JP6086046B2 - Silver powder manufacturing method and silver powder manufacturing apparatus - Google Patents
Silver powder manufacturing method and silver powder manufacturing apparatus Download PDFInfo
- Publication number
- JP6086046B2 JP6086046B2 JP2013177379A JP2013177379A JP6086046B2 JP 6086046 B2 JP6086046 B2 JP 6086046B2 JP 2013177379 A JP2013177379 A JP 2013177379A JP 2013177379 A JP2013177379 A JP 2013177379A JP 6086046 B2 JP6086046 B2 JP 6086046B2
- Authority
- JP
- Japan
- Prior art keywords
- silver
- solution
- reducing agent
- reaction
- receiving tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
本発明は、銀粉の製造方法、ならびにその製造に用いる製造装置に関するものであり、更に詳しくは、電子機器の配線層や電極などの形成に利用される樹脂型銀ペーストや焼成型銀ペーストの主たる成分となる銀粉の製造方法に関する。 The present invention relates to a method for producing silver powder and a production apparatus used for the production, and more specifically, a resin-type silver paste or a fired-type silver paste used for forming a wiring layer or an electrode of an electronic device. The present invention relates to a method for producing silver powder as a component.
電子機器における配線層や電極などの形成には、樹脂型銀ペーストや焼成型銀ペーストのような銀ペーストが多用されている。これらの銀ペーストは、塗布又は印刷した後、加熱硬化あるいは加熱焼成されることによって、配線層や電極などとなる導電膜を形成する。 Silver pastes such as resin-type silver paste and fired-type silver paste are frequently used to form wiring layers and electrodes in electronic devices. These silver pastes are applied or printed, and then heat-cured or heat-baked to form a conductive film that becomes a wiring layer, an electrode, or the like.
例えば、樹脂型銀ペーストは、銀粉、樹脂、硬化剤、溶剤などからなり、導電体回路パターン又は端子の上に印刷し、100℃〜200℃で加熱硬化させて導電膜とし、配線や電極を形成する。また、焼成型銀ペーストは、銀粉、ガラス、溶剤などからなり、導電体回路パターン又は端子の上に印刷し、600℃〜800℃に加熱焼成して導電膜とし、配線や電極を形成する。これらの銀ペーストで形成された配線や電極では、銀粉が連なることで電気的に接続した電流パスが形成されている。 For example, a resin-type silver paste is made of silver powder, resin, curing agent, solvent, etc., printed on a conductor circuit pattern or terminal, and cured by heating at 100 ° C. to 200 ° C. to form a conductive film. Form. The fired silver paste is made of silver powder, glass, solvent, etc., printed on a conductor circuit pattern or terminal, and heated and fired at 600 ° C. to 800 ° C. to form a conductive film to form wirings and electrodes. In wirings and electrodes formed of these silver pastes, electrically connected current paths are formed by continuous silver powder.
銀ペーストに使用される銀粉は、粒径が0.1μmから数μmであり、形成する配線の太さや電極の厚さによって使用される銀粉の粒径が異なる。また、銀ペースト中に均一に銀粉を分散させることにより、均一な太さの配線、均一な厚さの電極を形成することができる。 The silver powder used in the silver paste has a particle size of 0.1 μm to several μm, and the particle size of the silver powder used varies depending on the thickness of the wiring to be formed and the thickness of the electrode. Further, by uniformly dispersing silver powder in the silver paste, it is possible to form a wiring having a uniform thickness and an electrode having a uniform thickness.
銀ペースト用の銀粉に求められる特性としては、用途及び使用条件により様々であるが、一般的で且つ重要なことは、粒径が均一で凝集が少なく、銀ペースト中への分散性が高いことである。銀粉の粒径が均一で、且つペースト中への分散性が高いと、硬化あるいは焼成が均一に進み、低抵抗で強度の大きい導電膜を形成できるからである。逆に粒径が不均一で分散性が悪いと、印刷膜中に銀粒子が均一に存在しないため、配線や電極の太さや厚さが不均一となるばかりか、硬化あるいは焼成が不均一となるため、導電膜の抵抗が大きくなったり、導電膜が脆く弱いものになったりしやすい。 The properties required for silver powder for silver paste vary depending on the application and use conditions, but the general and important thing is that the particle size is uniform, there is little aggregation, and the dispersibility in the silver paste is high. It is. This is because when the particle size of the silver powder is uniform and the dispersibility in the paste is high, curing or firing proceeds uniformly, and a conductive film having low resistance and high strength can be formed. Conversely, if the particle size is uneven and the dispersibility is poor, the silver particles are not uniformly present in the printed film, so the thickness and thickness of the wiring and electrodes are not uniform, and curing or firing is not uniform. Therefore, the resistance of the conductive film tends to increase, or the conductive film tends to be brittle and weak.
更に、銀ペースト用の銀粉に求められる事項として、製造コストが低いことも重要である。銀粉は、銀ペーストの主成分であるため、銀ペースト価格に占める割合が大きいためである。製造コストの低減のためには、生産性が高いことや、使用する原料や材料の単価が低いだけでなく、廃液や排気の処理コストが低いことも重要となる。 Further, as a matter required for silver powder for silver paste, it is also important that the manufacturing cost is low. This is because silver powder is a main component of the silver paste and therefore has a large proportion of the silver paste price. In order to reduce manufacturing costs, it is important not only to have high productivity and low unit cost of raw materials and materials to be used, but also to have low waste liquid and exhaust treatment costs.
上述した銀ペーストに使用される銀粉の製造は、硝酸銀などの銀塩のアンミン錯体を含む溶液が入った槽内に還元剤溶液を投入して還元するバッチ式で行なわれることが多かった。しかしながら、バッチ式では、還元剤が投入された位置で局部的に還元反応が始まり、還元剤の投入開始から終了までの間で銀粒子の核が随時発生していくため、均一な粒径の銀粉を得ることは難しい。 Silver powder used in the silver paste described above is often manufactured in a batch system in which a reducing agent solution is introduced into a tank containing a solution containing an ammine complex of silver salt such as silver nitrate. However, in the batch method, the reduction reaction starts locally at the position where the reducing agent is charged, and the nuclei of silver particles are generated from the start to the end of the charging of the reducing agent. It is difficult to obtain silver powder.
このため、バッチ式ではなく、銀塩のアンミン錯体を含む溶液と還元剤溶液を連続的に混合する還元方法が提案されている。 For this reason, not a batch method but a reduction method in which a solution containing a silver salt ammine complex and a reducing agent solution are continuously mixed has been proposed.
特許文献1には、銀アンミン錯体水溶液S1が一定の第一流路aを流れ、その第一流路aの途中に合流する第二流路bを設け、この第二流路bを通じて有機還元剤及び必要に応じた添加剤S2を流し、第一流路aと第二流路bとの合流点mで接触混合して還元析出させる銀粉の製造方法が開示されている。
しかしながら、この方法で得られる銀粉は、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIAが0.6μm以下、結晶子径が10nm以下であり、微細粒子である。このため、一般的な銀ペーストの用途には不向きであり、用途が限られたものとなってしまう。また、反応溶液中の銀濃度が低く、生産性に優れた製造方法とは言い難い。 However, silver powder obtained by this method, the average particle diameter D IA of the primary particles obtained by image analysis of a scanning electron microscope image is 0.6μm or less, the crystallite diameter is not more 10nm or less, a fine particle. For this reason, it is unsuitable for the use of a general silver paste, and the use is limited. Further, it is difficult to say that the production method has a low silver concentration in the reaction solution and excellent productivity.
上述した製造方法を含めて、銀源として用いる原料は硝酸銀が一般的である。しかしながら、硝酸銀は、アンモニア水等への溶解過程で有毒な亜硝酸ガスを発生し、これを回収する装置が必要となる。また、廃水中に硝酸系窒素やアンモニア系窒素が多量に含まれるので、その処理のための装置も必要となる。更に、硝酸銀は、危険物であり劇物でもあるため、取り扱いに注意を要する。このように、硝酸銀を銀粉の原料として用いる場合は、環境に及ぼす影響やリスクが他の銀化合物に比べて大きいという問題点を抱えている。 Including the manufacturing method described above, the raw material used as the silver source is generally silver nitrate. However, silver nitrate generates toxic nitrous acid gas in the process of dissolution in aqueous ammonia and requires a device for recovering this. Further, since a large amount of nitrate nitrogen and ammonia nitrogen is contained in the wastewater, an apparatus for the treatment is also required. Furthermore, silver nitrate is a dangerous and deleterious substance, so it needs to be handled with care. As described above, when silver nitrate is used as a raw material for silver powder, there is a problem that the influence and risk on the environment are larger than those of other silver compounds.
そこで、硝酸銀を原料とせずに、塩化銀を還元して銀粉を製造する方法が提案されている。塩化銀は、危険物にも劇物にも該当せず、遮光の必要はあるものの、比較的取り扱いが容易な銀化合物であるという利点を有している。また、塩化銀は、銀の精製プロセスの中間品としても存在し、電子工業用として十分な純度を有するものが提供されている。 Therefore, a method for producing silver powder by reducing silver chloride without using silver nitrate as a raw material has been proposed. Silver chloride is not a dangerous or deleterious substance and has the advantage that it is a silver compound that is relatively easy to handle, although it needs to be shielded from light. Silver chloride also exists as an intermediate product in the silver refining process, and has a sufficient purity for use in the electronics industry.
例えば、特許文献2には、塩化銀をアンモニア水に銀濃度で1〜100g/lとなるように溶解した後、この溶液に保護コロイドの存在下で還元剤を加えて撹拌し、溶液中の銀アンミン錯体を液相還元して銀超微粒子を得る方法が開示されている。しかしながら、この方法で得られる銀粉は、粒径が0.1μm以下と微細であるため、電子工業用としては用途が限られてしまう。 For example, in Patent Document 2, after silver chloride is dissolved in ammonia water so that the silver concentration is 1 to 100 g / l, a reducing agent is added to this solution in the presence of a protective colloid and stirred, A method for obtaining silver ultrafine particles by liquid phase reduction of a silver ammine complex is disclosed. However, since the silver powder obtained by this method is as fine as 0.1 μm or less in particle size, its use is limited for the electronics industry.
上述のごとく銀粉の製造方法については多くの提案がなされているが、平均粒径が0.1μmから数μmで均一な一次粒子径を有した銀粉、すなわち一次粒子の粒度分布が狭く、分散性が高い銀粉を得ることと、優れた生産性を有し低コストで銀粉を得ることとが両立できていない。 As described above, many proposals have been made for the production method of silver powder, but silver powder having an average particle diameter of 0.1 μm to several μm and a uniform primary particle diameter, that is, the particle size distribution of the primary particles is narrow, and the dispersibility However, it is not possible to obtain a silver powder with high productivity and to obtain silver powder at a low cost with excellent productivity.
本発明は、このような従来の事情に鑑み、平均粒径が0.1μmから数μmで一次粒子の粒度分布が狭く、分散性が高い銀粉を生産性が高く低コストで製造することができる銀粉の製造方法、およびその製造に用いられる銀粉の製造装置を提供することを目的とする。 In view of such a conventional situation, the present invention can produce silver powder having an average particle size of 0.1 μm to several μm, a narrow primary particle size distribution, and high dispersibility at high productivity and low cost. It aims at providing the manufacturing method of silver powder, and the manufacturing apparatus of silver powder used for the manufacture.
本発明者は、上記目的を達成するため、銀錯体を含む溶液に還元剤溶液を連続的に混合して還元し、銀粉を得る銀粉の製造方法において、得られる銀粒子の粒径制御について検討を重ねた結果、形成された銀粒子を含むスラリー中での保持時間が、銀粒子の粒径と凝集状態に大きく影響するとの知見を得て、本発明に至ったものである。 In order to achieve the above-mentioned object, the present inventor examined the particle size control of the obtained silver particles in a method for producing silver powder in which a reducing agent solution is continuously mixed and reduced to a solution containing a silver complex to obtain silver powder. As a result, the knowledge that the retention time in the slurry containing the formed silver particles greatly affects the particle size and aggregation state of the silver particles has been obtained, and the present invention has been achieved.
即ち、本発明の銀粉の製造方法は、銀錯体を含む銀溶液と還元剤溶液をそれぞれ定量的かつ連続的に流路内に供給し、銀溶液と還元剤溶液を流路内で混合して反応液中で銀錯体を定量的かつ連続的に還元して銀粉を得る銀粉の製造方法において、前記銀溶液と前記還元剤溶液を流路内で混合して得た反応液を該流路から、該反応液を滞留する受槽に送り、該受槽内においての平均滞留時間が前記反応液が前記流路から排出されてから、該反応液の酸化還元電位が最小値に達するまでの時間以上となるように撹拌しながら滞留させ、前記反応液を前記流路から前記受槽内に排出しながら、該受槽内で滞留させた反応液を槽外に送液して固液分離することを特徴とする。 That is, the silver powder production method of the present invention supplies a silver solution containing a silver complex and a reducing agent solution quantitatively and continuously into the flow path, and mixes the silver solution and the reducing agent solution in the flow path. In a silver powder production method for obtaining silver powder by quantitatively and continuously reducing a silver complex in a reaction solution, the reaction solution obtained by mixing the silver solution and the reducing agent solution in the flow channel is removed from the flow channel. The reaction liquid is sent to a receiving tank, and the average residence time in the receiving tank is longer than the time from when the reaction liquid is discharged from the flow path until the oxidation-reduction potential of the reaction liquid reaches the minimum value. The reaction liquid retained in the receiving tank is sent to the outside of the tank and separated into solid and liquid while the reaction liquid is allowed to stay with stirring so that the reaction liquid is discharged from the flow path into the receiving tank. It is characterized by.
前記銀溶液は、塩化銀をアンモニア水に溶解することにより得ることが好ましく、前記還元剤はアスコルビン酸であり、上記銀溶液と還元剤溶液の混合時における混合比を銀1モルに対して還元剤を0.25〜0.50モルとすることが好ましい。 The silver solution is preferably obtained by dissolving silver chloride in aqueous ammonia, the reducing agent is ascorbic acid, and the mixing ratio at the time of mixing the silver solution and the reducing agent solution is reduced with respect to 1 mol of silver. The agent is preferably 0.25 to 0.50 mol.
また、前記還元剤溶液に、分散剤としてポリビニルアルコール、ポリビニルピロリドン、変性シリコンオイル系界面活性剤、ポリエーテル系界面活性剤から選択される少なくとも1種を添加することが好ましい。 Moreover, it is preferable to add at least one selected from polyvinyl alcohol, polyvinyl pyrrolidone, a modified silicone oil surfactant, and a polyether surfactant as a dispersant to the reducing agent solution.
さらに、前記反応液中の銀濃度を25〜50g/Lとすることが好ましい。 Furthermore, the silver concentration in the reaction solution is preferably 25 to 50 g / L.
本発明の銀粉の製造装置は、上記製造方法に用いられる製造装置であって、銀錯体を含む銀溶液と還元剤溶液を流路内で混合して反応液中で銀錯体を定量的かつ連続的に還元する機構を有する流路と、前記流路に前記銀溶液と前記還元剤溶液をそれぞれ定量的かつ連続的に供給する機構と、前記流路から排出された反応液を滞留させる受槽と、滞留後の反応液を前記受槽から送液して固液分離する固液分離機構を備え、前記受槽の容量が、前記銀溶液の流量と前記還元剤溶液の流量の和に前記還元反応が終了する時間を乗じて得られた液量以上であり、前記受槽には、前記流路から反応液が排出される排出位置と、槽内の反応液が前記固液分離機構に送液される送液位置との間に、該反応液の流れを迂回させる迂回機構を有することを特徴とするものである。 The silver powder production apparatus of the present invention is a production apparatus used in the above production method, wherein a silver solution containing a silver complex and a reducing agent solution are mixed in a flow path to quantitatively and continuously form a silver complex in a reaction solution. A flow path having a mechanism for automatically reducing, a mechanism for quantitatively and continuously supplying the silver solution and the reducing agent solution to the flow path, and a receiving tank for retaining the reaction liquid discharged from the flow path, And a solid-liquid separation mechanism that separates the retained reaction liquid from the receiving tank for solid-liquid separation, and the capacity of the receiving tank is equal to the sum of the flow rate of the silver solution and the flow rate of the reducing agent solution. More than the amount of liquid obtained by multiplying the time to finish, the discharge position to which the reaction liquid is discharged from the flow path and the reaction liquid in the tank are sent to the solid-liquid separation mechanism in the receiving tank It has a detour mechanism for detouring the flow of the reaction liquid between the liquid feed position and Is shall.
本発明によれば、平均粒径が0.1μmから数μmで一次粒子の粒度分布が狭く、分散性が高い銀粉を得ることができる。また、本発明は、連続的に還元する製造方法であるため、生産性が極めて高く、工業的規模でも容易に実施可能な方法であり、低コストで実施することができる。 According to the present invention, silver powder having an average particle size of 0.1 μm to several μm, a narrow primary particle size distribution, and high dispersibility can be obtained. In addition, since the present invention is a production method that continuously reduces, the productivity is extremely high, and the method can be easily carried out even on an industrial scale, and can be carried out at a low cost.
さらに、本発明は、適度な粒径を有するとともに分散性が高く、電子機器の配線層や電極などの形成に利用される樹脂型銀ペーストや焼成型銀ペーストなどのペースト用銀粉として好適な銀粉が得られ、その工業的価値は極めて大きいものである。 Furthermore, the present invention is a silver powder that has an appropriate particle size and high dispersibility, and is suitable as a silver powder for pastes such as resin-type silver paste and fired-type silver paste used for forming wiring layers and electrodes of electronic devices. And its industrial value is extremely high.
以下、本発明に係る銀粉の製造方法及びその製造方法に用いられる銀粉の製造装置の具体的な実施形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を変更しない限りにおいて適宜変更することができる。 Hereinafter, specific embodiments of a silver powder production method and a silver powder production apparatus used in the production method according to the present invention will be described in detail. Note that the present invention is not limited to the following embodiments, and can be appropriately changed without changing the gist of the present invention.
本発明に係る銀粉の製造方法によって得られる銀粉は、銀粒子からなる。ここで、銀粒子形態を次のように定義する。すなわち、銀粒子を、外見上の幾何学的形態から判断して、単位粒子と考えられるものを一次粒子と呼ぶ。また、一次粒子がネッキングにより2乃至3以上連結し、一次粒子及びネッキングした一次粒子が凝集したものを二次粒子と呼ぶ。したがって、銀粒子は、一次粒子及び二次粒子からなるものである。 The silver powder obtained by the method for producing silver powder according to the present invention comprises silver particles. Here, the silver particle morphology is defined as follows. That is, silver particles are considered to be unit particles when judged from the apparent geometric form, and are called primary particles. In addition, a combination of two or more primary particles by necking and aggregation of the primary particles and the necked primary particles is called secondary particles. Accordingly, silver particles are composed of primary particles and secondary particles.
<銀粉の製造方法>
本発明を適用した銀粉の製造方法は、銀錯体を含む銀溶液と還元剤溶液とをそれぞれ定量的かつ連続的に流路内に供給し、該銀溶液と該還元剤溶液とを流路内で混合させた反応液中で銀錯体を定量的かつ連続的に還元反応を生じせしめ、還元反応が終了した還元後液の銀粒子スラリーを定量的かつ連続的に排出する。これにより、銀粉の製造方法では、還元反応場の銀錯体の濃度と還元剤の濃度が一定に保たれ、核発生の速度とその濃度が一定になり、さらに一定の粒成長を図ることができる。このため、この銀粉の製造方法では、得られる銀粒子の大きさが揃い、平均粒径が0.1μmから数μmで一次粒子の粒度分布がシャープな銀粉を得ることができる。さらに、この銀粉の製造方法では、銀溶液と還元剤溶液を流路内で混合して得た反応液を、流路から排出された反応液を滞留する受槽内で撹拌しながら滞留させた後、固液分離することで、過度の凝集を抑制し、粒度分布が狭く分散性に優れた銀粉とすることができる。また、この銀粉の製造方法では、銀溶液と還元剤溶液の供給と銀粒子スラリーの排出を連続的に行うことで、連続的に銀粉を得ることができ、高い生産性をもって銀粉を製造することができる。
<Method for producing silver powder>
A method for producing silver powder to which the present invention is applied includes a method in which a silver solution containing a silver complex and a reducing agent solution are quantitatively and continuously supplied into a flow path, and the silver solution and the reducing agent solution are supplied into the flow path. The reduction reaction of the silver complex is caused quantitatively and continuously in the reaction solution mixed in step (1), and the silver particle slurry of the reduced solution after the reduction reaction is quantitatively and continuously discharged. As a result, in the silver powder production method, the concentration of the silver complex and the concentration of the reducing agent in the reduction reaction field are kept constant, the rate of nucleation and the concentration thereof are constant, and further constant grain growth can be achieved. . For this reason, in this silver powder production method, silver powder having a uniform particle size distribution, an average particle size of 0.1 μm to several μm, and a sharp primary particle size distribution can be obtained. Furthermore, in this silver powder manufacturing method, the reaction liquid obtained by mixing the silver solution and the reducing agent solution in the flow path is retained while stirring in the receiving tank in which the reaction liquid discharged from the flow path is retained. Thereafter, by performing solid-liquid separation, excessive aggregation can be suppressed, and a silver powder having a narrow particle size distribution and excellent dispersibility can be obtained. Moreover, in this silver powder manufacturing method, the silver powder can be continuously obtained by continuously supplying the silver solution and the reducing agent solution and discharging the silver particle slurry, and the silver powder can be manufactured with high productivity. Can do.
さらに、この銀粉の製造方法では、塩化銀を原料とすることが可能であり、硝酸銀を出発原料とした際の亜硝酸ガスの回収装置や廃水中の硝酸系窒素の処理装置を必要とせず、環境への影響も少ないプロセスであり、製造コストを低くすることができる。 Furthermore, in this silver powder production method, it is possible to use silver chloride as a raw material, without the need for a recovery device for nitrous acid gas when silver nitrate is used as a starting material or a processing device for nitrate nitrogen in waste water, It is a process that has little impact on the environment, and the manufacturing cost can be reduced.
このような銀粉の製造方法においては、銀溶液と還元剤溶液とを混合して得た反応液を流路から排出し、流路から排出された反応液を滞留する受槽内での滞留時間が、還元反応が終了する時間以上となるように撹拌しながら滞留させ、固液分離することが重要となる。これにより、この銀粉の製造方法では、受槽内で還元反応が終了して反応液中に残留している未還元の銀錯体がほぼ消費されるため、固液分離中に銀錯体が還元されて生成される銀による銀粒子の凝集を抑制することができる。 In such a method for producing silver powder, the reaction liquid obtained by mixing the silver solution and the reducing agent solution is discharged from the flow path, and the residence time in the receiving tank in which the reaction liquid discharged from the flow path is retained. However, it is important to retain the mixture with stirring so that it is longer than the time for the reduction reaction to be completed, and to perform solid-liquid separation. As a result, in this silver powder production method, the reduction reaction is completed in the receiving tank, and the unreduced silver complex remaining in the reaction solution is almost consumed, so the silver complex is reduced during the solid-liquid separation. Aggregation of silver particles due to silver produced in this manner can be suppressed.
ここで、還元反応が終了する時間(以下、終了時間という)とは、反応液が流路から排出されてから、受槽内で還元反応が終了するまでの時間である。すなわち、終了時間は、受槽内での反応液の滞留時間の基準であるため、その始点は反応液が流路から排出された時点であり、終点は銀錯体の還元反応が終了した時点である。終了時間は、反応液中の銀イオン濃度でも判断することが可能であるが、酸化還元電位(ORP)は、還元反応の進行に伴って低下するため、ORPが最小値に達するまでの時間を測定して決定することが容易で迅速であり、好ましい。したがって、終了時間は、反応液の酸化還元電位(ORP)が最小値に達するまでの時間とすることが好ましい。一方、ORPが最小値に達するまでの時間は、銀錯体が還元されるまでに要する時間であるため、新たな銀錯体が供給される受槽では測定が困難である。したがって、流路出口で反応液を分取して、分取した反応液のORP変化を測定することによって判断される。還元反応が同条件であればORPが最小値に達するまでの時間は安定しているため、本発明のような同条件で連続的に還元反応を行わせる製造方法では、分取した反応液の測定結果により、受槽での滞留時間を判断することが可能となる。 Here, the time at which the reduction reaction ends (hereinafter referred to as the end time) is the time from when the reaction solution is discharged from the flow path until the reduction reaction ends in the receiving tank. That is, since the end time is a reference for the residence time of the reaction solution in the receiving tank, the start point is the time when the reaction solution is discharged from the flow path, and the end point is when the reduction reaction of the silver complex is completed. is there. The end time can also be determined by the silver ion concentration in the reaction solution. However, since the oxidation-reduction potential (ORP) decreases as the reduction reaction proceeds, the time until the ORP reaches the minimum value is determined. It is easy and quick to determine by measurement, which is preferable. Therefore, the end time is preferably a time until the oxidation-reduction potential (ORP) of the reaction solution reaches the minimum value. On the other hand, since the time until the ORP reaches the minimum value is the time required for the silver complex to be reduced, the measurement is difficult in a receiving tank to which a new silver complex is supplied. Therefore, it is determined by separating the reaction solution at the outlet of the flow path and measuring the ORP change of the collected reaction solution. Since the time until the ORP reaches the minimum value is stable if the reduction reaction is under the same conditions, in the production method in which the reduction reaction is continuously performed under the same conditions as in the present invention, The residence time in the receiving tank can be determined from the measurement result.
さらに、この銀粉の製造方法では、流路出口から反応液を受槽内に排出しながら、受槽内で滞留させた反応液を槽外に送液して固液分離することが好ましい。銀溶液および還元剤溶液のそれぞれ全量を混合して受槽に滞留させた後、固液分離してもよいが、全量を滞留させるためには受槽の容量を大きくする必要があるとともに、固液分離する時間が銀溶液と還元剤溶液を混合する時間とは別に必要になるため生産性が低下する。銀溶液と還元剤溶液を混合して流路から受槽に反応液を排出しながら、受槽内の反応液を槽外に送液して固液分離することで、受槽を小さくすることが可能になるとともに、受槽内での滞留と固液分離を重複させて行うことが可能であり、生産性を向上させることができる。 Furthermore, in this method for producing silver powder, it is preferable that the reaction liquid retained in the receiving tank is sent out of the tank and solid-liquid separated while discharging the reaction liquid from the outlet of the flow path into the receiving tank. The total amount of each of the silver solution and the reducing agent solution may be mixed and retained in the receiving tank, followed by solid-liquid separation. However, in order to retain the entire amount, it is necessary to increase the capacity of the receiving tank, and the solid-liquid separation Since the time to do is required separately from the time for mixing the silver solution and the reducing agent solution, the productivity is lowered. It is possible to reduce the size of the receiving tank by mixing the silver solution and the reducing agent solution and discharging the reaction liquid from the flow path to the receiving tank while sending the reaction liquid in the receiving tank to the outside of the tank for solid-liquid separation. At the same time, it is possible to overlap the retention in the receiving tank and the solid-liquid separation, and the productivity can be improved.
受槽からの固液分離工程への送液は、断続的であってもよいが、連続的であることが好ましく、さらに一定量とすることが好ましい。また、固液分離工程への平均送液速度が流路からの排出速度と一致するようにすればよい。また、流路から受槽への反応液の排出と槽外の送液による固液分離を同時に行うと、還元反応が終了していない銀錯体も固液分離工程に送られるが、受槽における反応液の平均滞留時間が終了時間以上であれば、送られる銀錯体の量は僅かであり、固液分離の際の銀粒子の凝集を抑制することが可能である。 The liquid feeding from the receiving tank to the solid-liquid separation step may be intermittent, but is preferably continuous and more preferably a constant amount. Moreover, what is necessary is just to make it the average liquid feeding speed to a solid-liquid separation process correspond with the discharge speed from a flow path. In addition, if the reaction liquid is discharged from the flow path to the receiving tank and the solid-liquid separation is performed by sending the liquid outside the tank, the silver complex that has not undergone the reduction reaction is also sent to the solid-liquid separation process. If the average residence time is equal to or longer than the end time, the amount of the silver complex to be sent is small, and aggregation of silver particles during solid-liquid separation can be suppressed.
以下に、本実施の形態に係る銀粉の製造方法について、より詳細に説明する。 Below, the manufacturing method of the silver powder which concerns on this Embodiment is demonstrated in detail.
銀溶液は、還元されて銀となる銀錯体を含む溶液であり、各種銀塩を銀の原料として用いることができるが、塩化銀をアンモニア水に溶解することにより得たものであることが好ましい。このように、銀粉の製造方法では、塩化銀を原料とすることにより、硝酸銀を出発原料とする方法で必要とされた亜硝酸ガスの回収装置や廃水中の硝酸系窒素の処理装置を設置する必要がなく、環境への影響も少ないプロセスとなり、製造コストの低減を図ることができる。塩化銀は、高純度のものを用いることが好ましく、高純度塩化銀が工業用に安定的に製造されている。塩化銀を溶解するアンモニア水は、工業的に用いられる通常のものでよいが、不純物混入を防止するため可能な限り高純度のものが好ましい。 The silver solution is a solution containing a silver complex that is reduced to silver, and various silver salts can be used as a raw material for silver, but it is preferably obtained by dissolving silver chloride in aqueous ammonia. . Thus, in the method for producing silver powder, by using silver chloride as a raw material, a recovery device for nitrous acid gas and a treatment device for nitrate nitrogen in wastewater required for the method using silver nitrate as a starting material are installed. This is a process that is not necessary and has little impact on the environment, and can reduce manufacturing costs. Silver chloride having high purity is preferably used, and high purity silver chloride is stably produced for industrial use. Ammonia water that dissolves silver chloride may be a normal one that is used industrially, but is preferably as highly pure as possible in order to prevent contamination with impurities.
還元剤としては、一般的なヒドラジンやホルマリン等を用いることもできるが、アスコルビン酸を用いることが特に好ましい。アスコルビン酸は、その還元作用が緩やかであるため、銀粒子中の結晶粒が成長しやすく、銀溶液と還元剤溶液の混合時の核生成速度も遅くなり、一次粒子の粒径均一化と凝集の制御が容易であり、好ましい。また、反応の均一性あるいは反応速度を制御するために、還元剤を純水等で溶解又は希釈して濃度調整した水溶液として用いることもできる。 As the reducing agent, general hydrazine, formalin and the like can be used, but it is particularly preferable to use ascorbic acid. Ascorbic acid has a slow reducing action, so the crystal grains in the silver particles are easy to grow, the nucleation rate is slow when the silver solution and the reducing agent solution are mixed, and the primary particle size is uniformized and aggregated. Is easy and preferable. Moreover, in order to control the uniformity of reaction or reaction rate, it can also be used as an aqueous solution whose concentration is adjusted by dissolving or diluting a reducing agent with pure water or the like.
還元剤としてアスコルビン酸を用いた場合、化学量論的には、アスコルビン酸0.25モルで銀1モルを還元することができる。銀溶液と還元剤溶液との混合時における混合比は、化学量論による混合比より多くすることが好ましく、具体的には銀1モルに対して還元剤を0.25〜0.50モルとすることが好ましく、0.30〜0.40モルとすることがより好ましい。0.25モル未満の場合は、廃液に未還元の銀錯体が残留し、銀粉の収率が低下する。一方、0.50モルを超えると、還元に利用されないアスコルビン酸が多く残留することになり、コスト的に不利となる。 When ascorbic acid is used as the reducing agent, stoichiometrically, 1 mol of silver can be reduced with 0.25 mol of ascorbic acid. The mixing ratio at the time of mixing the silver solution and the reducing agent solution is preferably larger than the mixing ratio based on the stoichiometry, specifically, the reducing agent is 0.25 to 0.50 mol per 1 mol of silver. It is preferable to use 0.30 to 0.40 mol. When the amount is less than 0.25 mol, unreduced silver complex remains in the waste liquid, and the yield of silver powder decreases. On the other hand, if it exceeds 0.50 mol, a large amount of ascorbic acid that is not used for reduction remains, which is disadvantageous in terms of cost.
銀粉の製造方法においては、銀溶液と還元剤溶液と混合させた反応液中の銀濃度を25〜50g/Lの範囲で調整することが好ましい。これにより、粒度分布がより狭い銀粉を高い生産性で製造することが可能となる。すなわち、反応液中の銀濃度を25〜50g/Lの範囲で調整することにより、還元により生成される銀粒子の粒径及び粒度分布をより厳密に制御することができる。 In the method for producing silver powder, it is preferable to adjust the silver concentration in the reaction solution mixed with the silver solution and the reducing agent solution in the range of 25 to 50 g / L. This makes it possible to produce silver powder with a narrower particle size distribution with high productivity. That is, by adjusting the silver concentration in the reaction solution in the range of 25 to 50 g / L, the particle size and particle size distribution of the silver particles produced by the reduction can be more strictly controlled.
上述のように、この銀粉の製造方法においては、連続的に銀溶液と還元剤溶液を定量的に混合するため、混合後の還元反応場の銀錯体の濃度と還元剤の濃度が一定に保たれる。したがって、核発生の速度とその濃度が一定であるため、高い銀濃度であっても濃度の揺らぎによる異常な粒成長が抑制され、全体として粒子の成長速度を一定に保つことができ、粗大粒子の生成を抑制することができる。 As described above, in this silver powder production method, since the silver solution and the reducing agent solution are continuously mixed quantitatively, the concentration of the silver complex and the concentration of the reducing agent in the reduction reaction field after mixing are kept constant. Be drunk. Therefore, since the rate of nucleation and its concentration are constant, abnormal grain growth due to concentration fluctuation is suppressed even at high silver concentration, and the growth rate of particles as a whole can be kept constant. Generation can be suppressed.
ここで、銀濃度が低い場合には、粒子の成長速度は一定に保たれるものの、粒子成長が十分でなく、得られる一次粒子は微細なものとなることがある。このような微細な一次粒子では、洗浄後の乾燥処理において、銀粒子間で過度凝集が起こり易くなる。一方、銀濃度が高い場合には、核発生の濃度が一定に保たれても核発生が多過ぎるため、粒子の凝集が発生して粗大粒子が生成されることがある。したがって、銀溶液と還元剤溶液の混合後の反応液中の銀濃度を25〜50g/Lの範囲で調整することにより、粒度分布がより狭い銀粉をより高い生産性で得ることができる。 Here, when the silver concentration is low, the growth rate of the particles is kept constant, but the particle growth is not sufficient, and the obtained primary particles may be fine. Such fine primary particles tend to cause excessive aggregation between silver particles in the drying process after washing. On the other hand, when the silver concentration is high, too many nucleations are generated even if the concentration of nucleation is kept constant, so that particle aggregation may occur and coarse particles may be generated. Therefore, by adjusting the silver concentration in the reaction solution after mixing the silver solution and the reducing agent solution in the range of 25 to 50 g / L, silver powder having a narrower particle size distribution can be obtained with higher productivity.
より具体的に、一次粒子の粒径は、反応液中の銀錯体を低濃度とすれば小さくなり、高濃度にすれば大きくなる傾向にあり、反応液中の銀濃度の調整により粒径を制御することができる。しかしながら、銀濃度が25g/L未満では、粒径が小さくなり過ぎる場合があるとともに十分な生産性が得られない。また、得られる銀粉のタップ密度も低くなり過ぎることがある。一方、銀濃度が50g/Lを超えると、一次粒子の凝集による粗大粒子が生成するため、銀粒子の粒度分布が広くなってしまう。 More specifically, the particle size of the primary particles tends to decrease when the silver complex in the reaction solution is at a low concentration and increases when the concentration is high, and the particle size can be adjusted by adjusting the silver concentration in the reaction solution. Can be controlled. However, if the silver concentration is less than 25 g / L, the particle size may be too small and sufficient productivity cannot be obtained. Moreover, the tap density of the obtained silver powder may become too low. On the other hand, when the silver concentration exceeds 50 g / L, coarse particles due to aggregation of primary particles are generated, and thus the particle size distribution of the silver particles becomes wide.
銀溶液と還元剤溶液を反応管に供給する手段としては、一般的な定量ポンプを用いることができるが、脈動の小さいものが望ましい。また、ポンプの流量は、インバータ制御で可変なものが望ましく、銀溶液と還元剤溶液のそれぞれの流量が一定となるように調整してその混合比を制御する。 As a means for supplying the silver solution and the reducing agent solution to the reaction tube, a general metering pump can be used, but one with small pulsation is desirable. Further, the flow rate of the pump is desirably variable by inverter control, and the mixing ratio is controlled by adjusting the flow rates of the silver solution and the reducing agent solution to be constant.
また、銀の還元反応時の反応液の温度は、25〜40℃とすることが好ましい。25℃未満では、原料として塩化銀を用いた場合、塩化銀のアンモニア水に対する溶解度が小さくなり、反応液中の銀濃度を高められないことにより所望の粒径が得られない可能性がある。一方、40℃を超えると、アンモニアの揮発が激しくなり、溶解度が低下して核発生速度が大きくなり粒径が変動する可能性があり、さらの塩化銀の析出が起きることがある。 Moreover, it is preferable that the temperature of the reaction liquid at the time of silver reduction reaction shall be 25-40 degreeC. If it is less than 25 degreeC, when silver chloride is used as a raw material, the solubility with respect to the aqueous ammonia of silver chloride will become small, and a desired particle size may not be obtained because the silver concentration in a reaction liquid cannot be raised. On the other hand, when the temperature exceeds 40 ° C., the volatilization of ammonia becomes violent, the solubility decreases, the nucleation rate increases and the particle size may fluctuate, and further silver chloride precipitation may occur.
さらに、受槽内では、還元により生成した銀粒子が沈降しないように十分に攪拌することが必要になる。沈降すると、銀粒子が凝集体を形成して分散性が悪くなってしまうため好ましくない。攪拌は、銀粒子が沈降しない程度の力で行えばよく、一般的な攪拌機を用いることができる。受槽に入って余剰の還元剤が失活した反応液は、ポンプでフィルタープレス等の濾過機に送液することで、連続的に次の工程へと移送することができる。 Furthermore, in the receiving tank, it is necessary to sufficiently stir so that the silver particles generated by the reduction do not settle. When settled, silver particles form aggregates and dispersibility deteriorates, which is not preferable. Stirring may be performed with such a force that silver particles do not settle, and a general stirrer can be used. The reaction liquid that has entered the receiving tank and the excess reducing agent has been deactivated can be continuously transferred to the next step by sending the reaction liquid to a filter such as a filter press with a pump.
銀粉の製造方法においては、銀溶液と還元剤溶液とを混合させた反応液に、分散剤を含有させることが好ましい。分散剤が含有されていないと、還元により発生した銀粒子が凝集を起こし、粗大粒子が発生したり、分散性が悪いものとなることがある。分散剤としては、ポリビニルアルコール、ポリビニルピロリドン、変性シリコンオイル系界面活性剤、ポリエーテル系界面活性剤から選択される少なくとも1種であることが好ましく、又はこれらの2種以上を組合せて用いることがより好ましい。 In the method for producing silver powder, it is preferable to contain a dispersant in a reaction liquid in which a silver solution and a reducing agent solution are mixed. If the dispersant is not contained, silver particles generated by the reduction may aggregate to generate coarse particles or have poor dispersibility. The dispersant is preferably at least one selected from polyvinyl alcohol, polyvinyl pyrrolidone, modified silicone oil surfactants, polyether surfactants, or a combination of two or more of these. More preferred.
分散剤は、予め還元剤溶液に添加しておくことにより、反応液に含有させることが好ましい。分散剤を銀溶液に混合しておくことも選択肢としてはあり得るが、還元剤溶液に混合しておく方が分散性の良い銀粉が得られることが実験的に確認されている。これは、還元剤溶液に分散剤を添加しておくことで、銀粒子の生成場に分散剤が存在し、効率よく銀粒子の凝集を抑制できるためと考えられる。なお、分散剤として用いるポリビニルアルコールやポリビニルピロリドンは、還元反応時に発泡する場合があるため、還元剤溶液や銀溶液に消泡剤を添加してもよい。 It is preferable to add the dispersant to the reaction solution by adding it to the reducing agent solution in advance. Mixing the dispersant in the silver solution may be an option, but it has been experimentally confirmed that a silver powder having better dispersibility can be obtained by mixing in the reducing agent solution. This is presumably because by adding a dispersant to the reducing agent solution, the dispersant is present in the silver particle production field, and the aggregation of the silver particles can be efficiently suppressed. In addition, since polyvinyl alcohol and polyvinylpyrrolidone used as a dispersant may foam during the reduction reaction, an antifoaming agent may be added to the reducing agent solution or the silver solution.
分散剤の含有量としては、分散剤の種類及び得ようとする銀粉粒径により適宜決めればよいが、銀溶液中に含有される銀に対して0.3〜20質量%とすることが好ましく、0.3〜10質量%とすることがより好ましい。分散剤の含有量が0.3質量%未満であると、銀粒子の凝集抑制効果が十分に得られない可能性があり、一方で含有量が20質量%を超えても、それ以上に凝集抑制効果の向上はなく、排水処理等の負荷が増加するのみである。 The content of the dispersant may be appropriately determined depending on the type of the dispersant and the silver powder particle size to be obtained, but is preferably 0.3 to 20% by mass with respect to the silver contained in the silver solution. 0.3 to 10% by mass is more preferable. If the content of the dispersant is less than 0.3% by mass, the silver particle aggregation suppressing effect may not be sufficiently obtained. On the other hand, even if the content exceeds 20% by mass, it is further aggregated. There is no improvement in the suppression effect, and only the load such as wastewater treatment increases.
還元反応が終了した反応液は、固液分離した後、洗浄し、乾燥する。固液分離は、濾過や遠心機を用いることができるが、連続的に送液して固液分離する場合はフィルタープレスを用いることが好ましい。また、洗浄方法としては、特に限定されるものではないが、例えば、銀粒子を水に投入し、撹拌機又は超音波洗浄器を使用して撹拌した後、固液分離して銀粉を回収する方法を用いることができる。この方法において、銀粒子の水への投入、撹拌洗浄及び固液分離からなる操作を、数回繰返して行うことが好ましい。また、洗浄に用いる水は、銀粉に対して有害な不純物元素を含有していない水を使用し、特に純水を使用することが好ましい。 The reaction solution after the reduction reaction is separated into solid and liquid, then washed and dried. For solid-liquid separation, filtration or a centrifuge can be used. However, when solid-liquid separation is performed by continuously feeding liquid, it is preferable to use a filter press. The washing method is not particularly limited. For example, silver particles are put into water, stirred using a stirrer or an ultrasonic cleaner, and then solid-liquid separated to collect silver powder. The method can be used. In this method, it is preferable to repeat the operations of adding silver particles into water, stirring and washing, and solid-liquid separation several times. The water used for washing is water that does not contain an impurity element harmful to silver powder, and it is particularly preferable to use pure water.
そして、水による洗浄を行った後、銀粒子の水分を蒸発させて乾燥させる。乾燥の方法としては、例えば、水洗浄後の銀粒子をステンレスパッド上に置き、大気オーブン又は真空乾燥機等の一般的な乾燥装置を用いて、40〜80℃程度の温度で加熱することにより行うことができる。 Then, after washing with water, the moisture of the silver particles is evaporated and dried. As a drying method, for example, the silver particles after washing with water are placed on a stainless steel pad and heated at a temperature of about 40 to 80 ° C. using a general drying device such as an atmospheric oven or a vacuum dryer. It can be carried out.
乾燥した銀粉は、乾燥凝集を解すために解砕機で処理をする。解砕機は、真空減圧雰囲気転動攪拌機等の解砕力の弱い装置が好ましい。解砕能力が強すぎると還元工程で制御した凝集形態を壊してしまうからである。乾燥工程で凝集した弱い凝集のみを解すことが必要である。 The dried silver powder is processed by a crusher to break dry agglomeration. The crusher is preferably an apparatus having a weak crushing force such as a vacuum decompression atmosphere rolling stirrer. This is because if the crushing ability is too strong, the aggregated form controlled in the reduction process is broken. Only the weak agglomeration agglomerated in the drying process needs to be solved.
<2.銀粉の製造装置>
上述した銀粉の製造方法に用いられる銀粉の製造装置の一例として、図1及び図2に示す銀粉の製造装置を説明する。
<2. Silver powder manufacturing equipment>
As an example of the silver powder production apparatus used in the above-described silver powder production method, the silver powder production apparatus shown in FIGS. 1 and 2 will be described.
図1に示す銀粉の製造装置1は、銀錯体を含む銀溶液と還元剤溶液を混合して反応液中で銀錯体を定量的かつ連続的に還元する機構を有する流路15を形成する反応管10と、流路15に銀溶液と還元剤溶液をそれぞれ定量的かつ連続的に供給する供給機構20、30と、流路15から排出された反応液を滞留させる受槽40と、滞留後の反応液を受槽40から送液して反応液を固液分離する固液分離機構50とを備える。この銀粉の製造装置1は、受槽40の容量が、銀溶液の流量と還元剤溶液の流量の和に還元反応が終了する時間を乗じて得られた液量以上であり、流路15、即ち反応管10と共に流路15を形成する還元管14から反応液が排出される排出位置40aと、槽内の反応液が固液分離機構50に送液される送液位置40bとの間に、反応液の流れを迂回させる迂回機構42が受槽40に設けられていることを特徴とするものである。
The silver
流路15は、図2に具体例を示した反応管10で構成される。この図2(A)は、反応管10の正面を示す図であり、図2(B)は、反応管10のX−X’断面を模式的に示した図である。図2に示すように、この反応管10は、銀錯体を含む銀溶液を供給する配管である銀溶液供給管11と、還元剤溶液を供給する配管である還元剤溶液供給管12と、銀溶液供給管11と還元剤溶液供給管12が接合され銀溶液と還元剤溶液とを混合する配管である混合管13とから構成されている。銀溶液供給管11は、直線状に形成され、還元剤溶液供給管12は、略L字状に形成されている。
The
図2に示すように、反応管10は、還元剤溶液供給管12の出口で両液が同方向に供給されるように、銀溶液供給管11の内部に還元剤溶液供給管12の直線部12Aが同軸上に配置され、銀溶液供給管11と還元剤溶液供給管12とが組み合わされている。これにより、反応管10では、銀溶液と還元剤溶液を同方向に供給することが可能となり、還元剤溶液供給管12の出口から供給された還元剤溶液の周りを銀溶液が均一に取り囲んで混合される。反応管10では、このような混合形態となることによって、局部的な混合比の変動や反応液の滞留が抑制され、両液は均一な還元当量で混合されるため、吸収量の安定した制御が可能となる。また、還元剤溶液供給管12の出口付近に、還元された銀が堆積することを抑制することができる。
As shown in FIG. 2, the
反応管10では、銀溶液の供給方向に対する還元剤溶液の供給方向が0°となるように還元剤溶液供給管12を配置することが好ましい。なお、反応管10の製造上の誤差を含む程度に角度が付いてもよく、銀溶液の供給方向に対する還元剤溶液の供給方向が5°以内の角度であってもよい。すなわち、上述の混合形態を可能とする範囲内において、供給方向は、銀溶液の供給方向に対する還元剤溶液の供給方向が5°以内であることを含み、還元剤溶液供給管12の同軸上の配置は、供給方向が5°以内に収まるような角度が付くことを含むことを意味する。
In the
例えば、反応管10では、銀溶液供給管11の内部にその銀溶液供給管11と同軸に配置された還元剤溶液供給管12の直線部12Aを、還元剤溶液供給管12の内径の5倍以上の長さに設けている。これにより、還元剤溶液供給管12の出口から出る還元剤溶液を層流とすることができ、それぞれの溶液の流速の違いによって両液が均一に混合されることになる。
For example, in the
なお、各供給管11、12の配置等は、各溶液の供給量や流速によっても、適宜変更することができ、還元剤溶液供給管12の直線部12Aと銀溶液供給管11の外部との接続部を曲線としたり、銀溶液の供給方向と反応管外から供給される還元剤溶液の供給方向とがなす角度を小さくして、還元剤溶液がより層流となりやすくしてもよい。また、各供給管11、12の寸法等についても、特に限定されるものではなく、各溶液を供給する際の所望とする流速や流れの状態等に基づいて、適宜設定することができる。
The arrangement of the
反応管10の材質は、銀溶液や還元剤溶液と反応しないことと、還元反応後の銀が付着しないことが選択上重要であり、ガラスもしくは石英が好ましい。銀溶液供給管11と還元剤溶液供給管12は、銀溶液や還元剤溶液と反応しない材質が選択されればよく、塩化ビニルやポリプロピレン、ポリエチレンなどから選択できる。
It is important for the material of the
ここで、この銀粉の製造装置1を用いて流路15内で銀錯体の還元反応を十分に進行させて粒径を制御するため、流路15内で銀溶液と還元剤溶液とが混合されてから反応液がその流路15内を流下して出口に出るまでの時間(流下時間)が15秒以上60秒以下となるような流路長に流路15を構成することが好ましい。
Here, the silver solution and the reducing agent solution are mixed in the
その流下時間が15秒未満では、還元反応が不十分になり、未還元の銀錯体が反応液中に多量に残留し、銀粒子が連結して粗大粒となることや、凝集して分散性が悪くなることがある。一方、60秒を越える時間では、製造装置を無用に大きくするだけである。 If the flow time is less than 15 seconds, the reduction reaction becomes insufficient, a large amount of unreduced silver complex remains in the reaction solution, and the silver particles are connected to become coarse particles, or aggregated and dispersed. May get worse. On the other hand, in the time exceeding 60 seconds, the manufacturing apparatus is merely enlarged unnecessarily.
銀粉の製造装置1では、反応管10のみによって15秒以上の流下時間とすることができない場合には、図1に示すように、混合管13に軟質チューブ等の管状物で構成された還元管14を接続して流路15の長さを調整するようにしてもよい。還元管14を軟質チューブで構成する場合には、この軟質チューブを混合管13に螺旋状に巻き付けてもよい。これにより、スペースを要せずに流路15の長さを調整することができる。
In the silver
流路15に銀溶液と還元剤溶液をそれぞれ定量的かつ連続的に供給する機構20、30としては、一般的な定量ポンプを用いることができ、脈動の小さいものが好ましい。
As the
受槽40は、流路15から排出された反応液を攪拌しながら滞留させる。受槽40は、銀溶液の流量と還元剤溶液の流量の和に還元反応が終了する時間を乗じた液量以上であることが必要となる。受槽40は、反応液を攪拌するために、例えば攪拌機又は超音波洗浄器等を備える。また、受槽40は、流路15から排出終了後に反応液を固液分離機構50に送液するためのバルブ44が底面に設けられている。ここで、流量としては、例えば、「L/分」が、終了する時間としては、例えば、「分」がそれぞれ用いられる。
The receiving
固液分離機構50は、受槽40における滞留後の反応液が受槽40から送液され、反応液を固液分離する。固液分離機構50は、例えばフィルタープレス等である。
In the solid-
銀粉の製造装置1では、フィルタープレスを用いても、反応液の全量を一度に送液できない場合は、受槽40(第1の受槽40)からの送液をさらに攪拌しながら貯留できる第2の受槽41を第1の受槽40と固液分離機構50の間に設けることが好ましい。これにより、固液分離した銀粒子の排出などで、フィルタープレスへの送液を一旦停止する際にも、第1の受槽40から一定量を連続的に第2の受槽41に送液して滞留時間をさらに一定とすることが可能となる。第2の受槽41は、第1の受槽40と同じ容量又はそれ以下の容量であってもよく、第1の受槽40と同様に撹拌機又は超音波洗浄器等を備え、底面に固液分離機構50に送液するためのバルブ45が設けられている。
In the silver
第1の受槽40には、流路15から反応液が排出される排出位置40aと、槽内の反応液が固液分離機構50に送液される送液位置40bとの間に、反応液の流れを迂回させる迂回機構42が設けられている。この迂回機構42は、排出位置40aから短絡的経路を経由して送液されることを防止する。これにより、流路15から排出された反応液が短時間で槽外に送液されることが抑制され、固液分離の際の銀粒子の凝集を抑制することができる。迂回機構42としては、送液用の吸入口位置(送液位置40b)側からの反応液の排出を堰により遮断すればよい。例えば、図2に示すように、流路15からの反応液の排出と、第2の受槽41への送液用の吸入が第1の受槽40の上面側で行われる場合、反応液の排出位置40aに堰42を設けて下部から反応液が第1の受槽40内に抜けるようにすればよい。
In the
以上のような銀粉の製造装置1では、受槽40(第1の受槽40)中での滞留により、流路15から排出された反応液中の未還元の銀錯体が還元され、還元反応が終了して銀粒子の凝集が抑制される状態となる。したがって、銀粉の製造装置1では、受槽40(第1の受槽40)の容量を、銀溶液の流量と還元剤溶液の流量の和に還元反応が終了する時間を乗じた液量以上とすることで、平均滞留時間を還元反応が終了する時間以上とすることができる。すなわち、平均滞留時間は、受槽40(第1の受槽40)の容量を流入する流量の和で除したものであり、上述の容量とすることで、平均滞留時間を還元反応が終了する時間以上とすることができる。
In the silver
このような銀粉の製造装置1では、平均粒径が0.1μmから数μmで一次粒子の粒度分布が狭く、分散性が高い銀粉を生産性が高く低コストで製造することができる。
In the silver
以下に、本発明の具体的な実施例について説明する。ただし、本発明は、以下の実施例に何ら限定されるものではない。 Specific examples of the present invention will be described below. However, the present invention is not limited to the following examples.
[実施例1]
実施例1では、38℃の温水ジャケットで加熱した槽中において液温36℃に保持した25質量%アンモニア水540Lに、塩化銀45230g(住友金属鉱山株式会社製、純度99.9999%、水分率15.44%)を撹拌しながら投入して銀溶液を作製した。消泡剤(株式会社アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液374mlを上記銀溶液に添加して、得られた銀溶液を温浴中において36℃に保持した。
[Example 1]
In Example 1, 45230 g of silver chloride (Sumitomo Metal Mining Co., Ltd., purity 99.9999%, moisture content) was added to 540 L of 25% by mass ammonia water maintained at a liquid temperature of 36 ° C. in a tank heated with a hot water jacket at 38 ° C. 15.44%) was added with stirring to prepare a silver solution. An antifoaming agent (manufactured by Adeka Co., Ltd., Adecanol LG-126) was diluted 100 times in volume ratio, 374 ml of this antifoaming agent dilution was added to the silver solution, and the resulting silver solution was added in a warm bath to 36. Held at 0C.
次に、還元剤のアスコルビン酸20100g(関東化学株式会社製、試薬)を、30℃の純水5.35Lに溶解した。また、分散剤のポリビニルアルコール1760g(株式会社クラレ製、PVA205)を50℃の純水10Lに溶解した。これら2液を混合して還元剤溶液とし、その温度を36℃に調整した。 Next, 20100 g of ascorbic acid as a reducing agent (manufactured by Kanto Chemical Co., Inc., reagent) was dissolved in 5.35 L of pure water at 30 ° C. Further, 1760 g of polyvinyl alcohol as a dispersant (PVA205 manufactured by Kuraray Co., Ltd.) was dissolved in 10 L of pure water at 50 ° C. These two liquids were mixed to form a reducing agent solution, and the temperature was adjusted to 36 ° C.
次に、銀溶液と還元剤溶液を、スムーズフローポンプ(株式会社タクミナ製APL−5とBPL−2)を使用して、それぞれ、2.7L/分、0.9L/分で反応管に供給し、反応管から排出された反応液を撹拌しながら受槽で保持した。反応管としては、銀溶液の供給方向に対する還元剤溶液の供給方向を0°とした両液を混合撹拌するガラス製の同芯管(銀溶液供給管:内径10.0mm、還元剤溶液供給管:内径3.6mm、混合管長:100mm)を用いた。さらに内径12mm長さ10mの軟質塩化ビニル樹脂製チューブを還元管として反応管出口側に接続して、反応液を受槽に送液した。この時の還元速度は、銀量で144g/分であり、反応液中の銀濃度は40g/Lとなる。また、供給速度から求めた銀1モルに対するアスコルビン酸の混合比は0.33モルとなる。 Next, the silver solution and the reducing agent solution are supplied to the reaction tube at a rate of 2.7 L / min and 0.9 L / min, respectively, using a smooth flow pump (APL-5 and BPL-2 manufactured by Takumina Co., Ltd.). The reaction solution discharged from the reaction tube was held in a receiving tank while stirring. As the reaction tube, a glass concentric tube (silver solution supply tube: inner diameter 10.0 mm, reducing agent solution supply tube) in which both solutions are mixed and stirred with the supply direction of the reducing agent solution relative to the supply direction of the silver solution being 0 °. : Inner diameter 3.6 mm, mixing tube length: 100 mm). Further, a soft vinyl chloride resin tube having an inner diameter of 12 mm and a length of 10 m was connected to the reaction tube outlet side as a reducing tube, and the reaction solution was fed to the receiving tank. The reduction rate at this time is 144 g / min in terms of silver, and the silver concentration in the reaction solution is 40 g / L. Further, the mixing ratio of ascorbic acid to 1 mol of silver determined from the supply rate is 0.33 mol.
そして、受槽には、図1に示すような、第1の受槽及び第2の受槽を有するものを使用した。第1の受槽は、容量約200Lのものを使用し、第2の受槽へは液レベル150Lの位置からポンプで第2の受槽へ送液した。第2の受槽は、容量約60Lのものを使用し、電極によるレベル制御でフィルタープレスへと送液した。第1の受槽での平均滞留時間は41.7分となる。 And what has a 1st receiving tank and a 2nd receiving tank as shown in FIG. 1 was used for the receiving tank. The first receiving tank having a capacity of about 200 L was used, and the liquid was supplied to the second receiving tank from the position of the liquid level 150 L to the second receiving tank. A second receiving tank having a capacity of about 60 L was used, and the liquid was fed to the filter press by level control using electrodes. The average residence time in the first receiving tank is 41.7 minutes.
尚、還元中に還元管から流下する反応液100mLを採取し、酸化還元電位(ORP)の経時変化を測定した結果を図3に示す。ORPは、27分後に最小となりその後緩やかに上昇していた。反応終了までの時間は約30分であり、第1の受槽の平均滞留時間が十分な時間であることが確認できた。 In addition, 100 mL of the reaction solution flowing down from the reduction tube during the reduction is collected, and the results of measuring the change with time of the oxidation-reduction potential (ORP) are shown in FIG. The ORP became minimum after 27 minutes and then gradually increased. The time until the end of the reaction was about 30 minutes, and it was confirmed that the average residence time of the first receiving tank was sufficient.
さらに、銀溶液と還元剤溶液の供給が終了した後、第1および第2の受槽内での攪拌を40分継続した後、第1の受槽及び第2の受槽のそれぞれ底抜きバルブから残り全量をフィルタープレスへと送液した。 Further, after the supply of the silver solution and the reducing agent solution is completed, stirring in the first and second receiving tanks is continued for 40 minutes, and then the remaining from the bottom valve of each of the first receiving tank and the second receiving tank. The whole amount was sent to the filter press.
撹拌終了後の銀溶液を、フィルタープレス機を使用して濾過し、銀粒子を固液分離した。 The silver solution after completion of stirring was filtered using a filter press, and the silver particles were separated into solid and liquid.
続いて、回収した銀粒子を0.01mol/LのNaOH水溶液18L中に投入し、15分間撹拌した後、フィルタープレス機で濾過して回収した。NaOH水溶液への投入、撹拌、及び濾過からなる操作を更に2回繰返した後、純水18L中への投入、撹拌、及び濾過からなる操作を行った。濾過後、銀粒子をステンレスパッドに移し、真空乾燥機にて60℃で15時間乾燥して銀粉を得た。 Subsequently, the recovered silver particles were put into 18 L of 0.01 mol / L NaOH aqueous solution, stirred for 15 minutes, and then recovered by filtration with a filter press. The operations consisting of pouring into an aqueous NaOH solution, stirring, and filtration were repeated twice more, and then operations comprising pouring into 18 L of pure water, stirring, and filtration were performed. After filtration, the silver particles were transferred to a stainless steel pad and dried in a vacuum dryer at 60 ° C. for 15 hours to obtain silver powder.
得られた銀粉は、走査電子顕微鏡(SEM)観察による平均粒径が0.88μm、粒径の標準偏差を平均粒径で除した値が0.21であり、高分散性を有し、ペースト用銀粉として良好であることが確認された。 The obtained silver powder has an average particle diameter of 0.88 μm by observation with a scanning electron microscope (SEM), a value obtained by dividing the standard deviation of the particle diameter by the average particle diameter is 0.21, has high dispersibility, and is a paste. It was confirmed that the silver powder for use was good.
(実施例2)
実施例2では、アスコルビン酸の溶解量を調整して、その混合比を0.35モルとした以外は実施例1と同様の条件と製造装置を使用して実施した。
(Example 2)
In Example 2, the amount of ascorbic acid dissolved was adjusted so that the mixing ratio was 0.35 mol, and the same conditions and production apparatus as in Example 1 were used.
受槽は、図1に示す構成で、第1の受槽は、容量約200Lのものを使用し、第2の受槽へは液レベル110Lの位置からポンプで第2の受槽へ送液した。第2の受槽は、容量約60Lのものを使用し、電極によるレベル制御でフィルタープレスへと送液した。第1の受槽での平均滞留時間は30.6分となる。 The receiving tank has the configuration shown in FIG. 1, and the first receiving tank has a capacity of about 200 L. The second receiving tank was pumped from the position of the liquid level 110 L to the second receiving tank. A second receiving tank having a capacity of about 60 L was used, and the liquid was fed to the filter press by level control using electrodes. The average residence time in the first receiving tank is 30.6 minutes.
尚、還元中に還元管から流下する反応液100mLを採取し、ORPの経時変化を測定した結果を図4に示す。ORPは20分後に最小となりその後緩やかに上昇していた。反応終了までの時間は約20分であり、第1の受槽の平均滞留時間が十分な時間であることが確認できた。 In addition, 100 mL of the reaction liquid flowing down from the reduction pipe during the reduction was collected, and the results of measuring the temporal change of ORP are shown in FIG. The ORP became minimum after 20 minutes and then gradually increased. The time until the end of the reaction was about 20 minutes, and it was confirmed that the average residence time of the first receiving tank was sufficient.
そして、銀溶液と還元剤溶液の供給が終了した後、第1および第2の受槽内での攪拌を30分継続した。以降の工程も実施例1と同様に行った。 And after supply of a silver solution and a reducing agent solution was complete | finished, stirring in the 1st and 2nd receiving tank was continued for 30 minutes. The subsequent steps were performed in the same manner as in Example 1.
得られた銀粉は、走査電子顕微鏡(SEM)観察による平均粒径が0.93μm、粒径の標準偏差を平均粒径で除した値が0.19であり、高分散性を有し、ペースト用銀粉として良好であることが確認された。 The obtained silver powder has an average particle size of 0.93 μm as observed by a scanning electron microscope (SEM), a value obtained by dividing the standard deviation of the particle size by the average particle size is 0.19, has high dispersibility, and is a paste. It was confirmed that the silver powder for use was good.
(比較例1)
比較例1では、実施例1と同条件・同装置で還元を行い、第1の受槽の液レベル位置を調整して、平均滞留時間を5分として実施した。その結果、フィルタープレスから回収した銀粉は固い凝集体となり、容易に解砕もできないものとなった。
(Comparative Example 1)
In Comparative Example 1, reduction was performed under the same conditions and apparatus as in Example 1, the liquid level position of the first receiving tank was adjusted, and the average residence time was 5 minutes. As a result, the silver powder recovered from the filter press became a hard aggregate and could not be easily crushed.
1 銀粉の製造装置、10 反応管、11 銀溶液供給管、12 還元剤溶液供給管、12A 直線部、13 混合管、14 還元管、20,30 供給機構、40 第1の受槽、41 第2の受槽、42 迂回機構、50 フィルタープレス
DESCRIPTION OF
Claims (6)
前記銀溶液と前記還元剤溶液を流路内で混合して得た反応液を該流路から、該反応液を滞留する受槽に送り、該受槽内においての平均滞留時間が前記反応液が前記流路から排出されてから、該反応液の酸化還元電位が最小値に達するまでの時間以上となるように撹拌しながら滞留させ、前記反応液を前記流路から前記受槽内に排出しながら、該受槽内で滞留させた反応液を槽外に送液して固液分離することを特徴とする銀粉の製造方法。 A silver solution containing a silver complex and a reducing agent solution are quantitatively and continuously supplied into the channel, and the silver solution and the reducing agent solution are mixed in the channel to quantitatively and continuously form the silver complex in the reaction solution. In the manufacturing method of the silver powder which reduces automatically and obtains silver powder,
A reaction liquid obtained by mixing the silver solution and the reducing agent solution in the flow path is sent from the flow path to a receiving tank in which the reaction liquid is retained, and an average residence time in the receiving tank is After being discharged from the flow path, the reaction liquid is retained with stirring so that the time until the oxidation-reduction potential of the reaction liquid reaches the minimum value is reached, and the reaction liquid is discharged from the flow path into the receiving tank. However, the method for producing silver powder is characterized in that the reaction liquid retained in the receiving tank is sent to the outside of the tank for solid-liquid separation.
前記銀溶液と前記還元剤溶液の混合時における混合比を銀1モルに対して前記還元剤を0.25〜0.50モルとすることを特徴とする請求項1又は請求項2に記載の銀粉の製造方法。 The reducing agent is ascorbic acid;
According to claim 1 or claim 2, characterized in that a 0.25 to 0.50 molar the reducing agent the mixing ratio at the time of mixing of the reducing agent solution and the silver solution per mol of silver A method for producing silver powder.
銀錯体を含む銀溶液と還元剤溶液を流路内で混合して反応液中で銀錯体を定量的かつ連続的に還元する機構を有する流路と、
前記流路に前記銀溶液と前記還元剤溶液をそれぞれ定量的かつ連続的に供給する機構と、
前記流路から排出された反応液を滞留させる受槽と、
滞留後の反応液を前記受槽から送液して固液分離する固液分離機構を備え、
前記受槽の容量が、前記銀溶液の流量と前記還元剤溶液の流量の和に前記還元反応が終了する時間を乗じて得られた液量以上であり、
前記受槽には、前記流路から反応液が排出される排出位置と、槽内の反応液が前記固液分離機構に送液される送液位置との間に、該反応液の流れを迂回させる迂回機構を有することを特徴とする銀粉の製造装置。 An apparatus for producing silver powder used in the method for producing silver powder according to any one of claims 1 to 5 ,
A channel having a mechanism for mixing a silver solution containing a silver complex and a reducing agent solution in the channel to quantitatively and continuously reduce the silver complex in the reaction solution;
A mechanism for quantitatively and continuously supplying the silver solution and the reducing agent solution respectively to the flow path;
A receiving tank for retaining the reaction solution discharged from the flow path;
Provided with a solid-liquid separation mechanism for separating the solid after the staying reaction liquid is sent from the receiving tank,
The volume of the receiving tank is equal to or greater than the amount of liquid obtained by multiplying the sum of the flow rate of the silver solution and the flow rate of the reducing agent solution by the time at which the reduction reaction ends,
In the receiving tank, the flow of the reaction liquid is bypassed between a discharge position where the reaction liquid is discharged from the flow path and a liquid supply position where the reaction liquid in the tank is sent to the solid-liquid separation mechanism. An apparatus for producing silver powder, characterized by having a bypass mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013177379A JP6086046B2 (en) | 2013-08-28 | 2013-08-28 | Silver powder manufacturing method and silver powder manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013177379A JP6086046B2 (en) | 2013-08-28 | 2013-08-28 | Silver powder manufacturing method and silver powder manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015045066A JP2015045066A (en) | 2015-03-12 |
JP6086046B2 true JP6086046B2 (en) | 2017-03-01 |
Family
ID=52670795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013177379A Expired - Fee Related JP6086046B2 (en) | 2013-08-28 | 2013-08-28 | Silver powder manufacturing method and silver powder manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6086046B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105817641B (en) * | 2016-03-23 | 2017-11-21 | 苏州思美特表面材料科技有限公司 | A kind of preparation method that production metal dust is induced using newborn nanosized seeds |
CN105817644A (en) * | 2016-05-13 | 2016-08-03 | 浙江光达电子科技有限公司 | Preparation method of high-concentration superfine silver powder |
CN107058757A (en) * | 2017-03-24 | 2017-08-18 | 金川集团股份有限公司 | A kind of production method of the separation of Silver from silver-containing liquid waste |
CN108311713A (en) * | 2018-05-16 | 2018-07-24 | 清远市宝晶新材料有限公司 | A kind of Automatic Control manufactures the method and its equipment of silver powder |
CN116168897B (en) * | 2023-04-26 | 2023-09-12 | 四川铭世捷电子材料有限公司 | Preparation device and preparation method of air-soluble conductive silver paste |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04333504A (en) * | 1991-05-10 | 1992-11-20 | Sumitomo Metal Mining Co Ltd | Continuous production of monodisperse fine silver powder |
JP4505084B2 (en) * | 1999-09-13 | 2010-07-14 | アイノベックス株式会社 | Method for producing metal colloid and metal colloid produced by the method |
DE502006008478D1 (en) * | 2005-09-16 | 2011-01-20 | Starck H C Gmbh | REDUCTION PROCESS |
JP4900322B2 (en) * | 2008-06-03 | 2012-03-21 | 住友金属鉱山株式会社 | Method for producing metal selenium powder |
JP5857703B2 (en) * | 2011-12-12 | 2016-02-10 | 住友金属鉱山株式会社 | Silver powder |
-
2013
- 2013-08-28 JP JP2013177379A patent/JP6086046B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015045066A (en) | 2015-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6003880B2 (en) | Silver powder manufacturing method | |
JP6119599B2 (en) | Silver powder manufacturing method | |
JP5354041B2 (en) | Silver powder manufacturing method | |
JP6086046B2 (en) | Silver powder manufacturing method and silver powder manufacturing apparatus | |
JP5568255B2 (en) | Silver powder and method for producing the same | |
JP5556561B2 (en) | Silver powder and method for producing the same | |
JP6201875B2 (en) | Silver powder and method for producing the same | |
JP5949654B2 (en) | Silver powder and method for producing the same | |
JP2010043337A (en) | Silver powder and its manufacturing method | |
JP5803830B2 (en) | Silver powder manufacturing method | |
JP6115405B2 (en) | Silver powder manufacturing method | |
JP6115406B2 (en) | Silver powder manufacturing method | |
JP6086145B2 (en) | Silver powder manufacturing method | |
JP6135405B2 (en) | Silver powder and method for producing the same | |
JP5884708B2 (en) | Silver powder manufacturing method and manufacturing apparatus thereof | |
JP2018053342A (en) | Production method of silver powder and production apparatus of silver powder | |
WO2014087728A1 (en) | Silver powder | |
JP2014001455A (en) | Silver powder | |
JP2016138310A (en) | Silver powder and production method therefor, and photosensitive silver paste | |
JP2014065963A (en) | Production method of silver powder and silver powder production apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160809 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6086046 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |