JP2005051330A - Connection structure between dielectric waveguide line and high frequency transmission line, high frequency circuit board employing the same, and high frequency element mount package - Google Patents

Connection structure between dielectric waveguide line and high frequency transmission line, high frequency circuit board employing the same, and high frequency element mount package Download PDF

Info

Publication number
JP2005051330A
JP2005051330A JP2003203373A JP2003203373A JP2005051330A JP 2005051330 A JP2005051330 A JP 2005051330A JP 2003203373 A JP2003203373 A JP 2003203373A JP 2003203373 A JP2003203373 A JP 2003203373A JP 2005051330 A JP2005051330 A JP 2005051330A
Authority
JP
Japan
Prior art keywords
conductor
line
frequency
dielectric waveguide
connection structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203373A
Other languages
Japanese (ja)
Inventor
Tomoya Tabuchi
智也 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003203373A priority Critical patent/JP2005051330A/en
Publication of JP2005051330A publication Critical patent/JP2005051330A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection structure for electromagnetically coupling a dielectric waveguide line to a signal transmission through-conductor at a low loss and the profile of which is made low. <P>SOLUTION: The connection structure for the dielectric waveguide line 10 and a high frequency transmission line 6 is used to couple the high frequency transmission line 6, located to the dielectric waveguide line 10 via a dielectric layer 9, to the dielectric waveguide line 10 surrounded by a pair of major conductor layers 2, 3, two columns of a side wall use through-conductor group 4, and an end face use through-conductor group 5. The high frequency transmission line 6 includes a signal transmission use through-conductor 7 extended from the end of the high frequency transmission line 6 without being connected to the major conductor layers 2, 3 so that the tip is inserted from the end face use through-conductor group 5 into the dielectric waveguide line 10 by a distance of 1/4 of a guide wavelength, and the signal transmission use through-conductor 7 is formed with a circular projection 8 formed concentrically with the through-conductor 7 for signal transmission at a position located in the dielectric waveguide line 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波およびミリ波等の高周波信号を伝達するための誘電体導波管線路と他の高周波伝送線路とを結合するための接続構造およびその接続構造を用いた高周波回路基板ならびに高周波素子搭載用パッケージに関する。
【0002】
【従来の技術】
従来よりマイクロ波やミリ波の高周波信号を伝達するための線路としては、同軸線路、導波管、誘電体導波管、マイクロストリップ線路等が知られている。また、配線回路内に種類の異なる線路が複数配設され、これら相互間の電磁結合によって信号を伝達する結合技術が知られており、例えば、図12に示す信号伝送用貫通導体ピン37と金属導波管40との接続構造では、金属導波管40に形成された貫通孔40aに挿入された信号伝送用貫通導体ピン37と金属導波管40との電磁結合によって信号の伝達が行なわれ、高周波伝送線路36から金属導波管40に信号が伝達される。なお、図12において、31は誘電体基板である。
【0003】
また近年、多層構造の配線基板内に誘電体導波管線路を積層技術によって形成することが行なわれており、例えば、図10の斜視図,図11の断面図に示す誘電体導波管線路と高周波伝送線路との接続構造が提案されている。このような接続構造では、誘電体基板21を一対の主導体層22,23で挟み、さらに主導体層22,23を接続する2列の側壁用貫通導体群24によって形成した誘電体導波管線路30内に、高周波伝送線路26の端部から信号伝送用貫通導体27を挿入することで、誘電体導波管線路30と高周波伝送線路26とを電気的に接続することができる。なお、図10において、25は端面用貫通導体群である。
【0004】
【特許文献1】
特開平10−135714号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の誘電体導波管線路30と線路導体26との接続構造では、図10に示すように、線路導体26が主導体層22,23に形成されたコプレーナ線路の場合、線路導体26を伝達する信号と誘電体導波管線路30内を伝達する信号が干渉等を生じ、伝送特性が劣化するという問題点があった。
【0006】
また、近時の電子機器の小型化、薄型化にともなって配線基板を薄くする必要性が生じ、その配線基板に形成された誘電体導波管線路30と高周波伝送線路26との接続構造を低背化する必要が生じてきた。このような要求に対して、従来の積層技術によって形成された誘電体導波管線路30と高周波伝送線路26との接続構造を低背化するために、誘電体基板21を薄くすると、信号伝送用貫通導体27の下端部と主導体層23との間に電気的な容量が発生し、所望の周波数における伝送特性が劣化するという問題点があった。
【0007】
従って、本発明は上記従来の問題点に鑑みて完成されたものであり、その目的は、従来の多層化技術によって容易に作製することのできる誘電体導波管線路と、信号伝送用貫通導体とを低損失で電磁結合させるとともに誘電体導波管線路と高周波伝送線路との接続構造の低背化を行なうことにある。
【0008】
【課題を解決するための手段】
本発明の誘電体導波管線路と高周波伝送線路との接続構造は、誘電体基板を上下から挟持する一対の主導体層と、高周波信号の伝送方向に該高周波信号の管内波長の2分の1未満の繰り返し間隔で形成された、前記一対の主導体層間を電気的に接続する2列の側壁用貫通導体群と、該2列の側壁用貫通導体群の一方の端に前記側壁用貫通導体群間を前記繰り返し間隔で1列に形成された、前記一対の主導体層間を電気的に接続する端面用貫通導体群とで囲まれた領域によって前記高周波信号を伝送するための誘電体導波管線路の上下のいずれか一方に、誘電体層を介して前記伝送方向に平行に配設された高周波伝送線路を結合するための誘電体導波管線路と高周波伝送線路との接続構造であって、前記高周波伝送線路は、前記端面用貫通導体群が形成された前記誘電体導波管線路の端面から前記管内波長の4分の1の距離の前記誘電体導波管線路内に先端が挿入されるように、前記高周波伝送線路の端部から前記主導体層と接続することなく延設された信号伝送用貫通導体を有しており、該信号伝送用貫通導体は、前記誘電体導波管線路内に位置する部位に前記信号伝送用貫通導体と同心状に円形状の突出部が形成されていることを特徴とする。
【0009】
本発明の誘電体導波管線路と高周波伝送線路との接続構造は、高周波伝送線路が、端面用貫通導体群が形成された誘電体導波管線路の端面から管内波長の4分の1の距離の誘電体導波管線路内に先端が挿入されるように、高周波伝送線路の端部から主導体層と接続することなく延設された信号伝送用貫通導体を有していることから、信号伝送用貫通導体で励振されて誘電体基板内に放射された高周波信号と、その高周波信号が端面用貫通導体群で反射された高周波信号とが電気的に打ち消し合うことによる高周波信号の損失を有効に低減することができる。従って、高周波信号を前方(端面用貫通導体群と反対側)へ効率的に放射させて外部に低損失で取り出すことができる。
【0010】
また、信号伝送用貫通導体は、誘電体導波管線路内に位置する部位に信号伝送用貫通導体と同心状に円形状の突出部が形成されていることから、誘電体導波管線路と高周波伝送線路との接続構造の低損失な電気的特性を保持しながらこの接続構造の低背化を行なうことができる。即ち、信号伝送用貫通導体と主導体層との間で励振する周波数fはf=1/2π(LC)1/2(L:信号伝送用貫通導体のリアクタンス量、C:信号伝送用貫通導体と主導体層との間に生じる容量)で表される。信号伝送用貫通導体の挿入長さを短くすると、信号伝送用貫通導体のLが減り、励振する周波数は求むべき周波数より高周波側にシフトしようとするが、突出部によって信号伝送用貫通導体と主導体層との間に生じるCを大きくすることができ、励振する周波数を低周波側へシフトさせることができる。その結果、積LC値を変化させることなく一定にすることができるため、周波数fを求むべき値に維持することができ、信号伝送用貫通導体の電気的特性を保持しつつ短くして誘電体導波管線路を低背化することができる。
【0011】
このように、本発明によれば、誘電体導波管線路とマイクロストリップ線路、コプレーナ線路との接続を容易に行うことができる。また、従来周知のセラミックスの多層化技術を用いて容易に作製できることから、低コストで信頼性の高い低背化の結合構造を構成することができる。
【0012】
本発明の誘電体導波管線路と高周波伝送線路との接続構造において、好ましくは、前記突出部は、上側の前記主導体層との間の距離が、下側の前記主導体層との間の距離よりも大きいことを特徴とする。
【0013】
本発明の誘電体導波管線路と高周波伝送線路との接続構造は、突出部と上側の主導体層との間の距離が、突出部と下側の主導体層との間の距離よりも大きいことから、突出部と誘電体導波管線路よりも上側に位置する導体との間に不要な浮遊容量が発生して伝送特性が劣化するのを有効に抑制することができる。即ち、誘電体導波管線路は下面の全面が主導体層によって覆われているため、突出部は誘電体導波管線路よりも下側に位置する導体とは電気的に遮断されているが、突出部の直上の主導体層においては、信号伝送用貫通導体を誘電体導波管線路の内部に導入するための穴が形成されており、この穴の部分において、突出部と誘電体導波管線路よりも上側に位置する導体との電気的な遮断が不完全となり、これらの間に不要な浮遊容量が発生し易いため、上側の主導体層と突出部との間の距離を大きくすることにより、この浮遊容量の発生を抑制することができる。
【0014】
本発明の誘電体導波管線路と高周波伝送線路との接続構造において、好ましくは、前記突出部は、前記信号伝送用貫通導体の下端よりも上側に位置していることを特徴とする。
【0015】
本発明の誘電体導波管線路と高周波伝送線路との接続構造は、突出部が信号伝送用貫通導体の下端よりも上側に位置していることから、信号伝送用貫通導体の下端における反射損失を有効に抑制して、伝送特性を非常に良好なものとすることができる。即ち、信号伝送用貫通導体の下端に突出部を設けると、信号伝送用貫通導体の下端の直径が急激に大きくなることにより、下端で反射する高周波信号の損失が非常に大きくなり易いため、下端に突出部を設けず、信号伝送用貫通導体の直径とすることで、反射損失を有効に抑制することができる。
【0016】
本発明の高周波回路基板は、誘電体基板に、上記構成の誘電体導波管線路と高周波伝送線路との接続構造と、高周波素子を搭載するための搭載部とを設けたことを特徴とする。
【0017】
本発明の高周波回路基板は、上記構成により、低損失な電気特性を有するとともに薄型化が容易なものとなる。
【0018】
本発明の高周波素子搭載用パッケージは、上記構成の高周波回路基板の前記搭載部を覆うように蓋体が取着されることを特徴とする。
【0019】
本発明の高周波素子搭載用パッケージは、上記構成により、低損失な電気特性を有する薄型の高周波素子搭載用パッケージを提供することができる。
【0020】
【発明の実施の形態】
本発明の誘電体導波管線路と高周波伝送線路との接続構造について以下に詳細に説明する。図1は本発明の接続構造の実施の形態の例を示す斜視図、図2は図1の接続構造の平面図、図3は図1の接続構造の断面図である。これらの図において、1は誘電体基板、2,3は主導体層、4は側壁用貫通導体群、5は端面用貫通導体群、6は高周波伝送線路、7は信号伝送用貫通導体、8は突出部、9は誘電体層、10は誘電体導波管線路、11は同一面接地導体層である。
【0021】
図1に示すように、厚みtの誘電体基板1は、それを挟持するように一対の主導体層2,3が設けられている。主導体層2,3は、誘電体基板1の少なくとも誘電体導波管線路10を形成する位置を挟むように上下面に各々形成されている。また、主導体層2,3間には、それらを電気的に接続する側壁用貫通導体群4が2列設けられている。側壁用貫通導体群4は、所定間隔sをもって2列に形成されている。また、これらの側壁用貫通導体群4は線路方向に管内波長の2分の1未満の繰り返し間隔をもって形成されている。この繰り返し間隔で設定されることで電気的な壁(導体壁)を形成しており、その結果、導波管と同様な構造、即ち誘電体導波管線路10が形成される。
【0022】
本発明によれば、高周波伝送線路6を、誘電体導波管線路10の端面用貫通導体群5から信号伝送方向に4分の1の位置まで形成し、その端部から信号伝送用貫通導体7を形成し、信号伝送用貫通導体7の下端部を誘電体導波管線路10内に挿入することにより高周波伝送線路6と誘電体導波管線路10とを電磁結合する。
【0023】
誘電体導波管線路10の上面は主導体層2となっており、主導体層2に信号伝送用貫通導体7の径より大きな穴2aを設けることにより、主導体層2と信号伝送用貫通導体7とが電気的に絶縁された状態で、信号伝送用貫通導体7が誘電体導波管線路10に挿入される。
【0024】
さらに、信号伝送用貫通導体7は、誘電体導波管線路10内に位置する部位に信号伝送用貫通導体7と同心状に円形状の突出部8を具備している。
【0025】
このとき、信号伝送用貫通導体7および突出部8は下面の主導体層3に電気的に接続しないように形成する。これは、信号伝送用貫通導体7および突出部8を下面の主導体層3に接続すると伝送特性が劣化するためである。このため、図3に示すように、信号伝送用貫通導体7の誘電体導波管線路10への挿入長さが、誘電体導波管線路10を構成する誘電体基板1の厚みtよりも短くなるように形成する。
【0026】
信号伝送用貫通導体7および突出部8に対して上側には大きな主導体層2が形成されているので、信号伝送用貫通導体7および突出部8は、容量装荷のモノポールアンテナの機能を有するものとなる。
【0027】
また、信号伝送用貫通導体7の誘電体導波管線路10への長さを、伝送される高周波信号の波長の4分の1程度とすれば、高周波伝送線路6を伝搬してきた電磁波は信号伝送用貫通導体7によって誘電体導波管線路10内に放射される。ただし、高周波信号の波長、および突出部8の形成位置により、信号伝送用貫通導体7の径の大きさや長さ及び突出部8の径の大きさを調整する必要がある。そこで、誘電体導波管線路10の厚みtを2列の側壁用貫通導体群4の間隔sの半分程度にすることにより、信号伝送用貫通導体7から放射された高周波信号はTE10モードを主モードとして誘電体導波管線路10内を効率的に伝搬することができる。
【0028】
本発明の誘電体導波管線路10と高周波伝送線路6との接続構造は、高周波伝送線路6が、端面用貫通導体群5が形成された誘電体導波管線路10の端面から管内波長の4分の1の距離の誘電体導波管線路10内に先端が挿入されるように、高周波伝送線路10の端部から主導体層2,3と接続することなく延設された信号伝送用貫通導体7を有していることから、信号伝送用貫通導体7で励振されて誘電体基板1内に放射された高周波信号と、その高周波信号が端面用貫通導体群5で反射された高周波信号とが電気的に打ち消し合うことによる高周波信号の損失を有効に低減することができる。従って、高周波信号を前方(端面用貫通導体群5と反対側)へ効率的に放射させて外部に低損失で取り出すことができる。
【0029】
また、信号伝送用貫通導体7は、誘電体導波管線路10内に位置する部位に信号伝送用貫通導体7と同心状に円形状の突出部8が形成されていることから、誘電体導波管線路10と高周波伝送線路6との接続構造の低損失な電気的特性を保持しながらこの接続構造の低背化を行なうことができる。即ち、信号伝送用貫通導体7と主導体層2,3との間で励振する周波数fはf=1/2π(LC)1/2(L:信号伝送用貫通導体7に生じるリアクタンス量、C:信号伝送用貫通導体7と主導体層2,3との間に生じる容量)で表されるため、信号伝送用貫通導体7の挿入長さを短くすると、信号伝送用貫通導体7と主導体層2,3との間でLが減り、励振する周波数は求むべき周波数より高周波側にシフトしようとするが、突出部8によって信号伝送用貫通導体7と主導体層2,3との間に生じるCを大きくすることができ、励振する周波数を低周波側へシフトさせることができる。その結果、積LC値を変化させることなく一定にすることができるため、周波数fを求むべき値に維持することができ、信号伝送用貫通導体7の電気的特性を保持しつつ短くして誘電体導波管線路10を低背化することができる。
【0030】
なお、誘電体基板1と誘電体層9とは、それぞれ誘電体導波管線路10および高周波伝送線路6、例えばマイクロストリップ線路やコプレーナ線路を構成するのに最も適した材料から成っていれば良く、必ずしも同じ材料から成っている必要はない。
【0031】
また、突出部8と上側の主導体層2との間の距離は、突出部8と下側の主導体層3との間の距離よりも大きいことが好ましい。これにより、突出部8と誘電体導波管線路10よりも上側に位置する導体との間に不要な浮遊容量が発生して伝送特性が劣化するのを有効に抑制することができる。即ち、誘電体導波管線路10は下面の全面が主導体層3によって覆われているため、突出部8は誘電体導波管線路10よりも下側に位置する導体とは電気的に遮断されているが、突出部8の直上の主導体層2においては、信号伝送用貫通導体7を誘電体導波管線路10の内部に導入するための穴2aが形成されており、この穴2aの部分において、突出部8と誘電体導波管線路10よりも上側に位置する導体との電気的な遮断が不完全となり、これらの間に不要な浮遊容量が発生し易いため、上側の主導体層2と突出部8との間の距離を大きくすることにより、この浮遊容量の発生を抑制することができる。
【0032】
さらに、突出部8は複数形成されているのが好ましい。これにより、複数の突出部8が上下の主導体層2,3と容量結合することが可能となり、より大きな容量値Cを得ることができる。その結果、信号伝送用貫通導体7の誘電体導波管線路10への挿入長さをより短くすることが可能となり、誘電体導波管線路10と高周波伝送線路6との接続構造をより低背化することができる。
【0033】
突出部8が複数形成されている場合、最も上に位置する突出部8と上側の主導体層2との間の距離が、最も下に位置する突出部8と下側の主導体層3との間の距離よりも大きくなっているのがよい。これにより、突出部8と誘電体導波管線路10よりも上側に位置する導体との間に不要な浮遊容量が発生して伝送特性が劣化するのを有効に抑制することができる。即ち、誘電体導波管線路10は下面の全面が主導体層3によって覆われているため、突出部8は誘電体導波管線路10よりも下側に位置する導体とは電気的に遮断されているが、突出部8の直上の主導体層2においては、信号伝送用貫通導体7を誘電体導波管線路10の内部に導入するための穴2aが形成されており、この穴2aの部分において、突出部8と誘電体導波管線路10よりも上側に位置する導体との電気的な遮断が不完全となり、これらの間に不要な浮遊容量が発生し易いため、上側の主導体層2と突出部8との間の距離を大きくすることにより、この浮遊容量の発生を抑制することができる。
【0034】
また、突出部8は、信号伝送用貫通導体7の下端よりも上側に位置しているのがよい。これにより、信号伝送用貫通導体7の下端における反射損失を有効に抑制して、伝送特性を非常に良好なものとすることができる。即ち、信号伝送用貫通導体7の下端に突出部8を設けると、信号伝送用貫通導体7の下端の直径が急激に大きくなることにより、下端で反射する高周波信号の損失が非常に大きくなり易いため、下端に突出部8を設けず、信号伝送用貫通導体7の直径とすることで、反射損失を有効に抑制することができる。
【0035】
次に、図4〜図6は本発明の接続構造について実施の形態の他の好ましい例を示すものであり、図4は接続構造の斜視図、図5は図4の接続構造の平面図、図6は図4の接続構造の断面図である。これらの図において、12は接地貫通導体群であり、他は図1〜図3の場合と同様でありその詳細な説明は省略する。
【0036】
なお、図4では、誘電体基板1、主導体層3、側壁用貫通導体群4および端面用貫通導体群5、誘電体層9は説明の便宜上省略し、主導体層2、高周波伝送線路6、信号伝送用貫通導体7、突出部8、同一面接地導体層11および接地貫通導体群12の配置関係のみを示した。
【0037】
この例では、図4に示すように、誘電体導波管線路10の上側に位置する誘電体層9上に高周波伝送線路6および同一面接地導体層11が形成されている。
【0038】
図4の接続構造は、本発明の好ましい態様を示すものであり、信号伝送用貫通導体7を管内波長の2分の1以下の間隔で平面視で円形に囲むように、上側の主導体層2と電気的に接続された複数の接地貫通導体群12が高周波伝送線路6の下方を除いて誘電体層9に形成されている構成である。これにより、信号伝送用貫通導体7に対する外部の電磁波の影響を小さくすることができ、信号伝送用貫通導体7における伝送損失が小さくなるので、良好な伝送特性を有するものとなる。
【0039】
また、図4の接続構造によって、高周波伝送線路6を伝搬してきた電磁波は、信号伝送用貫通導体7において同軸線路を伝搬することとなる。このとき、高周波伝送線路6および同軸線路における伝搬モードは、準TEMモードおよびTEMモードを主モードとしたものとなるため、高周波伝送線路6と信号伝送用貫通導体7との間での伝搬モードの変換による損失を抑えることができる。さらに、信号伝送用貫通導体7および突出部8が容量装荷モノポールアンテナとして作用し、信号伝送用貫通導体7および突出部8の周囲に発生する電磁界と誘電体導波管線路10を伝搬する電磁界とが良好に結合するので、高周波信号は誘電体導波管線路10内へ低損失で伝搬されることになる。
【0040】
さらに、本発明の接続構造において、高周波伝送線路6の両側に所定間隔をもって同一面接地導体層11が形成されるとともに同一面接地導体層11が高周波伝送線路6の端部を取り囲むように延設されており、複数の接地貫通導体群12が同一面接地導体層11に電気的に接続されていることが好ましい。この場合、信号伝送用貫通導体7を電気的にアイソレートすることができ、信号伝送用貫通導体7に対する外部の電磁波の影響をより小さくすることができる。その結果、信号伝送用貫通導体7における高周波信号の伝送損失が小さくなるので、良好な伝送特性を有するものとなる。
【0041】
次に、図7は本発明の誘電体導波管線路10と高周波伝送線路6との接続構造を具備する高周波回路基板50の一実施例を示すものであり、高周波伝送線路6と同一平面上に高周波素子の搭載部13を配置することで誘電体基板31のクラックを回避できる。即ち、図12に示す従来構造の金属導波管40と誘電体基板31とを接合した場合、これらの熱膨張係数の差により誘電体基板31にクラックが発生し易くなるのに対し、本発明の接続構造の場合、従来周知のセラミックスの多層化技術のみを利用するため、誘電体導波管線路10が形成された誘電体基板1と高周波回路が形成された誘電体層9との熱膨張係数の差は小さくなり、誘電体基板1や誘電体層9にクラックは発生し難くなる。よって容易に低コストで信頼性の高い本発明の誘電体導波管線路10と高周波伝送線路6との接続構造を具備する高周波回路基板50が作製できる。
【0042】
次に、図8は高周波回路基板50上にある高周波素子の搭載部13を覆うような蓋体14を設ける高周波素子搭載用パッケージの一実施例を示すものである。ただし、図8については、蓋体14の一部分を省略した図としている。蓋体14には凹形状の金属体、凹形状のセラミックス等が望ましい。搭載部13を蓋体14で覆うことにより外部の電磁波による干渉等の影響を受けないようにすることができ、信頼性の高い高周波素子搭載用パッケージを作製することができる。また、搭載部13に気密性が必要な場合は、高周波回路基板50と蓋体14を半田材を利用して接合すれば良い。
【0043】
【実施例】
本発明の誘電体導波管線路10と高周波伝送線路6との接続構造の実施例について以下に説明する。
【0044】
図1の構成の接続構造を以下のようにして構成した。まず、比誘電率εが8.8からなる厚み1.9mmの誘電体基板1を用意し、この誘電体基板1に縦断面の大きさが3.37mm×1.69mmの誘電体導波管線路10を形成した。また、誘電体層9の上面にインピーダンスが50Ωとなるような高周波伝送線路6を形成し、その端部から直径が0.1mmの信号伝送用貫通導体7を誘電体導波管線路10内への挿入長さが0.91mmになるように設けた。
【0045】
また、信号伝送用貫通導体7の誘電体導波管線路10内に直径が0.3mmの、信号伝送用貫通導体7と同心状に円形状の突出部8を形成した。
【0046】
このとき、伝送用貫通導体7から信号伝送方向と反対側に24GHzの高周波信号の管内波長の4分の1の距離に相当する1.34mmの位置に、端面用貫通導体群5を形成して短絡端を形成した。
【0047】
なお、主導体層2には信号伝送用貫通導体7と電気的に接続しないように穴2aを設けた。これにより、本発明の誘電体導波管線路10と高周波伝送線路6との接続構造のサンプルを作製した。
【0048】
また、比較例として、突出部8を設けないこと以外は上記サンプルと同様にして比較サンプルを作製した。
【0049】
そして、これらサンプルについて、高周波伝送線路6の端部と誘電体導波管線路10との間の結合特性を電磁界シミュレータで解析し、それぞれの反射係数S11および透過係数S21を求めた。本発明の誘電体導波管線路10と高周波伝送線路6との接続構造のサンプルについての電気特性の結果を図9に示す。図9はSパラメータの周波数特性を示すグラフであり、横軸は周波数(単位:GHz)を、縦軸はS11、S21(単位:dB)を表わす。なお、図9において、実線は本発明例でのS11の結果を、点線は本発明例でのS21の結果を示す。また、三角印を付加した実細線は比較例でのS11の結果を、×印を付加した実細線は比較例でのS21の結果を示す。
【0050】
図9より、本発明の接続構造では、24GHzでS11は−35dB程度、S21は−0.3dB程度を満たしており、良好な伝送特性を有していることが判った。
【0051】
一方、比較例の接続構造では、24GHzでS11は−10dB程度、S21は−1dB程度と劣るものであった。
【0052】
なお、本発明は上記実施の形態および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を加えることは何ら差し支えない。
【0053】
【発明の効果】
本発明の誘電体導波管線路と高周波伝送線路との接続構造は、高周波伝送線路が、端面用貫通導体群が形成された誘電体導波管線路の端面から管内波長の4分の1の距離の誘電体導波管線路内に先端が挿入されるように、高周波伝送線路の端部から主導体層と接続することなく延設された信号伝送用貫通導体を有していることから、信号伝送用貫通導体で励振されて誘電体基板内に放射された高周波信号と、その高周波信号が端面用貫通導体群で反射された高周波信号とが電気的に打ち消し合うことによる高周波信号の損失を有効に低減することができる。従って、高周波信号を前方(端面用貫通導体群と反対側)へ効率的に放射させて外部に低損失で取り出すことができる。
【0054】
また、信号伝送用貫通導体は、誘電体導波管線路内に位置する部位に信号伝送用貫通導体と同心状に円形状の突出部が形成されていることから、誘電体導波管線路と高周波伝送線路との接続構造の低損失な電気的特性を保持しながらこの接続構造の低背化を行なうことができる。即ち、信号伝送用貫通導体と主導体層との間で励振する周波数fはf=1/2π(LC)1/2(L:信号伝送用貫通導体に生じるリアクタンス量、C:信号伝送用貫通導体と主導体層との間に生じる容量)で表されるため、信号伝送用貫通導体の挿入長さを短くすると、信号伝送用貫通導体と主導体層との間でLが減り、励振する周波数は求むべき周波数より高周波側にシフトしようとするが、突出部によって信号伝送用貫通導体と主導体層との間に生じるCを大きくすることができ、励振する周波数を低周波側へシフトさせることができる。その結果、積LC値を変化させることなく一定にすることができるため、周波数fを求むべき値に維持することができ、信号伝送用貫通導体の電気的特性を保持しつつ短くして誘電体導波管線路を低背化することができる。
【0055】
このように、本発明によれば、誘電体導波管線路とマイクロストリップ線路、コプレーナ線路との接続を容易に行うことができる。また、従来周知のセラミックスの多層化技術を用いて容易に作製できることから、低コストで信頼性の高い低背化の結合構造を構成することができる。
【0056】
本発明の誘電体導波管線路と高周波伝送線路との接続構造は、突出部と上側の主導体層との間の距離が、突出部と下側の主導体層との間の距離よりも大きいことから、突出部と誘電体導波管線路よりも上側に位置する導体との間に不要な浮遊容量が発生して伝送特性が劣化するのを有効に抑制することができる。即ち、誘電体導波管線路は下面の全面が主導体層によって覆われているため、突出部は誘電体導波管線路よりも下側に位置する導体とは電気的に遮断されているが、突出部の直上の主導体層においては、信号伝送用貫通導体を誘電体導波管線路の内部に導入するための穴が形成されており、この穴の部分において、突出部と誘電体導波管線路よりも上側に位置する導体との電気的な遮断が不完全となり、これらの間に不要な浮遊容量が発生し易いため、上側の主導体層と突出部との間の距離を大きくすることにより、この浮遊容量の発生を抑制することができる。
【0057】
本発明の誘電体導波管線路と高周波伝送線路との接続構造は、突出部が信号伝送用貫通導体の下端よりも上側に位置していることから、信号伝送用貫通導体の下端における反射損失を有効に抑制して、伝送特性を非常に良好なものとすることができる。即ち、信号伝送用貫通導体の下端に突出部を設けると、信号伝送用貫通導体の下端の直径が急激に大きくなることにより、下端で反射する高周波信号の損失が非常に大きくなり易いため、下端に突出部を設けず、信号伝送用貫通導体の直径とすることで、反射損失を有効に抑制することができる。
【0058】
本発明の高周波回路基板は、誘電体基板に、上記構成の誘電体導波管線路と高周波伝送線路との接続構造と、高周波素子を搭載するための搭載部とを設けたことにより、低損失な電気特性を有するとともに薄型化が容易なものとなる。
【0059】
本発明の高周波素子搭載用パッケージは、上記構成の高周波回路基板の搭載部を覆うように蓋体が取着されることにより、低損失な電気特性を有する薄型の高周波素子搭載用パッケージを提供することができる。
【図面の簡単な説明】
【図1】本発明の誘電体導波管線路と高周波伝送線路との接続構造について実施の形態の例を示す斜視図である。
【図2】図1の接続構造の平面図である。
【図3】図1の接続構造のX−X’線における断面図である。
【図4】本発明の誘電体導波管線路と高周波伝送線路との接続構造について実施の形態の他の例を示す斜視図である。
【図5】図4の接続構造の平面図である。
【図6】図4の接続構造のY−Y’線における断面図である。
【図7】本発明の誘電体導波管線路と高周波伝送線路との接続構造を具備する高周波回路基板の実施の形態の例を示す斜視図である。
【図8】本発明の誘電体導波管線路と高周波伝送線路との接続構造を具備する高周波素子搭載用パッケージの実施の形態の例を示す斜視図である。
【図9】本発明の誘電体導波管線路と高周波伝送線路との接続構造についてSパラメータの測定結果を示す図である。
【図10】従来の誘電体導波管線路と高周波伝送線路との接続構造を示す斜視図である。
【図11】図10の接続構造のZ−Z’線における断面図である。
【図12】従来の金属導波管と信号伝送用貫通導体ピンとの接続構造を示す斜視図である。
【符号の説明】
1:誘電体基板
2,3:主導体層
4:側壁用貫通導体群
5:端面用貫通導体群
6:高周波伝送線路
7:信号伝送用貫通導体
8:突出部
9:誘電体層
10:誘電体導波管線路
11:同一面接地導体層
12:接地貫通導体群
13:搭載部
14:蓋体
50:高周波回路基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a connection structure for coupling a dielectric waveguide line for transmitting high-frequency signals such as microwaves and millimeter waves and other high-frequency transmission lines, a high-frequency circuit board using the connection structure, and a high-frequency circuit. The present invention relates to an element mounting package.
[0002]
[Prior art]
Conventionally, coaxial lines, waveguides, dielectric waveguides, microstrip lines, and the like are known as lines for transmitting microwave and millimeter wave high-frequency signals. Also, there is known a coupling technique in which a plurality of different types of lines are arranged in a wiring circuit and a signal is transmitted by electromagnetic coupling between these lines. For example, a signal transmission through conductor pin 37 and a metal shown in FIG. In the connection structure with the waveguide 40, signals are transmitted by electromagnetic coupling between the signal transmission through conductor pins 37 inserted into the through holes 40 a formed in the metal waveguide 40 and the metal waveguide 40. A signal is transmitted from the high-frequency transmission line 36 to the metal waveguide 40. In FIG. 12, reference numeral 31 denotes a dielectric substrate.
[0003]
In recent years, dielectric waveguide lines have been formed in a multilayer circuit board by a lamination technique. For example, the dielectric waveguide lines shown in the perspective view of FIG. 10 and the cross-sectional view of FIG. And a high-frequency transmission line connection structure have been proposed. In such a connection structure, the dielectric waveguide 21 is formed by sandwiching the dielectric substrate 21 between the pair of main conductor layers 22 and 23 and further connecting the main conductor layers 22 and 23 with two rows of through conductor groups 24 for side walls. The dielectric waveguide line 30 and the high frequency transmission line 26 can be electrically connected by inserting the signal transmission through conductor 27 from the end of the high frequency transmission line 26 into the line 30. In FIG. 10, reference numeral 25 denotes an end surface through conductor group.
[0004]
[Patent Document 1]
JP-A-10-135714
[0005]
[Problems to be solved by the invention]
However, in the conventional connection structure of the dielectric waveguide line 30 and the line conductor 26, as shown in FIG. 10, when the line conductor 26 is a coplanar line formed on the main conductor layers 22 and 23, the line conductor 26 and the signal transmitted through the dielectric waveguide line 30 cause interference and the transmission characteristics are deteriorated.
[0006]
In addition, with the recent downsizing and thinning of electronic devices, it is necessary to reduce the thickness of the wiring board, and the connection structure between the dielectric waveguide line 30 and the high-frequency transmission line 26 formed on the wiring board is increased. The need to reduce the height has arisen. In response to such a demand, if the dielectric substrate 21 is made thin in order to reduce the height of the connection structure between the dielectric waveguide line 30 and the high-frequency transmission line 26 formed by the conventional lamination technique, signal transmission is performed. There is a problem in that an electric capacity is generated between the lower end portion of the through-hole conductor 27 and the main conductor layer 23, and transmission characteristics at a desired frequency deteriorate.
[0007]
Therefore, the present invention has been completed in view of the above-mentioned conventional problems, and its object is to provide a dielectric waveguide line that can be easily manufactured by a conventional multilayer technology, and a signal transmission through conductor. Are connected to each other with low loss, and the connection structure between the dielectric waveguide line and the high-frequency transmission line is reduced in height.
[0008]
[Means for Solving the Problems]
The connection structure of the dielectric waveguide line and the high-frequency transmission line according to the present invention includes a pair of main conductor layers sandwiching the dielectric substrate from above and below, and a half of the in-tube wavelength of the high-frequency signal in the transmission direction of the high-frequency signal. Two sidewall through-conductor groups that are electrically connected between the pair of main conductor layers formed at a repetitive interval of less than 1, and the sidewall penetration at one end of the two rows of sidewall through-conductor groups A dielectric conductor for transmitting the high-frequency signal by a region surrounded by end surface through conductor groups electrically connecting the pair of main conductor layers formed in a row between the conductor groups in a row. A connection structure of a dielectric waveguide line and a high-frequency transmission line for coupling a high-frequency transmission line disposed in parallel with the transmission direction via a dielectric layer to either the top or bottom of the wave-tube line The high-frequency transmission line includes the end surface through conductor. From the end portion of the high-frequency transmission line, the tip is inserted into the dielectric waveguide line at a distance of one-fourth of the guide wavelength from the end face of the dielectric waveguide line formed with The signal transmission through conductor is extended without being connected to the main conductor layer, and the signal transmission through conductor is inserted into the signal transmission through at a portion located in the dielectric waveguide line. A circular protrusion is formed concentrically with the conductor.
[0009]
The connection structure between the dielectric waveguide line and the high-frequency transmission line according to the present invention is such that the high-frequency transmission line is a quarter of the in-tube wavelength from the end face of the dielectric waveguide line on which the end face through conductor group is formed. Because it has a signal transmission through conductor extended without being connected to the main conductor layer from the end of the high-frequency transmission line so that the tip is inserted into the dielectric waveguide line at a distance, The loss of the high frequency signal due to the electrical cancellation of the high frequency signal excited by the signal transmission through conductor and radiated into the dielectric substrate and the high frequency signal reflected by the end surface through conductor group. It can be effectively reduced. Therefore, it is possible to efficiently radiate a high-frequency signal forward (on the opposite side to the end face through conductor group) and to extract it to the outside with low loss.
[0010]
In addition, since the signal transmission through conductor has a circular protrusion formed concentrically with the signal transmission through conductor at a portion located in the dielectric waveguide line, It is possible to reduce the height of the connection structure while maintaining the low-loss electrical characteristics of the connection structure with the high-frequency transmission line. That is, the frequency f excited between the signal transmission through conductor and the main conductor layer is f = 1 / 2π (LC). 1/2 (L: Reactance amount of the signal transmission through conductor, C: Capacity generated between the signal transmission through conductor and the main conductor layer). If the insertion length of the signal transmission through conductor is shortened, the L of the signal transmission through conductor decreases, and the excitation frequency tends to shift to a higher frequency side than the frequency to be obtained. C generated between the body layer and the body layer can be increased, and the frequency to be excited can be shifted to the low frequency side. As a result, since the product LC value can be kept constant without changing, the frequency f can be maintained at a value to be obtained, and the dielectric can be shortened while maintaining the electrical characteristics of the signal transmission through conductor. The waveguide line can be reduced in height.
[0011]
Thus, according to the present invention, it is possible to easily connect the dielectric waveguide line, the microstrip line, and the coplanar line. In addition, since it can be easily manufactured by using a conventionally known ceramic multilayering technique, a low-cost and highly reliable low-profile coupling structure can be configured.
[0012]
In the connection structure between the dielectric waveguide line and the high-frequency transmission line of the present invention, preferably, the distance between the projecting portion and the upper main conductor layer is between the lower main conductor layer. It is characterized by being larger than the distance.
[0013]
In the connection structure between the dielectric waveguide line and the high-frequency transmission line according to the present invention, the distance between the protrusion and the upper main conductor layer is larger than the distance between the protrusion and the lower main conductor layer. Since it is large, it is possible to effectively suppress the deterioration of transmission characteristics due to the generation of unnecessary stray capacitance between the protruding portion and the conductor positioned above the dielectric waveguide line. That is, since the entire surface of the lower surface of the dielectric waveguide is covered with the main conductor layer, the protruding portion is electrically cut off from the conductor located below the dielectric waveguide. In the main conductor layer immediately above the protrusion, a hole for introducing the signal transmission through conductor into the dielectric waveguide line is formed. At the hole, the protrusion and the dielectric conductor are formed. Since electrical disconnection from the conductor located above the wave guide line is incomplete and unnecessary stray capacitance is likely to occur between them, the distance between the upper main conductor layer and the protruding portion is increased. By doing so, the generation of this stray capacitance can be suppressed.
[0014]
In the connection structure between the dielectric waveguide line and the high-frequency transmission line according to the present invention, preferably, the protruding portion is located above a lower end of the signal transmission through conductor.
[0015]
In the connection structure between the dielectric waveguide line and the high-frequency transmission line according to the present invention, since the protruding portion is located above the lower end of the signal transmission through conductor, the reflection loss at the lower end of the signal transmission through conductor. Can be effectively suppressed and the transmission characteristics can be made very good. That is, if a protruding portion is provided at the lower end of the signal transmission through conductor, the diameter of the lower end of the signal transmission through conductor increases rapidly, so that the loss of the high-frequency signal reflected at the lower end tends to become very large. By providing the diameter of the signal transmission through conductor without providing the protrusions, the reflection loss can be effectively suppressed.
[0016]
The high-frequency circuit board of the present invention is characterized in that a dielectric substrate is provided with a connection structure between the dielectric waveguide line and the high-frequency transmission line configured as described above and a mounting portion for mounting a high-frequency element. .
[0017]
With the above configuration, the high-frequency circuit board of the present invention has low-loss electrical characteristics and can be easily reduced in thickness.
[0018]
The high frequency device mounting package of the present invention is characterized in that a lid is attached so as to cover the mounting portion of the high frequency circuit board having the above-described configuration.
[0019]
The high-frequency element mounting package of the present invention can provide a thin high-frequency element mounting package having low-loss electrical characteristics by the above configuration.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The connection structure between the dielectric waveguide line and the high-frequency transmission line of the present invention will be described in detail below. 1 is a perspective view showing an example of an embodiment of the connection structure of the present invention, FIG. 2 is a plan view of the connection structure of FIG. 1, and FIG. 3 is a cross-sectional view of the connection structure of FIG. In these drawings, 1 is a dielectric substrate, 2 and 3 are main conductor layers, 4 is a through conductor group for side walls, 5 is a through conductor group for end faces, 6 is a high-frequency transmission line, 7 is a through conductor for signal transmission, 8 Is a dielectric layer, 9 is a dielectric layer, 10 is a dielectric waveguide, and 11 is a coplanar ground conductor layer.
[0021]
As shown in FIG. 1, a dielectric substrate 1 having a thickness t is provided with a pair of main conductor layers 2 and 3 so as to sandwich it. The main conductor layers 2 and 3 are respectively formed on the upper and lower surfaces so as to sandwich at least a position where the dielectric waveguide line 10 is formed on the dielectric substrate 1. Between the main conductor layers 2 and 3, two rows of through-hole conductor groups 4 for connecting the side walls are provided. The side wall through conductor groups 4 are formed in two rows with a predetermined interval s. Further, these through-hole conductor groups 4 for the side walls are formed in the line direction with a repetition interval of less than one half of the guide wavelength. An electrical wall (conductor wall) is formed by setting at this repetition interval, and as a result, a structure similar to the waveguide, that is, the dielectric waveguide line 10 is formed.
[0022]
According to the present invention, the high-frequency transmission line 6 is formed from the end face through conductor group 5 of the dielectric waveguide line 10 to a quarter position in the signal transmission direction, and the signal transmission through conductor is formed from the end. 7, and the lower end portion of the signal transmission through conductor 7 is inserted into the dielectric waveguide line 10 to electromagnetically couple the high frequency transmission line 6 and the dielectric waveguide line 10.
[0023]
The upper surface of the dielectric waveguide line 10 is the main conductor layer 2. By providing a hole 2 a larger in diameter than the signal transmission through conductor 7 in the main conductor layer 2, the main conductor layer 2 and the signal transmission penetration are provided. The signal transmission through conductor 7 is inserted into the dielectric waveguide line 10 in a state where the conductor 7 is electrically insulated.
[0024]
Further, the signal transmission through conductor 7 includes a circular projecting portion 8 concentrically with the signal transmission through conductor 7 at a portion located in the dielectric waveguide line 10.
[0025]
At this time, the signal transmission through conductor 7 and the protruding portion 8 are formed so as not to be electrically connected to the main conductor layer 3 on the lower surface. This is because the transmission characteristics deteriorate when the signal transmission through conductor 7 and the protrusion 8 are connected to the main conductor layer 3 on the lower surface. For this reason, as shown in FIG. 3, the insertion length of the signal transmission through conductor 7 into the dielectric waveguide line 10 is larger than the thickness t of the dielectric substrate 1 constituting the dielectric waveguide line 10. It is formed to be shorter.
[0026]
Since the large main conductor layer 2 is formed on the upper side with respect to the signal transmission through conductor 7 and the protrusion 8, the signal transmission through conductor 7 and the protrusion 8 have a function of a capacity-loaded monopole antenna. It will be a thing.
[0027]
Further, if the length of the signal transmission through conductor 7 to the dielectric waveguide line 10 is set to about a quarter of the wavelength of the transmitted high-frequency signal, the electromagnetic wave propagating through the high-frequency transmission line 6 is a signal. Radiated into the dielectric waveguide line 10 by the transmission through conductor 7. However, it is necessary to adjust the diameter and length of the signal transmission through conductor 7 and the diameter of the protrusion 8 depending on the wavelength of the high-frequency signal and the position where the protrusion 8 is formed. Therefore, by setting the thickness t of the dielectric waveguide line 10 to about half of the interval s between the two side wall through conductor groups 4, the high frequency signal radiated from the signal transmission through conductor 7 is changed to TE. 10 The mode can be propagated efficiently in the dielectric waveguide line 10 with the mode as the main mode.
[0028]
The connection structure between the dielectric waveguide line 10 and the high-frequency transmission line 6 according to the present invention is such that the high-frequency transmission line 6 has an in-tube wavelength from the end face of the dielectric waveguide line 10 on which the end face through conductor groups 5 are formed. For signal transmission extended from the end of the high-frequency transmission line 10 without being connected to the main conductor layers 2 and 3 so that the tip is inserted into the dielectric waveguide line 10 at a quarter distance Since the through-conductor 7 is provided, the high-frequency signal excited in the signal transmission through-conductor 7 and radiated into the dielectric substrate 1 and the high-frequency signal in which the high-frequency signal is reflected by the end-surface through-conductor group 5 are provided. It is possible to effectively reduce the loss of the high-frequency signal due to the electrical cancellation of each other. Therefore, it is possible to efficiently radiate a high-frequency signal forward (on the side opposite to the end face through conductor group 5) and to extract it to the outside with low loss.
[0029]
In addition, since the signal transmission through conductor 7 has a circular protrusion 8 formed concentrically with the signal transmission through conductor 7 at a portion located in the dielectric waveguide line 10, It is possible to reduce the height of the connection structure while maintaining the low-loss electrical characteristics of the connection structure between the wave tube line 10 and the high-frequency transmission line 6. That is, the frequency f excited between the signal transmission through conductor 7 and the main conductor layers 2 and 3 is f = 1 / 2π (LC). 1/2 (L: Reactance amount generated in the signal transmission through conductor 7, C: capacitance generated between the signal transmission through conductor 7 and the main conductor layers 2 and 3), the signal transmission through conductor 7 is inserted. When the length is shortened, L decreases between the signal transmission through conductor 7 and the main conductor layers 2 and 3, and the excitation frequency tends to shift to a higher frequency side than the frequency to be obtained. C generated between the through-conductor 7 for use and the main conductor layers 2 and 3 can be increased, and the frequency to be excited can be shifted to the low frequency side. As a result, since the product LC value can be made constant without changing, the frequency f can be maintained at a value to be obtained, and the dielectric property can be shortened while maintaining the electrical characteristics of the signal transmission through conductor 7. The body waveguide line 10 can be reduced in height.
[0030]
The dielectric substrate 1 and the dielectric layer 9 may be made of a material most suitable for forming a dielectric waveguide line 10 and a high-frequency transmission line 6, for example, a microstrip line or a coplanar line. It is not necessarily made of the same material.
[0031]
Moreover, it is preferable that the distance between the protrusion 8 and the upper main conductor layer 2 is larger than the distance between the protrusion 8 and the lower main conductor layer 3. As a result, it is possible to effectively suppress the generation of unnecessary stray capacitance between the protruding portion 8 and the conductor positioned above the dielectric waveguide line 10 to deteriorate the transmission characteristics. That is, since the entire surface of the dielectric waveguide 10 is covered with the main conductor layer 3, the protruding portion 8 is electrically cut off from the conductor located below the dielectric waveguide 10. However, in the main conductor layer 2 immediately above the projecting portion 8, a hole 2a for introducing the signal transmission through conductor 7 into the dielectric waveguide line 10 is formed. This hole 2a In this portion, the electrical disconnection between the protruding portion 8 and the conductor positioned above the dielectric waveguide line 10 is incomplete, and unnecessary stray capacitance is likely to be generated between them, so the upper lead By increasing the distance between the body layer 2 and the protruding portion 8, the generation of this stray capacitance can be suppressed.
[0032]
Furthermore, it is preferable that a plurality of protrusions 8 are formed. As a result, the plurality of protrusions 8 can be capacitively coupled to the upper and lower main conductor layers 2 and 3, and a larger capacitance value C can be obtained. As a result, the insertion length of the signal transmission through conductor 7 into the dielectric waveguide line 10 can be shortened, and the connection structure between the dielectric waveguide line 10 and the high frequency transmission line 6 can be further reduced. Can be turned upside down.
[0033]
When a plurality of the protrusions 8 are formed, the distance between the uppermost protrusion 8 and the upper main conductor layer 2 is such that the lowermost protrusion 8 and the lower main conductor layer 3 It should be larger than the distance between. As a result, it is possible to effectively suppress the generation of unnecessary stray capacitance between the protruding portion 8 and the conductor positioned above the dielectric waveguide line 10 to deteriorate the transmission characteristics. That is, since the entire surface of the dielectric waveguide 10 is covered with the main conductor layer 3, the protruding portion 8 is electrically cut off from the conductor located below the dielectric waveguide 10. However, in the main conductor layer 2 immediately above the projecting portion 8, a hole 2a for introducing the signal transmission through conductor 7 into the dielectric waveguide line 10 is formed. This hole 2a In this portion, the electrical disconnection between the protruding portion 8 and the conductor positioned above the dielectric waveguide line 10 is incomplete, and unnecessary stray capacitance is likely to be generated between them, so the upper lead By increasing the distance between the body layer 2 and the protruding portion 8, the generation of this stray capacitance can be suppressed.
[0034]
The protrusion 8 is preferably positioned above the lower end of the signal transmission through conductor 7. Thereby, the reflection loss at the lower end of the signal transmission through conductor 7 can be effectively suppressed, and the transmission characteristics can be made very good. That is, when the protruding portion 8 is provided at the lower end of the signal transmission through conductor 7, the diameter of the lower end of the signal transmission through conductor 7 increases rapidly, so that the loss of the high frequency signal reflected at the lower end tends to be very large. Therefore, the reflection loss can be effectively suppressed by setting the diameter of the signal transmission through conductor 7 without providing the protruding portion 8 at the lower end.
[0035]
Next, FIGS. 4 to 6 show other preferable examples of the connection structure of the present invention, FIG. 4 is a perspective view of the connection structure, FIG. 5 is a plan view of the connection structure of FIG. 6 is a cross-sectional view of the connection structure of FIG. In these drawings, reference numeral 12 denotes a ground penetrating conductor group, and the others are the same as in the case of FIGS.
[0036]
In FIG. 4, the dielectric substrate 1, the main conductor layer 3, the side wall through conductor group 4, the end surface through conductor group 5, and the dielectric layer 9 are omitted for convenience of explanation, and the main conductor layer 2 and the high frequency transmission line 6 are omitted. Only the positional relationship among the signal transmission through conductor 7, the protrusion 8, the same-surface ground conductor layer 11, and the ground through conductor group 12 is shown.
[0037]
In this example, as shown in FIG. 4, the high-frequency transmission line 6 and the coplanar ground conductor layer 11 are formed on the dielectric layer 9 located on the upper side of the dielectric waveguide line 10.
[0038]
The connection structure of FIG. 4 shows a preferred embodiment of the present invention, and the upper main conductor layer is formed so as to surround the signal transmission through conductor 7 in a circle in plan view at an interval of ½ or less of the guide wavelength. In this configuration, a plurality of ground through conductor groups 12 electrically connected to 2 are formed in the dielectric layer 9 except under the high-frequency transmission line 6. Thereby, the influence of the external electromagnetic wave with respect to the signal transmission through conductor 7 can be reduced, and the transmission loss in the signal transmission through conductor 7 is reduced, so that the transmission characteristic is good.
[0039]
Further, the electromagnetic wave propagating through the high-frequency transmission line 6 by the connection structure of FIG. 4 propagates through the coaxial line in the signal transmission through conductor 7. At this time, since the propagation mode in the high-frequency transmission line 6 and the coaxial line is the quasi-TEM mode and the TEM mode as the main mode, the propagation mode between the high-frequency transmission line 6 and the signal transmission through conductor 7 is changed. Loss due to conversion can be suppressed. Further, the signal transmission through conductor 7 and the protrusion 8 act as a capacity-loaded monopole antenna, and propagate through the electromagnetic field generated around the signal transmission through conductor 7 and the protrusion 8 and the dielectric waveguide line 10. Since the electromagnetic field is well coupled, the high frequency signal is propagated into the dielectric waveguide line 10 with low loss.
[0040]
Furthermore, in the connection structure of the present invention, the same-surface ground conductor layer 11 is formed on both sides of the high-frequency transmission line 6 with a predetermined interval, and the same-surface ground conductor layer 11 extends so as to surround the end of the high-frequency transmission line 6. It is preferable that the plurality of ground penetrating conductor groups 12 are electrically connected to the same plane ground conductor layer 11. In this case, the signal transmission through conductor 7 can be electrically isolated, and the influence of an external electromagnetic wave on the signal transmission through conductor 7 can be further reduced. As a result, the transmission loss of the high-frequency signal in the signal transmission through conductor 7 is reduced, and the transmission characteristics are excellent.
[0041]
Next, FIG. 7 shows an embodiment of a high-frequency circuit board 50 having a connection structure between the dielectric waveguide line 10 and the high-frequency transmission line 6 according to the present invention. The crack of the dielectric substrate 31 can be avoided by disposing the high-frequency element mounting portion 13 on the front side. That is, when the metal waveguide 40 having the conventional structure shown in FIG. 12 and the dielectric substrate 31 are joined, cracks are likely to occur in the dielectric substrate 31 due to the difference in thermal expansion coefficient between them. In the case of this connection structure, since only the conventionally known multilayering technique of ceramics is used, the thermal expansion between the dielectric substrate 1 on which the dielectric waveguide line 10 is formed and the dielectric layer 9 on which the high-frequency circuit is formed. The difference in the coefficients becomes small, and cracks are hardly generated in the dielectric substrate 1 and the dielectric layer 9. Therefore, the high-frequency circuit board 50 having a connection structure between the dielectric waveguide line 10 of the present invention and the high-frequency transmission line 6 can be easily manufactured at low cost and high reliability.
[0042]
Next, FIG. 8 shows an embodiment of a high frequency device mounting package provided with a lid 14 that covers the high frequency device mounting portion 13 on the high frequency circuit board 50. However, in FIG. 8, a part of the lid body 14 is omitted. The lid 14 is preferably a concave metal body, a concave ceramic, or the like. By covering the mounting portion 13 with the lid body 14, it can be prevented from being affected by interference caused by external electromagnetic waves, and a high-reliability high-frequency element mounting package can be manufactured. If the mounting portion 13 needs to be airtight, the high-frequency circuit board 50 and the lid body 14 may be joined using a solder material.
[0043]
【Example】
Examples of the connection structure between the dielectric waveguide line 10 and the high-frequency transmission line 6 according to the present invention will be described below.
[0044]
The connection structure having the configuration shown in FIG. 1 was configured as follows. First, dielectric constant ε r A dielectric substrate 1 having a thickness of 1.9 mm and a dielectric waveguide 1 having a longitudinal section of 3.37 mm × 1.69 mm was formed on the dielectric substrate 1. Further, a high-frequency transmission line 6 having an impedance of 50Ω is formed on the upper surface of the dielectric layer 9, and a signal transmission through conductor 7 having a diameter of 0.1 mm is inserted into the dielectric waveguide line 10 from the end thereof. The insertion length was set to 0.91 mm.
[0045]
Further, a circular protrusion 8 having a diameter of 0.3 mm and concentric with the signal transmission through conductor 7 was formed in the dielectric waveguide line 10 of the signal transmission through conductor 7.
[0046]
At this time, the end surface through conductor group 5 is formed at a position of 1.34 mm corresponding to a distance of a quarter of the in-tube wavelength of the high frequency signal of 24 GHz from the transmission through conductor 7 on the side opposite to the signal transmission direction. A short circuit end was formed.
[0047]
The main conductor layer 2 is provided with a hole 2 a so as not to be electrically connected to the signal transmission through conductor 7. Thereby, the sample of the connection structure of the dielectric waveguide line 10 of this invention and the high frequency transmission line 6 was produced.
[0048]
As a comparative example, a comparative sample was produced in the same manner as the above sample except that the protruding portion 8 was not provided.
[0049]
And about these samples, the coupling characteristic between the edge part of the high frequency transmission line 6 and the dielectric waveguide line 10 was analyzed with the electromagnetic field simulator, and each reflection coefficient S11 and transmission coefficient S21 were calculated | required. FIG. 9 shows the results of electrical characteristics of a sample of the connection structure between the dielectric waveguide line 10 and the high-frequency transmission line 6 according to the present invention. FIG. 9 is a graph showing the frequency characteristics of the S parameter. The horizontal axis represents frequency (unit: GHz), and the vertical axis represents S11 and S21 (unit: dB). In FIG. 9, the solid line shows the result of S11 in the example of the present invention, and the dotted line shows the result of S21 in the example of the present invention. In addition, the solid thin line to which the triangle mark is added shows the result of S11 in the comparative example, and the solid thin line to which the x mark is added shows the result of S21 in the comparative example.
[0050]
From FIG. 9, it was found that in the connection structure of the present invention, S11 satisfies about -35 dB and S21 satisfies about -0.3 dB at 24 GHz, and has excellent transmission characteristics.
[0051]
On the other hand, in the connection structure of the comparative example, at 11 GHz, S11 was about -10 dB, and S21 was about -1 dB.
[0052]
In addition, this invention is not limited to the said embodiment and Example, A various change may be added in the range which does not deviate from the summary of this invention.
[0053]
【The invention's effect】
The connection structure between the dielectric waveguide line and the high-frequency transmission line according to the present invention is such that the high-frequency transmission line is a quarter of the in-tube wavelength from the end face of the dielectric waveguide line on which the end face through conductor group is formed. Because it has a signal transmission through conductor extended without being connected to the main conductor layer from the end of the high-frequency transmission line so that the tip is inserted into the dielectric waveguide line at a distance, The loss of the high frequency signal due to the electrical cancellation of the high frequency signal excited by the signal transmission through conductor and radiated into the dielectric substrate and the high frequency signal reflected by the end surface through conductor group. It can be effectively reduced. Therefore, it is possible to efficiently radiate a high-frequency signal forward (on the side opposite to the end surface through conductor group) and to extract it to the outside with low loss.
[0054]
In addition, since the signal transmission through conductor has a circular protrusion formed concentrically with the signal transmission through conductor at a portion located in the dielectric waveguide line, It is possible to reduce the height of the connection structure while maintaining the low-loss electrical characteristics of the connection structure with the high-frequency transmission line. That is, the frequency f excited between the signal transmission through conductor and the main conductor layer is f = 1 / 2π (LC). 1/2 (L: Reactance amount generated in signal transmission through conductor, C: Capacity generated between signal transmission through conductor and main conductor layer) When the insertion length of the signal transmission through conductor is shortened, L decreases between the signal transmission through conductor and the main conductor layer, and the frequency to be excited tends to shift to a higher frequency side than the frequency to be obtained, but the protruding portion causes a gap between the signal transmission through conductor and the main conductor layer. The generated C can be increased, and the frequency to be excited can be shifted to the low frequency side. As a result, since the product LC value can be kept constant without changing, the frequency f can be maintained at a value to be obtained, and the dielectric can be shortened while maintaining the electrical characteristics of the signal transmission through conductor. The waveguide line can be reduced in height.
[0055]
Thus, according to the present invention, it is possible to easily connect the dielectric waveguide line, the microstrip line, and the coplanar line. In addition, since it can be easily manufactured by using a conventionally known ceramic multilayering technique, a low-cost and highly reliable low-profile coupling structure can be configured.
[0056]
In the connection structure between the dielectric waveguide line and the high-frequency transmission line according to the present invention, the distance between the protrusion and the upper main conductor layer is larger than the distance between the protrusion and the lower main conductor layer. Since it is large, it is possible to effectively suppress the deterioration of transmission characteristics due to the generation of unnecessary stray capacitance between the protruding portion and the conductor positioned above the dielectric waveguide line. That is, since the entire surface of the lower surface of the dielectric waveguide is covered with the main conductor layer, the protruding portion is electrically cut off from the conductor located below the dielectric waveguide. In the main conductor layer immediately above the protrusion, a hole for introducing the signal transmission through conductor into the dielectric waveguide line is formed. At the hole, the protrusion and the dielectric conductor are formed. Since electrical disconnection from the conductor located above the wave guide line is incomplete and unnecessary stray capacitance is likely to occur between them, the distance between the upper main conductor layer and the protruding portion is increased. By doing so, the generation of this stray capacitance can be suppressed.
[0057]
In the connection structure between the dielectric waveguide line and the high-frequency transmission line according to the present invention, since the protruding portion is located above the lower end of the signal transmission through conductor, the reflection loss at the lower end of the signal transmission through conductor. Can be effectively suppressed and the transmission characteristics can be made very good. That is, if a protruding portion is provided at the lower end of the signal transmission through conductor, the diameter of the lower end of the signal transmission through conductor increases rapidly, so that the loss of the high-frequency signal reflected at the lower end tends to become very large. By providing the diameter of the signal transmission through conductor without providing the protrusions, the reflection loss can be effectively suppressed.
[0058]
The high-frequency circuit board of the present invention has a low loss by providing a dielectric substrate with a connection structure between the dielectric waveguide line and the high-frequency transmission line configured as described above and a mounting portion for mounting the high-frequency element. Therefore, it is easy to reduce the thickness.
[0059]
The high-frequency element mounting package of the present invention provides a thin high-frequency element mounting package having low-loss electrical characteristics by attaching a lid so as to cover the mounting portion of the high-frequency circuit board having the above configuration. be able to.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of a connection structure between a dielectric waveguide line and a high-frequency transmission line according to the present invention.
FIG. 2 is a plan view of the connection structure of FIG.
3 is a cross-sectional view taken along line XX ′ of the connection structure of FIG.
FIG. 4 is a perspective view showing another example of the embodiment of the connection structure between the dielectric waveguide line and the high-frequency transmission line according to the present invention.
FIG. 5 is a plan view of the connection structure of FIG.
6 is a cross-sectional view taken along the line YY ′ of the connection structure of FIG. 4;
FIG. 7 is a perspective view showing an example of an embodiment of a high-frequency circuit board having a connection structure between a dielectric waveguide line and a high-frequency transmission line according to the present invention.
FIG. 8 is a perspective view showing an example of an embodiment of a high frequency device mounting package having a connection structure between a dielectric waveguide line and a high frequency transmission line according to the present invention.
FIG. 9 is a diagram showing a measurement result of an S parameter for a connection structure between a dielectric waveguide line and a high-frequency transmission line according to the present invention.
FIG. 10 is a perspective view showing a connection structure between a conventional dielectric waveguide line and a high-frequency transmission line.
11 is a cross-sectional view taken along the line ZZ ′ of the connection structure of FIG.
FIG. 12 is a perspective view showing a connection structure between a conventional metal waveguide and a signal transmission through-conductor pin.
[Explanation of symbols]
1: Dielectric substrate
2, 3: Main conductor layer
4: Side wall through conductor group
5: Through conductor group for end face
6: High-frequency transmission line
7: Through conductor for signal transmission
8: Protruding part
9: Dielectric layer
10: Dielectric waveguide line
11: Coplanar ground conductor layer
12: Grounding through conductor group
13: Mounted part
14: Lid
50: High frequency circuit board

Claims (5)

誘電体基板を上下から挟持する一対の主導体層と、高周波信号の伝送方向に該高周波信号の管内波長の2分の1未満の繰り返し間隔で形成された、前記一対の主導体層間を電気的に接続する2列の側壁用貫通導体群と、該2列の側壁用貫通導体群の一方の端に前記側壁用貫通導体群間を前記繰り返し間隔で1列に形成された、前記一対の主導体層間を電気的に接続する端面用貫通導体群とで囲まれた領域によって前記高周波信号を伝送するための誘電体導波管線路の上下のいずれか一方に、誘電体層を介して前記伝送方向に平行に配設された高周波伝送線路を結合するための誘電体導波管線路と高周波伝送線路との接続構造であって、前記高周波伝送線路は、前記端面用貫通導体群が形成された前記誘電体導波管線路の端面から前記管内波長の4分の1の距離の前記誘電体導波管線路内に先端が挿入されるように、前記高周波伝送線路の端部から前記主導体層と接続することなく延設された信号伝送用貫通導体を有しており、該信号伝送用貫通導体は、前記誘電体導波管線路内に位置する部位に前記信号伝送用貫通導体と同心状に円形状の突出部が形成されていることを特徴とする誘電体導波管線路と高周波伝送線路との接続構造。A pair of main conductor layers sandwiching the dielectric substrate from above and below are electrically connected between the pair of main conductor layers formed in the transmission direction of the high-frequency signal at a repetition interval of less than half of the guide wavelength of the high-frequency signal. A pair of side wall through conductor groups connected to each other, and the pair of main leads formed at one end of the side wall through conductor groups at one end of the two side wall through conductor groups at the repetition interval. The transmission through the dielectric layer on either the upper or lower side of the dielectric waveguide line for transmitting the high-frequency signal by the region surrounded by the end surface through conductor group that electrically connects the body layers A connection structure between a dielectric waveguide line and a high-frequency transmission line for coupling a high-frequency transmission line arranged in parallel to the direction, wherein the through-conductor group for the end face is formed in the high-frequency transmission line The guide wavelength from the end face of the dielectric waveguide line A signal transmission through conductor extending from the end of the high-frequency transmission line without being connected to the main conductor layer so that the tip is inserted into the dielectric waveguide line having a quarter distance The signal transmission through conductor is characterized in that a circular protrusion is formed concentrically with the signal transmission through conductor at a portion located in the dielectric waveguide line. A connection structure between a dielectric waveguide line and a high-frequency transmission line. 前記突出部は、上側の前記主導体層との間の距離が下側の前記主導体層との間の距離よりも大きいことを特徴とする請求項1記載の誘電体導波管線路と高周波伝送線路との接続構造。2. The dielectric waveguide according to claim 1, wherein a distance between the protruding portion and the upper main conductor layer is larger than a distance between the lower main conductor layer and the lower main conductor layer. Connection structure with transmission line. 前記突出部は、前記信号伝送用貫通導体の下端よりも上側に位置していることを特徴とする請求項1または請求項2記載の誘電体導波管線路と高周波伝送線路との接続構造。3. The connection structure between a dielectric waveguide line and a high-frequency transmission line according to claim 1, wherein the protruding portion is located above a lower end of the signal transmission through conductor. 誘電体基板に、請求項1乃至請求項3のいずれかに記載の誘電体導波管線路と高周波伝送線路との接続構造と、高周波素子を搭載するための搭載部とを設けたことを特徴とする高周波回路基板。A connection structure between the dielectric waveguide line according to any one of claims 1 to 3 and a high-frequency transmission line, and a mounting portion for mounting a high-frequency element are provided on the dielectric substrate. A high-frequency circuit board. 請求項4記載の高周波回路基板の前記搭載部を覆うように蓋体が取着されることを特徴とする高周波素子搭載用パッケージ。5. A high frequency device mounting package, wherein a lid is attached to cover the mounting portion of the high frequency circuit board according to claim 4.
JP2003203373A 2003-07-29 2003-07-29 Connection structure between dielectric waveguide line and high frequency transmission line, high frequency circuit board employing the same, and high frequency element mount package Pending JP2005051330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203373A JP2005051330A (en) 2003-07-29 2003-07-29 Connection structure between dielectric waveguide line and high frequency transmission line, high frequency circuit board employing the same, and high frequency element mount package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203373A JP2005051330A (en) 2003-07-29 2003-07-29 Connection structure between dielectric waveguide line and high frequency transmission line, high frequency circuit board employing the same, and high frequency element mount package

Publications (1)

Publication Number Publication Date
JP2005051330A true JP2005051330A (en) 2005-02-24

Family

ID=34262733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203373A Pending JP2005051330A (en) 2003-07-29 2003-07-29 Connection structure between dielectric waveguide line and high frequency transmission line, high frequency circuit board employing the same, and high frequency element mount package

Country Status (1)

Country Link
JP (1) JP2005051330A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283657A (en) * 2009-06-05 2010-12-16 Shinko Electric Ind Co Ltd High-frequency line structure on resin substrate and method of manufacturing the same
JP5171819B2 (en) * 2007-06-14 2013-03-27 京セラ株式会社 DC blocking circuit, hybrid circuit device, transmitter, receiver, transceiver, and radar device
JP2015089090A (en) * 2013-11-01 2015-05-07 株式会社フジクラ Mode converter
JP2015146376A (en) * 2014-02-03 2015-08-13 三菱電機株式会社 Electromagnetic wave attenuation structure and electromagnetic shield structure
JP5789701B1 (en) * 2014-05-12 2015-10-07 株式会社フジクラ Transmission mode converter
JP2019161360A (en) * 2018-03-09 2019-09-19 古河電気工業株式会社 High frequency transmission line
WO2020110610A1 (en) 2018-11-26 2020-06-04 日本特殊陶業株式会社 Waveguide slot antenna
KR20210035316A (en) * 2018-09-18 2021-03-31 니뽄 도쿠슈 도교 가부시키가이샤 wave-guide
WO2023017774A1 (en) * 2021-08-12 2023-02-16 日本碍子株式会社 Waveguide element and method for producing waveguide element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171819B2 (en) * 2007-06-14 2013-03-27 京セラ株式会社 DC blocking circuit, hybrid circuit device, transmitter, receiver, transceiver, and radar device
JP2010283657A (en) * 2009-06-05 2010-12-16 Shinko Electric Ind Co Ltd High-frequency line structure on resin substrate and method of manufacturing the same
US8552815B2 (en) 2009-06-05 2013-10-08 Shinko Electric Industries Co., Ltd. High-frequency line structure for impedance matching a microstrip line to a resin substrate and method of making
JP2015089090A (en) * 2013-11-01 2015-05-07 株式会社フジクラ Mode converter
JP2015146376A (en) * 2014-02-03 2015-08-13 三菱電機株式会社 Electromagnetic wave attenuation structure and electromagnetic shield structure
JP5789701B1 (en) * 2014-05-12 2015-10-07 株式会社フジクラ Transmission mode converter
JP2019161360A (en) * 2018-03-09 2019-09-19 古河電気工業株式会社 High frequency transmission line
KR20210035316A (en) * 2018-09-18 2021-03-31 니뽄 도쿠슈 도교 가부시키가이샤 wave-guide
KR102428983B1 (en) 2018-09-18 2022-08-03 니뽄 도쿠슈 도교 가부시키가이샤 wave-guide
WO2020110610A1 (en) 2018-11-26 2020-06-04 日本特殊陶業株式会社 Waveguide slot antenna
KR20210005285A (en) 2018-11-26 2021-01-13 니뽄 도쿠슈 도교 가부시키가이샤 Waveguide slot antenna
US11631940B2 (en) 2018-11-26 2023-04-18 Ngk Spark Plug Co., Ltd. Waveguide slot antenna
WO2023017774A1 (en) * 2021-08-12 2023-02-16 日本碍子株式会社 Waveguide element and method for producing waveguide element

Similar Documents

Publication Publication Date Title
CN102696145B (en) Microwave transition device between a microstrip line and a rectangular waveguide
EP0883328B1 (en) Circuit board comprising a high frequency transmission line
JP3241019B2 (en) Coplanar railway track
EP1304762B1 (en) Transmission line to waveguide transition structures
EP0848447A2 (en) Transmission circuit using strip line in three dimensions
JP2005045815A (en) Millimeter-wave signal conversion device
JP3996879B2 (en) Coupling structure of dielectric waveguide and microstrip line, and filter substrate having this coupling structure
US11303004B2 (en) Microstrip-to-waveguide transition including a substrate integrated waveguide with a 90 degree bend section
US20050200424A1 (en) Microstripline waveguide converter
JP4611811B2 (en) Fin line type microwave band pass filter
US11011814B2 (en) Coupling comprising a conductive wire embedded in a post-wall waveguide and extending into a hollow tube waveguide
JP2005051330A (en) Connection structure between dielectric waveguide line and high frequency transmission line, high frequency circuit board employing the same, and high frequency element mount package
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP4535640B2 (en) Aperture antenna and substrate with aperture antenna
EP1182913A1 (en) High speed circuit board interconnection
US10992015B2 (en) Coupling comprising a guide member embedded within a blind via of a post-wall waveguide and extending into a hollow tube waveguide
JP2000252712A (en) Connection structure between dielectric waveguide line and high frequency line conductor
US11394100B2 (en) High-frequency connection structure for connecting a coaxial line to a planar line using adhesion layers
JP2006279519A (en) High-frequency line/waveguide converter
US11631506B2 (en) High-frequency line connection structure
JP2006279199A (en) High-frequency line/waveguide converter
US10651524B2 (en) Planar orthomode transducer
JPH1174702A (en) Connection structure between laminated waveguide and waveguide
JP2004297373A (en) Connection structure of dielectric waveguide line and high frequency transmission line
JP3988498B2 (en) Waveguide filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617