagnetic waves propagating in an arbitrary direction through a wide frequency band of frequencies f1 to f6. On the other hand, in the conventional electromagnetic wave attenuation structure described in Patent Document 1 described above, a plurality of conductor patterns having different conductor pattern dimensions are two-dimensionally cycled in order to increase the frequency band in which the attenuation effect can be obtained. Although it is necessary to arrange, the location where periodicity breaks down will arise. Therefore, the conventional electromagnetic wave attenuation structure has a problem that it is difficult to widen the frequency band where the attenuation effect can be obtained. The electromagnetic wave attenuating structure 10 according to Embodiment 1 can include short stubs 9 having a plurality of line lengths without causing periodic failure.

また、実施の形態1に係る電磁シールド構造体100では、扉1と扉枠2が非接触であるため、扉1の開閉回数の増加による電磁シールド性能の経年劣化を防止することができる。   Further, in the electromagnetic shield structure 100 according to the first embodiment, the door 1 and the door frame 2 are not in contact with each other, so that it is possible to prevent the deterioration of electromagnetic shielding performance due to an increase in the number of times the door 1 is opened and closed.

なお、実施の形態1に係る電磁波減衰構造体10では、ショートスタブ9の線路長が6通りに設けられているが、誘電体表出領域6および貫通導体7による格子数を増減すことにより、任意の数の異なる線路長を有する電磁波減衰構造体10を容易に得ることができる(実施の形態2参照)。   In addition, in the electromagnetic wave attenuation structure 10 according to the first exemplary embodiment, the line length of the short stub 9 is provided in six ways, but by increasing or decreasing the number of lattices by the dielectric exposed region 6 and the through conductor 7, The electromagnetic wave attenuation structure 10 having an arbitrary number of different line lengths can be easily obtained (see the second embodiment).

実施の形態1に係る電磁シールド構造体100では、扉1と扉枠2との間隙に面する扉1の壁面上に電磁波減衰構造体10が形成されているが、扉枠2の壁面上に電磁波減衰構造体10が形成されていてもよい。このようにしても、実施の形態1に係る電磁シールド構造体100と同様の効果を奏することができる。   In the electromagnetic shielding structure 100 according to the first embodiment, the electromagnetic wave attenuation structure 10 is formed on the wall surface of the door 1 facing the gap between the door 1 and the door frame 2, but on the wall surface of the door frame 2. The electromagnetic wave attenuation structure 10 may be formed. Even if it does in this way, there can exist an effect similar to the electromagnetic shielding structure 100 which concerns on Embodiment 1. FIG.

また、電磁シールド構造体100は、間隙を有する導体壁上において間隙に面するように電磁波減衰構造体10が配置されている限りにおいて、任意の態様を採ることができる。このようにしても、当該間隙を通って伝搬する電磁波に対して、実施の形態1に係る電磁シールド構造体100と同様の効果を奏することができる。   Further, the electromagnetic shield structure 100 can take any form as long as the electromagnetic wave attenuation structure 10 is disposed so as to face the gap on the conductor wall having the gap. Even if it does in this way, the effect similar to the electromagnetic shielding structure 100 which concerns on Embodiment 1 with respect to the electromagnetic wave which propagates through the said gap | interval can be show | played.

実施の形態1に係る電磁波減衰構造体10では、X方向における線路長Lg〜LlがそれぞれY方向におけるLa〜Lfと同等であるように形成されているが、これに限られるものではなく、それぞれ異なっていてもよい。つまり、X方向における各ショートスタブ9の共振周波数をそれぞれf7〜f12とし、各共振周波数f7〜f12の間隔(たとえばf7とf8との間隔、あるいはf11とf12との間隔など)がδfで等間隔となるように線路長Lg〜Llを分散化して設計してもよい。   In the electromagnetic wave attenuation structure 10 according to the first exemplary embodiment, the line lengths Lg to Ll in the X direction are formed so as to be equivalent to La to Lf in the Y direction, respectively, but not limited thereto. May be different. That is, the resonance frequency of each short stub 9 in the X direction is set to f7 to f12, and the interval between the resonance frequencies f7 to f12 (for example, the interval between f7 and f8 or the interval between f11 and f12) is equal to δf. The line lengths Lg to Ll may be designed so as to be distributed.

また、実施の形態1に係る電磁波減衰構造体10では、同一寸法で設けられた平面形状が正方形の誘電体表出領域6が互いに異なる間隔で設けられており、かつ個々の誘電体表出領域6を囲うように直線状に配置された貫通導体7の列が互いに異なる間隔を空けて設けられているが、これに限られるものではない。たとえば、図7および図8を参照して、正方格子状に設けられている貫通導体7に囲まれた個々の領域上に、形状や寸法の異なる誘電体表出領域6が互いに異なる間隔で設けられていてもよい。   Further, in the electromagnetic wave attenuation structure 10 according to the first exemplary embodiment, the dielectric exposed regions 6 having a square planar shape provided with the same dimensions are provided at different intervals, and individual dielectric exposed regions are provided. The rows of through conductors 7 arranged linearly so as to surround 6 are provided at different intervals, but the present invention is not limited to this. For example, referring to FIG. 7 and FIG. 8, dielectric exposed regions 6 having different shapes and dimensions are provided at different intervals on individual regions surrounded by through conductors 7 provided in a square lattice shape. It may be done.

具体的には、たとえば貫通導体7が一定のピッチで複数設けられてなる列がX方向およびY方向において互いに平行に等間隔Lだけ離れて形成されている。このとき、図7中紙面左から数えて縦1列目の3つの誘電体表出領域6の平面形状は、いずれもY方向における一辺の長さH2であるのに対し、X方向における一辺の長さは横1列目が長さH5、横2列目が長さH6、横3列目がH7で異なっている。これら3つの誘電体表出領域6の左辺と当該左辺と第1導体4を挟んで対向する貫通導体7の列との間隔Laは、誘電体表出領域6の右辺と当該右辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lbより長い。   Specifically, for example, rows each including a plurality of through conductors 7 provided at a constant pitch are formed in parallel to each other in the X direction and the Y direction by an equal interval L. At this time, the planar shape of the three dielectric exposed regions 6 in the first column, counting from the left in FIG. 7, is the length H2 of one side in the Y direction, whereas the planar shape of one side in the X direction is one. The length of the first horizontal row is different from the length H5, the second horizontal row is the length H6, and the third horizontal row is H7. The distance La between the left side of these three dielectric exposed regions 6 and the row of through conductors 7 facing each other with the first conductor 4 interposed therebetween is the right side of the dielectric exposed region 6, the right side, and the first conductor. 4 is longer than the distance Lb from the row of through conductors 7 facing each other.

さらに、図7中紙面左から数えて縦2列目の誘電体表出領域6の平面形状は、たとえばY方向における一辺の長さH3であるのに対し、X方向における一辺の長さは横1列目が長さH5、横2列目が長さH6、横3列目がH7で異なっている。これら3つの誘電体表出領域6の左辺と当該左辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lcは、誘電体表出領域6の右辺と当該右辺と第1導体4を挟んで対向する貫通導体7の列との間隔Ldより長く、縦1列目の誘電体表出領域6の右辺と、当該右辺と第1導体4を挟んで対向する貫通導体7の列(縦2列目の誘電体表出領域6の左辺と第1導体4を挟んで対向する貫通導体7の列)との間隔Lbよりも短い。   Furthermore, the planar shape of the dielectric exposed region 6 in the second vertical column as counted from the left in FIG. 7 is, for example, the length H3 of one side in the Y direction, whereas the length of one side in the X direction is horizontal. The first row is different in length H5, the second row in length H6, and the third row in H7. The distance Lc between the left side of these three dielectric exposed regions 6 and the row of through conductors 7 facing each other across the left side and the first conductor 4 is the right side of the dielectric exposed region 6, the right side, and the first conductor. 4 is longer than the distance Ld between the rows of through conductors 7 facing each other across 4, and the right side of the dielectric exposed region 6 in the first vertical column, and the row of through conductors 7 facing each other across the right conductor and the first conductor 4. It is shorter than the distance Lb between the left side of the dielectric material exposure region 6 in the vertical second row and the row of the through conductors 7 facing each other across the first conductor 4.

さらに、図7中紙面左から数えて縦3列目の誘電体表出領域6の平面形状は、たとえばY方向における一辺の長さH4であるのに対し、X方向における一辺の長さは横1列目が長さH5、横2列目が長さH6、横3列目がH7で異なっている。これら3つの誘電体表出領域6の左辺と当該左辺と第1導体4を挟んで対向する貫通導体7の列との間隔Leは、誘電体表出領域6の右辺と当該右辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lfより長く、縦2列目の誘電体表出領域6の右辺と、当該右辺と第1導体4を挟んで対向する貫通導体7の列(縦3列目の誘電体表出領域6の左辺と第1導体4を挟んで対向する貫通導体7の列)との間隔Ldよりも短い。   Furthermore, the planar shape of the dielectric exposed region 6 in the third vertical column from the left in FIG. 7 is, for example, the length H4 of one side in the Y direction, whereas the length of one side in the X direction is horizontal. The first row is different in length H5, the second row in length H6, and the third row in H7. The distance Le between the left side of these three dielectric exposed regions 6 and the row of through conductors 7 facing each other with the first conductor 4 interposed therebetween is the right side of the dielectric exposed region 6, the right side, and the first conductor. 4 is longer than the distance Lf between the rows of through conductors 7 facing each other across 4 and the right side of the dielectric exposed region 6 in the second vertical column, and the row of through conductors 7 facing across the right side and the first conductor 4 The distance Ld is shorter than the distance Ld between the left side of the dielectric exposed region 6 in the third vertical column and the row of the through conductors 7 facing each other across the first conductor 4.

また、横1列目に配置された3つの誘電体表出領域6の上辺と当該上辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lgは、誘電体表出領域6の下辺と当該下辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lhより長い。   In addition, the distance Lg between the upper sides of the three dielectric exposed regions 6 arranged in the first horizontal row and the row of the through conductors 7 facing each other across the first conductor 4 is determined by the dielectric exposed region 6. Longer than the distance Lh between the lower side and the row of through conductors 7 facing each other with the first conductor 4 interposed therebetween.

さらに、横2列目に配置された3つの誘電体表出領域6の上辺と当該上辺と第1導体4を挟んで対向する貫通導体7の列との間隔Liは、誘電体表出領域6の下辺と当該下辺と第1導体4を挟んで対向する貫通導体7の列との間隔Ljより長く、横1列目の誘電体表出領域6の下辺と、当該下辺と第1導体4を挟んで対向する貫通導体7の列(横2列目の誘電体表出領域6の上辺と第1導体4を挟んで対向する貫通導体7の列)との間隔Lhよりも短い。   Further, the distance Li between the upper sides of the three dielectric exposed regions 6 arranged in the second horizontal row and the row of the through conductors 7 facing each other across the first conductor 4 is determined by the dielectric exposed region 6. The lower side of the dielectric exposed region 6 in the first horizontal row, the lower side, and the lower side and the first conductor 4 are longer than the interval Lj between the lower side and the lower side and the row of through conductors 7 facing each other across the first conductor 4. It is shorter than the distance Lh between the row of through conductors 7 facing each other (the upper side of the dielectric exposed region 6 in the second horizontal row and the row of through conductors 7 facing each other across the first conductor 4).

さらに、横3列目に配置された3つの誘電体表出領域6の上辺と当該上辺と第1導体4を挟んで対向する貫通導体7の列との間隔Lkは、誘電体表出領域6の下辺と当該下辺と第1導体4を挟んで対向する貫通導体7の列との間隔Llより長く、横2列目の誘電体表出領域6の下辺と、当該下辺と第1導体4を挟んで対向する貫通導体7の列(横3列目の誘電体表出領域6の上辺と第1導体4を挟んで対向する貫通導体7の列)との間隔Ljよりも短い。   Further, the distance Lk between the upper sides of the three dielectric exposed regions 6 arranged in the third horizontal row and the row of the through conductors 7 facing each other across the first conductor 4 is determined by the dielectric exposed region 6. The lower side of the dielectric exposed region 6 in the horizontal second row, the lower side, and the lower side and the first conductor 4 are longer than the interval Ll between the lower side and the lower side and the row of through conductors 7 facing each other across the first conductor 4. It is shorter than the distance Lj between the rows of through conductors 7 facing each other (the upper side of the third dielectric exposed region 6 and the row of through conductors 7 facing each other across the first conductor 4).

このように、個々の誘電第表出領域6が異なる寸法を有し、かつ、互いに異なる間隔で配置されているとともに、貫通導体7が正方格子状に形成されていても、ショートスタブ9の線路長が異なる電磁波減衰構造体10を形成することができ、実施の形態1に係る電磁波減衰構造体10と同様の効果を奏することができる。   Thus, even if the individual dielectric exposed regions 6 have different dimensions and are arranged at different intervals, and the through conductors 7 are formed in a square lattice shape, the line of the short stub 9 The electromagnetic wave attenuation structure 10 having different lengths can be formed, and the same effect as the electromagnetic wave attenuation structure 10 according to Embodiment 1 can be obtained.

(実施の形態2)
次に、実施の形態2に係る電磁波減衰構造体10および電磁シールド構造体100について説明する。実施の形態2に係る電磁波減衰構造体10および電磁シールド構造体100は、基本的には実施の形態1に係る電磁波減衰構造体10および電磁シールド構造体100と同様の構成を備えるが、X方向およびY方向の少なくとも一方向におけるショートスタブ9の線路長が6通りでなく、2通りに設けられている点で異なる。
(Embodiment 2)
Next, the electromagnetic wave attenuation structure 10 and the electromagnetic shield structure 100 according to Embodiment 2 will be described. The electromagnetic wave attenuation structure 10 and the electromagnetic shield structure 100 according to the second exemplary embodiment basically have the same configuration as the electromagnetic wave attenuation structure 10 and the electromagnetic shield structural body 100 according to the first exemplary embodiment, but in the X direction. And the length of the short stub 9 in at least one direction in the Y direction is different in that it is provided in two ways instead of six.

具体的には、図4におけるショートスタブ9の線路長La〜Lf、及び図5におけるショートスタブ9の線路長Lg〜Llは、実施の形態1のようにそれぞれの組で互いに異なる値とする必要はない。このため、たとえば、線路長La〜Lcと線路長Lg〜Liをそれぞれ周波数f1における1/4波長とし、線路長Ld〜Lfと線路長Lj〜Llをそれぞれ周波数f2における1/4波長となるよう設計すれば、周波数f1とf2を共振周波数とするショートスタブ9の数を実施の形態1に係る電磁波減衰構造体10よりも多くすることができる。   Specifically, the line lengths La to Lf of the short stub 9 in FIG. 4 and the line lengths Lg to Ll of the short stub 9 in FIG. 5 need to be different from each other as in the first embodiment. There is no. Therefore, for example, the line lengths La to Lc and the line lengths Lg to Li are set to ¼ wavelength at the frequency f1, respectively, and the line lengths Ld to Lf and the line lengths Lj to Ll are set to ¼ wavelength at the frequency f2, respectively. If designed, the number of short stubs 9 having frequencies f1 and f2 as resonance frequencies can be made larger than that of the electromagnetic wave attenuation structure 10 according to the first embodiment.

この結果、実施の形態2に係る電磁波減衰構造体は、図9に示すように、実施の形態1に係る電磁波減衰構造体10よりも狭帯域ではあるが、周波数f1以上f3以下の周波数帯域において、より高い電磁シールド特性を得ることができる。なお、図9は、電磁波減衰構造体10の電磁波減衰特性を示すグラフであり、横軸は電磁波の周波数を示し、縦軸は電磁シールド特性(単位:dB)を示す。図9中の点線で示す電磁シールド特性G1は、図6に示す実施の形態1に係る電磁波減衰構造体10の電磁シールド特性である。   As a result, the electromagnetic wave attenuation structure according to the second embodiment is narrower than the electromagnetic wave attenuation structure 10 according to the first embodiment as shown in FIG. Higher electromagnetic shielding characteristics can be obtained. FIG. 9 is a graph showing the electromagnetic wave attenuation characteristics of the electromagnetic wave attenuation structure 10, wherein the horizontal axis indicates the frequency of the electromagnetic waves, and the vertical axis indicates the electromagnetic shield characteristics (unit: dB). The electromagnetic shielding characteristic G1 indicated by the dotted line in FIG. 9 is the electromagnetic shielding characteristic of the electromagnetic wave attenuation structure 10 according to Embodiment 1 shown in FIG.

また、全てのショートスタブ9の線路長を周波数f1において1/4波長となるよう設計してもよい。このようにすれば、全てのショートスタブ9が周波数f1で共振するのでさらに狭帯域にはなるものの、図10に示すように、周波数f1において更に高い電磁シールド特性を得ることができる。つまり、実施の形態2に係る電磁波減衰構造体では、ショートスタブ9の線路長を分散せずに設計することで、特定の周波数帯域あるいは特定の周波数において、実施の形態1に係る電磁波減衰構造体10よりも高いシールド特性を有することができる。なお、図10は、電磁波減衰構造体10の電磁波減衰特性を示すグラフであり、横軸は電磁波の周波数を示し、縦軸は電磁シールド特性(単位:dB)を示す。図10中の点線で示す電磁シールド特性G1は、図6に示す実施の形態1に係る電磁波減衰構造体10の電磁シールド特性である。   Further, the line length of all the short stubs 9 may be designed to be ¼ wavelength at the frequency f1. In this way, since all the short stubs 9 resonate at the frequency f1, the band becomes narrower. However, as shown in FIG. 10, higher electromagnetic shielding characteristics can be obtained at the frequency f1. That is, in the electromagnetic wave attenuation structure according to Embodiment 2, the electromagnetic wave attenuation structure according to Embodiment 1 is designed in a specific frequency band or a specific frequency by designing the short stub 9 without distributing the line length. It can have a shielding characteristic higher than 10. FIG. 10 is a graph showing the electromagnetic wave attenuation characteristics of the electromagnetic wave attenuation structure 10, wherein the horizontal axis indicates the frequency of the electromagnetic waves, and the vertical axis indicates the electromagnetic shield characteristics (unit: dB). The electromagnetic shield characteristic G1 indicated by the dotted line in FIG. 10 is the electromagnetic shield characteristic of the electromagnetic wave attenuation structure 10 according to Embodiment 1 shown in FIG.

(実施の形態3)
次に、実施の形態3に係る電磁波減衰構造体および電磁シールド構造体について説明する。実施の形態3に係る電磁波減衰構造体10および電磁シールド構造体100は、基本的には実施の形態1に係る電磁波減衰構造体10および電磁シールド構造体100と同様の構成を備えるが、図11に示すように間隙に面する扉1上だけでなく、扉枠2上にも電磁波減衰構造体10を配置する点で異なる。
(Embodiment 3)
Next, the electromagnetic wave attenuation structure and the electromagnetic shield structure according to Embodiment 3 will be described. The electromagnetic wave attenuation structure 10 and the electromagnetic shield structure 100 according to Embodiment 3 basically have the same configuration as the electromagnetic wave attenuation structure 10 and the electromagnetic shield structure 100 according to Embodiment 1, but FIG. The electromagnetic wave attenuation structure 10 is different not only on the door 1 facing the gap but also on the door frame 2 as shown in FIG.

このようにすれば、周波数f1以上f6以下を共振周波数とするショートスタブ9の数を実施の形態1に係る電磁シールド構造体100よりも多くすることができる。図12は、電磁波減衰構造体10の電磁波減衰特性を示すグラフであり、横軸は電磁波の周波数を示し、縦軸は電磁シールド特性(単位:dB)を示す。図12中の点線で示す電磁シールド特性G1は、図6に示す実施の形態1に係る電磁波減衰構造体10の電磁シールド特性である。図12に示すように、周波数f1以上f6以下の帯域において実施の形態1に係る電磁シールド構造体100の特性G1よりも高い電磁シールド特性を実現することができる。   In this way, it is possible to increase the number of short stubs 9 having a resonance frequency of the frequency f1 or more and f6 or less than that of the electromagnetic shield structure 100 according to the first embodiment. FIG. 12 is a graph showing the electromagnetic wave attenuation characteristics of the electromagnetic wave attenuation structure 10, wherein the horizontal axis represents the frequency of the electromagnetic waves, and the vertical axis represents the electromagnetic shield characteristics (unit: dB). The electromagnetic shield characteristic G1 indicated by the dotted line in FIG. 12 is the electromagnetic shield characteristic of the electromagnetic wave attenuation structure 10 according to Embodiment 1 shown in FIG. As shown in FIG. 12, an electromagnetic shield characteristic higher than the characteristic G1 of the electromagnetic shield structure 100 according to Embodiment 1 can be realized in a band of frequencies f1 or more and f6 or less.

(実施の形態4)
次に、実施の形態4に係る電磁波減衰構造体および電磁シールド構造体について説明する。実施の形態4に係る電磁波減衰構造体10および電磁シールド構造体100は、基本的には実施の形態1に係る電磁波減衰構造体10および電磁シールド構造体100と同様の構成を備えるが、図13に示すように電磁シールド構造体100が導電性ガスケット12をさらに備える点で異なる。
(Embodiment 4)
Next, an electromagnetic wave attenuation structure and an electromagnetic shield structure according to Embodiment 4 will be described. The electromagnetic wave attenuation structure 10 and the electromagnetic shield structure 100 according to the fourth exemplary embodiment basically have the same configuration as the electromagnetic wave attenuation structure 10 and the electromagnetic shield structural body 100 according to the first exemplary embodiment. The electromagnetic shield structure 100 differs in that the conductive gasket 12 is further provided.

図13を参照して、具体的には扉1と扉枠2との間隙において、扉1と扉枠2との間を電気的に接続することができる導電性ガスケット12が設けられている。導電性ガスケット12は、上記間隙を跨いで導体壁同士を電気的に接続している限りにおいて、扉1(一方の導体壁)の壁面上に設けられていてもよいし、扉枠2(他方の導体壁)の壁面上に設けられていてもよい。   Referring to FIG. 13, specifically, a conductive gasket 12 that can electrically connect between the door 1 and the door frame 2 is provided in the gap between the door 1 and the door frame 2. The conductive gasket 12 may be provided on the wall surface of the door 1 (one conductor wall) or the door frame 2 (the other) as long as the conductor walls are electrically connected across the gap. May be provided on the wall surface of the conductor wall.

導電性ガスケット12は,扉1の閉鎖時に扉1と扉枠2とを電気的に接続する任意の構造を有していればよく、たとえばフィンガー形状を有していてもよいし、あるいは扉1の外周全体を囲むようにもしくは扉枠2の内周全体に沿って形成されていてもよい。導電性ガスケット12を構成する材料は、導電性を有する限りにおいて任意の材料とすることができ、たとえば任意の金属材料で構成されていてもよいし、導電性および伸縮性を有する任意の材料で構成されていてもよい。   The conductive gasket 12 only needs to have an arbitrary structure for electrically connecting the door 1 and the door frame 2 when the door 1 is closed. For example, the conductive gasket 12 may have a finger shape or the door 1. It may be formed so as to surround the entire outer periphery of the door frame or along the entire inner periphery of the door frame 2. The material constituting the conductive gasket 12 can be any material as long as it has conductivity. For example, the material may be composed of any metal material, or any material having conductivity and stretchability. It may be configured.

このようにすれば、実施の形態1に係る電磁シールド構造体100と同様の効果を奏することができるとともに、導電性ガスケット12が有する電磁シールド特性がさらに付加されることにより、より高い電磁シールド特性を実現することができる。   In this way, the same effects as those of the electromagnetic shielding structure 100 according to Embodiment 1 can be obtained, and the electromagnetic shielding characteristics of the conductive gasket 12 can be further added, resulting in higher electromagnetic shielding characteristics. Can be realized.

(実施の形態5)
次に、実施の形態5に係る電磁波減衰構造体および電磁シールド構造体について説明する。実施の形態5に係る電磁波減衰構造体10および電磁シールド構造体100は、基本的には実施の形態1に係る電磁波減衰構造体10および電磁シールド構造体100と同様の構成を備えるが、図14に示すように電磁シールド構造体100が電波吸収体13をさらに備える点で異なる。
(Embodiment 5)
Next, an electromagnetic wave attenuation structure and an electromagnetic shield structure according to Embodiment 5 will be described. The electromagnetic wave attenuation structure 10 and the electromagnetic shield structure 100 according to Embodiment 5 basically have the same configuration as the electromagnetic wave attenuation structure 10 and the electromagnetic shield structure 100 according to Embodiment 1, but FIG. As shown in FIG. 4, the electromagnetic shield structure 100 is different in that it further includes a radio wave absorber 13.

図14を参照して、具体的には、扉1と扉枠2の間隙において、電磁波減衰構造体10に対しY軸方向に直列に電波吸収体13を配置してもよい。電波吸収体13は、導電性繊維を構成材料とする導電性電波吸収体であってもよいし、鉄(Fe)、ニッケル(Ni)、フェライト等を構成材料とする磁性電波吸収体であってもよい。   Referring to FIG. 14, specifically, radio wave absorber 13 may be arranged in series in the Y-axis direction with respect to electromagnetic wave attenuation structure 10 in the gap between door 1 and door frame 2. The radio wave absorber 13 may be a conductive radio wave absorber having a conductive fiber as a constituent material, or a magnetic radio wave absorber having iron (Fe), nickel (Ni), ferrite, or the like as a constituent material. Also good.

このようにすれば、実施の形態1に係る電磁シールド構造体100と同様の効果を奏することができるとともに、電波吸収体13が有する電磁シールド特性がさらに付加されることにより、より高い電磁シールド特性を実現することができる。   In this way, the same effects as those of the electromagnetic shielding structure 100 according to Embodiment 1 can be obtained, and the electromagnetic shielding characteristics of the radio wave absorber 13 are further added, so that higher electromagnetic shielding characteristics can be obtained. Can be realized.

図15を参照して、電波吸収体13は電磁波減衰構造体10が設けられている扉1(一方の導体壁)と間隙を挟んで対向する扉枠2(他方の導体壁)上に形成されていてもよい。また、図16を参照して、電波吸収体13は、電磁波減衰構造体10の第1の主面3A上に形成されていてもよい。このようにしても、実施の形態5に係る電磁波減衰構造体と同様の効果を奏することができる。   Referring to FIG. 15, the radio wave absorber 13 is formed on the door frame 2 (the other conductor wall) facing the door 1 (one conductor wall) provided with the electromagnetic wave attenuation structure 10 with a gap therebetween. It may be. Referring to FIG. 16, the radio wave absorber 13 may be formed on the first main surface 3 </ b> A of the electromagnetic wave attenuation structure 10. Even if it does in this way, there can exist an effect similar to the electromagnetic wave attenuation structure which concerns on Embodiment 5. FIG.

実施の形態3〜実施の形態5に係る電磁波減衰構造体10は、実施の形態1に係る電磁波減衰構造体10と同様の構成を備えている形態に限られるものではなく、実施の形態2に係る電磁波減衰構造体と同様の構成を備えていてもよい。   The electromagnetic wave attenuation structure 10 according to the third to fifth embodiments is not limited to the form having the same configuration as the electromagnetic wave attenuation structure 10 according to the first embodiment. You may provide the structure similar to the electromagnetic wave attenuation structure which concerns.

また、実施の形態1〜実施の形態5に係る電磁波減衰構造体10において、貫通導体7はX方向に設けられた貫通導体7の複数の配列と、これと垂直なY方向に設けられた貫通導体7の複数の配列とにより格子状に設けられているが、これに限られるものではない。たとえばX方向に設けられた貫通導体7の複数の配列と、X方向に対して任意の角度だけ傾斜して設けられた貫通導体7の複数の配列が平行四辺形を成すように設けられていてもよい。この場合、誘電体表出領域6の平面形状は、たとえば平行四辺形であってもよい。このようにしても、実施の形態1〜実施の形態5に係る電磁波減衰構造体10および電磁シールド構造体100と同様の効果を奏することができる。   In addition, in the electromagnetic wave attenuation structure 10 according to the first to fifth embodiments, the through conductor 7 includes a plurality of arrays of through conductors 7 provided in the X direction, and through holes provided in the Y direction perpendicular thereto. Although the plurality of conductors 7 are arranged in a lattice pattern, the present invention is not limited to this. For example, a plurality of arrays of through conductors 7 provided in the X direction and a plurality of arrays of through conductors 7 provided at an arbitrary angle with respect to the X direction are provided to form a parallelogram. Also good. In this case, the planar shape of the dielectric exposed region 6 may be, for example, a parallelogram. Even if it does in this way, there can exist an effect similar to the electromagnetic wave attenuation | damping structure 10 and the electromagnetic shielding structure 100 which concern on Embodiment 1-Embodiment 5. FIG.

本発明は、間隙を有する導体壁等に容易に形成され得る電磁シールド構造体に特に有利に適用される。   The present invention is particularly advantageously applied to an electromagnetic shield structure that can be easily formed on a conductor wall or the like having a gap.

1 扉、2 扉枠、3 誘電体基板、3A 第1の主面、3B 第2の主面、4 第1導体、5 第2導体、6 誘電体表出領域、7 貫通導体、8 ヒンジ、9 ショートスタブ、10 電磁波減衰構造体、11 開閉レバー、12 導電性ガスケット、13 電波吸収体、100 電磁シールド構造体。   DESCRIPTION OF SYMBOLS 1 Door, 2 Door frame, 3 Dielectric board | substrate, 3A 1st main surface, 3B 2nd main surface, 4 1st conductor, 5 2nd conductor, 6 Dielectric material exposed area | region, 7 Through conductor, 8 Hinge, 9 Short stub, 10 Electromagnetic wave attenuation structure, 11 Open / close lever, 12 Conductive gasket, 13 Radio wave absorber, 100 Electromagnetic shield structure.

Claims (9)

第1の主面と前記第1の主面の反対側に位置する第2の主面とを有する誘電体基板と、
前記第1の主面上に形成されている第1導体と、
前記第2の主面上に形成されている第2導体と、
前記第1導体と前記第2導体とを電気的に接続する貫通導体とを備え、
前記第1の主面上において前記貫通導体は互いに間隔を空けて複数形成されており、
前記第1導体には、前記第1の主面が表出している誘電体表出領域が複数形成されており、
個々の前記誘電体表出領域は、それぞれ複数の前記貫通導体によって囲まれている、電磁波減衰構造体。
A dielectric substrate having a first main surface and a second main surface located on the opposite side of the first main surface;
A first conductor formed on the first main surface;
A second conductor formed on the second main surface;
A through conductor that electrically connects the first conductor and the second conductor;
A plurality of the through conductors are formed at intervals from each other on the first main surface,
The first conductor is formed with a plurality of dielectric exposed regions where the first main surface is exposed,
Each of the dielectric material exposed regions is an electromagnetic wave attenuation structure that is surrounded by a plurality of the through conductors.
前記誘電体表出領域は、互いに対向する第1端面と第2端面とを有し、
前記第1端面と前記第1導体を挟んで対向する前記貫通導体との距離と、
前記第2端面と前記第1導体を挟んで対向する前記貫通導体との距離とが異なる、請求項1に記載の電磁波減衰構造体。
The dielectric exposed region has a first end surface and a second end surface facing each other,
A distance between the first end face and the through conductor facing each other across the first conductor;
2. The electromagnetic wave attenuation structure according to claim 1, wherein a distance between the second end face and the through conductor facing each other with the first conductor interposed therebetween is different.
複数の前記誘電体表出領域のうち隣接する第1誘電体表出領域および第2誘電体表出領域において、前記第1誘電体表出領域における前記第1端面と前記第1導体を挟んで対向する前記貫通導体との距離と、他方の第2誘電体表出領域における前記第1端面と前記第1導体を挟んで対向する前記貫通導体との距離とが異なる、請求項2に記載の電磁波減衰構造体。   Among the plurality of dielectric exposed areas, adjacent first dielectric exposed areas and second dielectric exposed areas sandwich the first end face and the first conductor in the first dielectric exposed areas. The distance between the opposing through conductors and the distance between the first end face in the other second dielectric exposed region and the opposing through conductors across the first conductor are different from each other. Electromagnetic wave attenuation structure. 複数の前記貫通導体は、平面視において第1の方向に並ぶように複数形成されている前記貫通導体のグループと、前記第1の方向と交差する第2の方向に複数形成されている前記貫通導体のグループとを含む、請求項2または請求項3に記載の電磁波減衰構造体。   The plurality of through conductors are formed in a plurality in the second direction intersecting the first direction, and the group of through conductors formed in a plurality so as to be aligned in the first direction in plan view. The electromagnetic wave attenuation structure according to claim 2 or 3, comprising a group of conductors. 前記第1の方向と前記第2の方向とは直交している、請求項4に記載の電磁波減衰構造体。   The electromagnetic wave attenuation structure according to claim 4, wherein the first direction and the second direction are orthogonal to each other. 間隙を挟んで対向する1対の導体壁を備え、
前記間隙に面する位置において、一対の前記導体壁のうち少なくとも一方の前記導体壁上に、請求項1〜請求項5のいずれか1項に記載の電磁波減衰構造体が設けられており、
前記一方の前記導体壁と前記第2導体とが電気的に接続されている、電磁シールド構造体。
A pair of conductor walls facing each other across a gap;
In the position facing the gap, the electromagnetic wave attenuation structure according to any one of claims 1 to 5 is provided on at least one of the pair of conductor walls.
The electromagnetic shield structure, wherein the one conductor wall and the second conductor are electrically connected.
一対の前記導体壁のうち少なくとも一方の前記導体壁上であって前記間隙に面する位置に、一対の前記導体壁を電気的に接続する導電性ガスケットをさらに備える、請求項6に記載の電磁シールド構造体。   The electromagnetic wave according to claim 6, further comprising a conductive gasket electrically connecting the pair of conductor walls at a position on at least one of the pair of conductor walls and facing the gap. Shield structure. 一対の前記導体壁のうち少なくとも一方の前記導体壁上であって前記間隙に面する位置に、電波吸収体をさらに備える、請求項6または請求項7に記載の電磁シールド構造体。   The electromagnetic shield structure according to claim 6 or 7, further comprising a radio wave absorber at a position on at least one of the pair of conductor walls and facing the gap. 一対の前記導体壁は、導電性を有する材料で構成されている扉と、前記扉の周囲を囲う導電性の扉枠とで構成されている、請求項6〜請求項8のいずれか1項に記載の電磁シールド構造体。   A pair of said conductor wall is comprised with the door comprised with the material which has electroconductivity, and the electroconductive door frame surrounding the circumference | surroundings of the said door, The any one of Claims 6-8. The electromagnetic shielding structure described in 1.
JP2014018402A 2014-02-03 2014-02-03 Electromagnetic wave attenuation structure and electromagnetic shield structure Active JP6005081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014018402A JP6005081B2 (en) 2014-02-03 2014-02-03 Electromagnetic wave attenuation structure and electromagnetic shield structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014018402A JP6005081B2 (en) 2014-02-03 2014-02-03 Electromagnetic wave attenuation structure and electromagnetic shield structure

Publications (2)

Publication Number Publication Date
JP2015146376A JP2015146376A (en) 2015-08-13
JP6005081B2 true JP6005081B2 (en) 2016-10-12

Family

ID=53890489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014018402A Active JP6005081B2 (en) 2014-02-03 2014-02-03 Electromagnetic wave attenuation structure and electromagnetic shield structure

Country Status (1)

Country Link
JP (1) JP6005081B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6791771B2 (en) * 2016-01-26 2020-11-25 京セラ株式会社 Detection element mounting board, detection device and detection module
CN115513622B (en) * 2022-11-03 2023-07-04 西华大学 Quarter-mode slow-wave substrate integrated waveguide filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051330A (en) * 2003-07-29 2005-02-24 Kyocera Corp Connection structure between dielectric waveguide line and high frequency transmission line, high frequency circuit board employing the same, and high frequency element mount package
CN102960083B (en) * 2010-07-12 2015-09-02 日本电气株式会社 Electronic equipment
JP5875317B2 (en) * 2011-03-30 2016-03-02 三菱電機株式会社 Electromagnetic shield door
JP5875447B2 (en) * 2012-04-03 2016-03-02 三菱電機株式会社 Electromagnetic shield door

Also Published As

Publication number Publication date
JP2015146376A (en) 2015-08-13

Similar Documents

Publication Publication Date Title
JP5733303B2 (en) Wiring board and electronic device
WO2011070763A1 (en) Structure and antenna
WO2013183354A1 (en) Band-pass filter
JP2008236027A (en) Common mode current suppression ebg filter
JP2016039541A (en) Surface current suppression filter and antenna device
JP6005081B2 (en) Electromagnetic wave attenuation structure and electromagnetic shield structure
KR20220161554A (en) Filter structure and filter device
JP5297432B2 (en) Transmission line and transmission device
JP6211835B2 (en) High frequency transmission line
CN107171042B (en) Frequency selective surface structure
JP6570788B2 (en) Connection structure of dielectric waveguide
JP3891996B2 (en) Waveguide type waveguide and high frequency module
JP2015115755A (en) Antenna device
CN109378561B (en) Double-passband filter
JP5136131B2 (en) Structure, printed circuit board
JP6273182B2 (en) Electronics
JP2011015044A (en) Choke flange of waveguide, and method for manufacturing the same
JP6287904B2 (en) Dielectric waveguide resonator, dielectric waveguide input / output structure, and dielectric waveguide filter
US9859598B2 (en) Electronic circuit
JP5964785B2 (en) High frequency transmission line
JP6974738B2 (en) Frequency selection board
JP4959530B2 (en) Waveguide type band-stop filter
WO2021009893A1 (en) Frequency selective surface
JP6013280B2 (en) High frequency transmission line
JP2007179995A (en) Flexible plat cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6005081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250