JP6003880B2 - Silver powder manufacturing method - Google Patents

Silver powder manufacturing method Download PDF

Info

Publication number
JP6003880B2
JP6003880B2 JP2013269992A JP2013269992A JP6003880B2 JP 6003880 B2 JP6003880 B2 JP 6003880B2 JP 2013269992 A JP2013269992 A JP 2013269992A JP 2013269992 A JP2013269992 A JP 2013269992A JP 6003880 B2 JP6003880 B2 JP 6003880B2
Authority
JP
Japan
Prior art keywords
silver
solution
reducing agent
amount
nucleus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013269992A
Other languages
Japanese (ja)
Other versions
JP2015110823A (en
Inventor
大夢 西本
大夢 西本
良宏 岡部
良宏 岡部
研哉 伊藤
研哉 伊藤
栄治 石田
栄治 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013269992A priority Critical patent/JP6003880B2/en
Publication of JP2015110823A publication Critical patent/JP2015110823A/en
Application granted granted Critical
Publication of JP6003880B2 publication Critical patent/JP6003880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銀粉の製造方法に関するものであり、更に詳しくは、電子機器の配線層や電極等の形成に利用される樹脂型銀ペーストや焼成型銀ペーストの主たる成分となる銀粉の製造方法に関する。   The present invention relates to a method for producing silver powder, and more particularly, to a method for producing silver powder that is a main component of resin-type silver paste and fired-type silver paste used for forming wiring layers and electrodes of electronic devices. .

電子機器における配線層や電極等の形成には、樹脂型銀ペーストや焼成型銀ペーストのような銀ペーストが多用されている。これらの銀ペーストは、塗布又は印刷した後、加熱硬化あるいは加熱焼成されることによって、配線層や電極等となる導電膜を形成する。   Silver pastes such as resin-type silver paste and fired-type silver paste are frequently used for forming wiring layers, electrodes, and the like in electronic devices. These silver pastes are applied or printed and then heat-cured or fired to form a conductive film that becomes a wiring layer, an electrode, or the like.

例えば、樹脂型銀ペーストは、銀粉、樹脂、硬化剤、溶剤等からなり、導電体回路パターン又は端子の上に印刷し、100℃〜200℃で加熱硬化させて導電膜とし、配線や電極を形成する。また、焼成型銀ペーストは、銀粉、ガラス、溶剤等からなり、導電体回路パターン又は端子の上に印刷し、600℃〜800℃に加熱焼成して導電膜とし、配線や電極を形成する。これらの銀ペーストで形成された配線や電極では、銀粉が連なることで電気的に接続した電流パスが形成されている。   For example, a resin-type silver paste is made of silver powder, resin, curing agent, solvent, etc., printed on a conductor circuit pattern or terminal, and cured by heating at 100 ° C. to 200 ° C. to form a conductive film. Form. The fired silver paste is made of silver powder, glass, solvent, etc., printed on a conductor circuit pattern or terminal, and heated and fired at 600 ° C. to 800 ° C. to form a conductive film to form wirings and electrodes. In wirings and electrodes formed of these silver pastes, electrically connected current paths are formed by continuous silver powder.

銀ペーストに使用される銀粉は、粒径が0.1μmから数μmであり、形成する配線の太さや電極の厚さによって使用される銀粉の粒径が異なる。また、ペースト中に均一に銀粉を分散させることにより、均一な太さの配線、均一な厚さの電極を形成することができる。   The silver powder used in the silver paste has a particle size of 0.1 μm to several μm, and the particle size of the silver powder used varies depending on the thickness of the wiring to be formed and the thickness of the electrode. Further, by uniformly dispersing silver powder in the paste, it is possible to form a wiring having a uniform thickness and an electrode having a uniform thickness.

銀ペースト用の銀粉に求められる特性としては、用途及び使用条件により様々であるが、一般的で且つ重要なことは、粒径が均一で凝集が少なく、ペースト中への分散性が高いことである。粒径が均一で、且つペースト中への分散性が高いと、硬化あるいは焼成が均一に進み、低抵抗で強度の大きい導電膜を形成できるからである。粒径が不均一で分散性が悪いと、印刷膜中に銀粒子が均一に存在しないため、配線や電極の太さや厚さが不均一となるばかりか、硬化あるいは焼成が不均一となるため、導電膜の抵抗が大きくなったり、導電膜が脆く弱いものになったりしやすい。   The characteristics required for silver powder for silver paste vary depending on the application and use conditions, but the general and important point is that the particle size is uniform, there is little aggregation, and the dispersibility in the paste is high. is there. This is because if the particle size is uniform and the dispersibility in the paste is high, curing or firing proceeds uniformly, and a conductive film having low resistance and high strength can be formed. If the particle size is non-uniform and the dispersibility is poor, silver particles will not be uniformly present in the printed film, resulting in non-uniform thickness and thickness of wiring and electrodes, as well as non-uniform curing or firing. The resistance of the conductive film tends to increase, and the conductive film tends to be brittle and weak.

さらに、銀ペースト用の銀粉に求められる事項として、製造コストが低いことも重要である。銀粉はペーストの主成分であることから、ペースト価格に占める割合が大きいためである。製造コストの低減のためには、使用する原料や材料の単価が低いだけでなく、廃液や排気の処理コストが低いことも重要となる。   Further, as a matter required for silver powder for silver paste, it is also important that the manufacturing cost is low. This is because silver powder is a major component of the paste and therefore has a large proportion of the paste price. In order to reduce the manufacturing cost, it is important not only to lower the unit price of raw materials and materials to be used, but also to reduce the cost of treating waste liquid and exhaust gas.

上述した銀ペーストに使用される銀粉の製造は、銀源として用いる原料は硝酸銀が一般的である。例えば、特許文献1では、硝酸銀をアンモニアに溶解した銀アンミン錯体を含む溶液と還元剤溶液とを連続的に混合し、還元して、均一な銀粉を得る方法が開示されている。   In the production of silver powder used in the above-described silver paste, the raw material used as the silver source is generally silver nitrate. For example, Patent Document 1 discloses a method in which a solution containing a silver ammine complex in which silver nitrate is dissolved in ammonia and a reducing agent solution are continuously mixed and reduced to obtain uniform silver powder.

この特許文献1に示される製造方法によれば、平均粒径が0.1μm〜1μmであり、均一で且つ凝集が少ない粒状銀粉が得られるとされている。しかしながら、硝酸銀はアンモニア水等への溶解過程で有毒な亜硝酸ガスを発生し、これを回収する装置が必要となる。また、廃水中に硝酸系窒素やアンモニア系窒素が多量に含まれるので、その処理のための装置も必要となる。さらに、硝酸銀は危険物であり劇物でもあるため、取り扱いに注意を要する。このように、硝酸銀を銀粉の原料として用いる場合は、環境に及ぼす影響やリスクが他の銀化合物に比べて大きいという問題点を抱えている。   According to the production method shown in Patent Document 1, it is said that a granular silver powder having an average particle diameter of 0.1 μm to 1 μm and uniform and having little aggregation is obtained. However, silver nitrate generates toxic nitrous acid gas in the process of dissolution in aqueous ammonia, and a device for recovering this is required. Further, since a large amount of nitrate nitrogen and ammonia nitrogen is contained in the wastewater, an apparatus for the treatment is also required. In addition, silver nitrate is dangerous and deleterious, so it must be handled with care. As described above, when silver nitrate is used as a raw material for silver powder, there is a problem that the influence and risk on the environment are larger than those of other silver compounds.

そこで、硝酸銀を原料とせずに、塩化銀を還元して銀粉を製造する方法も提案されている。塩化銀を用いた場合には、アンモニア水に溶解したときに亜硝酸ガスが発生しないため、処理コストが安く、環境リスクが低くなるという利点を有している。さらに、塩化銀は危険物にも劇物にも該当せず、遮光の必要はあるものの、比較的取り扱いが容易な銀化合物であるという利点も有している。また、塩化銀は銀の精製プロセスの中間品としても存在し、電子工業用として十分な純度を有している。   Therefore, a method for producing silver powder by reducing silver chloride without using silver nitrate as a raw material has been proposed. When silver chloride is used, since nitrous acid gas is not generated when dissolved in aqueous ammonia, the processing cost is low and the environmental risk is low. Furthermore, silver chloride does not correspond to a dangerous substance or a deleterious substance and has an advantage that it is a silver compound that is relatively easy to handle although it needs to be shielded from light. Silver chloride also exists as an intermediate product in the silver refining process, and has sufficient purity for the electronics industry.

特許文献2には、塩化銀をアンモニア水に溶解した銀溶液に、分散剤と銀微粒子スラリーを添加した銀溶液に、還元剤であるヒドラジンを添加して銀粉を得る方法が開示されている。しかしながら、この方法で得られる銀粉の粒径は、0.2μm〜3μmであり、均一性に問題があった。   Patent Document 2 discloses a method of obtaining silver powder by adding hydrazine as a reducing agent to a silver solution obtained by adding a dispersing agent and a silver fine particle slurry to a silver solution obtained by dissolving silver chloride in ammonia water. However, the particle size of the silver powder obtained by this method is 0.2 μm to 3 μm, and there is a problem in uniformity.

さらに、特許文献3には、核含有還元剤溶液と銀錯体を含む粒子成長用銀溶液とを連続的に混合して反応液とし、該反応液中で銀錯体を還元して銀粒子を成長させる銀粉の製造方法が開示されている。しかしながら、この方法では、粒径の均一性に優れた銀粉が得られるものの、得られる銀粉の粒径が狙いとした粒径からずれ、粒径を安定させて銀粉が得られないという問題があった。   Furthermore, in Patent Document 3, a nucleus-containing reducing agent solution and a silver solution for particle growth containing a silver complex are continuously mixed to obtain a reaction solution, and the silver complex is reduced in the reaction solution to grow silver particles. A method for producing silver powder is disclosed. However, although this method can obtain silver powder having excellent particle size uniformity, there is a problem that the particle size of the obtained silver powder deviates from the intended particle size, and the silver particle cannot be obtained by stabilizing the particle size. It was.

このように、従来の銀塩を原料として還元するプロセスでは、粒子の均一さに問題がある。特に、0.5μm以下の小粒径の銀粉を作製する場合、粒径を安定させることはさらに困難であり、反応液中の銀濃度を下げなければならない。一方で、反応液中の銀濃度を下げると、生産性が悪化するという問題が生じる。   Thus, in the conventional process of reducing silver salt as a raw material, there is a problem in particle uniformity. In particular, when producing silver powder having a small particle size of 0.5 μm or less, it is more difficult to stabilize the particle size, and the silver concentration in the reaction solution must be lowered. On the other hand, when the silver concentration in the reaction solution is lowered, there arises a problem that productivity is deteriorated.

特開2010−070793号公報JP 2010-070793 A 特開2010−043337号公報JP 2010-043337 A 国際公開第2013/133103号International Publication No. 2013/133103

そこで、本発明は、このような従来の事情に鑑み、均一で所望の粒径を有する銀粉を高い生産性でもって安定して製造することができる銀粉の製造方法を提供することを目的とする。   Then, in view of such a conventional situation, this invention aims at providing the manufacturing method of silver powder which can manufacture silver powder which has a uniform and desired particle size stably with high productivity. .

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、核を生成させる銀溶液及び/又は核を成長させる銀溶液に含まれる固形粒子が、得られる銀核の粒径に大きな影響を及ぼしており、該固形粒子の含有量を低減することで成長する銀粒子数の制御が可能となり、その結果、反応液中の銀濃度が高い条件においても、均一で所望の粒径を有する銀粉を高い生産性をもって容易に得ることができることを見出し、本発明に至ったものである。   As a result of intensive investigations to achieve the above object, the present inventors have determined that the solid particles contained in the silver solution for generating nuclei and / or the silver solution for growing nuclei have a particle diameter of the obtained silver nuclei. It has a great influence, and it is possible to control the number of silver particles that grow by reducing the content of the solid particles. As a result, even when the silver concentration in the reaction solution is high, the particle size is uniform and desired. The present inventors have found that silver powder having a high yield can be easily obtained with high productivity.

すなわち、本発明に係る銀粉の製造方法は、銀錯体を含む銀溶液と還元剤溶液とを連続的に混合して反応液とし、該反応液中の銀錯体を還元して銀粒子スラリーを得た後、ろ過、洗浄、乾燥の各工程を経て銀粉を製造する銀粉の製造方法であって、銀錯体を含む核生成用銀溶液と、強還元剤を含む溶液と、分散剤とを混合して銀核溶液を得る銀核溶液調製工程と、上記銀核溶液調製工程により得られた銀核溶液と、上記強還元剤より標準電極電位が高い弱還元剤とを混合して核含有還元剤溶液を得る核含有還元剤溶液調製工程と、上記核含有還元剤溶液調製工程により得られた核含有還元剤溶液と、固形粒子の含有量が銀量に対して20質量ppm以下であり、銀錯体を含む粒子成長用銀溶液とを連続的に混合して反応液とし、該反応液中で銀錯体を還元して銀粒子を成長させる粒子成長工程とを有し、上記核生成用銀溶液中の銀量に対する上記強還元剤の当量が1.0当量以上、4.0当量未満であり、上記強還元剤の標準電極電位が0.056V以下であり、上記核生成用銀溶液中の銀濃度が0.1g/L〜6.0g/Lであることを特徴とする。   That is, the method for producing silver powder according to the present invention comprises continuously mixing a silver solution containing a silver complex and a reducing agent solution into a reaction solution, and reducing the silver complex in the reaction solution to obtain a silver particle slurry. Then, a silver powder production method for producing silver powder through filtration, washing, and drying steps, comprising mixing a nucleation silver solution containing a silver complex, a solution containing a strong reducing agent, and a dispersant. A core containing reducing agent prepared by mixing a silver core solution preparing step for obtaining a silver core solution, a silver core solution obtained by the above silver core solution preparing step, and a weak reducing agent having a higher standard electrode potential than the above strong reducing agent. A core-containing reducing agent solution preparation step for obtaining a solution, a core-containing reducing agent solution obtained by the core-containing reducing agent solution preparation step, and a solid particle content of 20 mass ppm or less with respect to the amount of silver, A continuous solution is mixed with a silver solution for particle growth containing a complex to form a reaction solution. A particle growth step of growing silver particles by reducing the complex, and the equivalent of the strong reducing agent with respect to the amount of silver in the silver solution for nucleation is 1.0 equivalent or more and less than 4.0 equivalents, The standard electrode potential of the strong reducing agent is 0.056 V or less, and the silver concentration in the silver solution for nucleation is 0.1 g / L to 6.0 g / L.

上記核生成用銀溶液は、固形粒子の含有量が銀量に対して20質量ppm以下であることが好ましい。   The nucleation silver solution preferably has a solid particle content of 20 ppm by mass or less based on the silver content.

上記製造方法においては、上記強還元剤を含む溶液との混合前に、上記核生成用銀溶液を限外ろ過するろ過工程をさらに有することが好ましく、上記限外ろ過の分画分子量が150,000以下であることが好ましい。   In the production method, it is preferable to further include a filtration step of ultrafiltration of the nucleation silver solution before mixing with the solution containing the strong reducing agent, and the molecular weight cut-off of the ultrafiltration is 150, 000 or less is preferable.

上記製造方法においては、上記核含有還元剤溶液との混合前に、上記粒子成長用銀溶液を限外ろ過するろ過工程をさらに有することが好ましく、上記限外ろ過の分画分子量が150,000以下であることが好ましい。   In the production method, it is preferable to further include a filtration step of ultrafiltration of the silver solution for particle growth before mixing with the nucleus-containing reducing agent solution, and the molecular weight cut-off of the ultrafiltration is 150,000. The following is preferable.

また、上記強還元剤と上記弱還元剤の標準電極電位の差が1.0V以上であることが好ましい。具体的には、上記強還元剤としてはヒドラジン一水和物を用い、上記弱還元剤としてはアスコルビン酸を用いることが好ましい。   Further, it is preferable that the difference in standard electrode potential between the strong reducing agent and the weak reducing agent is 1.0 V or more. Specifically, it is preferable to use hydrazine monohydrate as the strong reducing agent and ascorbic acid as the weak reducing agent.

また、上記粒子成長用銀溶液中の銀濃度は20g/L〜90g/Lであることが好ましい。   The silver concentration in the silver solution for particle growth is preferably 20 g / L to 90 g / L.

また、上記銀錯体としては、塩化銀をアンモニア水に溶解して得られた銀アンミン錯体であることが好ましく、上記核生成用銀溶液中の銀量に対するアンモニア量はモル比で20〜100であることが好ましい。   The silver complex is preferably a silver ammine complex obtained by dissolving silver chloride in aqueous ammonia, and the ammonia amount relative to the silver amount in the nucleation silver solution is 20 to 100 in molar ratio. Preferably there is.

また、上記分散剤の混合量は、上記核含有還元剤溶液と粒子成長用銀溶液の混合後における粒子成長用銀溶液中の銀量に対して1質量%〜30質量%であることが好ましい。その分散剤としては、ポリビニルアルコール、ポリビニルピロリドン、変性シリコンオイル系界面活性剤、ポリエーテル系界面活性剤から選択される少なくとも1種を用いることが好ましい。   Further, the mixing amount of the dispersant is preferably 1% by mass to 30% by mass with respect to the amount of silver in the particle growth silver solution after mixing the nucleus-containing reducing agent solution and the particle growth silver solution. . As the dispersant, it is preferable to use at least one selected from polyvinyl alcohol, polyvinyl pyrrolidone, a modified silicone oil surfactant, and a polyether surfactant.

また、上記核含有還元剤溶液と粒子成長用銀溶液との混合において、各溶液を個別に反応管に供給し、該反応管内に配置したスタティックミキサーで混合することが好ましい。   Further, in the mixing of the nucleus-containing reducing agent solution and the silver solution for particle growth, it is preferable that each solution is individually supplied to a reaction tube and mixed by a static mixer disposed in the reaction tube.

本発明に係る銀粉の製造方法によれば、微粒を含まない均一な粒径の銀粉を所望の粒径で安定して製造することができる。したがって、この方法により製造された銀粉によれば、電子機器の配線層や電極等の形成に利用される樹脂型銀ペーストや焼成型銀ペースト等のペースト用銀粉として好適に用いることができる。   According to the method for producing silver powder according to the present invention, silver powder having a uniform particle size not containing fine particles can be stably produced with a desired particle size. Therefore, according to the silver powder manufactured by this method, it can be suitably used as a silver powder for a paste such as a resin-type silver paste or a fired-type silver paste used for forming a wiring layer or an electrode of an electronic device.

また、本発明による銀粉の製造方法は、銀粉の粒径制御が容易で安定しているため、量産性に優れたものであり、工業的価値が極めて大きいものである。   In addition, the silver powder production method according to the present invention is easy and stable in controlling the particle size of the silver powder, and thus is excellent in mass productivity and has an extremely large industrial value.

本発明を適用した銀粉の製造方法の工程図である。It is process drawing of the manufacturing method of the silver powder to which this invention is applied. 実施例1において得られた銀核のSEM像である。2 is an SEM image of silver nuclei obtained in Example 1. 実施例1において得られた銀粉のSEM像である。2 is an SEM image of silver powder obtained in Example 1. 実施例2において得られた銀核のSEM像である。3 is a SEM image of silver nuclei obtained in Example 2. 実施例2において得られた銀粉のSEM像である。3 is a SEM image of silver powder obtained in Example 2. 実施例4において得られた銀核のSEM像である。4 is an SEM image of silver nuclei obtained in Example 4. 実施例4において得られた銀粉のSEM像である。4 is a SEM image of silver powder obtained in Example 4. 実施例5において得られた銀核のSEM像である。6 is a SEM image of silver nuclei obtained in Example 5. 実施例5において得られた銀粉のSEM像である。6 is a SEM image of silver powder obtained in Example 5. 実施例6において得られた銀核のSEM像である。7 is a SEM image of silver nuclei obtained in Example 6. 実施例6において得られた銀粉のSEM像である。It is a SEM image of the silver powder obtained in Example 6. 実施例7において得られた銀核のSEM像である。7 is a SEM image of silver nuclei obtained in Example 7. 実施例7において得られた銀粉のSEM像である。7 is a SEM image of silver powder obtained in Example 7. 実施例8において得られた銀核のSEM像である。10 is a SEM image of silver nuclei obtained in Example 8. 実施例8において得られた銀粉のSEM像である。It is a SEM image of the silver powder obtained in Example 8. 実施例9において得られた銀核のSEM像である。10 is a SEM image of silver nuclei obtained in Example 9. 実施例9において得られた銀粉のSEM像である。10 is a SEM image of silver powder obtained in Example 9. 比較例1において得られた銀粉のSEM像である。2 is a SEM image of silver powder obtained in Comparative Example 1. 比較例3において得られた銀核のSEM像である。10 is a SEM image of silver nuclei obtained in Comparative Example 3. 比較例4において得られた銀核のSEM像である。6 is a SEM image of silver nuclei obtained in Comparative Example 4. 比較例4において得られた銀粉のSEM像である。6 is a SEM image of silver powder obtained in Comparative Example 4.

以下、本発明に係る銀粉の製造方法の具体的な実施形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない限りにおいて適宜変更することができる。   Hereinafter, specific embodiments of the method for producing silver powder according to the present invention will be described in detail. Note that the present invention is not limited to the following embodiments, and can be modified as appropriate without departing from the gist of the present invention.

本実施の形態に係る銀粉の製造方法は、銀錯体を含む銀溶液と還元剤溶液とを連続的に混合して反応液とし、その反応液中の銀錯体を還元して銀粒子スラリーを得た後、ろ過、洗浄、乾燥の各工程を経て銀粉を製造する方法であって、還元剤溶液に銀核を含有させることによって、均一で所望とする粒径の銀粉を得ることができる方法である。   In the method for producing silver powder according to the present embodiment, a silver solution containing a silver complex and a reducing agent solution are continuously mixed to form a reaction solution, and the silver complex in the reaction solution is reduced to obtain a silver particle slurry. After that, it is a method for producing silver powder through the steps of filtration, washing, and drying, and by containing silver nuclei in the reducing agent solution, a silver powder having a uniform and desired particle diameter can be obtained. is there.

また、本実施の形態に係る銀粉の製造方法は、核を成長させる粒子成長用銀溶液に含まれる固形粒子を低減することで、該固形粒子から成長する銀粒子の生成を抑制して成長する銀粒子数を制御することが可能であり、その結果、反応液中の銀濃度が高い条件でも、その後の粒子成長を還元剤の標準電極電位により均一で所望の粒径に容易に制御することができる。   In addition, the method for producing silver powder according to the present embodiment reduces the solid particles contained in the particle growth silver solution for growing nuclei, thereby suppressing the generation of silver particles growing from the solid particles and growing. The number of silver particles can be controlled. As a result, even under conditions where the silver concentration in the reaction solution is high, the subsequent particle growth can be easily controlled to a uniform and desired particle size by the standard electrode potential of the reducing agent. Can do.

さらに、本実施の形態に係る銀粉の製造方法は、核を生成させる銀溶液に含まれる固形粒子の含有量を低減することで粒径が小さく、核数の多い銀核溶液を作製でき、その結果、多数の銀核から均一に銀粒子を成長させることができ、特に小粒径の銀粉を得る際に有効である。   Furthermore, the method for producing silver powder according to the present embodiment can produce a silver nucleus solution having a small particle size and a large number of nuclei by reducing the content of solid particles contained in the silver solution for generating nuclei, As a result, silver particles can be uniformly grown from a large number of silver nuclei, and this is particularly effective in obtaining silver powder having a small particle size.

また、強還元剤を含む溶液と銀錯体を含む核生成用銀溶液と分散剤とを混合して得た銀核溶液と、その強還元剤よりも標準電極電位が高い弱還元剤を混合して核含有還元剤溶液とする。そして、この核含有還元剤溶液と銀錯体を含む粒子成長用銀溶液とを混合して還元する。これにより、均一な粒径を有する銀粉を得ることができる。   Also, a silver nucleus solution obtained by mixing a solution containing a strong reducing agent, a silver solution for nucleation containing a silver complex, and a dispersing agent, and a weak reducing agent having a higher standard electrode potential than that of the strong reducing agent are mixed. To make a nucleus-containing reducing agent solution. Then, this nucleus-containing reducing agent solution and a silver solution for particle growth containing a silver complex are mixed and reduced. Thereby, the silver powder which has a uniform particle size can be obtained.

ここで、強還元剤とは、還元力の強い還元剤であることを意味し、弱還元剤とは、その強還元剤より標準電極電位が高い、すなわち還元力の弱い還元剤であることを意味する。   Here, the strong reducing agent means a reducing agent having a strong reducing power, and the weak reducing agent means that the standard electrode potential is higher than that of the strong reducing agent, that is, a reducing agent having a weak reducing power. means.

また、本実施の形態に係る銀粉の製造方法は、銀核を含む銀核溶液と還元剤を混合して得られた核含有還元剤溶液と、銀錯体を含む粒子成長用銀溶液とを、定量的かつ連続的に一定の空間に供給し、これらを混合することで還元反応を生じせしめ、還元反応が終了した還元後液、すなわち銀粒子スラリーを定量的かつ連続的に排出する。このように、定量的かつ連続的に各溶液を供給して還元させることで、還元反応場の銀錯体の濃度と還元剤の濃度が一定に保たれ、一定の粒子成長を図ることができる。そしてこれによって、得られる銀粒子の大きさが揃い、粒度分布がシャープな銀粉を得ることができる。さらに、銀溶液と還元剤溶液の供給と銀粒子スラリーの排出を連続的に行うことで、連続的に銀粉を得ることができ、高い生産性でもって銀粉を製造することができる。   Moreover, the method for producing silver powder according to the present embodiment includes a nucleus-containing reducing agent solution obtained by mixing a silver nucleus solution containing silver nuclei and a reducing agent, and a silver solution for particle growth containing a silver complex. Quantitatively and continuously supplied to a certain space and mixed to cause a reduction reaction, and the reduced solution after completion of the reduction reaction, that is, a silver particle slurry, is quantitatively and continuously discharged. Thus, by supplying each solution quantitatively and continuously and reducing it, the concentration of the silver complex and the concentration of the reducing agent in the reduction reaction field can be kept constant, and constant particle growth can be achieved. As a result, silver powder having a uniform size and a sharp particle size distribution can be obtained. Further, by continuously supplying the silver solution and the reducing agent solution and discharging the silver particle slurry, the silver powder can be continuously obtained, and the silver powder can be produced with high productivity.

また、この銀粉の製造方法では、特に、出発原料である銀化合物として塩化銀を用い、例えば塩化銀をアンモニア水等に溶解して得られた銀アンミン錯体を用いることが好ましい。このように塩化銀を出発原料とすることにより、硝酸銀を出発原料としたときに必要となる亜硝酸ガスの回収装置を必要とせず、環境への影響も少ないプロセスとなり、製造コストを低くすることができる。なお、上述した観点から、核生成用銀溶液と粒子成長用銀溶液のいずれにおいても塩化銀を用いることが好ましい。   In this silver powder production method, it is particularly preferable to use silver chloride as a starting silver compound, for example, a silver ammine complex obtained by dissolving silver chloride in aqueous ammonia or the like. By using silver chloride as a starting material in this way, it is possible to reduce the production cost by eliminating the need for a nitrite gas recovery device that is required when silver nitrate is used as the starting material, and having a low environmental impact. Can do. In view of the above, it is preferable to use silver chloride in both the nucleation silver solution and the particle growth silver solution.

以下、本実施の形態に係る銀粉の製造方法について、より詳細に工程毎に説明する。   Hereinafter, the manufacturing method of the silver powder which concerns on this Embodiment is demonstrated in detail for every process.

本実施の形態に係る銀粉の製造方法は、図1の工程図に示すように、銀核溶液を得る銀核溶液調製工程S1と、銀核溶液調製工程S1により得られた銀核溶液と還元剤を混合して核含有還元剤溶液を得る核含有還元剤溶液調製工程S2と、核含有還元剤溶液調製工程S2により得られた核含有還元剤溶液と銀錯体を含む粒子成長用銀溶液とを混合して、その銀錯体を還元して銀粒子を成長させる粒子成長工程S3とを有する。   As shown in the process diagram of FIG. 1, the silver powder production method according to the present embodiment includes a silver nucleus solution preparation step S1 for obtaining a silver nucleus solution, and a silver nucleus solution and reduction obtained by the silver nucleus solution preparation step S1. A core-containing reducing agent solution preparation step S2 for mixing the agent to obtain a core-containing reducing agent solution, a core-containing reducing agent solution obtained by the core-containing reducing agent solution preparation step S2, and a silver solution for particle growth containing a silver complex; And a particle growth step S3 in which the silver complex is reduced to grow silver particles.

この銀粉の製造方法においては、強還元剤による銀核の生成と弱還元剤による粒子成長を行うこと、またその銀核生成と粒子成長とを分離することが重要である。そして、銀核生成と粒子成長とで、標準電極電位が異なる還元剤を用いることが重要となる。強還元剤と弱還元剤を同時期に銀溶液に添加すると、核生成と粒子成長を十分に分離できないため、銀核からの粒子成長中に新たな核生成が起こり、微粒子が含まれる結果となって、粒径の均一性が十分な銀粒子が得られない。それに対して、強還元剤による均一な粒径を有する核を生成させた後、弱還元剤を添加して還元剤溶液とし、その還元剤溶液と銀溶液とを混合して粒子成長を行わせることで、均一な粒径の銀粒子を得ることができる。   In this silver powder production method, it is important to generate silver nuclei with a strong reducing agent and to perform particle growth with a weak reducing agent, and to separate the silver nucleation from the particle growth. It is important to use reducing agents having different standard electrode potentials for silver nucleation and grain growth. If a strong reducing agent and a weak reducing agent are added to the silver solution at the same time, nucleation and particle growth cannot be sufficiently separated, resulting in new nucleation during particle growth from silver nuclei and the inclusion of fine particles. As a result, silver particles having sufficient uniformity in particle size cannot be obtained. On the other hand, after generating nuclei having a uniform particle size with a strong reducing agent, a weak reducing agent is added to form a reducing agent solution, and the reducing agent solution and the silver solution are mixed to cause particle growth. Thus, silver particles having a uniform particle diameter can be obtained.

[銀核溶液調製工程]
銀核溶液調製工程S1では、粒子成長の核となる銀核の溶液を生成させる。具体的には、この銀核溶液調製工程S1では、分散剤と強還元剤を含む溶液とを混合して得た強還元剤と分散剤を含む溶液に、銀錯体を含む核生成用銀溶液を添加して還元させることにより銀核溶液を得る。また、予め、銀錯体を含む核生成用銀溶液と分散剤を混合した後、強還元剤を含む溶液を添加して還元させてもよい。分散剤は、銀核生成時に溶液中に存在していればよく、核生成用銀溶液もしくは強還元剤を含む溶液の少なくとも一方と混合されていればよく、核生成用銀溶液と強還元剤を含む溶液の混合時に分散剤を混合してもよい。
[Silver core solution preparation process]
In the silver nucleus solution preparation step S1, a solution of silver nuclei that becomes the nucleus of particle growth is generated. Specifically, in this silver nucleus solution preparation step S1, a nucleation silver solution containing a silver complex in a solution containing a strong reducing agent and a dispersing agent obtained by mixing a dispersing agent and a solution containing a strong reducing agent. To obtain a silver nucleus solution. Moreover, after mixing the silver solution for nucleation containing a silver complex and a dispersing agent beforehand, you may reduce by adding the solution containing a strong reducing agent. The dispersing agent only needs to be present in the solution at the time of silver nucleation, and may be mixed with at least one of a nucleation silver solution or a solution containing a strong reducing agent. You may mix a dispersing agent at the time of mixing of the solution containing this.

強還元剤としては、上述のように還元力の強い還元剤であり、標準電極電位が0.056V以下の還元剤であることが好ましく、具体的には、ヒドラジン(−1.15V)やホルマリン(0.056V)等を好ましく用いることができる。その中でも、特に還元力が強いヒドラジンおよびその水和物を用いることが好ましく、ヒドラジン一水和物を用いることがより好ましい。このように、標準電極電位が0.056V以下の還元力が強い還元剤を用いることで、核として好適な微細で均一な銀微粒子を得ることができる。標準電極電位が0.056Vを越える還元力が弱い還元剤を用いると、還元速度が遅くなるため、核生成とともに粒子成長も同時に進行してしまうことがあり、均一な粒径の核が得られないとともに粒径が大きくなり、核として好ましい銀微粒子が得られない。   As described above, the strong reducing agent is a reducing agent having a strong reducing power, and is preferably a reducing agent having a standard electrode potential of 0.056 V or less, and specifically, hydrazine (−1.15 V) or formalin. (0.056V) etc. can be used preferably. Among these, it is preferable to use hydrazine and its hydrate having particularly strong reducing power, and it is more preferable to use hydrazine monohydrate. Thus, by using a reducing agent having a standard electrode potential of 0.056 V or less and a strong reducing power, fine and uniform silver fine particles suitable as a nucleus can be obtained. When a reducing agent with a weak reducing power exceeding the standard electrode potential of 0.056 V is used, the reduction rate is slowed down, so that particle growth may proceed simultaneously with nucleation, and nuclei with a uniform particle size can be obtained. In addition, the particle size becomes large and silver fine particles preferable as nuclei cannot be obtained.

また、強還元剤の混合量は、核生成用銀溶液中の銀量に対して1.0当量以上、4.0当量未満とすることが好ましく、2.0当量以上、4.0当量未満とすることがより好ましい。強還元剤の混合量をこのような範囲とすることで、銀核溶液中に均一で沈殿しない銀核を形成することができる。そして、後述するように、その銀核溶液に弱還元剤を混合して得られた還元剤溶液と、ろ過した粒子成長用銀溶液とを混合することで、均一な粒径を有する銀粉を得ることができる。また、より好ましく強還元剤を核生成用銀溶液中の銀量に対して2.0当量以上、4.0当量未満の範囲で混合することによって、微細で、より粒径の均一性が高い銀核を得ることができる。   Further, the mixing amount of the strong reducing agent is preferably 1.0 equivalent or more and less than 4.0 equivalent with respect to the silver amount in the nucleation silver solution, and is 2.0 equivalents or more and less than 4.0 equivalents. More preferably. By setting the mixing amount of the strong reducing agent in such a range, silver nuclei that are uniform and do not precipitate in the silver nuclei solution can be formed. Then, as will be described later, a silver powder having a uniform particle size is obtained by mixing a reducing agent solution obtained by mixing a weak reducing agent with the silver nucleus solution and a filtered silver solution for particle growth. be able to. Further, it is more preferable that the strong reducing agent is mixed in a range of 2.0 equivalents or more and less than 4.0 equivalents with respect to the amount of silver in the nucleation silver solution, so that finer and more uniform particle size is obtained. Silver nuclei can be obtained.

強還元剤の混合量を核生成用銀溶液中の銀量に対して1.0当量未満とした場合、銀核粒子が連結して沈殿し易くなるため、粒子成長時の核数が一定にならず、粒径制御が十分に行えないことがある。また、粒径が不均一な銀核となることにより粒子成長時の成長が不均一となり、均一な粒径を有する銀粉が得られないことがある。一方、強還元剤の混合量を4.0当量以上とした場合、銀核溶液中に粗大粒子が生成することがあるため好ましくない。   When the mixing amount of the strong reducing agent is less than 1.0 equivalent with respect to the silver amount in the silver solution for nucleation, the silver nuclei particles are liable to be connected and precipitate, so the number of nuclei during particle growth is constant. In other words, the particle size may not be sufficiently controlled. In addition, silver nuclei having non-uniform particle sizes may cause non-uniform growth during particle growth, and silver powder having a uniform particle size may not be obtained. On the other hand, when the mixing amount of the strong reducing agent is 4.0 equivalents or more, coarse particles may be generated in the silver nucleus solution, which is not preferable.

分散剤としては、ポリビニルアルコール、ポリビニルピロリドン、変性シリコンオイル系界面活性剤、ポリエーテル系界面活性剤から選択される少なくとも1種であることが好ましい。分散剤を使用しないと、還元反応により発生した銀核や核が成長した銀粒子が凝集を起こし、分散性が悪いものとなってしまう。   The dispersant is preferably at least one selected from polyvinyl alcohol, polyvinyl pyrrolidone, modified silicone oil surfactants, and polyether surfactants. If a dispersant is not used, silver nuclei generated by the reduction reaction and silver particles with grown nuclei are aggregated, resulting in poor dispersibility.

また、分散剤の混合量としては、後述する核含有還元剤溶液と粒子成長用銀溶液の混合後における粒子成長用銀溶液中の銀量、すなわち、反応液中の銀量から核含有還元剤溶液中の銀量を差し引いた粒子成長に用いられる銀量に対して1質量%〜30質量%とすることが好ましく、1.5質量%〜20質量%とすることがより好ましい。混合量が1質量%未満であると、凝集抑制効果が十分に得られず、一方で、混合量が30質量%を超えても、それ以上の凝集抑制効果の向上がなく、排水処理等の負荷が増加するのみとなる。なお、核生成用銀溶液中の銀量は、粒子成長用銀溶液中の銀量と比べて少量であるため、上述した添加量の分散剤を予め核生成用銀溶液中に添加することにより、核生成時にも十分な凝集防止効果を得ることができる。   Further, the mixing amount of the dispersing agent is the amount of silver in the particle growth silver solution after mixing the nucleus-containing reducing agent solution and the particle growth silver solution, which will be described later, that is, the amount of silver in the reaction solution to the nucleus-containing reducing agent. It is preferable to set it as 1 mass%-30 mass% with respect to the silver amount used for the particle growth which deducted the silver amount in a solution, and it is more preferable to set it as 1.5 mass%-20 mass%. If the mixing amount is less than 1% by mass, a sufficient aggregation suppressing effect cannot be obtained. On the other hand, even if the mixing amount exceeds 30% by mass, there is no further improvement in the aggregation suppressing effect, such as wastewater treatment. The load will only increase. The amount of silver in the nucleation silver solution is small compared to the amount of silver in the particle growth silver solution. Therefore, by adding the above-described amount of dispersant to the nucleation silver solution in advance. In addition, a sufficient aggregation preventing effect can be obtained even during nucleation.

また、分散剤としてポリビニルアルコールやポリビニルピロリドンを用いた場合、還元反応時に発泡する場合があるため、例えば後述する銀溶液に消泡剤を添加してもよい。   Further, when polyvinyl alcohol or polyvinyl pyrrolidone is used as the dispersant, foaming may occur during the reduction reaction, and thus, for example, an antifoaming agent may be added to the silver solution described later.

核生成用銀溶液は、銀化合物を錯化剤により溶解して得られた銀錯体を含む溶液であり、上述した強還元剤と分散剤を混合して還元させることによって銀核を生成させるための溶液である。   The nucleation silver solution is a solution containing a silver complex obtained by dissolving a silver compound with a complexing agent, and generates a silver nucleus by mixing and reducing the above-described strong reducing agent and dispersing agent. Solution.

ここで、固形粒子の含有量が銀核溶液中の銀量に対して20質量ppm以下である核生成用銀溶液を用いることが好ましい。核生成用銀溶液中の固形粒子の含有量を抑制することで、核生成が強還元剤による自発核発生により行われるため、生成される銀核の数を制御することが可能となり、得られる銀粒子を所望の粒径に容易に制御することが可能となる。固形粒子の含有量が銀核溶液中の銀量に対して20質量ppmを超えると、銀核溶液調製工程S1において、固形粒子が核として作用するため、核数を制御することが容易でなく、核の粒径を容易に制御することができない。このため、核添加により銀粉の粒径均一性は向上するものの、銀粉の粒径を制御することが容易ではないという問題が生じる。   Here, it is preferable to use a silver solution for nucleation in which the content of solid particles is 20 ppm by mass or less with respect to the amount of silver in the silver nucleus solution. By suppressing the content of solid particles in the nucleation silver solution, nucleation is performed by spontaneous nucleation by a strong reducing agent, so that the number of silver nuclei produced can be controlled and obtained. It becomes possible to easily control the silver particles to a desired particle size. If the content of the solid particles exceeds 20 mass ppm with respect to the silver content in the silver nucleus solution, the solid particles act as nuclei in the silver nucleus solution preparation step S1, and therefore it is not easy to control the number of nuclei. The particle size of the nucleus cannot be easily controlled. For this reason, although the particle size uniformity of silver powder is improved by the addition of nuclei, there arises a problem that it is not easy to control the particle size of silver powder.

さらに、固形粒子の含有量が銀核溶液中の銀量に対して20質量ppmを超えると、自発核の発生が抑制され、微細で多数の核を生成させることができないため、核数が少ない状態となり、特に、小粒径の銀粉、具体的には走査電池顕微鏡観察により測定される一次粒子の平均粒径が0.5μm以下の銀粉を容易に作製することが困難となる。   Furthermore, if the content of solid particles exceeds 20 mass ppm with respect to the amount of silver in the silver nucleus solution, the generation of spontaneous nuclei is suppressed, and a large number of nuclei cannot be generated, so the number of nuclei is small. In particular, it becomes difficult to easily produce a silver powder having a small particle diameter, specifically, a silver powder having an average primary particle diameter of 0.5 μm or less as measured by observation with a scanning battery microscope.

したがって、核生成用銀溶液に含まれる固形粒子の含有量を銀量に対して20質量ppm以下とすることによって、銀核溶液調整工程S1で発生する核の数と粒径を制御することが可能となり、得られる銀粉の粒径の制御が容易となる。   Therefore, by controlling the content of solid particles contained in the nucleation silver solution to 20 mass ppm or less with respect to the silver amount, the number and particle size of nuclei generated in the silver nucleus solution adjustment step S1 can be controlled. It becomes possible and control of the particle diameter of the silver powder obtained becomes easy.

さらに、核生成用銀溶液に含まれる固形粒子の含有量を銀量に対して20質量ppm以下とすることによって、微細で多数の核を生成させることができ、小粒径の銀粉においても容易に粒径を制御することが可能となる。固形粒子の含有量は、粒子成長用銀溶液を分画分子量が10,000以下の限外ろ過器でろ過した後、限外ろ過で捕集された固形粒子を硝酸によって溶解し、分析することによって求めることができる。   Furthermore, by making the content of solid particles contained in the silver solution for nucleation 20 ppm by mass or less with respect to the amount of silver, it is possible to generate a large number of fine nuclei, and it is easy even for silver powder having a small particle size. It is possible to control the particle size. The solid particle content is analyzed by dissolving the silver solution for particle growth with an ultrafilter having a molecular weight cut-off of 10,000 or less, and then dissolving the solid particles collected by ultrafiltration with nitric acid. Can be obtained.

核生成用銀溶液は、固形粒子の含有量が銀溶液中の銀量に対して20質量ppm以下であればよいが、分散剤と強還元剤を含む溶液との混合前に、核生成用銀溶液を限外ろ過することが好ましい。これによって、核生成用銀溶液に含有される固形粒子を低減することができる。   The nucleation silver solution may have a solid particle content of 20 mass ppm or less based on the amount of silver in the silver solution, but before mixing with a solution containing a dispersant and a strong reducing agent, It is preferred to ultrafilter the silver solution. Thereby, the solid particles contained in the nucleation silver solution can be reduced.

銀溶液に含まれる不純物の粒径によって、ろ過精度を変える必要があるが、例えば分画分子量が150,000の限外ろ過を行った場合、10nm以上の不純物粒子を除去することができる。通常、10nm未満の固形粒子は含有量が少ないため、10nm以上の固形粒子を除去することによって、その含有量を銀溶液中の銀量に対して20質量ppm以下とすることができる。固形粒子の除去が不十分である場合には、さらに分画分子量の限外ろ過を行えばよいが、分画分子量が10,000以下のものを使用した場合、ろ過面積が狭くなり、ろ過速度の低下が顕著になるため、好ましくない。   Although it is necessary to change the filtration accuracy depending on the particle size of impurities contained in the silver solution, for example, when ultrafiltration with a molecular weight cut off of 150,000 is performed, impurity particles of 10 nm or more can be removed. Usually, since the content of solid particles of less than 10 nm is small, the content can be reduced to 20 mass ppm or less with respect to the amount of silver in the silver solution by removing solid particles of 10 nm or more. If the removal of the solid particles is insufficient, ultrafiltration of the molecular weight cut off may be further performed. However, when the molecular weight cut off is 10,000 or less, the filtration area becomes narrow and the filtration rate is reduced. Is not preferable because the decrease in the resistance becomes remarkable.

なお、ここでいう固形粒子には、銀溶液中に含まれる不純物粒子以外に、銀溶液中に固形で残存する粒子、特に粒径10nm以上の粒子の全てが該当する。   The solid particles referred to here include all particles remaining in solid form in the silver solution, particularly particles having a particle diameter of 10 nm or more, in addition to the impurity particles contained in the silver solution.

銀化合物としては、上述のように塩化銀を用いることが好ましい。塩化銀を用いることにより、硝酸銀を出発原料としたときのようなガス回収や環境影響の問題も少ない。このような塩化銀としては、高純度塩化銀が工業用に安定的に製造されている。この塩化銀を、例えばアンモニア水に溶解することによって銀溶液を得ることができる。塩化銀を溶解するアンモニア水は、工業的に用いられる通常のものでよいが、不純物混入を防止するため可能な限り高純度のものが好ましい。   As the silver compound, silver chloride is preferably used as described above. By using silver chloride, there are few problems of gas recovery and environmental impact as when silver nitrate is used as a starting material. As such silver chloride, high-purity silver chloride is stably produced for industrial use. A silver solution can be obtained by dissolving this silver chloride in, for example, aqueous ammonia. Ammonia water that dissolves silver chloride may be a normal one that is used industrially, but is preferably as highly pure as possible in order to prevent contamination with impurities.

核生成用銀溶液中の銀量に対するアンモニア量は、銀とアンモニアのモル比で20〜100とすることが好ましい。銀量に対するアンモニア量がモル比で20未満の場合、塩化銀を用いた場合には塩化銀がアンモニア水に溶解しにくいため、塩化銀の溶解残渣が発生して不均一な核として作用し、得られる銀粒子の粒径が不均一になることがある。一方、銀量に対するアンモニア量がモル比で100を越える場合、核生成反応速度が遅くなり、還元終了までに長時間を要するため、好ましくない。   The ammonia amount relative to the silver amount in the nucleation silver solution is preferably 20 to 100 in terms of a molar ratio of silver and ammonia. When the amount of ammonia with respect to the amount of silver is less than 20 in terms of molar ratio, when using silver chloride, silver chloride is difficult to dissolve in aqueous ammonia, so that a silver chloride dissolution residue is generated and acts as a non-uniform nucleus, The particle size of the resulting silver particles may be non-uniform. On the other hand, when the ammonia amount relative to the silver amount exceeds 100, the nucleation reaction rate is slow, and it takes a long time to complete the reduction, which is not preferable.

核生成用銀溶液中の銀濃度としては、0.1g/L〜6.0g/Lとすることが好ましい。銀濃度が0.1g/L未満では、後述する粒子成長用銀溶液中の銀量に対して十分な核が生成しないため、銀粉の粒径が大きくなり過ぎることがある。一方で、銀濃度が6.0g/Lを越えると、核生成とともに粒子が成長して均一な粒径の銀核が得られない。核の成長を抑制してより微細で均一な粒径の銀核が分散した銀核溶液を得たい場合、銀濃度を1.0g/L以下とすることがより好ましい。これらのことから、核生成用銀溶液中の銀濃度を好ましくは0.1g/L〜6.0g/L、より好ましくは0.1g/L〜1.0g/Lの範囲とすることによって、その銀量あたりに生成される核を微細で均一な粒径とするとともにその数をほぼ一定とすることができる。そして、これにより、核生成用銀溶液中の銀量と後述する粒子成長用銀溶液中の銀量との比により、生成する銀粒子の粒径を制御することができる。詳細は後述する。   The silver concentration in the nucleation silver solution is preferably 0.1 g / L to 6.0 g / L. When the silver concentration is less than 0.1 g / L, sufficient nuclei are not generated with respect to the amount of silver in the later-described particle growth silver solution, and the particle size of the silver powder may become too large. On the other hand, if the silver concentration exceeds 6.0 g / L, the grains grow with nucleation, and silver nuclei having a uniform particle diameter cannot be obtained. When it is desired to suppress the growth of nuclei and obtain a silver nucleus solution in which silver nuclei having a finer and uniform particle size are dispersed, the silver concentration is more preferably 1.0 g / L or less. From these, by making the silver concentration in the silver solution for nucleation preferably 0.1 g / L to 6.0 g / L, more preferably 0.1 g / L to 1.0 g / L, The nuclei generated per silver amount can be made fine and uniform in particle size, and the number thereof can be made almost constant. And thereby, the particle size of the silver particle to produce | generate can be controlled by the ratio of the silver amount in the silver solution for nucleation, and the silver amount in the silver solution for particle growth mentioned later. Details will be described later.

このように、銀核溶液調製工程S1においては、上述した強還元剤を含む溶液と分散剤と核生成用銀溶液とを混合することにより、強還元剤によって銀溶液中の銀錯体を還元し、後述する粒子成長工程S3における銀粒子の成長の核となる銀粒子を生成させる。   Thus, in silver nucleus solution preparation process S1, the silver complex in a silver solution is reduced with a strong reducing agent by mixing the solution containing a strong reducing agent mentioned above, a dispersing agent, and the silver solution for nucleation. Then, silver particles serving as a nucleus of silver particle growth in a particle growth step S3 described later are generated.

なお、還元反応においては、反応の均一性あるいは反応速度を制御するために、上述した強還元剤を純水等で希釈して水溶液として用いることができる。   In the reduction reaction, the above-described strong reducing agent can be diluted with pure water or the like and used as an aqueous solution in order to control the uniformity or reaction rate of the reaction.

[核含有還元剤溶液調製工程]
核含有還元剤溶液調製工程S2では、銀核溶液調製工程S1にて調製した銀核溶液と還元剤とを混合して、核を含有した核含有還元剤溶液を得る。この核を含有した還元剤溶液が、後述する粒子成長工程S3における還元反応における還元剤として作用する。
[Nuclear-containing reducing agent solution preparation process]
In the nucleus-containing reducing agent solution preparation step S2, the silver nucleus solution prepared in the silver nucleus solution preparation step S1 and the reducing agent are mixed to obtain a nucleus-containing reducing agent solution containing the nucleus. The reducing agent solution containing the nucleus acts as a reducing agent in a reduction reaction in a particle growth step S3 described later.

核含有還元剤溶液調製工程S2において銀核溶液と混合する還元剤は、上述した銀核溶液調製工程S1にて添加した強還元剤よりも標準電極電位が高く、還元力の弱い弱還元剤である。具体的に、添加する弱還元剤としては、0.056Vを越える還元剤であることが好ましく、特にアスコルビン酸(0.058V)を用いることが好ましい。このアスコルビン酸は、還元作用が緩やかであり、核からの粒子成長が均一に進行するため特に好ましい。   The reducing agent mixed with the silver nucleus solution in the nucleus-containing reducing agent solution preparation step S2 is a weak reducing agent having a higher standard electrode potential and a weak reducing power than the strong reducing agent added in the above-described silver nucleus solution preparation step S1. is there. Specifically, the weak reducing agent to be added is preferably a reducing agent exceeding 0.056 V, particularly preferably ascorbic acid (0.058 V). This ascorbic acid is particularly preferable because of its slow reducing action and the uniform growth of particles from the nucleus.

また、強還元剤と弱還元剤の標準電極電位の差は、1.0V以上であることがより好ましい。標準電極電位の差が小さいと、後述する粒子成長用銀溶液との混合時に、新たな核が生成して微粒子の混在や粒径の不均一性が生じることがある。これに対し、標準電極電位の差が1.0V以上である強還元剤と弱還元剤とを組合せることで、粒子成長期における核生成を抑制することができ、均一な粒径の銀粒子を得ることができる。   The difference in standard electrode potential between the strong reducing agent and the weak reducing agent is more preferably 1.0 V or more. If the difference in standard electrode potential is small, new nuclei may be generated during mixing with the particle growth silver solution described later, resulting in mixing of fine particles and non-uniform particle size. On the other hand, by combining a strong reducing agent having a standard electrode potential difference of 1.0 V or more and a weak reducing agent, nucleation during the grain growth phase can be suppressed, and silver particles having a uniform particle size can be obtained. Can be obtained.

また、弱還元剤の添加量としては、後述する粒子成長工程S3において粒子成長に用いられる粒子成長用銀溶液中の銀量に対して1当量〜3当量とすることが好ましい。添加量が粒子成長用銀溶液中の銀量に対して1当量未満の場合、未還元の銀が残留するため好ましくない。一方、添加量が3当量より多い場合には、コストが高くなるため好ましくない。   Moreover, it is preferable to set it as 1 equivalent-3 equivalent with respect to the silver amount in the silver solution for particle growth used for particle growth in the particle growth process S3 mentioned later as addition amount of a weak reducing agent. When the addition amount is less than 1 equivalent with respect to the silver amount in the silver solution for grain growth, unreduced silver remains, which is not preferable. On the other hand, when the addition amount is more than 3 equivalents, the cost increases, which is not preferable.

なお、後述する粒子成長工程S3での還元反応において、反応を均一にし、あるいは反応速度を制御するために、上述した還元剤溶液を純水等で希釈することができる。   In the reduction reaction in the particle growth step S3 to be described later, the above-described reducing agent solution can be diluted with pure water or the like in order to make the reaction uniform or control the reaction rate.

[粒子成長工程]
粒子成長工程S3では、核含有還元剤調製工程S2にて得られた核含有還元剤溶液と固形粒子の含有量が銀量に対して20質量ppm以下であり、銀錯体を含む粒子成長用銀溶液とを混合してその銀錯体を還元することによって、銀粒子を成長させて銀粒子スラリーを得る。
[Particle growth process]
In the particle growth step S3, the content of the nucleus-containing reducing agent solution and the solid particles obtained in the nucleus-containing reducing agent preparation step S2 is 20 mass ppm or less with respect to the amount of silver, and silver for particle growth containing a silver complex A silver particle slurry is obtained by growing silver particles by mixing the solution and reducing the silver complex.

粒子成長用銀溶液は、上述した核生成用銀溶液と同様に銀化合物を錯化剤により溶解して得られた銀錯体を含む溶液をろ過した溶液である。この粒子成長用銀溶液は、調製した核含有還元剤溶液と混合させることによって銀溶液中の銀錯体を還元させ、還元剤溶液中の核に基づいて粒子を成長させて銀粒子スラリーを生成させるための溶液である。   The silver solution for particle growth is a solution obtained by filtering a solution containing a silver complex obtained by dissolving a silver compound with a complexing agent in the same manner as the nucleation silver solution described above. This silver solution for particle growth is mixed with the prepared nucleus-containing reducing agent solution to reduce the silver complex in the silver solution, and the particles are grown based on the nucleus in the reducing agent solution to form a silver particle slurry. For the solution.

ここで、固形粒子の含有量が銀溶液中の銀量に対して20質量ppm以下である粒子成長用銀溶液を用いること重要である。粒子成長用銀溶液に固形粒子が含まれると、後の粒子成長工程S3において、固形粒子が核として作用するため、見かけ上、核が増えた状態となるため、所望の値に粒径を制御することが困難となる。したがって、粒子成長用銀溶液に含まれる固形粒子の含有量を銀量に対して20質量ppm以下とすることによって、粒子成長工程S3で成長する核数を制御することができ、得られる銀粉の粒径を所望の値に安定して制御することができる。固形粒子の含有量は、粒子成長用銀溶液を粒径10nm以上の粒子が捕集可能な分画分子量を有する限外ろ過器、例えば分画分子量が150,000以下、好ましくは100,000以下、より好ましくは10,000以下の限外ろ過器でろ過した後、限外ろ過で捕集された固形粒子を硝酸によって溶解し、分析することによって求めることができる。   Here, it is important to use a silver solution for particle growth in which the content of solid particles is 20 mass ppm or less with respect to the amount of silver in the silver solution. When solid particles are included in the silver solution for particle growth, the solid particles act as nuclei in the subsequent particle growth step S3, so that the number of nuclei is apparently increased, so the particle size is controlled to a desired value. Difficult to do. Therefore, the number of nuclei grown in the particle growth step S3 can be controlled by setting the content of solid particles contained in the silver solution for particle growth to 20 mass ppm or less with respect to the silver amount. The particle size can be stably controlled to a desired value. The content of solid particles is an ultrafilter having a fractional molecular weight capable of collecting particles having a particle size of 10 nm or more, such as a fractional molecular weight of 150,000 or less, preferably 100,000 or less. More preferably, after filtration with an ultrafilter of 10,000 or less, the solid particles collected by ultrafiltration are dissolved with nitric acid and analyzed.

粒子成長用銀溶液は、固形粒子の含有量が銀溶液中の銀量に対して20質量ppm以下であればよいが、核含有還元剤溶液との混合前に、粒子成長用銀溶液を限外ろ過することが好ましい。これによって、粒子成長用銀溶液に含有される固形粒子を低減することができる。銀溶液に含まれる不純物の粒径によって、ろ過精度を変える必要があるが、例えば分画分子量が150,000の限外ろ過を行った場合、粒径10nm以上の不純物粒子を除去することができる。通常、粒径10nm未満の固形粒子は含有量が微量であり、粒径制御に対する影響が少ないため、10nm以上の固形粒子を除去することによって、その含有量を銀溶液中の銀量に対して20質量ppm以下とすることができる。固形粒子の除去が不十分である場合には、さらに小さい分画分子量の限外ろ過を行えばよいが、分画分子量が10,000以下のものを使用した場合、ろ過面積が狭くなってろ過速度の低下しやすく、分析のような少量の処理とは異なり、工業的規模での生産では生産性が低下するため、好ましくない。   The particle growth silver solution may be a solid particle content of 20 ppm by mass or less based on the amount of silver in the silver solution. However, before mixing with the core-containing reducing agent solution, the particle growth silver solution is limited. It is preferable to perform external filtration. Thereby, the solid particles contained in the silver solution for particle growth can be reduced. Although it is necessary to change the filtration accuracy depending on the particle size of impurities contained in the silver solution, for example, when ultrafiltration with a molecular weight cut off of 150,000 is performed, impurity particles having a particle size of 10 nm or more can be removed. . Usually, the solid particles having a particle size of less than 10 nm have a small amount and have little influence on the particle size control. Therefore, by removing the solid particles having a particle size of 10 nm or more, the content is reduced with respect to the silver amount in the silver solution. It can be 20 mass ppm or less. If the removal of the solid particles is insufficient, ultrafiltration with a smaller molecular weight cut off may be performed. However, when a material with a molecular weight cut-off of 10,000 or less is used, the filtration area becomes narrower and filtration is performed. The speed is likely to decrease, and unlike a small amount of processing such as analysis, production on an industrial scale is unfavorable because productivity decreases.

なお、固形粒子には、粒子成長用銀溶液中に含まれる不純物粒子以外に、未溶解の硫化銀等も含まれる。すなわち、ここでいう固形粒子には、粒子成長用銀溶液中に固形で残存する粒子、特に粒径10nm以上の粒子の全てが該当する。   The solid particles include undissolved silver sulfide and the like in addition to the impurity particles contained in the silver solution for particle growth. That is, the solid particles referred to here include all particles remaining in solid form in the silver solution for particle growth, particularly particles having a particle size of 10 nm or more.

粒子成長用銀溶液中の銀化合物としては、上述のように、硝酸銀を用いたときのようなガス回収や環境影響の問題が少ないという観点から塩化銀を用いることが好ましい。また、詳細な理由は不明であるが、塩化銀を用いることによって、核を用いた製造方法との組合せにより、高い生産性と粒径均一性の両立が可能となる。この塩化銀を、例えばアンモニア水に溶解することによって銀溶液を得ることができる。塩化銀を溶解するアンモニア水は、工業的に用いられる通常のものでよいが、不純物混入を防止するため可能な限り高純度のものが好ましい。   As the silver compound in the silver solution for grain growth, it is preferable to use silver chloride from the viewpoint that there are few problems of gas recovery and environmental influence as in the case of using silver nitrate. Moreover, although a detailed reason is unknown, by using silver chloride, it becomes possible to achieve both high productivity and particle size uniformity by combination with a production method using a nucleus. A silver solution can be obtained by dissolving this silver chloride in, for example, aqueous ammonia. Ammonia water that dissolves silver chloride may be a normal one that is used industrially, but is preferably as highly pure as possible in order to prevent contamination with impurities.

粒子成長用銀溶液中の銀濃度としては、20g/L〜90g/Lとすることが好ましい。銀濃度が低濃度であっても粒子の成長が生じて銀粒子を得ることはできるが、20g/L未満では、排水量が増大して高コストになるとともに、高い生産性でもって銀粉を製造することができない。一方で、銀濃度が90g/Lを越えると、アンモニア水に対する塩化銀の溶解度に近くなり、塩化銀が再析出する可能性があるため、好ましくない。本発明の製造方法においては、上記銀濃度の範囲での核による粒子成長の制御が可能であり、小粒径の銀粉を作製することが可能である。粒子成長の速度を均一化してより均一な粒径の銀粒子を得るためには、銀濃度を50g/L以下とすることがより好ましい。   The silver concentration in the silver solution for grain growth is preferably 20 g / L to 90 g / L. Even if the silver concentration is low, particle growth can occur and silver particles can be obtained. However, if it is less than 20 g / L, the amount of waste water increases and the cost increases, and silver powder is produced with high productivity. I can't. On the other hand, if the silver concentration exceeds 90 g / L, it is close to the solubility of silver chloride in aqueous ammonia, and silver chloride may be reprecipitated. In the production method of the present invention, it is possible to control the particle growth by the nuclei within the above silver concentration range, and it is possible to produce a silver powder having a small particle size. In order to obtain silver particles having a more uniform particle size by uniformizing the rate of particle growth, the silver concentration is more preferably 50 g / L or less.

本実施の形態に係る銀粉の製造方法においては、混合される核含有還元剤溶液中の銀量、すなわち、核生成用銀溶液中の銀量と粒子成長用銀溶液中の銀量との比により、得られる銀粉の粒径を制御することが可能であり、容易に所望とする粒径を有する銀粉を得ることができる。すなわち、核生成用銀溶液中の銀濃度を上述した範囲とすることにより、その銀量あたりに生成される核の数をほぼ一定とすることができるため、核含有還元剤溶液中の銀量、すなわち、銀核数と粒子成長用銀溶液中の銀量との比によって、銀粉の粒径を制御することが可能となる。また、この銀粉の製造方法においては、核の生成と粒子の成長とが分離されているため、反応液中の核の数を制御できる範囲が広くなり、容易に広範囲の粒径制御が可能となり、高い銀濃度で高い生産性でもって銀粉を得ることができる。具体的に、走査型電子顕微鏡観察による平均粒径が0.3μm〜2.0μmの銀粉を得るためには、粒子成長用銀溶液中の銀量は、核生成用銀溶液中の銀量中の銀量に対して50〜1500倍とすることが好ましく、50〜500倍とすることがより好ましい。核生成用銀溶液中の銀量と銀核の粒径から銀核数を算出し、得ようとする粒径まで成長させるために必要な銀量を求めることにより、粒子成長用銀溶液中の銀量を算出することがより好ましい。   In the method for producing silver powder according to the present embodiment, the amount of silver in the mixed core-containing reducing agent solution, that is, the ratio between the amount of silver in the nucleation silver solution and the amount of silver in the silver solution for particle growth. Thus, it is possible to control the particle diameter of the obtained silver powder, and it is possible to easily obtain a silver powder having a desired particle diameter. That is, by setting the silver concentration in the nucleation silver solution in the above-described range, the number of nuclei generated per silver amount can be made almost constant, so the amount of silver in the nucleation-containing reducing agent solution That is, the particle size of the silver powder can be controlled by the ratio between the number of silver nuclei and the amount of silver in the silver solution for particle growth. Moreover, in this silver powder production method, since the generation of nuclei and the growth of particles are separated, the range in which the number of nuclei in the reaction solution can be controlled is widened, and a wide range of particle size control can be easily performed. Silver powder can be obtained with high silver concentration and high productivity. Specifically, in order to obtain silver powder having an average particle diameter of 0.3 μm to 2.0 μm by observation with a scanning electron microscope, the amount of silver in the silver solution for particle growth is the amount of silver in the silver solution for nucleation The amount of silver is preferably 50 to 1500 times, more preferably 50 to 500 times. Calculate the number of silver nuclei from the amount of silver in the nucleation silver solution and the particle size of the silver nuclei, and obtain the amount of silver necessary to grow to the desired particle size. It is more preferable to calculate the amount of silver.

ここで、粒子成長工程S3においては、上述のように核含有還元剤溶液とろ過した銀錯体を含む粒子成長用銀溶液とを定量的かつ連続的に供給して混合することによって反応液とし、その反応液中で銀錯体を還元して銀粒子を成長させるようにする。このように、各溶液を定量的かつ連続的に供給して混合させることで、還元反応場の銀錯体の濃度と還元剤の濃度が一定に保たれ、一定の粒子成長を図ることができ、また高い生産性でもって銀粉を製造することができる。なお、以下の説明では、粒子成長用銀溶液を単に銀溶液といい、核含有還元剤溶液を単に還元剤溶液という場合がある。   Here, in the particle growth step S3, as described above, a reaction solution is prepared by quantitatively and continuously supplying and mixing the nucleus-containing reducing agent solution and the silver solution for particle growth containing the filtered silver complex, In the reaction solution, the silver complex is reduced to grow silver particles. Thus, by supplying and mixing each solution quantitatively and continuously, the concentration of the silver complex and the concentration of the reducing agent in the reduction reaction field can be kept constant, and constant particle growth can be achieved. Moreover, silver powder can be manufactured with high productivity. In the following description, the particle growth silver solution may be simply referred to as a silver solution, and the nucleus-containing reducing agent solution may be simply referred to as a reducing agent solution.

核含有還元剤溶液と粒子成長用銀溶液とを連続的に供給して混合し銀錯体を還元するための反応管としては、粒子成長用銀溶液を供給する第1の供給管(銀溶液供給管)と、核含有還元剤溶液を供給する第2の供給管(還元剤溶液供給管)と、銀溶液と還元剤溶液とを混合する混合管とからなるものを用いることができる。このように、核含有還元剤溶液と粒子成長用銀溶液の各溶液を個別に反応管に供給し、混合管内で混合させて還元反応を生じさせる。具体的には、例えばY字管がその代表例として挙げられる。また、反応管においては、混合管内部であって各供給管から供給された溶液が合流した直後の位置からスタティックミキサーを配置させることができる。   As a reaction tube for continuously supplying and mixing the core-containing reducing agent solution and the particle growth silver solution to reduce the silver complex, a first supply tube for supplying the particle growth silver solution (silver solution supply) Tube), a second supply tube (reducing agent solution supply tube) for supplying the core-containing reducing agent solution, and a mixing tube for mixing the silver solution and the reducing agent solution can be used. In this way, each solution of the nucleus-containing reducing agent solution and the particle growth silver solution is individually supplied to the reaction tube and mixed in the mixing tube to cause a reduction reaction. Specifically, for example, a Y-shaped tube is given as a representative example. Further, in the reaction tube, the static mixer can be arranged from the position inside the mixing tube and immediately after the solutions supplied from the supply tubes merge.

各供給管や混合管の形状やサイズは、特に限定するものではないが、円柱状のものであることが、それぞれの配管同士を接続し易いという点で好ましい。また、特に混合管については、内部にスタティックミキサーを配置する必要があることから、円柱状のものであることが好ましい。   The shape and size of each supply tube and mixing tube are not particularly limited, but a cylindrical shape is preferable in terms of easy connection between the respective pipes. In particular, the mixing tube is preferably cylindrical because it is necessary to dispose a static mixer inside.

銀溶液供給管と還元剤溶液供給管の材質としては、それぞれ銀溶液や還元剤溶液と反応しない材質を選択すればよく、塩化ビニル、ポリプロピレン、ポリエチレン等から選択することができる。また、混合管の材質としては、銀溶液や還元剤溶液と反応しないことと、還元反応後の銀が付着しないことが選択上重要であり、ガラスであることが好ましい。   As materials for the silver solution supply pipe and the reducing agent solution supply pipe, materials that do not react with the silver solution and the reducing agent solution may be selected, and may be selected from vinyl chloride, polypropylene, polyethylene, and the like. In addition, as a material of the mixing tube, it is important for selection that it does not react with the silver solution or the reducing agent solution and that silver after the reduction reaction does not adhere, and glass is preferable.

スタティックミキサーの材質としては、混合管と同様にガラスであることが好ましい。また、スタティックミキサーのエレメントの数は、特に限定されないが、少な過ぎると還元反応が均一に進まず微粒ができることになり好ましくなく、一方で、多過ぎても無用に混合管を長くする必要が生じるため好ましくない。したがって、各溶液の流量と流速によって適宜決めることが好ましい。   As a material of the static mixer, glass is preferable like the mixing tube. Further, the number of elements of the static mixer is not particularly limited, but if the amount is too small, the reduction reaction does not proceed uniformly and fine particles are not preferable. On the other hand, if the amount is too large, the mixing tube needs to be lengthened unnecessarily. Therefore, it is not preferable. Therefore, it is preferable to appropriately determine the flow rate and flow rate of each solution.

反応管においては、銀溶液と還元剤溶液との反応液が、上述したスタティックミキサーにより十分に撹拌混合されることによってその反応液中における還元反応が100%終了するまで、混合管内を流れることが望ましい。また、例えば、スタティックミキサーの下流側に、蛇管等を接続させて反応場を十分な長さとして、還元反応が100%終了するようにしてもよい。これにより、未還元の銀錯体が残留して粗大な銀粒子が生成されることを防止できる。   In the reaction tube, the reaction solution of the silver solution and the reducing agent solution may flow in the mixing tube until the reduction reaction in the reaction solution is completed 100% by being sufficiently stirred and mixed by the static mixer described above. desirable. In addition, for example, a reducing pipe may be connected to the downstream side of the static mixer to make the reaction field sufficiently long so that the reduction reaction is completed 100%. Thereby, it can prevent that an unreduced silver complex remains and a coarse silver particle is produced | generated.

粒子成長用銀溶液と核含有還元剤溶液をそれぞれ反応管に供給する手段としては、一般的な定量ポンプを用いることができるが、脈動の小さいものが好ましい。また、粒子成長用銀溶液と核含有還元剤溶液の流量は、一方が他方の10倍以下であることが好ましい。各溶液の流量に10倍以上の差があると、均一に混合されにくいという問題がある。また、各溶液の流速は、0.1L/分以上、10L/分以下とすることが好ましい。流速が0.1L/分未満の場合では、生産性が悪化するため好ましくない。一方で、流速が10L/分より多い場合では、均一に混合され難くなるため好ましくない。   As a means for supplying the silver solution for particle growth and the nucleus-containing reducing agent solution to the reaction tube, a general metering pump can be used, but those having small pulsation are preferable. Moreover, it is preferable that the flow volume of the silver solution for particle growth and a nucleus containing reducing agent solution is 10 times or less of the other. If there is a difference of 10 times or more in the flow rate of each solution, there is a problem that uniform mixing is difficult. Moreover, it is preferable that the flow rate of each solution shall be 0.1 L / min or more and 10 L / min or less. When the flow rate is less than 0.1 L / min, productivity deteriorates, which is not preferable. On the other hand, when the flow rate is higher than 10 L / min, it is difficult to mix uniformly, which is not preferable.

反応管内で銀溶液と還元剤溶液とが混合されて還元反応が終了した反応液は、一旦、所定の槽に受けるようにすることが好ましい(以下、この槽を「受槽」という)。受槽内では、還元により生成した銀粒子が沈降しないように攪拌することが必要になる。銀粒子が沈降すると、銀粒子同士が凝集体を形成し分散性が悪くなってしまい好ましくない。受槽内での攪拌は、銀粒子が沈降しない程度の能力で撹拌すればよく、一般的な攪拌機を用いて撹拌すればよい。受槽に入った反応液は、ポンプによりフィルタープレス等のろ過機に送液され、連続的に次の工程へと流すことができる。   It is preferable that the reaction solution in which the silver solution and the reducing agent solution are mixed in the reaction tube to complete the reduction reaction is once received in a predetermined tank (hereinafter, this tank is referred to as “receiving tank”). In the receiving tank, it is necessary to stir so that silver particles produced by the reduction do not settle. When the silver particles settle, the silver particles form an aggregate and the dispersibility is deteriorated, which is not preferable. Stirring in the receiving tank may be performed with an ability not to allow silver particles to settle, and may be performed using a general stirrer. The reaction liquid entering the receiving tank is sent to a filter such as a filter press by a pump, and can be continuously flowed to the next step.

以上のようにして銀粒子スラリーを生成すると、その銀粒子スラリーをろ過した後、洗浄し、乾燥することによって銀粉を生成する。   When the silver particle slurry is generated as described above, the silver particle slurry is filtered, washed, and dried to generate silver powder.

洗浄方法としては、特に限定されるものではないが、例えば銀粒子を水に投入し、撹拌機又は超音波洗浄器を使用して撹拌した後、フィルタープレス等でろ過して回収する方法が用いられる。この洗浄方法において、水への投入、撹拌洗浄及びろ過からなる操作を、数回繰り返して行うことが好ましい。また、洗浄に用いる水は、銀粉に対して有害な不純物元素を含有していない水を使用し、特に純水を使用することが好ましい。   The cleaning method is not particularly limited. For example, a method in which silver particles are put into water, stirred using a stirrer or an ultrasonic cleaner, and then filtered and collected using a filter press or the like is used. It is done. In this washing method, it is preferable to repeat the operation consisting of charging into water, stirring washing and filtration several times. The water used for washing is water that does not contain an impurity element harmful to silver powder, and it is particularly preferable to use pure water.

次に、洗浄後の銀粉を乾燥させて、水分を蒸発させる。乾燥方法としては、特に限定されるものではないが、例えば洗浄後の銀粒子をステンレスバット上に置き、大気オーブン又は真空乾燥機等の市販の乾燥装置を用いて、40℃〜80℃程度の温度で加熱することにより行うことができる。   Next, the washed silver powder is dried to evaporate water. Although it does not specifically limit as a drying method, For example, the silver particle after washing | cleaning is set | placed on a stainless steel bat, and about 40-80 degreeC is used using commercially available drying apparatuses, such as an atmospheric oven or a vacuum dryer. This can be done by heating at a temperature.

以上詳細に説明したが、上述した銀粉の製造方法によれば、微粒を含まない均一な粒径に制御した銀粉を製造することができる。具体的に、この製造方法により製造された銀粉は、走査型電子顕微鏡観察による一次粒子の平均粒径が0.3μm〜3.0μmであり、より好ましくは0.3μm〜2.0μmであり、さらに好ましくは0.3〜0.5μmであり、粒径の相対標準偏差(標準偏差σ/平均粒径d)が0.3以下、好ましくは0.25以下となる。ここで、一次粒子とは、外見上から判断して、単位粒子と考えられるものを意味する。   As described above in detail, according to the above-described method for producing silver powder, it is possible to produce silver powder that is controlled to have a uniform particle size that does not contain fine particles. Specifically, the silver powder produced by this production method has an average primary particle size of 0.3 μm to 3.0 μm, more preferably 0.3 μm to 2.0 μm, as observed by a scanning electron microscope. More preferably, it is 0.3 to 0.5 μm, and the relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter is 0.3 or less, preferably 0.25 or less. Here, the primary particle means what is considered as a unit particle, judging from the appearance.

このような均一で粒度分布が狭い銀粉によれば、電子機器の配線層や電極等の形成に利用される樹脂型銀ペーストや焼成型銀ペースト等のペースト用銀粉として好適に用いることができる。   According to such a silver powder having a uniform and narrow particle size distribution, it can be suitably used as a silver powder for a paste such as a resin-type silver paste or a fired-type silver paste used for forming a wiring layer or an electrode of an electronic device.

また、本実施の形態に係る銀粉の製造方法は、粒子成長用銀溶液と核含有還元剤溶液とを定量的かつ連続的に供給して混合することによって還元反応を生じさせているので、反応液中の銀濃度が一定に保たれ、一定の粒子成長を図ることができ、より一層に均一な粒径を有する銀粉を高い生産性でもって製造することができる。このように、本実施の形態に係る銀粉の製造方法は、銀粉の粒径制御が容易で量産性に優れており、その工業的価値は極めて大きい。   In addition, the method for producing silver powder according to the present embodiment causes a reduction reaction by quantitatively and continuously supplying and mixing the silver solution for particle growth and the nucleus-containing reducing agent solution. The silver concentration in the liquid is kept constant, constant particle growth can be achieved, and silver powder having a more uniform particle size can be produced with high productivity. Thus, the silver powder production method according to the present embodiment is easy to control the particle size of the silver powder and is excellent in mass productivity, and its industrial value is extremely large.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES The present invention will be described in further detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.

(実施例1)
38℃の温浴中において液温36℃に保持した25質量%アンモニア水66mLと純水1.22Lの混合液に、塩化銀2.88g(住友金属鉱山(株)製)を撹拌しながら投入して核生成用銀溶液(溶液中の銀濃度は1.8g/L、銀量に対するアンモニアのモル比で44)を作製した。次に、分散剤のポリビニルアルコール43g((株)クラレ製、PVA205)を36℃の純水7.33Lに溶解し、そこへ強還元剤であるヒドラジン一水和物0.91mL(核生成用銀溶液中の銀量に対して3.6当量)を添加して得られた還元剤溶液を、温浴中において36℃に保持した。そして、還元剤溶液中に、64mL/分の流量で核生成用銀溶液を添加して銀核を生成させて銀核溶液とした。
Example 1
2.88 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to a mixed liquid of 66 mL of 25% by mass ammonia water maintained at 36 ° C. in a 38 ° C. bath and 1.22 L of pure water while stirring. Thus, a silver solution for nucleation (the silver concentration in the solution was 1.8 g / L, and the molar ratio of ammonia to the amount of silver was 44) was prepared. Next, 43 g of polyvinyl alcohol (PVA205, manufactured by Kuraray Co., Ltd.) as a dispersant was dissolved in 7.33 L of pure water at 36 ° C., and 0.91 mL of hydrazine monohydrate as a strong reducing agent (for nucleation) The reducing agent solution obtained by adding 3.6 equivalents to the amount of silver in the silver solution was kept at 36 ° C. in a warm bath. Then, a silver nucleus solution was added to the reducing agent solution at a flow rate of 64 mL / min to produce silver nuclei, thereby obtaining a silver nucleation solution.

次に、得られた銀核溶液に、弱還元剤であるアスコルビン酸665g(下記の粒子成長用銀溶液中の銀量に対して1.4当量)を添加して核含有還元剤溶液とした。   Next, 665 g of ascorbic acid as a weak reducing agent (1.4 equivalents with respect to the amount of silver in the silver solution for particle growth described below) was added to the obtained silver core solution to obtain a core-containing reducing agent solution. .

一方、33℃の温浴中において液温32℃に保持した25質量%アンモニア水18Lに、塩化銀842g(住友金属鉱山(株)製)を撹拌しながら投入し溶解して塩錯体溶液を得た。この溶液を限外ろ過(分画分子量150,000)した。さらに、消泡剤((株)アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液8.3mLを塩錯体溶液に添加して得られた粒子成長用銀溶液(溶液中の銀濃度は35g/L)を、温浴中において32℃に保持した。粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。なお、核含有還元剤溶液に添加したポリビニルアルコールの添加量は、粒子成長用銀溶液中の銀量に対して3.8質量%となる。   On the other hand, 842 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added with stirring to 18 L of 25% by mass ammonia water maintained at a liquid temperature of 32 ° C. in a 33 ° C. bath to obtain a salt complex solution. . This solution was ultrafiltered (fractionated molecular weight: 150,000). Further, an antifoaming agent (manufactured by Adeka Co., Ltd., Adecanol LG-126) was diluted 100 times in volume ratio, and 8.3 mL of this antifoaming agent diluted solution was added to the salt complex solution for particle growth. A silver solution (silver concentration in the solution was 35 g / L) was kept at 32 ° C. in a warm bath. A part of the silver solution for particle growth was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, which is 20 ppm by mass or less with respect to the amount of silver in the solution. It was confirmed. The amount of polyvinyl alcohol added to the core-containing reducing agent solution is 3.8% by mass with respect to the amount of silver in the particle growth silver solution.

チューブポンプ(MASTERFLEX製)を使用し、粒子成長用銀溶液と核含有還元剤溶液とを、それぞれ2.7L/分、0.90L/分で送液し混合して反応液とした。反応液中で銀錯体を還元して銀粒子スラリーを得て、受槽内に貯留した。2液の送液が終了した後、受槽内での攪拌を30分継続した。   Using a tube pump (manufactured by MASTERFLEX), the silver solution for particle growth and the nucleus-containing reducing agent solution were fed at 2.7 L / min and 0.90 L / min, respectively, and mixed to obtain a reaction solution. The silver complex was reduced in the reaction solution to obtain a silver particle slurry, which was stored in a receiving tank. After the feeding of the two liquids was completed, stirring in the receiving tank was continued for 30 minutes.

撹拌終了後の反応液を、フィルタープレスを使用してろ過し、銀粒子を固液分離した。続いて、回収した銀粒子を0.05mol/LのNaOH水溶液23L中に投入し、そこへステアリン酸エマルジョン(中京油脂(株)製、セロゾール920)17.8gを添加し、15分間撹拌した後、フィルタープレスでろ過して回収した。0.05mol/LのNaOH水溶液への投入、撹拌、及びろ過からなる操作を更に2回繰返した後、回収した銀粒子を純水23L中に投入し、15分間の撹拌による洗浄と、フィルタープレスによるろ過からなる操作を行った。その後、銀粒子をステンレスバットに移し、真空乾燥機にて60℃で10時間乾燥して銀粉を得た。   The reaction liquid after completion of the stirring was filtered using a filter press, and the silver particles were separated into solid and liquid. Subsequently, the recovered silver particles were put into 23 L of 0.05 mol / L NaOH aqueous solution, and 17.8 g of stearic acid emulsion (manufactured by Chukyo Yushi Co., Ltd., Cellosol 920) was added thereto and stirred for 15 minutes. It was recovered by filtration with a filter press. After repeating the operation consisting of addition to 0.05 mol / L NaOH aqueous solution, stirring, and filtration two more times, the recovered silver particles were put into 23 L of pure water, washed by stirring for 15 minutes, and a filter press The operation consisting of filtration by was performed. Thereafter, the silver particles were transferred to a stainless bat and dried at 60 ° C. for 10 hours in a vacuum dryer to obtain silver powder.

図2に得られた銀核の走査型電子顕微鏡(SEM)像を示し、図3に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた銀核と銀粉の平均粒径は、それぞれ0.11μmと0.81μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.18であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は0.8μmであり、狙いとした粒径の銀粉が得られていることが確認された。   FIG. 2 shows a scanning electron microscope (SEM) image of the obtained silver nucleus, and FIG. 3 shows an SEM image of the silver powder. As apparent from these SEM images, both of the obtained silver nucleus and silver powder were composed of uniform particles. Moreover, the average particle diameters of silver nuclei and silver powder obtained by measuring the particle diameters of 300 or more primary particles from the SEM image and averaging them by the number of particles are 0.11 μm and 0.81 μm, respectively. The relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter of the silver powder obtained from the results was 0.18, and it was confirmed that the silver powder was uniform and free of fine particles. Moreover, the particle size calculated from the number of added nuclei was 0.8 μm, and it was confirmed that silver powder having the aimed particle size was obtained.

(実施例2)
38℃の温浴中において液温36℃に保持した25質量%アンモニア水25mLと純水0.485Lの混合液に、塩化銀1.11g(住友金属鉱山(株)製)を撹拌しながら投入して核生成用銀溶液(溶液中の銀濃度は1.5g/L、銀量に対するアンモニアのモル比で44)を作製した。次に、分散剤のポリビニルアルコール31g((株)クラレ製、PVA205)を36℃の純水1.0Lに溶解し、そこへ強還元剤であるヒドラジン一水和物0.12mL(核生成用銀溶液中の銀量に対して1.2当量)を添加して得られた還元剤溶液を、温浴中において36℃に保持した。そして、還元剤溶液中に、20mL/分の流量で核生成用銀溶液を添加して銀核を生成させ、銀核溶液とした。
(Example 2)
1.11 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to a mixed solution of 25 mL of 25% by mass ammonia water maintained at a liquid temperature of 36 ° C. in a 38 ° C. bath and 0.485 L of pure water while stirring. Thus, a silver solution for nucleation (the silver concentration in the solution was 1.5 g / L, and the molar ratio of ammonia to the silver amount was 44) was prepared. Next, 31 g of polyvinyl alcohol as a dispersant (manufactured by Kuraray Co., Ltd., PVA205) was dissolved in 1.0 L of pure water at 36 ° C., and 0.12 mL of hydrazine monohydrate as a strong reducing agent (for nucleation) The reducing agent solution obtained by adding 1.2 equivalents to the amount of silver in the silver solution was kept at 36 ° C. in a warm bath. Then, a silver nucleus solution was added to the reducing agent solution at a flow rate of 20 mL / min to produce silver nuclei, thereby obtaining a silver nucleation solution.

次に、得られた銀核溶液に、弱還元剤であるアスコルビン酸103g(下記の粒子成長用銀溶液中の銀量に対して1.4当量)を添加して核含有還元剤溶液とした。   Next, 103 g of ascorbic acid as a weak reducing agent (1.4 equivalents with respect to the amount of silver in the silver solution for particle growth described below) was added to the obtained silver core solution to obtain a core-containing reducing agent solution. .

一方、38℃の温浴中において液温36℃に保持した25質量%アンモニア水3.29Lに、塩化銀175g(住友金属鉱山(株)製)を撹拌しながら投入し溶解して銀錯体溶液を得た。この溶液を限外ろ過(分画分子量150,000)した。さらに、消泡剤((株)アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液1.7mLを銀錯体溶液に添加して得られた粒子成長用銀溶液(溶液中の銀濃度は35g/L)を、温浴中において36℃に保持した。粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。なお、核含有還元剤溶液に添加したポリビニルアルコールの添加量は、粒子成長用銀溶液の銀量に対して18質量%となる。   On the other hand, 175 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to 3.29 L of 25 mass% ammonia water maintained at a liquid temperature of 36 ° C. in a 38 ° C. bath while stirring to dissolve the silver complex solution. Obtained. This solution was ultrafiltered (fractionated molecular weight: 150,000). Further, an antifoaming agent (manufactured by Adeka Co., Ltd., Adecanol LG-126) was diluted 100 times in volume ratio, and 1.7 mL of this antifoaming agent dilution was added to the silver complex solution for particle growth. A silver solution (silver concentration in the solution was 35 g / L) was kept at 36 ° C. in a warm bath. A part of the silver solution for particle growth was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, which is 20 ppm by mass or less with respect to the amount of silver in the solution. It was confirmed. In addition, the addition amount of the polyvinyl alcohol added to the nucleus-containing reducing agent solution is 18% by mass with respect to the silver amount of the particle growth silver solution.

チューブポンプ(MASTERFLEX製)を使用し、粒子成長用銀溶液と核含有還元剤溶液を、それぞれ2.4L/分、0.80L/分で送液し混合して反応液とした。反応液中で銀錯体を還元して銀粒子スラリーを得て、受槽内に貯留した。2液の送液が終了した後、受槽内での攪拌を30分継続した。   Using a tube pump (manufactured by MASTERFLEX), the silver solution for particle growth and the nucleus-containing reducing agent solution were fed at 2.4 L / min and 0.80 L / min, respectively, and mixed to obtain a reaction solution. The silver complex was reduced in the reaction solution to obtain a silver particle slurry, which was stored in a receiving tank. After the feeding of the two liquids was completed, stirring in the receiving tank was continued for 30 minutes.

撹拌終了後の反応液を、開口径0.3μmのメンブランフィルターを使用してろ過し、銀粒子を固液分離した。続いて、回収した銀粒子を0.05mol/LのNaOH水溶液2L中に投入し、そこへステアリン酸エマルジョン(中京油脂(株)製、セロゾール920)3.6gを添加し、15分間撹拌した後、開口径0.3μmのメンブランフィルターでろ過して回収した。0.05mol/LのNaOH水溶液への投入、撹拌、及びろ過からなる操作を更に2回繰返した後、回収した銀粒子を純水2L中に投入し、15分間の撹拌による洗浄と、フィルタープレスによるろ過からなる操作を行った。その後、銀粒子をステンレスバットに移し、真空乾燥機にて60℃で10時間乾燥して銀粉を得た。   The reaction liquid after completion of stirring was filtered using a membrane filter having an opening diameter of 0.3 μm to separate the silver particles into solid and liquid. Subsequently, the collected silver particles are put into 2 L of 0.05 mol / L NaOH aqueous solution, and 3.6 g of stearic acid emulsion (manufactured by Chukyo Yushi Co., Ltd., Cellosol 920) is added thereto and stirred for 15 minutes. The solution was collected by filtration through a membrane filter having an opening diameter of 0.3 μm. After repeating the operation consisting of addition to 0.05 mol / L NaOH aqueous solution, stirring, and filtration two more times, the recovered silver particles were put into 2 L of pure water, washed by stirring for 15 minutes, and a filter press The operation consisting of filtration by was performed. Thereafter, the silver particles were transferred to a stainless bat and dried at 60 ° C. for 10 hours in a vacuum dryer to obtain silver powder.

図4に、得られた銀核のSEM像を示し、図5に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた平均粒径は、それぞれ0.13μmと0.64μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.22であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は0.7μmであり、狙いとした粒径の銀粉が得られていることが確認された。   FIG. 4 shows an SEM image of the obtained silver nucleus, and FIG. 5 shows an SEM image of the silver powder. As apparent from these SEM images, both of the obtained silver nucleus and silver powder were composed of uniform particles. Moreover, the average particle diameter calculated | required by measuring the particle diameter of 300 or more primary particles from the SEM image and averaging with the number of particles was 0.13 micrometer and 0.64 micrometer, respectively, and was obtained from the measurement result. The relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter of the silver powder was 0.22, confirming that it was uniform and free of fine particles. Moreover, the particle size calculated from the number of added nuclei was 0.7 μm, and it was confirmed that a silver powder having a target particle size was obtained.

(実施例3)
核生成用銀溶液に用いる塩化銀を2.21g、25%アンモニア水を50mL(溶液中の銀濃度は3.0g/L、銀量に対するアンモニアのモル比で44)、銀核生成用還元剤溶液に用いる強還元剤のヒドラジン一水和物を0.23mL(核生成用銀溶液中の銀量に対して1.2当量)添加したこと以外は、実施例2と同様にして銀粉を得るとともに評価した。なお、粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。
(Example 3)
2.21 g of silver chloride used for the nucleation silver solution, 50 mL of 25% aqueous ammonia (silver concentration in the solution is 3.0 g / L, 44 molar ratio of ammonia to the amount of silver), silver nucleation reducing agent Silver powder is obtained in the same manner as in Example 2, except that 0.23 mL of hydrazine monohydrate, a strong reducing agent used in the solution, is added (1.2 equivalents relative to the amount of silver in the nucleation silver solution). And evaluated. A part of the silver solution for particle growth was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, and it was 20 mass ppm or less based on the amount of silver in the solution. It was confirmed that.

SEM観察したところ、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM観察により測定した銀核と銀粉の平均粒径は、それぞれ0.14μmと0.42μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.25であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は0.4μmであり、狙いとした粒径の銀粉が得られていることが確認された。   When SEM observation was performed, both of the obtained silver nucleus and silver powder were composed of uniform particles. The average particle diameters of silver nuclei and silver powder measured by SEM observation are 0.14 μm and 0.42 μm, respectively. The relative standard deviation of the particle diameter of the silver powder obtained from the measurement results (standard deviation σ / average particle diameter) d) was 0.25, which was confirmed to be uniform and free of fine particles. Moreover, the particle size calculated from the number of added nuclei was 0.4 μm, and it was confirmed that silver powder having the aimed particle size was obtained.

(実施例4)
塩化銀45.0g(住友金属鉱山(株)製)を36℃の25質量%アンモニア水1025mLと純水175Lとの混合液へ撹拌しながら投入して溶解した。そこへ、50℃の純水50Lに溶解させた分散剤のポリビニルアルコール1350g((株)クラレ製、PVA205)を投入して得られた核生成用銀溶液(溶液中の銀濃度は0.15g/L、銀量に対するアンモニア量のモル比で45)を、36℃に保持した。次に、強還元剤であるヒドラジン一水和物9.72mL(核生成用銀溶液中の銀量に対して2.5当量)を純水37.6Lへ添加して得られた還元剤溶液を、36℃に保持した。そして、核生成用銀溶液中に、630mL/分の流量で還元剤溶液を添加して銀核を生成させて銀核溶液とした。
Example 4
45.0 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to a mixed liquid of 25% by mass of 25% by weight ammonia water at 36 ° C. and 175 L of pure water with stirring, and dissolved. A nucleation silver solution obtained by adding 1350 g of polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA205) dissolved in 50 L of pure water at 50 ° C. (the silver concentration in the solution is 0.15 g). / L, the molar ratio of ammonia to silver was 45) was maintained at 36 ° C. Next, a reducing agent solution obtained by adding 9.72 mL of hydrazine monohydrate, which is a strong reducing agent (2.5 equivalent to the amount of silver in the nucleation silver solution), to 37.6 L of pure water. Was maintained at 36 ° C. Then, a reducing agent solution was added to the nucleation silver solution at a flow rate of 630 mL / min to produce silver nuclei, thereby obtaining a silver nucleation solution.

次に、得られた銀核溶液に、弱還元剤であるアスコルビン酸20.5kg(下記の粒子成長用銀溶液中の銀量に対して1.4当量)と純水69Lを添加して核含有還元剤溶液とした。   Next, 20.5 kg of ascorbic acid, which is a weak reducing agent (1.4 equivalents with respect to the amount of silver in the silver solution for particle growth described below) and 69 L of pure water, are added to the obtained silver nucleus solution to form the nucleus. It was set as the containing reducing agent solution.

一方、液温32℃に保持した25質量%アンモニア水270Lに、塩化銀12.6kg(住友金属鉱山(株)製)を撹拌しながら投入し溶解して銀錯体溶液を得た。この溶液を限外ろ過(分画分子量150,000)した。さらに、消泡剤((株)アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液124mLを銀錯体溶液に添加して得られた粒子成長用銀溶液(溶液中の銀濃度は35g/L)を、温浴中において32℃に保持した。粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。なお、核含有還元剤溶液に添加したポリビニルアルコールの添加量は、粒子成長用銀溶液中の銀量に対して3.8質量%となる。   On the other hand, 12.6 kg of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to 270 L of 25% by mass ammonia water maintained at a liquid temperature of 32 ° C. with stirring to obtain a silver complex solution. This solution was ultrafiltered (fractionated molecular weight: 150,000). Furthermore, a silver solution for particle growth obtained by diluting an antifoaming agent (manufactured by Adeka Co., Ltd., Adecanol LG-126) 100 times by volume and adding 124 mL of this antifoaming agent dilution to the silver complex solution. (The silver concentration in the solution was 35 g / L) was kept at 32 ° C. in a warm bath. A part of the silver solution for particle growth was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, which is 20 ppm by mass or less with respect to the amount of silver in the solution. It was confirmed. The amount of polyvinyl alcohol added to the core-containing reducing agent solution is 3.8% by mass with respect to the amount of silver in the particle growth silver solution.

チューブポンプ(MASTERFLEX製)を使用し、粒子成長用銀溶液と核含有還元剤溶液とを、それぞれ2.7L/分、0.90L/分で送液し混合して反応液とした。反応液中で銀錯体を還元して銀粒子スラリーを得て、受槽内に貯留した。2液の送液が終了した後、受槽内での攪拌を30分継続した。   Using a tube pump (manufactured by MASTERFLEX), the silver solution for particle growth and the nucleus-containing reducing agent solution were fed at 2.7 L / min and 0.90 L / min, respectively, and mixed to obtain a reaction solution. The silver complex was reduced in the reaction solution to obtain a silver particle slurry, which was stored in a receiving tank. After the feeding of the two liquids was completed, stirring in the receiving tank was continued for 30 minutes.

撹拌終了後の反応液を、フィルタープレスを使用してろ過し、銀粒子を固液分離した。続いて、回収した銀粒子を0.05mol/LのNaOH水溶液114L中に投入し、そこへステアリン酸エマルジョン(中京油脂(株)製、セロゾール920)162gを添加し、15分間撹拌した後、フィルタープレスでろ過して回収した。0.05mol/LのNaOH水溶液への投入、撹拌、及びろ過からなる操作を更に2回繰返した後、回収した銀粒子を純水114L中に投入し、15分間の撹拌による洗浄と、フィルタープレスによるろ過からなる操作を行った。その後、銀粒子をステンレスバットに移し、真空乾燥機にて60℃で10時間乾燥して銀粉を得た。   The reaction liquid after completion of the stirring was filtered using a filter press, and the silver particles were separated into solid and liquid. Subsequently, the recovered silver particles were put into 114 L of 0.05 mol / L NaOH aqueous solution, and 162 g of stearic acid emulsion (manufactured by Chukyo Yushi Co., Ltd., Cellosol 920) was added thereto and stirred for 15 minutes. It was recovered by filtration with a press. After repeating the operation consisting of addition to 0.05 mol / L NaOH aqueous solution, stirring, and filtration two more times, the recovered silver particles were put into 114 L of pure water, washed by stirring for 15 minutes, and a filter press The operation consisting of filtration by was performed. Thereafter, the silver particles were transferred to a stainless bat and dried at 60 ° C. for 10 hours in a vacuum dryer to obtain silver powder.

図6に得られた銀核のSEM像を示し、図7に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた銀核と銀粉の平均粒径は、それぞれ0.068μmと0.68μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.20であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は0.7μmであり、狙いとした粒径の銀粉が得られていることが確認された。   FIG. 6 shows an SEM image of the obtained silver nucleus, and FIG. 7 shows an SEM image of the silver powder. As apparent from these SEM images, both of the obtained silver nucleus and silver powder were composed of uniform particles. In addition, the average particle diameters of silver nuclei and silver powder determined by measuring the particle diameters of 300 or more primary particles from the SEM image and averaging them by the number of particles are 0.068 μm and 0.68 μm, respectively. The relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter of the silver powder obtained from the results was 0.20, and it was confirmed that the silver powder was uniform and free of fine particles. Moreover, the particle size calculated from the number of added nuclei was 0.7 μm, and it was confirmed that a silver powder having a target particle size was obtained.

(実施例5)
塩化銀2.92g(住友金属鉱山(株)製)を36℃に保持した25質量%アンモニア水60mLと純水0.5Lとの混合液へ撹拌しながら投入して溶解した。そこへ、50℃の純水6.76Lに溶解させた分散剤のポリビニルアルコール43.6g((株)クラレ製、PVA205)を投入して得られた核生成用銀溶液(溶液中の銀濃度は0.30g/L、銀量に対するアンモニア量のモル比で40)を、36℃に保持した。次に、強還元剤であるヒドラジン一水和物0.63mL(核生成用銀溶液中の銀量に対して2.5当量)を純水1.22Lへ添加して得られた還元剤溶液を、36℃に保持した。そして、核生成用銀溶液中に、60mL/分の流量で還元剤溶液を添加して銀核を生成させて銀核溶液とした。
(Example 5)
2.92 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was dissolved in a mixed liquid of 60 mL of 25% by mass ammonia water maintained at 36 ° C. and 0.5 L of pure water with stirring. A nucleation silver solution (silver concentration in the solution) obtained by adding 43.6 g of polyvinyl alcohol (PVA205, manufactured by Kuraray Co., Ltd.), a dispersant dissolved in 6.76 L of pure water at 50 ° C. Was 0.30 g / L, and the molar ratio of ammonia to silver was 40), and was maintained at 36 ° C. Next, a reducing agent solution obtained by adding 0.63 mL of hydrazine monohydrate, which is a strong reducing agent (2.5 equivalents relative to the amount of silver in the silver solution for nucleation), to 1.22 L of pure water. Was maintained at 36 ° C. Then, a reducing agent solution was added to the nucleation silver solution at a flow rate of 60 mL / min to produce silver nuclei, thereby obtaining a silver nucleation solution.

次に、得られた銀核溶液に、弱還元剤であるアスコルビン酸1261g(下記の粒子成長用銀溶液中の銀量に対して1.4当量)と純水2.21Lを添加して核含有還元剤溶液とした。   Next, 1261 g of ascorbic acid as a weak reducing agent (1.4 equivalents with respect to the amount of silver in the silver solution for particle growth described below) and 2.21 L of pure water are added to the obtained silver nucleus solution to form the nucleus. It was set as the containing reducing agent solution.

一方、液温32℃に保持した25質量%アンモニア水18Lに、塩化銀1587g(住友金属鉱山(株)製)を撹拌しながら投入し溶解して銀錯体溶液を得た。この溶液を限外ろ過(分画分子量150,000)した。さらに、消泡剤((株)アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液15.6mLを銀錯体溶液に添加して得られた粒子成長用銀溶液(溶液中の銀濃度は67g/L)を、温浴中において32℃に保持した。粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。なお、核含有還元剤溶液に添加したポリビニルアルコールの添加量は、粒子成長用銀溶液中の銀量に対して2.0質量%となる。   On the other hand, 1587 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to 18 L of 25% by mass ammonia water maintained at a liquid temperature of 32 ° C. with stirring to obtain a silver complex solution. This solution was ultrafiltered (fractionated molecular weight: 150,000). Further, an antifoaming agent (manufactured by Adeka Co., Ltd., Adecanol LG-126) was diluted 100 times in volume ratio, and 15.6 mL of this antifoaming agent dilution was added to the silver complex solution for particle growth. A silver solution (silver concentration in the solution was 67 g / L) was kept at 32 ° C. in a warm bath. A part of the silver solution for particle growth was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, which is 20 ppm by mass or less with respect to the amount of silver in the solution. It was confirmed. The amount of polyvinyl alcohol added to the core-containing reducing agent solution is 2.0% by mass with respect to the amount of silver in the particle growth silver solution.

チューブポンプ(MASTERFLEX製)を使用し、粒子成長用銀溶液と核含有還元剤溶液とを、それぞれ2.7L/分、0.90L/分で送液し混合して反応液とした。反応液中で銀錯体を還元して銀粒子スラリーを得て、受槽内に貯留した。2液の送液が終了した後、受槽内での攪拌を30分継続した。   Using a tube pump (manufactured by MASTERFLEX), the silver solution for particle growth and the nucleus-containing reducing agent solution were fed at 2.7 L / min and 0.90 L / min, respectively, and mixed to obtain a reaction solution. The silver complex was reduced in the reaction solution to obtain a silver particle slurry, which was stored in a receiving tank. After the feeding of the two liquids was completed, stirring in the receiving tank was continued for 30 minutes.

撹拌終了後の反応液を、フィルタープレスを使用してろ過し、銀粒子を固液分離した。続いて、回収した銀粒子を0.05mol/LのNaOH水溶液17L中に投入し、そこへステアリン酸エマルジョン(中京油脂(株)製、セロゾール920)20.4gを添加し、15分間撹拌した後、フィルタープレスでろ過して回収した。0.05mol/LのNaOH水溶液への投入、撹拌、及びろ過からなる操作を更に2回繰返した後、回収した銀粒子を純水17L中に投入し、15分間の撹拌による洗浄と、フィルタープレスによるろ過からなる操作を行った。その後、銀粒子をステンレスバットに移し、真空乾燥機にて60℃で10時間乾燥して銀粉を得た。   The reaction liquid after completion of the stirring was filtered using a filter press, and the silver particles were separated into solid and liquid. Subsequently, the collected silver particles were put into 17 L of 0.05 mol / L NaOH aqueous solution, and 20.4 g of stearic acid emulsion (manufactured by Chukyo Yushi Co., Ltd., Cellosol 920) was added thereto and stirred for 15 minutes. It was recovered by filtration with a filter press. After repeating the operation consisting of addition to 0.05 mol / L NaOH aqueous solution, stirring, and filtration two more times, the recovered silver particles were put into 17 L of pure water, washed by stirring for 15 minutes, and a filter press The operation consisting of filtration by was performed. Thereafter, the silver particles were transferred to a stainless bat and dried at 60 ° C. for 10 hours in a vacuum dryer to obtain silver powder.

図8に得られた銀核のSEM像を示し、図9に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた銀核と銀粉の平均粒径は、それぞれ0.072μmと0.68μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.19であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は0.7μmであり、狙いとした粒径の銀粉が得られていることが確認された。   FIG. 8 shows an SEM image of the obtained silver nucleus, and FIG. 9 shows an SEM image of the silver powder. As apparent from these SEM images, both of the obtained silver nucleus and silver powder were composed of uniform particles. Further, the average particle diameters of silver nuclei and silver powder obtained by measuring the particle diameters of 300 or more primary particles from the SEM image and averaging them by the number of particles are 0.072 μm and 0.68 μm, respectively. The relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter of the silver powder obtained from the results was 0.19, and it was confirmed that the silver powder was uniform and free of fine particles. Moreover, the particle size calculated from the number of added nuclei was 0.7 μm, and it was confirmed that a silver powder having a target particle size was obtained.

(実施例6)
核生成用銀溶液に用いる25質量%アンモニア水を45mL、核含有還元剤溶液に用いるアスコルビン酸を1513g、粒子成長用銀溶液に用いる塩化銀量を1904g、NaOH水溶液量を20L、ステアリン酸エマルジョンを24.4gにした以外は、実施例2と同様にして銀粉を得るとともに評価した。なお、本実施例における核生成用銀溶液中の銀濃度は0.30g/L、銀量に対するアンモニア量のモル比で30、粒子成長用銀溶液中の銀濃度は80g/L、粒子成長用銀溶液中の銀量に対するポリビニルアルコールの添加量は1.7質量%である。また、粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。
(Example 6)
45 mL of 25% by mass ammonia water used for the nucleation silver solution, 1513 g of ascorbic acid used for the nucleus-containing reducing agent solution, 1904 g of silver chloride used for the silver solution for grain growth, 20 L of NaOH aqueous solution, 20 L of stearic acid emulsion A silver powder was obtained and evaluated in the same manner as in Example 2 except that the amount was 24.4 g. In this example, the silver concentration in the nucleation silver solution is 0.30 g / L, the molar ratio of the ammonia amount to the silver amount is 30, and the silver concentration in the particle growth silver solution is 80 g / L. The amount of polyvinyl alcohol added is 1.7% by mass relative to the amount of silver in the silver solution. Moreover, when a part of silver solution for particle growth was extract | collected and ultrafiltration of the molecular weight cut-off 10,000 was performed and content of a solid particle was calculated | required, it was 20 mass ppm or less with respect to the silver amount in a solution. It was confirmed that.

図10に得られた銀核のSEM像を示し、図11に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた銀核と銀粉の平均粒径は、それぞれ0.065μmと0.65μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.20であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は0.7μmであり、狙いとした粒径の銀粉が得られていることが確認された。   FIG. 10 shows an SEM image of the obtained silver nucleus, and FIG. 11 shows an SEM image of the silver powder. As apparent from these SEM images, both of the obtained silver nucleus and silver powder were composed of uniform particles. In addition, the average particle diameters of silver nuclei and silver powder determined by measuring the particle diameters of 300 or more primary particles from the SEM image and averaging them by the number of particles are 0.065 μm and 0.65 μm, respectively. The relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter of the silver powder obtained from the results was 0.20, and it was confirmed that the silver powder was uniform and free of fine particles. Moreover, the particle size calculated from the number of added nuclei was 0.7 μm, and it was confirmed that a silver powder having a target particle size was obtained.

(実施例7)
塩化銀2.50g(住友金属鉱山(株)製)を36℃の25質量%アンモニア水34mLと純水0.5Lとの混合液へ撹拌しながら投入して溶解した。そして、この溶液を限外ろ過(分画分子量150,000)した。そこへ、50℃の純水6.8Lに溶解させた分散剤のポリビニルアルコール218g((株)クラレ製、PVA205)を投入して得られた核生成用銀溶液(溶液中の銀濃度は0.23g/L、銀量に対するアンモニア量のモル比で30)を、36℃に保持した。
(Example 7)
2.50 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was poured into a mixed liquid of 34 mL of 25 mass% ammonia water at 36 ° C. and 0.5 L of pure water with stirring to dissolve. And this solution was ultrafiltered (fraction molecular weight 150,000). A nucleation silver solution obtained by adding 218 g of a dispersant polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA205) dissolved in 6.8 L of pure water at 50 ° C. (the silver concentration in the solution was 0). .23 g / L, 30) in molar ratio of ammonia to silver was kept at 36 ° C.

次に、強還元剤であるヒドラジン一水和物0.57mL(核生成用銀溶液中の銀量に対して3.0当量)を純水1.22Lへ添加して得られた還元剤溶液を、36℃に保持した。そして、核生成用銀溶液中に、61mL/分の流量で還元剤溶液を添加して銀核を生成させて銀核溶液とした。銀錯体を含む銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。   Next, a reducing agent solution obtained by adding 0.57 mL of hydrazine monohydrate, which is a strong reducing agent (3.0 equivalent to the amount of silver in the silver solution for nucleation), to 1.22 L of pure water. Was maintained at 36 ° C. Then, a reducing agent solution was added to the nucleation silver solution at a flow rate of 61 mL / min to produce silver nuclei, thereby obtaining a silver nucleation solution. A part of the silver solution containing the silver complex was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, which was 20 ppm by mass or less with respect to the amount of silver in the solution. It was confirmed that there was.

次に、得られた銀核溶液に、弱還元剤であるアスコルビン酸1009g(下記の粒子成長用銀溶液中の銀量に対して1.4当量)を添加して核含有還元剤溶液とした。   Next, 1009 g of ascorbic acid as a weak reducing agent (1.4 equivalents with respect to the amount of silver in the silver solution for particle growth described below) was added to the obtained silver core solution to obtain a core-containing reducing agent solution. .

一方、33℃の温浴中において液温32℃に保持した25質量%アンモニア水18Lに、塩化銀1270g(住友金属鉱山(株)製)を撹拌しながら投入し、溶解して塩錯体溶液を得た。そして、この溶液を限外ろ過(分画分子量150,000)した。さらに、消泡剤((株)アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液8.3mLを塩錯体溶液に添加して得られた粒子成長用銀溶液(溶液中の銀濃度は53g/L)を、温浴中において32℃に保持した。   On the other hand, 1270 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to 18 L of 25% by mass ammonia water maintained at a liquid temperature of 32 ° C. in a 33 ° C. bath and dissolved to obtain a salt complex solution. It was. And this solution was ultrafiltered (fraction molecular weight 150,000). Further, an antifoaming agent (manufactured by Adeka Co., Ltd., Adecanol LG-126) was diluted 100 times in volume ratio, and 8.3 mL of this antifoaming agent diluted solution was added to the salt complex solution for particle growth. A silver solution (the silver concentration in the solution was 53 g / L) was kept at 32 ° C. in a warm bath.

粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。なお、核含有還元剤溶液に添加したポリビニルアルコールの添加量は、粒子成長用銀溶液中の銀量に対して12.6質量%となる。   A part of the silver solution for particle growth was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, which is 20 ppm by mass or less with respect to the amount of silver in the solution. It was confirmed. In addition, the addition amount of polyvinyl alcohol added to the nucleus-containing reducing agent solution is 12.6% by mass with respect to the silver amount in the silver solution for particle growth.

チューブポンプ(MASTERFLEX製)を使用し、粒子成長用銀溶液と核含有還元剤溶液とを、それぞれ2.7L/分、0.90L/分で送液し混合して反応液とした。反応液中で銀錯体を還元して銀粒子スラリーを得て、受槽内に貯留した。2液の送液が終了した後、受槽内での攪拌を30分継続した。   Using a tube pump (manufactured by MASTERFLEX), the silver solution for particle growth and the nucleus-containing reducing agent solution were fed at 2.7 L / min and 0.90 L / min, respectively, and mixed to obtain a reaction solution. The silver complex was reduced in the reaction solution to obtain a silver particle slurry, which was stored in a receiving tank. After the feeding of the two liquids was completed, stirring in the receiving tank was continued for 30 minutes.

撹拌終了後の反応液を、フィルタープレスを使用してろ過し、銀粒子を固液分離した。続いて、回収した銀粒子を0.05mol/LのNaOH水溶液23L中に投入し、そこへステアリン酸エマルジョン(中京油脂(株)製、セロゾール920)17.8gを添加し、15分間撹拌した後、フィルタープレスでろ過して回収した。0.05mol/LのNaOH水溶液への投入、撹拌、及びろ過からなる操作を更に2回繰返した後、回収した銀粒子を純水23L中に投入し、15分間の撹拌による洗浄と、フィルタープレスによるろ過からなる操作を行った。その後、銀粒子をステンレスバットに移し、真空乾燥機にて60℃で10時間乾燥して銀粉を得た。   The reaction liquid after completion of the stirring was filtered using a filter press, and the silver particles were separated into solid and liquid. Subsequently, the recovered silver particles were put into 23 L of 0.05 mol / L NaOH aqueous solution, and 17.8 g of stearic acid emulsion (manufactured by Chukyo Yushi Co., Ltd., Cellosol 920) was added thereto and stirred for 15 minutes. It was recovered by filtration with a filter press. After repeating the operation consisting of addition to 0.05 mol / L NaOH aqueous solution, stirring, and filtration two more times, the recovered silver particles were put into 23 L of pure water, washed by stirring for 15 minutes, and a filter press The operation consisting of filtration by was performed. Thereafter, the silver particles were transferred to a stainless bat and dried at 60 ° C. for 10 hours in a vacuum dryer to obtain silver powder.

図12に得られた銀核の走査型電子顕微鏡(SEM)像を示し、図13に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた銀核と銀粉の平均粒径は、それぞれ0.037μmと0.40μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.21であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は0.37μmであり、狙いとした粒径の銀粉が得られていることが確認された。   FIG. 12 shows a scanning electron microscope (SEM) image of the obtained silver nucleus, and FIG. 13 shows an SEM image of the silver powder. As apparent from these SEM images, both of the obtained silver nucleus and silver powder were composed of uniform particles. In addition, the average particle diameters of silver nuclei and silver powder obtained by measuring the particle diameters of 300 or more primary particles from the SEM image and averaging them by the number of particles are 0.037 μm and 0.40 μm, respectively. The relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter of the silver powder obtained from the results was 0.21, confirming that it was uniform and free of fine particles. Moreover, the particle size calculated from the number of added nuclei was 0.37 μm, and it was confirmed that a silver powder having a target particle size was obtained.

(実施例8)
塩化銀50.1g(住友金属鉱山(株)製)を36℃の25質量%アンモニア水1360mLへ撹拌しながら投入して溶解した。この溶液を限外ろ過(分画分子量150,000)した後、純水175Lへ投入し、混合した。そこへ、50℃の純水50Lに溶解させた分散剤のポリビニルアルコール1350g((株)クラレ製、PVA205)を投入して得られた核生成用銀溶液(溶液中の銀濃度は0.23g/L、銀量に対するアンモニア量のモル比で60)を、36℃に保持した。
(Example 8)
50.1 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to 1360 mL of 25 mass% ammonia water at 36 ° C. with stirring and dissolved. This solution was subjected to ultrafiltration (fraction molecular weight 150,000), and then poured into 175 L of pure water and mixed. A nucleation silver solution obtained by adding 1350 g of polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA205) dissolved in 50 L of pure water at 50 ° C. (the silver concentration in the solution is 0.23 g). / L, the molar ratio of ammonia to silver was 60) was maintained at 36 ° C.

次に、強還元剤であるヒドラジン一水和物11.39mL(核生成用銀溶液中の銀量に対して3.0当量)を純水24.5Lへ添加して得られた還元剤溶液を、36℃に保持した。そして、核生成用銀溶液中に、408mL/分の流量で還元剤溶液を添加して銀核を生成させて銀核溶液とした。銀錯体を含む銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。   Next, a reducing agent solution obtained by adding 11.39 mL of hydrazine monohydrate, which is a strong reducing agent (3.0 equivalents relative to the amount of silver in the silver solution for nucleation), to 24.5 L of pure water. Was maintained at 36 ° C. Then, a reducing agent solution was added to the nucleation silver solution at a flow rate of 408 mL / min to produce silver nuclei to obtain a silver nucleation solution. A part of the silver solution containing the silver complex was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, which was 20 ppm by mass or less with respect to the amount of silver in the solution. It was confirmed that there was.

次に、得られた銀核溶液に、弱還元剤であるアスコルビン酸20.5kg(下記の粒子成長用銀溶液中の銀量に対して1.4当量)と純水42.3Lを添加して核含有還元剤溶液とした。   Next, 20.5 kg of ascorbic acid as a weak reducing agent (1.4 equivalents with respect to the amount of silver in the silver solution for particle growth described below) and 42.3 L of pure water are added to the obtained silver nucleus solution. Thus, a nucleus-containing reducing agent solution was obtained.

一方、液温32℃に保持した25質量%アンモニア水540Lに、塩化銀38.2kg(住友金属鉱山(株)製)を撹拌しながら投入し溶解して銀錯体溶液を得た。この溶液を限外ろ過(分画分子量150,000)した。さらに、消泡剤((株)アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液374mLを銀錯体溶液に添加して得られた粒子成長用銀溶液(溶液中の銀濃度は53g/L)を、温浴中において32℃に保持した。粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。なお、核含有還元剤溶液に添加したポリビニルアルコールの添加量は、粒子成長用銀溶液中の銀量に対して5.0質量%となる。   On the other hand, 35.2 kg of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to 540 L of 25% by mass ammonia water maintained at a liquid temperature of 32 ° C. with stirring to obtain a silver complex solution. This solution was ultrafiltered (fractionated molecular weight: 150,000). Furthermore, a silver solution for particle growth obtained by diluting an antifoaming agent (manufactured by Adeka Co., Ltd., Adecanol LG-126) 100 times by volume and adding 374 mL of this antifoaming agent dilution to the silver complex solution. (The silver concentration in the solution was 53 g / L) was kept at 32 ° C. in a warm bath. A part of the silver solution for particle growth was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, which is 20 ppm by mass or less with respect to the amount of silver in the solution. It was confirmed. In addition, the addition amount of the polyvinyl alcohol added to the nucleus-containing reducing agent solution is 5.0% by mass with respect to the silver amount in the silver solution for particle growth.

チューブポンプ(MASTERFLEX製)を使用し、粒子成長用銀溶液と核含有還元剤溶液とを、それぞれ2.7L/分、0.90L/分で送液し混合して反応液とした。反応液中で銀錯体を還元して銀粒子スラリーを得て、受槽内に貯留した。2液の送液が終了した後、受槽内での攪拌を30分継続した。   Using a tube pump (manufactured by MASTERFLEX), the silver solution for particle growth and the nucleus-containing reducing agent solution were fed at 2.7 L / min and 0.90 L / min, respectively, and mixed to obtain a reaction solution. The silver complex was reduced in the reaction solution to obtain a silver particle slurry, which was stored in a receiving tank. After the feeding of the two liquids was completed, stirring in the receiving tank was continued for 30 minutes.

撹拌終了後の反応液を、フィルタープレスを使用してろ過し、銀粒子を固液分離した。続いて、回収した銀粒子を0.05mol/LのNaOH水溶液343L中に投入し、そこへステアリン酸エマルジョン(中京油脂(株)製、セロゾール920)490gを添加し、15分間撹拌した後、フィルタープレスでろ過して回収した。0.05mol/LのNaOH水溶液への投入、撹拌、及びろ過からなる操作を更に2回繰返した後、回収した銀粒子を純水343L中に投入し、15分間の撹拌による洗浄と、フィルタープレスによるろ過からなる操作を行った。その後、銀粒子をステンレスバットに移し、真空乾燥機にて60℃で10時間乾燥して銀粉を得た。   The reaction liquid after completion of the stirring was filtered using a filter press, and the silver particles were separated into solid and liquid. Subsequently, the collected silver particles are put into 343 L of 0.05 mol / L NaOH aqueous solution, and 490 g of stearic acid emulsion (manufactured by Chukyo Yushi Co., Ltd., Cellosol 920) is added thereto and stirred for 15 minutes. It was recovered by filtration with a press. After repeating the operations of adding 0.05 mol / L NaOH aqueous solution, stirring and filtration two more times, the recovered silver particles were put into 343 L of pure water, washed by stirring for 15 minutes, and filter press The operation consisting of filtration by was performed. Thereafter, the silver particles were transferred to a stainless bat and dried at 60 ° C. for 10 hours in a vacuum dryer to obtain silver powder.

図14に得られた銀核の走査型電子顕微鏡(SEM)像を示し、図15に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた銀核と銀粉の平均粒径は、それぞれ0.040μmと0.46μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.22であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は0.40μmであり、狙いとした粒径の銀粉が得られていることが確認された。   FIG. 14 shows a scanning electron microscope (SEM) image of the obtained silver nucleus, and FIG. 15 shows an SEM image of the silver powder. As apparent from these SEM images, both of the obtained silver nucleus and silver powder were composed of uniform particles. In addition, the average particle diameters of silver nuclei and silver powder determined by measuring the particle diameters of 300 or more primary particles from the SEM image and averaging them by the number of particles are 0.040 μm and 0.46 μm, respectively. The relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter of the silver powder obtained from the results was 0.22, confirming that it was uniform and free of fine particles. Moreover, the particle size calculated from the number of added nuclei was 0.40 μm, and it was confirmed that a silver powder having a target particle size was obtained.

(実施例9)
核生成用銀溶液に用いる25%アンモニア水を2260mL(銀量に対するアンモニア量のモル比で50)にした以外は、実施例8と同様にして、銀粉を得た。
Example 9
Silver powder was obtained in the same manner as in Example 8 except that 25% ammonia water used for the silver solution for nucleation was changed to 2260 mL (molar ratio of ammonia amount to silver amount was 50).

図16に得られた銀核の走査型電子顕微鏡(SEM)像を示し、図17に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた銀核と銀粉の平均粒径は、それぞれ0.035μmと0.43μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.21であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は0.36μmであり、狙いとした粒径の銀粉が得られていることが確認された。   FIG. 16 shows a scanning electron microscope (SEM) image of the obtained silver nucleus, and FIG. 17 shows a SEM image of the silver powder. As apparent from these SEM images, both of the obtained silver nucleus and silver powder were composed of uniform particles. Moreover, the average particle diameters of silver nuclei and silver powder obtained by measuring the particle diameters of 300 or more primary particles from the SEM image and averaging them by the number of particles are 0.035 μm and 0.43 μm, respectively. The relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter of the silver powder obtained from the results was 0.21, confirming that it was uniform and free of fine particles. Moreover, the particle size calculated from the number of added nuclei was 0.36 μm, and it was confirmed that silver powder having the aimed particle size was obtained.

(比較例1)
分散剤のポリビニルアルコール31g((株)クラレ製、PVA205)を36℃の純水1.0Lに溶解し、さらに弱還元剤であるアスコルビン酸103gを添加した還元剤溶液と、粒子成長用銀溶液をそれぞれ送液して反応液としたこと以外は、実施例1と同様にして銀粉を得た。すなわち、比較例1では、還元剤溶液に銀核溶液を添加せず、核を用いた還元反応によって銀粒子を生成させなかった。
(Comparative Example 1)
A reducing agent solution in which 31 g of polyvinyl alcohol (PVA205, manufactured by Kuraray Co., Ltd.) as a dispersant is dissolved in 1.0 L of pure water at 36 ° C. and 103 g of ascorbic acid as a weak reducing agent is added, and a silver solution for particle growth A silver powder was obtained in the same manner as in Example 1 except that each was fed to give a reaction solution. That is, in Comparative Example 1, the silver nucleus solution was not added to the reducing agent solution, and silver particles were not generated by the reduction reaction using the nucleus.

得られた銀粉について実施例1と同様に評価した。図18に、得られた銀粉のSEM像を示す。SEM像からも明らかなように、微細な銀粒子が生じてしまっていることが分かる。また、得られた銀粉の平均粒径は0.34μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は1.29であった。このように、微粒が多く生成され、その粒度分布も広がりを持っていて均一ではなかった。   The obtained silver powder was evaluated in the same manner as in Example 1. FIG. 18 shows an SEM image of the obtained silver powder. As is clear from the SEM image, it can be seen that fine silver particles have been generated. Moreover, the average particle diameter of the obtained silver powder was 0.34 μm, and the relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter of the silver powder obtained from the measurement results was 1.29. Thus, many fine particles were produced, and the particle size distribution was broad and not uniform.

(比較例2)
核生成用銀溶液に用いる塩化銀を14.6g、25質量%アンモニア水150mL(核生成用銀溶液中の銀濃度は1.5g/L、銀量に対するアンモニア量はモル比で20)、銀核生成に用いるヒドラジンを6.33mLにした以外は、実施例5と同様にして銀核溶液を得た。
(Comparative Example 2)
14.6 g of silver chloride used for the nucleation silver solution, 150 mL of 25% by mass ammonia water (the silver concentration in the nucleation silver solution is 1.5 g / L, and the ammonia amount relative to the silver amount is 20 in molar ratio), silver A silver nucleus solution was obtained in the same manner as in Example 5 except that the amount of hydrazine used for nucleation was changed to 6.33 mL.

得られた銀核は、沈殿しており、核として機能させるためには、核含有還元剤溶液中で銀核を均一に再分散させる必要がある。したがって、核生成用銀溶液中の銀濃度は1.0g/L以下とすることが好ましい。   The obtained silver nuclei are precipitated, and in order to function as nuclei, the silver nuclei need to be uniformly redispersed in the nucleus-containing reducing agent solution. Therefore, the silver concentration in the nucleation silver solution is preferably 1.0 g / L or less.

(比較例3)
核生成用銀溶液に用いる塩化銀を90.2g、25質量%アンモニア水5600mL(核生成用銀溶液中の銀濃度は0.3g/L、銀量に対するアンモニア量はモル比で120)、ポリビニルアルコールを2700g、銀核生成に用いるヒドラジンを19.44mLにした以外は、実施例4と同様にして銀核溶液を得た。
(Comparative Example 3)
90.2 g of silver chloride used in the silver solution for nucleation, 5600 mL of 25% by mass ammonia water (the silver concentration in the silver solution for nucleation is 0.3 g / L, the amount of ammonia relative to the amount of silver is 120 in molar ratio), polyvinyl A silver nucleus solution was obtained in the same manner as in Example 4 except that 2700 g of alcohol and 19.44 mL of hydrazine used for silver nucleus generation were used.

ヒドラジンを添加終了後、1時間保持しても、反応は終了せず、そこへアスコルビン酸を添加すると、図19にSEM像を示すように、銀核同士が連結していることが確認された。このようにアンモニア量が多くなると核生成に長時間を要し生産性が低下する一方、反応終了前に弱還元剤を添加すると核の均一性が低下する。また、銀核が連結し、粒径が不均一になっていると、最終的に得られる銀粉の粒径の均一さに影響する可能性がある。したがって、核生成用銀溶液中の銀量に対するアンモニア量はモル比で100以下にすることが好ましい。   Even if it was held for 1 hour after the addition of hydrazine, the reaction was not completed, and when ascorbic acid was added thereto, it was confirmed that the silver nuclei were linked as shown in the SEM image in FIG. . Thus, when the amount of ammonia increases, nucleation takes a long time and productivity decreases, whereas when a weak reducing agent is added before the completion of the reaction, the uniformity of the nuclei decreases. Moreover, when the silver nuclei are connected and the particle size is not uniform, the uniformity of the particle size of the finally obtained silver powder may be affected. Therefore, the ammonia amount relative to the silver amount in the nucleation silver solution is preferably 100 or less in terms of molar ratio.

(比較例4)
38℃の温浴中において液温36℃に保持した25質量%アンモニア水50mLと純水0.46Lの混合液に、塩化銀2.25g(住友金属鉱山(株)製)を撹拌しながら投入して核生成用銀溶液(溶液中の銀濃度は3.0g/L、銀量に対するアンモニアのモル比で44)を作製した。
(Comparative Example 4)
2.25 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to a mixed liquid of 50 mL of 25% by mass ammonia water maintained at a liquid temperature of 36 ° C. in a 38 ° C. bath and 0.46 L of pure water while stirring. Thus, a nucleation silver solution (silver concentration in the solution was 3.0 g / L, 44 in terms of a molar ratio of ammonia to the amount of silver) was prepared.

次に、分散剤のポリビニルアルコール31g((株)クラレ製、PVA205)を36℃の純水1.0Lに溶解し、そこへ強還元剤であるヒドラジン一水和物0.23mL(核生成用銀溶液中の銀量に対して1.2当量)を添加して得られた還元剤溶液を、温浴中において36℃に保持した。そして、還元剤溶液中に、20mL/分の流量で核生成用銀溶液を添加して銀核を生成させ、銀核溶液とした。銀錯体を含む銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して55質量ppmであった。   Next, 31 g of polyvinyl alcohol as a dispersant (manufactured by Kuraray Co., Ltd., PVA205) was dissolved in 1.0 L of pure water at 36 ° C., and 0.23 mL of hydrazine monohydrate as a strong reducing agent (for nucleation) The reducing agent solution obtained by adding 1.2 equivalents to the amount of silver in the silver solution was kept at 36 ° C. in a warm bath. Then, a silver nucleus solution was added to the reducing agent solution at a flow rate of 20 mL / min to produce silver nuclei, thereby obtaining a silver nucleation solution. A part of the silver solution containing the silver complex was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, which was 55 ppm by mass with respect to the amount of silver in the solution. It was.

次に、得られた銀核溶液に、弱還元剤であるアスコルビン酸103g(下記の粒子成長用銀溶液中の銀量に対して1.4当量)を添加して核含有還元剤溶液とした。   Next, 103 g of ascorbic acid as a weak reducing agent (1.4 equivalents with respect to the amount of silver in the silver solution for particle growth described below) was added to the obtained silver core solution to obtain a core-containing reducing agent solution. .

一方、38℃の温浴中において液温36℃に保持した25質量%アンモニア水3.29Lに、塩化銀175g(住友金属鉱山(株)製)を撹拌しながら投入し溶解して銀錯体溶液を得た。この溶液を孔径0.1μmのメンブレンフィルターを用いてろ過した。さらに、消泡剤((株)アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液1.7mLを銀錯体溶液に添加して得られた粒子成長用銀溶液(溶液中の銀濃度は35g/L)を、温浴中において36℃に保持した。粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して53質量ppmであった。なお、核含有還元剤溶液に添加したポリビニルアルコールの添加量は、粒子成長用銀溶液の銀量に対して18質量%となる。   On the other hand, 175 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) was added to 3.29 L of 25 mass% ammonia water maintained at a liquid temperature of 36 ° C. in a 38 ° C. bath while stirring to dissolve the silver complex solution. Obtained. This solution was filtered using a membrane filter having a pore size of 0.1 μm. Further, an antifoaming agent (manufactured by Adeka Co., Ltd., Adecanol LG-126) was diluted 100 times in volume ratio, and 1.7 mL of this antifoaming agent dilution was added to the silver complex solution for particle growth. A silver solution (silver concentration in the solution was 35 g / L) was kept at 36 ° C. in a warm bath. A part of the silver solution for grain growth was collected and subjected to ultrafiltration with a molecular weight cut-off of 10,000 to determine the content of solid particles, which was 53 mass ppm with respect to the amount of silver in the solution. . In addition, the addition amount of the polyvinyl alcohol added to the nucleus-containing reducing agent solution is 18% by mass with respect to the silver amount of the particle growth silver solution.

チューブポンプ(MASTERFLEX製)を使用し、粒子成長用銀溶液と核含有還元剤溶液を、それぞれ2.4L/分、0.80L/分で送液し混合して反応液とした。反応液中で銀錯体を還元して銀粒子スラリーを得て、受槽内に貯留した。2液の送液が終了した後、受槽内での攪拌を30分継続した。   Using a tube pump (manufactured by MASTERFLEX), the silver solution for particle growth and the nucleus-containing reducing agent solution were fed at 2.4 L / min and 0.80 L / min, respectively, and mixed to obtain a reaction solution. The silver complex was reduced in the reaction solution to obtain a silver particle slurry, which was stored in a receiving tank. After the feeding of the two liquids was completed, stirring in the receiving tank was continued for 30 minutes.

撹拌終了後の反応液を、開口径0.3μmのメンブランフィルターを使用してろ過し、銀粒子を固液分離した。続いて、回収した銀粒子を0.05mol/LのNaOH水溶液2L中に投入し、そこへステアリン酸エマルジョン(中京油脂(株)製、セロゾール920)3.6gを添加し、15分間撹拌した後、開口径0.3μmのメンブランフィルターでろ過して回収した。0.05mol/LのNaOH水溶液への投入、撹拌、及びろ過からなる操作を更に2回繰返した後、回収した銀粒子を純水2L中に投入し、15分間の撹拌による洗浄と、フィルタープレスによるろ過からなる操作を行った。その後、銀粒子をステンレスバットに移し、真空乾燥機にて60℃で10時間乾燥して銀粉を得た。   The reaction liquid after completion of stirring was filtered using a membrane filter having an opening diameter of 0.3 μm to separate the silver particles into solid and liquid. Subsequently, the collected silver particles are put into 2 L of 0.05 mol / L NaOH aqueous solution, and 3.6 g of stearic acid emulsion (manufactured by Chukyo Yushi Co., Ltd., Cellosol 920) is added thereto and stirred for 15 minutes. The solution was collected by filtration through a membrane filter having an opening diameter of 0.3 μm. After repeating the operation consisting of addition to 0.05 mol / L NaOH aqueous solution, stirring, and filtration two more times, the recovered silver particles were put into 2 L of pure water, washed by stirring for 15 minutes, and a filter press The operation consisting of filtration by was performed. Thereafter, the silver particles were transferred to a stainless bat and dried at 60 ° C. for 10 hours in a vacuum dryer to obtain silver powder.

得られた銀粉について実施例1と同様に評価した。図20に得られた銀核のSEM像を示し、図21に銀粉のSEM像を示す。得られた銀粉の平均粒径は0.42μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.25であった。添加した核数から計算される粒径は0.7μmであり、銀錯体に含まれる不純物粒子が核として機能し、銀粉の粒径に影響したと推測される。このように、核生成用銀溶液をろ過しない場合、銀核の粒径が大きくなり、粒径の均一性が高い銀粉が得られるものの、銀粉を所望の粒径に制御することが困難である。   The obtained silver powder was evaluated in the same manner as in Example 1. FIG. 20 shows an SEM image of the obtained silver nucleus, and FIG. 21 shows an SEM image of the silver powder. The average particle diameter of the obtained silver powder was 0.42 μm, and the relative standard deviation (standard deviation σ / average particle diameter d) of the particle diameter of the silver powder obtained from the measurement results was 0.25. The particle size calculated from the number of added nuclei is 0.7 μm, and it is presumed that the impurity particles contained in the silver complex functioned as nuclei and influenced the particle size of the silver powder. Thus, when the nucleation silver solution is not filtered, the particle size of the silver nuclei is increased, and silver powder having a high uniformity in particle size can be obtained, but it is difficult to control the silver powder to a desired particle size. .

Claims (13)

銀錯体を含む銀溶液と還元剤溶液とを連続的に混合して反応液とし、該反応液中の銀錯体を還元して銀粒子スラリーを得た後、ろ過、洗浄、乾燥の各工程を経て銀粉を製造する銀粉の製造方法であって、
銀錯体を含む核生成用銀溶液と、強還元剤を含む溶液と、分散剤とを混合して銀核溶液を得る銀核溶液調製工程と、
上記銀核溶液調製工程により得られた銀核溶液と、上記強還元剤より標準電極電位が高い弱還元剤とを混合して核含有還元剤溶液を得る核含有還元剤溶液調製工程と、
上記核含有還元剤溶液調製工程により得られた核含有還元剤溶液と、固形粒子の含有量が銀量に対して20質量ppm以下であり、銀錯体を含む粒子成長用銀溶液とを連続的に混合して反応液とし、該反応液中で銀錯体を還元して銀粒子を成長させる粒子成長工程と、
を有し、
上記核生成用銀溶液中の銀量に対する上記強還元剤の当量が1.0当量以上、4.0当量未満であり、上記強還元剤の標準電極電位が0.056V以下であり、上記核生成用銀溶液中の銀濃度が0.1g/L〜6.0g/Lであることを特徴とする銀粉の製造方法。
A silver solution containing a silver complex and a reducing agent solution are continuously mixed to obtain a reaction solution. After the silver complex in the reaction solution is reduced to obtain a silver particle slurry, each step of filtration, washing, and drying is performed. A silver powder production method for producing silver powder,
A silver nucleus solution preparation step of obtaining a silver nucleus solution by mixing a silver solution for nucleation containing a silver complex, a solution containing a strong reducing agent, and a dispersant;
A core containing reducing agent solution preparing step for obtaining a core containing reducing agent solution by mixing a silver core solution obtained by the silver core solution preparing step and a weak reducing agent having a higher standard electrode potential than the strong reducing agent;
A core-containing reducing agent solution obtained by the above-described core-containing reducing agent solution preparation step and a silver solution for particle growth containing a silver complex, wherein the content of solid particles is 20 mass ppm or less with respect to the amount of silver To a reaction liquid, and a particle growth step of growing silver particles by reducing the silver complex in the reaction liquid;
Have
The equivalent of the strong reducing agent with respect to the amount of silver in the silver solution for nucleation is 1.0 equivalent or more and less than 4.0 equivalent, the standard electrode potential of the strong reducing agent is 0.056 V or less, and the nucleus A method for producing a silver powder, wherein the silver concentration in the production silver solution is 0.1 g / L to 6.0 g / L.
上記核生成用銀溶液は、固形粒子の含有量が銀量に対して20質量ppm以下であることを特徴とする請求項1に記載の銀粉の製造方法。   The method for producing silver powder according to claim 1, wherein the silver solution for nucleation has a solid particle content of 20 mass ppm or less with respect to the silver content. 上記強還元剤を含む溶液との混合前に、上記核生成用銀溶液を限外ろ過するろ過工程をさらに有することを特徴とする請求項2に記載の銀粉の製造方法。   The method for producing silver powder according to claim 2, further comprising a filtration step of ultrafiltration of the silver solution for nucleation before mixing with the solution containing the strong reducing agent. 上記核含有還元剤溶液との混合前に、上記粒子成長用銀溶液を限外ろ過するろ過工程をさらに有することを特徴とする請求項1〜3のいずれか1項に記載の銀粉の製造方法。   The method for producing silver powder according to any one of claims 1 to 3, further comprising a filtration step of ultrafiltration of the silver solution for particle growth before mixing with the core-containing reducing agent solution. . 上記限外ろ過の分画分子量が150,000以下であることを特徴とする請求項3又は4に記載の銀粉の製造方法。   The method for producing silver powder according to claim 3 or 4, wherein the ultrafiltration has a molecular weight cut-off of 150,000 or less. 上記強還元剤と上記弱還元剤の標準電極電位の差が1.0V以上であることを特徴とする請求項1〜5のいずれか1項に記載の銀粉の製造方法。   The method for producing silver powder according to any one of claims 1 to 5, wherein a difference in standard electrode potential between the strong reducing agent and the weak reducing agent is 1.0 V or more. 上記強還元剤はヒドラジン一水和物であり、上記弱還元剤はアスコルビン酸であることを特徴とする請求項1〜6のいずれか1項に記載の銀粉の製造方法。   The method for producing silver powder according to any one of claims 1 to 6, wherein the strong reducing agent is hydrazine monohydrate, and the weak reducing agent is ascorbic acid. 上記核生成用銀溶液中の銀濃度が0.1g/L〜1.0g/Lであり、上記粒子成長用銀溶液中の銀濃度が20g/L〜90g/Lであることを特徴とする請求項1〜7のいずれか1項に記載の銀粉の製造方法。   The silver concentration in the silver solution for nucleation is 0.1 g / L to 1.0 g / L, and the silver concentration in the silver solution for particle growth is 20 g / L to 90 g / L. The manufacturing method of the silver powder of any one of Claims 1-7. 上記銀錯体が塩化銀をアンモニア水に溶解して得られた銀アンミン錯体であることを特徴とする請求項1〜8のいずれか1項に記載の銀粉の製造方法。   The method for producing silver powder according to any one of claims 1 to 8, wherein the silver complex is a silver ammine complex obtained by dissolving silver chloride in aqueous ammonia. 上記核生成用銀溶液中の銀量に対するアンモニア量がモル比で20〜100であることを特徴とする請求項1〜9のいずれか1項に記載の銀粉の製造方法。   The method for producing silver powder according to any one of claims 1 to 9, wherein the ammonia amount with respect to the silver amount in the nucleation silver solution is 20 to 100 in terms of molar ratio. 上記分散剤の混合量が、上記核含有還元剤溶液と上記粒子成長用銀溶液の混合後における上記粒子成長用銀溶液中の銀量に対して1質量%〜30質量%であることを特徴とする請求項1〜10のいずれか1項に記載の銀粉の製造方法。   The mixing amount of the dispersant is 1% by mass to 30% by mass with respect to the amount of silver in the particle growth silver solution after mixing the nucleus-containing reducing agent solution and the particle growth silver solution. The manufacturing method of the silver powder of any one of Claims 1-10. 上記分散剤がポリビニルアルコール、ポリビニルピロリドン、変性シリコンオイル系界面活性剤、ポリエーテル系界面活性剤から選択される少なくとも1種であることを特徴とする請求項1〜11のいずれか1項に記載の銀粉の製造方法。   The said dispersing agent is at least 1 sort (s) selected from polyvinyl alcohol, polyvinylpyrrolidone, a modified silicone oil type surfactant, and a polyether type surfactant, The any one of Claims 1-11 characterized by the above-mentioned. Silver powder production method. 上記核含有還元剤溶液と上記粒子成長用銀溶液との混合において、各溶液を個別に反応管に供給し、該反応管内に配置したスタティックミキサーで混合することを特徴とする請求項1〜12のいずれか1項に記載の銀粉の製造方法。   13. The mixing of the nucleus-containing reducing agent solution and the silver solution for particle growth is performed by supplying each solution individually to a reaction tube and mixing with a static mixer disposed in the reaction tube. The manufacturing method of the silver powder of any one of these.
JP2013269992A 2013-10-28 2013-12-26 Silver powder manufacturing method Expired - Fee Related JP6003880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013269992A JP6003880B2 (en) 2013-10-28 2013-12-26 Silver powder manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013223569 2013-10-28
JP2013223569 2013-10-28
JP2013269992A JP6003880B2 (en) 2013-10-28 2013-12-26 Silver powder manufacturing method

Publications (2)

Publication Number Publication Date
JP2015110823A JP2015110823A (en) 2015-06-18
JP6003880B2 true JP6003880B2 (en) 2016-10-05

Family

ID=53525851

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013269992A Expired - Fee Related JP6003880B2 (en) 2013-10-28 2013-12-26 Silver powder manufacturing method
JP2014014490A Expired - Fee Related JP6187287B2 (en) 2013-10-28 2014-01-29 Silver powder and method for producing the same
JP2014042611A Expired - Fee Related JP6213311B2 (en) 2013-10-28 2014-03-05 Silver powder manufacturing method

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2014014490A Expired - Fee Related JP6187287B2 (en) 2013-10-28 2014-01-29 Silver powder and method for producing the same
JP2014042611A Expired - Fee Related JP6213311B2 (en) 2013-10-28 2014-03-05 Silver powder manufacturing method

Country Status (1)

Country Link
JP (3) JP6003880B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101826321B1 (en) * 2016-11-30 2018-02-06 (주)차라도 A Cut―Off Method For Cold Bridge of House & Building Foundation

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268994A (en) * 2015-12-02 2016-01-27 广东南海启明光大科技有限公司 Preparation method for emulsion containing nano-silver particles
CN105499601B (en) * 2015-12-21 2017-10-17 中国科学院理化技术研究所 A kind of preparation method of ag nano-cluster
CN105499603B (en) * 2015-12-25 2017-07-04 鲁东大学 The method of Cordyceps militaris extract solution biosynthesis nano silver antibacterial agent
JP2017191011A (en) * 2016-04-13 2017-10-19 株式会社村田製作所 Powder evaluation method
CN105869775A (en) * 2016-05-13 2016-08-17 浙江光达电子科技有限公司 Method for preparing spherical silver powder for silver paste on front of solar cell
CN105880630A (en) * 2016-06-07 2016-08-24 上海纳米技术及应用国家工程研究中心有限公司 Silver nanowire preparation method
EP3498398B1 (en) * 2016-08-10 2021-04-14 Bando Chemical Industries, Ltd. Method for producing metallic silver fine particles
KR102007860B1 (en) * 2017-11-06 2019-08-06 엘에스니꼬동제련 주식회사 Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
KR102152836B1 (en) * 2018-11-30 2020-09-07 엘에스니꼬동제련 주식회사 Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
CN112420239A (en) * 2019-11-07 2021-02-26 陕西彩虹新材料有限公司 Preparation method of nano low-silver efficient front silver conductor slurry for crystalline silicon solar
CN110899691A (en) * 2019-11-25 2020-03-24 江苏博迁新材料股份有限公司 Production method of silver powder with controllable sintering activity
CN111097922A (en) * 2020-02-21 2020-05-05 深圳先进技术研究院 Nano silver particle and preparation method and application thereof
CN111243779A (en) * 2020-03-09 2020-06-05 广东四维新材料有限公司 Preparation method for laser cutting conductive silver paste and low-temperature curing superfine spherical silver powder and preparation method for conductive silver paste and low-temperature curing superfine spherical silver powder
CN113579229B (en) * 2021-06-18 2023-04-18 西湖未来智造(杭州)科技发展有限公司 Nano metal 3D printing ink and application thereof
CN113414401B (en) * 2021-06-22 2022-03-15 山东建邦胶体材料有限公司 Silver powder of crystalline silicon solar PERC battery silver paste and preparation method thereof
CN114619039B (en) * 2022-03-15 2023-01-31 江苏连银新材料有限公司 Spherical silver powder, preparation method thereof and conductive paste
CN115464148B (en) * 2022-09-21 2023-05-26 广东石油化工学院 Preparation method of petal-shaped micro-nano silver powder
CN116984622B (en) * 2023-09-26 2024-02-09 东方电气集团科学技术研究院有限公司 Preparation method of nano seed crystal for inducing growth of crystallization type micron-sized silver powder
CN117300138B (en) * 2023-10-07 2024-04-16 龚辉 Preparation method of superfine silver powder for low-temperature silver paste

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3989002B2 (en) * 2002-01-29 2007-10-10 旭化成ケミカルズ株式会社 Method for producing high purity glycolic acid crystals
JP4787938B2 (en) * 2003-03-28 2011-10-05 ザ・プロウボウスト・フェロウズ・ファウンデーション・スカラーズ・アンド・ザ・アザー・メンバーズ・オブ・ボード・オブ・ザ・カレッジ・オブ・ザ・ホリー・アンド・アンデバイデッド・トリニティ・オブ・クイーン Detecting sensor using silver nanoparticles
JP5424545B2 (en) * 2007-09-06 2014-02-26 住友金属鉱山株式会社 Copper fine particles, production method thereof, and copper fine particle dispersion
JP2009120901A (en) * 2007-11-14 2009-06-04 Ne Chemcat Corp Gold-platinum core-shell nanoparticle colloid, and its manufacturing method
JP5415708B2 (en) * 2008-03-26 2014-02-12 Dowaエレクトロニクス株式会社 Silver powder manufacturing method
JP5355007B2 (en) * 2008-09-17 2013-11-27 Dowaエレクトロニクス株式会社 Method for producing spherical silver powder
JP5725699B2 (en) * 2009-08-21 2015-05-27 Dowaエレクトロニクス株式会社 Silver powder and method for producing silver powder
JP5683256B2 (en) * 2010-12-24 2015-03-11 三菱製紙株式会社 Method for producing silver nanowires
JP5790433B2 (en) * 2011-11-18 2015-10-07 住友金属鉱山株式会社 Silver powder and method for producing the same
WO2013133103A1 (en) * 2012-03-07 2013-09-12 住友金属鉱山株式会社 Silver powder and method for producing same
JP5835077B2 (en) * 2012-04-18 2015-12-24 住友金属鉱山株式会社 Nickel powder and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101826321B1 (en) * 2016-11-30 2018-02-06 (주)차라도 A Cut―Off Method For Cold Bridge of House & Building Foundation

Also Published As

Publication number Publication date
JP2015110826A (en) 2015-06-18
JP6213311B2 (en) 2017-10-18
JP6187287B2 (en) 2017-08-30
JP2015110823A (en) 2015-06-18
JP2015110824A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6003880B2 (en) Silver powder manufacturing method
JP6119599B2 (en) Silver powder manufacturing method
JP6201875B2 (en) Silver powder and method for producing the same
JP5354041B2 (en) Silver powder manufacturing method
JP5949654B2 (en) Silver powder and method for producing the same
JP2010043337A (en) Silver powder and its manufacturing method
JP2012077372A (en) Silver powder and manufacturing method therefor
JP2011001581A (en) Silver powder and method for producing the same
JP6086046B2 (en) Silver powder manufacturing method and silver powder manufacturing apparatus
JP5857703B2 (en) Silver powder
JP5803830B2 (en) Silver powder manufacturing method
JP6115405B2 (en) Silver powder manufacturing method
JP6115406B2 (en) Silver powder manufacturing method
JP6086145B2 (en) Silver powder manufacturing method
JP6135405B2 (en) Silver powder and method for producing the same
JP2016138310A (en) Silver powder and production method therefor, and photosensitive silver paste
JP5954473B2 (en) Silver powder manufacturing method
JP2016020532A (en) Silver nanoparticle colloid, silver nanoparticle, manufacturing method of silver nanoparticle colloid and manufacturing method of silver nanoparticle
JP5884708B2 (en) Silver powder manufacturing method and manufacturing apparatus thereof
JP2014001455A (en) Silver powder
JP2014065963A (en) Production method of silver powder and silver powder production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees