JP6001283B2 - Mass measuring device - Google Patents

Mass measuring device Download PDF

Info

Publication number
JP6001283B2
JP6001283B2 JP2012061903A JP2012061903A JP6001283B2 JP 6001283 B2 JP6001283 B2 JP 6001283B2 JP 2012061903 A JP2012061903 A JP 2012061903A JP 2012061903 A JP2012061903 A JP 2012061903A JP 6001283 B2 JP6001283 B2 JP 6001283B2
Authority
JP
Japan
Prior art keywords
article
acceleration
mass
force
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012061903A
Other languages
Japanese (ja)
Other versions
JP2013195200A (en
Inventor
亮民 鈴木
亮民 鈴木
誠 中谷
誠 中谷
小西 聡
聡 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishida Co Ltd
Original Assignee
Ishida Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishida Co Ltd filed Critical Ishida Co Ltd
Priority to JP2012061903A priority Critical patent/JP6001283B2/en
Publication of JP2013195200A publication Critical patent/JP2013195200A/en
Application granted granted Critical
Publication of JP6001283B2 publication Critical patent/JP6001283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Description

本発明は、質量測定装置に関し、特に移動している物品の質量をその移動時に測定する質量測定装置に関する。   The present invention relates to a mass measuring device, and more particularly to a mass measuring device that measures the mass of a moving article during movement.

特許文献1(特開平10−339660号公報)に開示されている質量測定装置は、重力加速度センサによって重力加速度を検出し、その重力加速度で計量器の出力信号を除算して秤量台と被測定物との合計質量を求め、その合計質量から秤量台の質量を減じて被測定物の質量を求めている。それゆえ、振動や設置場所の影響を受けずに正確に質量を測定することができる。   A mass measuring device disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 10-339660) detects gravitational acceleration by a gravitational acceleration sensor, divides an output signal of a measuring instrument by the gravitational acceleration, and measures a weighing platform and a device to be measured. The total mass with the object is obtained, and the mass of the measuring object is obtained by subtracting the mass of the weighing platform from the total mass. Therefore, it is possible to accurately measure the mass without being affected by vibration or installation location.

しかしながら、上記特許文献1に記載の質量測定装置は、物品に作用する重力によってロードセルが垂直方向へ変位することを利用しているので、例えば、マニピュレータやロボットハンドの先端部にロードセルを取り付けて、持ち上げた物品を移動している最中にその物品の質量を測定しようとしても、上記従来技術では対応できない。   However, since the mass measuring device described in Patent Document 1 uses the fact that the load cell is displaced in the vertical direction due to gravity acting on the article, for example, by attaching the load cell to the tip of a manipulator or robot hand, Even if an attempt is made to measure the mass of an article while the lifted article is being moved, the above-described conventional technique cannot cope with it.

例えば、移動する物品に作用する力および加速度から質量を算出する質量測定方式が実現すれば、生産工程におけるロボットハンドが物品を移動させながら、その物品の質量を測定することができるので、生産性が格段に向上する。   For example, if a mass measurement method that calculates the mass from the force and acceleration acting on the moving article is realized, the robot hand in the production process can measure the mass of the article while moving the article. Is significantly improved.

他方、そのような質量測定方式では、物品の移動方向と力センサおよび加速度センサの感度方向とが一致する軌道上において質量が測定されるので、力センサおよび加速度センサの感度方向に沿った移動が必要である。特に、生産現場では、工程を流れる商品の切換等によって物品の搬送工程も切り換えられることがあり、力センサおよび加速度センサの感度方向が物品の移動方向に沿うように、質量測定装置の配置または動作を切り換える必要がある。   On the other hand, in such a mass measurement method, since the mass is measured on a trajectory where the moving direction of the article and the sensitivity direction of the force sensor and the acceleration sensor coincide with each other, the movement along the sensitivity direction of the force sensor and the acceleration sensor is not performed. is necessary. In particular, at the production site, the article transport process may be switched by switching the product that flows through the process, and the arrangement or operation of the mass measuring device so that the sensitivity direction of the force sensor and the acceleration sensor follows the movement direction of the article. Need to be switched.

本発明の課題は、力センサおよび加速度センサの感度方向を任意の方向に切り換えることができる、使い勝手のよい質量測定装置を提供することにある。   An object of the present invention is to provide an easy-to-use mass measuring device capable of switching the sensitivity direction of a force sensor and an acceleration sensor to an arbitrary direction.

本発明の第1観点に係る質量測定装置は、物品を移動させ、その際に物品に作用する力および加速度から物品の質量を算出する質量測定装置であって、保持機構と、移動機構と、力測定部と、加速度測定部と、制御部と、切換機構とを備えている。保持機構は、物品を保持する。移動機構は、保持機構を移動させる。力測定部は、保持機構と移動機構との間に設けられて、移動時の物品に作用する力を測定する。加速度測定部は、移動時の物品に作用する加速度を測定する。制御部は、保持機構および移動機構を運転制御し、移動時の物品に作用する力および加速度に基づいて物品の質量を算出する。切換機構は、力測定部および加速度測定部の感度方向を切り換える。また、制御部が、物品の移動パターンを予め記憶しており、移動パターンに応じて力測定部および加速度測定部の感度方向を決定する。 A mass measuring apparatus according to a first aspect of the present invention is a mass measuring apparatus that moves an article and calculates the mass of the article from the force and acceleration acting on the article, and includes a holding mechanism, a moving mechanism, A force measurement unit, an acceleration measurement unit, a control unit, and a switching mechanism are provided. The holding mechanism holds the article. The moving mechanism moves the holding mechanism. The force measuring unit is provided between the holding mechanism and the moving mechanism, and measures the force acting on the article during movement. The acceleration measuring unit measures acceleration acting on the article during movement. The control unit controls the operation of the holding mechanism and the moving mechanism, and calculates the mass of the article based on the force and acceleration acting on the article during movement. The switching mechanism switches the sensitivity directions of the force measurement unit and the acceleration measurement unit. In addition, the control unit stores the movement pattern of the article in advance, and determines the sensitivity directions of the force measurement unit and the acceleration measurement unit according to the movement pattern.

この質量測定装置は、力測定部および加速度測定部の感度方向を任意の方向に切り換えることができるので、生産の都合で物品の移動経路の変更を伴う工程切換があっても、実情に則した質量測定を行なうことができる。なお、感度方向とは、例えば、力に反応するセンサに対して、任意の力を様々な方向に作用させたとき、最もセンサ出力が大きくなる方向である。また、制御部が物品の移動パターンを記憶しているので、例えば、移動距離が最長となる方向へ感度方向が向くように制御することができる。 This mass measuring device can switch the direction of sensitivity of the force measuring unit and the acceleration measuring unit to any direction, so even if there is a process switch accompanying a change in the movement path of the article for production reasons, it conforms to the actual situation. Mass measurement can be performed. The sensitivity direction is, for example, a direction in which the sensor output is maximized when an arbitrary force is applied to the sensor that reacts to the force in various directions. Moreover, since the control part has memorize | stored the movement pattern of articles | goods, it can control, for example so that a sensitivity direction may turn to the direction where movement distance becomes the longest.

本発明の第観点に係る質量測定装置は、第観点に係る質量測定装置であって、制御部が、力測定部または加速度測定部が所定の閾値以上の出力が得られるように力測定部および加速度測定部の感度方向を切り換える。 A mass measuring device according to a second aspect of the present invention is the mass measuring device according to the first aspect , wherein the control unit measures force so that the force measuring unit or the acceleration measuring unit obtains an output equal to or greater than a predetermined threshold value. Switch the direction of sensitivity of the sensor and acceleration measurement unit.

本発明の第観点に係る質量測定装置は、第観点に係る質量測定装置であって、制御部が、移動パターンにおける物品の移動方向と、力測定部および加速度測定部の感度方向とを一致させる。 A mass measurement device according to a third aspect of the present invention is the mass measurement device according to the first aspect , in which the control unit determines the movement direction of the article in the movement pattern and the sensitivity directions of the force measurement unit and the acceleration measurement unit. Match.

この質量測定装置では、物品の移動方向が始点から終点までの間に1回以上切り換わるような移動パターンであっても、移動方向の切り換わりに応じて感度方向が切り換わることによって、始点から終点まで物品に作用する力および加速度を検出することができる。それゆえ、複数点における測定値の平均など検出誤差を小さくするための処理を行うことができる。   In this mass measuring apparatus, even if the movement direction of the article is switched one or more times from the start point to the end point, the sensitivity direction is switched in accordance with the change of the movement direction. The force and acceleration acting on the article up to the end point can be detected. Therefore, it is possible to perform processing for reducing detection errors such as the average of measured values at a plurality of points.

本発明の第観点に係る質量測定装置は、第1観点に係る質量測定装置であって、切換機構が、1つの回転軸を有している。また、切換機構は、力測定部および加速度測定部を回転軸まわりに回転させて、力測定部および加速度測定部の感度方向を切り換える。 A mass measuring device according to a fourth aspect of the present invention is the mass measuring device according to the first aspect, wherein the switching mechanism has one rotating shaft. The switching mechanism rotates the force measurement unit and the acceleration measurement unit around the rotation axis to switch the sensitivity directions of the force measurement unit and the acceleration measurement unit.

この質量測定装置では、力測定部および加速度測定部の感度方向が鉛直面上または水平面上の任意の方向へ向くように調節される。   In this mass measuring apparatus, the direction of sensitivity of the force measuring unit and the acceleration measuring unit is adjusted so as to be directed to an arbitrary direction on the vertical plane or the horizontal plane.

本発明に係る質量測定装置は、力測定部および加速度測定部の感度方向を任意の方向に切り換えることができるので、生産の都合で物品の移動経路の変更を伴う工程切換があっても、実情に則した質量測定を行なうことができるまた、制御部が物品の移動パターンを記憶しているので、例えば、移動距離が最長となる方向へ感度方向が向くように制御することができるThe mass measuring device according to the present invention can switch the direction of sensitivity of the force measuring unit and the acceleration measuring unit to an arbitrary direction. In addition, since the control unit stores the movement pattern of the article, for example, it is possible to control the sensitivity direction so that the movement distance becomes the longest .

本発明の一実施形態に係る質量測定装置の概略平面図。1 is a schematic plan view of a mass measuring device according to an embodiment of the present invention. 図1の質量測定装置をばね−質量系で表わしたときの当該質量測定装置の2自由度モデル。2 is a two-degree-of-freedom model of the mass measuring device when the mass measuring device of FIG. 1 is represented by a spring-mass system. 零点調整のために、ロボットハンドに何も保持させない状態で力センサ及び加速度センサから得られた検出信号を示すグラフ。The graph which shows the detection signal obtained from the force sensor and the acceleration sensor in the state which does not hold | maintain anything in a robot hand for zero point adjustment. スパン調整用の既知の分銅をロボットハンドに保持させた状態で力センサ及び加速度センサから得られた検出信号を示すグラフ。The graph which shows the detection signal obtained from the force sensor and the acceleration sensor in the state which made the robot hand hold | maintain the known weight for span adjustment. 質量mの被測定物をロボットハンドに保持させた状態で力センサ及び加速度センサから得られた検出信号を示すグラフ。The graph which shows the detection signal obtained from the force sensor and the acceleration sensor in the state holding the to-be-measured object of mass m on the robot hand. 質量測定装置の制御系のブロック図。The block diagram of the control system of a mass measuring device. 質量測定装置の力センサおよび加速度センサによって検出された信号を処理する信号処理回路図。The signal processing circuit diagram which processes the signal detected by the force sensor and acceleration sensor of a mass measuring device. 第1変形例に係る質量測定装置の側面図。The side view of the mass measuring device which concerns on a 1st modification. 力センサおよび加速度センサが所定姿勢をとる第2変形例に係る質量測定装置の概略側面図。The schematic side view of the mass measuring device which concerns on the 2nd modification in which a force sensor and an acceleration sensor take a predetermined attitude | position. 力センサおよび加速度センサが他の姿勢をとる第2変形例に係る質量測定装置の概略側面図。The schematic side view of the mass measuring device which concerns on the 2nd modification in which a force sensor and an acceleration sensor take another attitude | position.

以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.

(1)質量測定装置100の構成
図1は、本発明の一実施形態に係る質量測定装置100の概略斜視図である。図1において、質量測定装置100は、力測定部としての力センサ1と、保持機構としてのロボットハンド2と、移動機構としてのロボットアーム3と、加速度測定部としての加速度センサ4とを備えている。
(1) Configuration of Mass Measuring Device 100 FIG. 1 is a schematic perspective view of a mass measuring device 100 according to an embodiment of the present invention. In FIG. 1, a mass measuring apparatus 100 includes a force sensor 1 as a force measuring unit, a robot hand 2 as a holding mechanism, a robot arm 3 as a moving mechanism, and an acceleration sensor 4 as an acceleration measuring unit. Yes.

力センサ1は、移動中の物品Qに作用する力を検出する。力センサ1には、例えば、歪みゲージ式ロードセルが採用される。歪みゲージ式ロードセルは、移動によって自由端側が固定端側に対して相対的に変位し、それによって自由端側に作用する力を検出することができる。   The force sensor 1 detects a force acting on the moving article Q. For the force sensor 1, for example, a strain gauge type load cell is employed. The strain gauge load cell can detect a force acting on the free end side by moving the free end side relative to the fixed end side by movement.

ロボットハンド2は、物品Qを保持する。ロボットハンド2には、エアー吸着機構、或いは、エアーチャック機構が採用される。なお、ロボットハンド2は、エアー吸着機構やエアーチャック機構などに限定されるものではなく、モータ駆動のフィンガー機構であってもよい。   The robot hand 2 holds the article Q. The robot hand 2 employs an air adsorption mechanism or an air chuck mechanism. The robot hand 2 is not limited to an air suction mechanism or an air chuck mechanism, but may be a motor-driven finger mechanism.

ロボットアーム3は、ロボットハンド2を3次元的に移動させる。また、ロボットアーム3は、所定の回転軸CAを中心にしてCW方向およびCCW方向に回転することもできる。なお、ロボットアーム3としては、例えば、水平多関節ロボットや垂直多関節ロボット、あるいは、パラレルリンクロボット等が適切である。   The robot arm 3 moves the robot hand 2 three-dimensionally. The robot arm 3 can also rotate in the CW direction and the CCW direction about a predetermined rotation axis CA. As the robot arm 3, for example, a horizontal articulated robot, a vertical articulated robot, or a parallel link robot is suitable.

加速度センサ4は、物品Qに作用する加速度を検出する。加速度センサ4としては、例えば、歪みゲージ式ロードセル、MEMS型の小型加速度センサ、及び一般的な市販の加速度センサのいずれかが適宜採用される。   The acceleration sensor 4 detects acceleration acting on the article Q. As the acceleration sensor 4, for example, any one of a strain gauge type load cell, a MEMS type small acceleration sensor, and a general commercially available acceleration sensor is appropriately employed.

なお、力センサ1はロボットハンド2とロボットアーム3との間に設けられ、加速度センサ4はロボットハンド2に隣接するように設けられる。以下で説明する実施形態では、力センサ1及び加速度センサ4ともに歪みゲージ式ロードセルが採用されている。   The force sensor 1 is provided between the robot hand 2 and the robot arm 3, and the acceleration sensor 4 is provided adjacent to the robot hand 2. In the embodiment described below, strain gauge type load cells are employed for both the force sensor 1 and the acceleration sensor 4.

図1に示すように、力センサ1及び加速度センサ4の感度方向は鉛直方向(図1の上下方向)であるが、ロボットアーム3を回転軸CAまわりに90°回転させることによって力センサ1及び加速度センサ4の感度方向は水平方向に切り換わる。つまり、ロボットアーム3は、力センサ1及び加速度センサ4の感度方向を切り換える切換機構を兼ねている。なお、感度方向とは、ロードセルのような力に反応するセンサに対して、任意の力を様々な方向に作用させたとき、最もセンサ出力が大きくなる方向である。   As shown in FIG. 1, the sensitivity direction of the force sensor 1 and the acceleration sensor 4 is the vertical direction (vertical direction in FIG. 1), but the force sensor 1 and the acceleration sensor 4 are rotated by rotating the robot arm 3 about 90 ° around the rotation axis CA. The sensitivity direction of the acceleration sensor 4 is switched to the horizontal direction. That is, the robot arm 3 also serves as a switching mechanism that switches the sensitivity directions of the force sensor 1 and the acceleration sensor 4. The sensitivity direction is a direction in which the sensor output is maximized when an arbitrary force is applied in various directions to a sensor that reacts to a force such as a load cell.

(2)質量測定の原理
図2は、図1の質量測定装置100をばね−質量系で表わしたときの当該質量測定装置の2自由度モデルである。
(2) Principle of Mass Measurement FIG. 2 is a two-degree-of-freedom model of the mass measuring device when the mass measuring device 100 of FIG. 1 is represented by a spring-mass system.

図2において、mは物品Qの質量、M1は力センサ1の自由端側の質量とロボットハンド2の質量および加速度センサ4の固定端側の質量の和、M2は加速度センサ4の自由端の質量である。また、k1は力センサ1のばね定数、k2は加速度センサ4のばね定数である。x1は力センサ1の変位量、x2は加速度センサ4の変位量とする。 In FIG. 2, m is the mass of the article Q, M 1 is the sum of the mass at the free end of the force sensor 1, the mass of the robot hand 2 and the mass at the fixed end of the acceleration sensor 4, and M 2 is the free of the acceleration sensor 4. It is the mass of the end. K 1 is the spring constant of the force sensor 1, and k 2 is the spring constant of the acceleration sensor 4. x 1 is the displacement amount of the force sensor 1, and x 2 is the displacement amount of the acceleration sensor 4.

物品Qに加速度が作用したときの運動方程式は、
(m+M1)d21/dt2=−k1(x1−y)+k2(x1−x2) (1)
222/dt2=−k2(x2−x1) (2)
として表される。また(1)式を変形すると、
m=[−k1(x1−y)+k2(x1−x2)]/(d21/dt2)−M1 (3)
となる。さらに、加速度センサ4の剛性が大きいことを考慮すると、
21/dt2≒d22/dt2 (4)
として近似できる。それゆえ、(3)及び(4)式より、
m=[−k1(x1−y)+k2(x1−x2)]/(d22/dt2)−M1 (5)
が導き出される。また、(2)式を変形すると、
22/dt2=−k2(x2−x1)/M2 (6)
となるので、(5)、(6)式より、
m=[−k1(x1−y)/−k2(x2−x1)]M2+M2−M1 (7)
が導き出される。
The equation of motion when acceleration acts on the article Q is
(M + M 1 ) d 2 x 1 / dt 2 = −k 1 (x 1 −y) + k 2 (x 1 −x 2 ) (1)
M 2 d 2 x 2 / dt 2 = −k 2 (x 2 −x 1 ) (2)
Represented as: Moreover, when the equation (1) is transformed,
m = [− k 1 (x 1 −y) + k 2 (x 1 −x 2 )] / (d 2 x 1 / dt 2 ) −M 1 (3)
It becomes. Furthermore, considering that the rigidity of the acceleration sensor 4 is large,
d 2 x 1 / dt 2 ≈d 2 x 2 / dt 2 (4)
Can be approximated as Therefore, from equations (3) and (4)
m = [− k 1 (x 1 −y) + k 2 (x 1 −x 2 )] / (d 2 x 2 / dt 2 ) −M 1 (5)
Is derived. Moreover, when the equation (2) is transformed,
d 2 x 2 / dt 2 = −k 2 (x 2 −x 1 ) / M 2 (6)
Therefore, from equations (5) and (6),
m = [− k 1 (x 1 −y) / − k 2 (x 2 −x 1 )] M 2 + M 2 −M 1 (7)
Is derived.

ここで、−k1(x1−y)は力センサ1の出力、−k2(x2−x1)は加速度センサ4の出力である。 Here, −k 1 (x 1 −y) is an output of the force sensor 1, and −k 2 (x 2 −x 1 ) is an output of the acceleration sensor 4.

図3は、零点調整のために、ロボットハンド2に何も保持させない状態で力センサ1及び加速度センサ4から得られた検出信号を示すグラフである。図3において、力センサ1の出力のピーク値をFmz、加速度センサ4の出力のピーク値をFazとしたとき、(7)式より、
0=M2・C・(Fmz/Faz)+M2−M1 (8)
となる。但し、加速度は0でない場合を想定している。なお、Cは換算係数である。
FIG. 3 is a graph showing detection signals obtained from the force sensor 1 and the acceleration sensor 4 in a state where nothing is held by the robot hand 2 for zero point adjustment. In FIG. 3, when the peak value of the output of the force sensor 1 is Fmz and the peak value of the output of the acceleration sensor 4 is Faz,
0 = M 2 · C · (Fmz / Faz) + M 2 −M 1 (8)
It becomes. However, it is assumed that the acceleration is not zero. C is a conversion coefficient.

図4は、スパン調整用の既知の分銅をロボットハンド2に保持させた状態で力センサ1及び加速度センサ4から得られた検出信号を示すグラフである。図4において、スパン質量をms、力センサ1の出力のピーク値をFms、加速度センサ4の出力のピーク値をFasとしたとき、(7)式より、
ms=M2・C・(Fms/Fas)+M2−M1 (9)
となる。そして、(8)−(9)式より、
C=ms/M2{(Fms/Fas)−(Fmz/Faz)} (10)
が導き出される。(10)式より、M2は固定係数として、スパン係数をSとすると、
S=C・M2=ms/{(Fms/Fas)−(Fmz/Faz)} (11)
である。
FIG. 4 is a graph showing detection signals obtained from the force sensor 1 and the acceleration sensor 4 in a state where a known weight for span adjustment is held by the robot hand 2. In FIG. 4, when the span mass is ms, the peak value of the output of the force sensor 1 is Fms, and the peak value of the output of the acceleration sensor 4 is Fas,
ms = M 2 · C · (Fms / Fas) + M 2 −M 1 (9)
It becomes. And from the equations (8)-(9),
C = ms / M 2 {(Fms / Fas) − (Fmz / Faz)} (10)
Is derived. From equation (10), if M 2 is a fixed coefficient and the span coefficient is S,
S = C · M 2 = ms / {(Fms / Fas) − (Fmz / Faz)} (11)
It is.

図5は、質量mの被測定物をロボットハンド2に保持させた状態で力センサ1及び加速度センサ4から得られた検出信号を示すグラフである。図5において、力センサ1の出力のピーク値をFm、加速度センサ4の出力のピーク値をFaとしたとき、(11)式より、
m=S{(Fm/Fa)−(Fmz/Faz)} (12)
となる。
FIG. 5 is a graph showing detection signals obtained from the force sensor 1 and the acceleration sensor 4 in a state where an object to be measured having a mass m is held by the robot hand 2. In FIG. 5, when the peak value of the output of the force sensor 1 is Fm and the peak value of the output of the acceleration sensor 4 is Fa,
m = S {(Fm / Fa)-(Fmz / Faz)} (12)
It becomes.

上記のように、質量測定装置100の測定方式は、物品Qを移動させ、移動時の物品に作用する力を移動時の物品に作用する加速度で除算して物品Qの質量を算出する方式である。   As described above, the measurement method of the mass measuring apparatus 100 is a method of calculating the mass of the article Q by moving the article Q and dividing the force acting on the article during movement by the acceleration acting on the article during movement. is there.

(3)制御系
図6は、質量測定装置100の制御系のブロック図である。図6において、制御部40及び記憶部49を含む制御回路50には、力センサ1、ロボットハンド2、ロボットアーム3、加速度センサ4、入力部7及びディスプレイ8が電気的に接続されている。なお、力センサ1、ロボットハンド2、ロボットアーム3、及び加速度センサ4については、既に説明しているので、ここでは言及しない。
(3) Control System FIG. 6 is a block diagram of a control system of the mass measuring apparatus 100. In FIG. 6, a force sensor 1, a robot hand 2, a robot arm 3, an acceleration sensor 4, an input unit 7, and a display 8 are electrically connected to a control circuit 50 including a control unit 40 and a storage unit 49. Since the force sensor 1, the robot hand 2, the robot arm 3, and the acceleration sensor 4 have already been described, they are not mentioned here.

入力部7は、質量測定装置100の始動前に、オペレータが力センサ1の定格や、被測定物の測定範囲などを入力するための機器であり、具体的には、キーボード、或いは、タッチパネルである。   The input unit 7 is a device for an operator to input the rating of the force sensor 1 and the measurement range of the object to be measured before starting the mass measuring device 100. Specifically, the input unit 7 is a keyboard or a touch panel. is there.

ディスプレイ8は、質量測定装置100の動作状況を逐次表示するための機器であり、力センサ1及び加速度センサ4の異常や、ロボットハンド2及びロボットアーム3の動作異常が発生したときには、エラー表示を行う。   The display 8 is a device for sequentially displaying the operation status of the mass measuring device 100. When an abnormality occurs in the force sensor 1 and the acceleration sensor 4 or an operation abnormality occurs in the robot hand 2 and the robot arm 3, an error display is displayed. Do.

記憶部49は、質量測定装置100に搭載可能な力センサ1の定格、及び被測定物の質量範囲ごとに設定された被測定物に作用させるべき適用加速度を予め記憶している。   The storage unit 49 stores in advance the rating of the force sensor 1 that can be mounted on the mass measuring device 100 and the applied acceleration to be applied to the measurement object set for each mass range of the measurement object.

例えば、質量測定装置100が、物品Qが搬送される工程で、「ロボットハンド2によって物品Qを保持し、ロボットアーム3によって物品Qを梱包容器まで移動させ、その間に質量を測定し、物品Qを梱包容器に納める」という動作を行う場合、オペレータは質量測定装置100の始動前に、物品Qの質量測定範囲(例えば、m±0.5g)を入力する。   For example, when the mass measuring apparatus 100 is a process in which the article Q is conveyed, “the article Q is held by the robot hand 2, the article Q is moved to the packing container by the robot arm 3, the mass is measured during the movement, and the article Q is measured. In the case of performing the operation of “storing the product in the packaging container”, the operator inputs the mass measurement range (for example, m ± 0.5 g) of the article Q before starting the mass measurement apparatus 100.

記憶部49は、予め質量m程度の物品Qの質量を測定するときに物品Qに作用させるべき最適加速度を記憶している。制御部40は、入力された質量測定範囲に対応する適用加速度を記憶部49から読み取り、ロボットアーム3を介して物品Qにその適用加速度を作用させ、そのときの力センサ1の出力を読み取る。なお、制御部40としては、DSP(ディジタル・シグナル・プロセッサ)やマイコン等が採用される。   The storage unit 49 stores in advance the optimum acceleration to be applied to the article Q when measuring the mass of the article Q having a mass of about m. The control unit 40 reads the applied acceleration corresponding to the input mass measurement range from the storage unit 49, causes the applied acceleration to act on the article Q via the robot arm 3, and reads the output of the force sensor 1 at that time. As the control unit 40, a DSP (digital signal processor), a microcomputer, or the like is employed.

図7は、力センサ1及び加速度センサ4によって検出された信号を処理する信号処理回路図である。図7において、力センサ1と加速度センサ4には、それぞれ増幅器31a、31bが接続されており、これらの増幅器31a、31bは、力センサ1及び加速度センサ4から入力された検出信号を増幅する。また、増幅器31a、31bには、それぞれA/D変換器33a、33bが接続されている。そのA/D変換器33a、33bは、入力されたアナログ信号をディジタル信号に変換する。   FIG. 7 is a signal processing circuit diagram for processing signals detected by the force sensor 1 and the acceleration sensor 4. In FIG. 7, amplifiers 31 a and 31 b are connected to the force sensor 1 and the acceleration sensor 4, respectively, and these amplifiers 31 a and 31 b amplify detection signals input from the force sensor 1 and the acceleration sensor 4. In addition, A / D converters 33a and 33b are connected to the amplifiers 31a and 31b, respectively. The A / D converters 33a and 33b convert the input analog signal into a digital signal.

A/D変換器33a、33bには、それぞれローパスフィルタ37a、37bが接続されている。このローパスフィルタ37a、37bは、入力された検出信号から一定周波数以上のノイズ成分を除去する。また、ローパスフィルタ37a、37bは、制御部40に接続されている。   Low-pass filters 37a and 37b are connected to the A / D converters 33a and 33b, respectively. The low-pass filters 37a and 37b remove noise components of a certain frequency or more from the input detection signal. The low pass filters 37 a and 37 b are connected to the control unit 40.

制御部40は、入力された検出信号に基づいて各種の処理を実行する。先ず、制御部40は、力センサ1及び加速度センサ4の検出信号に含まれるノイズ周波数成分をローパスフィルタ37a、37bにより除去する処理を行う。そして、そのノイズ周波数成分が除去された力センサ1の検出信号を除算器41により加速度センサ4の検出信号で除算する処理を行い、その後、制御部40は、減算器43として機能することで、その除算結果を用いて式(12)の演算を行い、質量mを算出する処理を行う。即ち、制御部40は、力センサ1及び加速度センサ4の検出信号に基づいて、物品Qの質量mを算出する。   The control unit 40 executes various processes based on the input detection signal. First, the control unit 40 performs processing for removing noise frequency components included in the detection signals of the force sensor 1 and the acceleration sensor 4 by the low-pass filters 37a and 37b. And the process which divides the detection signal of the force sensor 1 from which the noise frequency component was removed by the detection signal of the acceleration sensor 4 by the divider 41, and then the control unit 40 functions as the subtractor 43, The calculation of equation (12) is performed using the division result, and the process of calculating the mass m is performed. That is, the control unit 40 calculates the mass m of the article Q based on the detection signals of the force sensor 1 and the acceleration sensor 4.

(4)質量測定装置100の動作
(4−1)感度方向の切換
上記のように構成された質量測定装置100について、その動作例を以下で説明する。例えば、ある生産工程においてコンベアを流れる物品について、質量測定後に質量チェックを行い、ダンボール詰めするものとする。質量チェックでは、物品の質量が所定許容範囲内であるか否かを判定して、OK品はダンボール詰めを行い、NG品は不良品箱に入れるものとする。また本生産工程では複数種類の物品の処理を行っているものとする。
(4) Operation of Mass Measuring Device 100 (4-1) Switching Sensitivity Direction An example of the operation of the mass measuring device 100 configured as described above will be described below. For example, it is assumed that an article flowing on a conveyor in a certain production process is subjected to mass check after mass measurement and packed in cardboard. In the mass check, it is determined whether the mass of the article is within a predetermined allowable range, and the OK product is packed in cardboard and the NG product is put in a defective product box. In this production process, it is assumed that a plurality of types of articles are processed.

制御部40は、搬送コンベアを流れる物品Qをロボットハンド2で保持する。次に制御部40は、ロボットアーム3の動作を制御して、物品Qに加速度が作用するように鉛直上方へ移動させる(コンベアから持ち上げる動作)。このとき、既に力センサ1および加速度センサ4の感度方向が鉛直になるように切り換えられている(図1の状態)ので、鉛直方向移動による物品Qに作用する力と加速度が検出される。なお、感度方向とは、ロードセルのような力に反応するセンサに対して、任意の力を様々な方向に作用させたとき、最もセンサ出力が大きくなる方向である。   The control unit 40 holds the article Q flowing on the transfer conveyor with the robot hand 2. Next, the control unit 40 controls the operation of the robot arm 3 and moves the article Q vertically upward so that acceleration is applied to the article Q (operation of lifting from the conveyor). At this time, since the sensitivity direction of the force sensor 1 and the acceleration sensor 4 has already been switched so as to be vertical (state in FIG. 1), the force and acceleration acting on the article Q due to vertical movement are detected. The sensitivity direction is a direction in which the sensor output is maximized when an arbitrary force is applied in various directions to a sensor that reacts to a force such as a load cell.

制御部40は、除算器41により力センサ1の出力を加速度センサ4の出力で除算する処理を行う。その後、制御部40は、減算器43として機能することで、除算結果を用いて式(12)の演算を行い、質量mを算出する。   The control unit 40 performs a process of dividing the output of the force sensor 1 by the output of the acceleration sensor 4 by the divider 41. Thereafter, the control unit 40 functions as the subtractor 43, performs the calculation of Expression (12) using the division result, and calculates the mass m.

続いて制御部40は、物品Qを水平に移動させる(コンベヤの上方からダンボール箱の上方へ移動させる動作)。このとき、力センサ1および加速度センサ4の感度方向が移動方向に対して垂直となるので、力センサ1および加速度センサ4は、移動方向の力と加速度をほとんど検出しない。そこで、制御部40はロボットアーム3を回転軸CAまわりに90°回転させて、力センサ1および加速度センサ4の感度方向が水平になるように切り換える。したがって、力センサ1の出力は物品Qに作用する水平方向の力であり、加速度センサ4の出力は物品Qに作用する水平方向の加速度であるので、上記質量測定方式で物品Qの質量mを算出することができる。   Subsequently, the control unit 40 moves the article Q horizontally (operation for moving the article Q from above the conveyor to above the cardboard box). At this time, since the sensitivity directions of the force sensor 1 and the acceleration sensor 4 are perpendicular to the movement direction, the force sensor 1 and the acceleration sensor 4 hardly detect the force and acceleration in the movement direction. Accordingly, the control unit 40 rotates the robot arm 3 by 90 ° around the rotation axis CA to switch the sensitivity directions of the force sensor 1 and the acceleration sensor 4 to be horizontal. Therefore, since the output of the force sensor 1 is a horizontal force acting on the article Q and the output of the acceleration sensor 4 is a horizontal acceleration acting on the article Q, the mass m of the article Q is calculated by the mass measurement method. Can be calculated.

(4−2)質量チェックの処理
質量測定装置100では、物品Qの移動方向が鉛直方向から水平方向に1回以上切り換わるような移動パターンであっても、移動方向の切り換わりに応じて感度方向が切り換わることによって、始点から終点まで物品に作用する力および加速度を検出することができる。それゆえ、複数点における測定値の平均など検出誤差を小さくするための処理を行うことができる。もちろん、鉛直方向および水平方向のいずれか一方における質量算出結果を採用してもよい。
(4-2) Processing of Mass Check In the mass measuring apparatus 100, even if the movement pattern of the article Q is switched from the vertical direction to the horizontal direction at least once, the sensitivity according to the switching of the movement direction. By switching the direction, it is possible to detect the force and acceleration acting on the article from the start point to the end point. Therefore, it is possible to perform processing for reducing detection errors such as the average of measured values at a plurality of points. Of course, the mass calculation result in either one of the vertical direction and the horizontal direction may be adopted.

算出された物品Qの質量mが許容範囲内であれば、制御部40は物品QをOK品と判断する。その後、制御部40はロボットアーム3の動作を制御して、物品Qをダンボール箱に箱詰めするように制御する。他方、算出された物品Qの質量mが許容範囲から外れていた場合、制御部40は物品QをNG品と判断する。その後、制御部40はロボットアーム3の動作を制御して、物品Qを不良品箱まで運ぶ。   If the calculated mass m of the article Q is within the allowable range, the control unit 40 determines that the article Q is an OK product. Thereafter, the control unit 40 controls the operation of the robot arm 3 so that the article Q is packed in a cardboard box. On the other hand, when the calculated mass m of the article Q is out of the allowable range, the control unit 40 determines that the article Q is an NG product. Thereafter, the control unit 40 controls the operation of the robot arm 3 to carry the article Q to the defective box.

(5)特徴
(5−1)
質量測定装置100では、ロボットアーム3は、ロボットハンド2を3次元的に移動させ、さらに回転軸CAを中心にしてCW方向およびCCW方向に回転させることもできるので、制御部40はロボットアーム3を介して力センサ1及び加速度センサ4の感度方向を任意の方向に切り換えることができる。したがって、この質量測定装置100を用いれば、生産の都合で物品の移動経路の変更を伴う工程切換があっても、実情に則した質量測定を行なうことができる。
(5) Features (5-1)
In the mass measuring apparatus 100, the robot arm 3 can move the robot hand 2 three-dimensionally and further rotate in the CW and CCW directions around the rotation axis CA. The sensitivity direction of the force sensor 1 and the acceleration sensor 4 can be switched to an arbitrary direction via the. Therefore, if this mass measuring apparatus 100 is used, mass measurement can be performed in accordance with the actual situation even if there is a process switching accompanied by a change in the movement path of the article for the convenience of production.

(5−2)
質量測定装置100では、制御部40が、物品Qの移動パターンを予め記憶しており、移動パターンに応じて力センサ1および加速度センサ4の感度方向を決定するので、移動距離が最長となる方向へ感度方向が向くように制御することができる。
(5-2)
In the mass measuring apparatus 100, the control unit 40 stores the movement pattern of the article Q in advance, and determines the sensitivity direction of the force sensor 1 and the acceleration sensor 4 according to the movement pattern, so that the movement distance is the longest. It can be controlled so that the sensitivity direction is oriented.

また、制御部40は、力センサ1または加速度センサ4が所定の閾値以上の出力が得られるように力センサ1および加速度センサ4の感度方向を切り換えることもできる。   The control unit 40 can also switch the sensitivity directions of the force sensor 1 and the acceleration sensor 4 so that the force sensor 1 or the acceleration sensor 4 can obtain an output that is equal to or greater than a predetermined threshold value.

(5−3)
質量測定装置100では、制御部40が、物品Qの移動方向と、力センサ1及び加速度センサ4の感度方向とを一致させることができるので、物品Qの移動方向が始点から終点までの間に1回以上切り換わるような移動パターンであっても、移動方向の切り換わりに応じて感度方向が切り換わることによって、始点から終点まで物品に作用する力および加速度を検出することができる。それゆえ、複数点における測定値の平均など検出誤差を小さくするための処理を行うことができる。
(5-3)
In the mass measuring apparatus 100, the control unit 40 can match the moving direction of the article Q with the sensitivity directions of the force sensor 1 and the acceleration sensor 4, so that the moving direction of the article Q is between the start point and the end point. Even if the movement pattern is switched once or more, the force and acceleration acting on the article from the start point to the end point can be detected by switching the sensitivity direction according to the change of the movement direction. Therefore, it is possible to perform processing for reducing detection errors such as the average of measured values at a plurality of points.

(6)変形例
(6−1)第1変形例
図8は、第1変形例に係る質量測定装置200の側面図である。図8において、質量測定装置200は、力センサ21と、ロボットハンド22と、ロボットアーム23と、加速度センサ24とを備えている。力センサ21及び加速度センサ24は歪みゲージ式ロードセルであり、感度方向を傾けた姿勢で配置されている。さらに、質量測定装置200では、ロボットハンド22とロボットアーム23との間に、平行の位置関係にない水平軸61及び鉛直軸62を含む切換機構60を備えている。なお、切換機構60は、水平軸61及び鉛直軸62それぞれを回転させるモータ(図示せず)をさらに含んでいる。
(6) Modification (6-1) First Modification FIG. 8 is a side view of a mass measuring apparatus 200 according to a first modification. In FIG. 8, the mass measuring apparatus 200 includes a force sensor 21, a robot hand 22, a robot arm 23, and an acceleration sensor 24. The force sensor 21 and the acceleration sensor 24 are strain gauge type load cells, and are arranged in a posture in which the sensitivity direction is inclined. Further, the mass measuring apparatus 200 includes a switching mechanism 60 including a horizontal axis 61 and a vertical axis 62 that are not in a parallel positional relationship between the robot hand 22 and the robot arm 23. The switching mechanism 60 further includes a motor (not shown) that rotates each of the horizontal shaft 61 and the vertical shaft 62.

例えば、力センサ21及び加速度センサ24の感度方向が水平方向に対して角度θ傾斜している場合、質量mの物品Qに鉛直方向の加速度aが作用するとき、力センサ21はm・(g+a)sinθの力を検出し、加速度センサ24は(g+a)sinθの加速度を検出する。なお、gは重力加速度である。他方、質量mの物品Qに水平方向の加速度aが作用するとき、力センサ21はm・a・cosθの力を検出し、加速度センサ24はa・cosθの加速度を検出する。   For example, when the sensitivity directions of the force sensor 21 and the acceleration sensor 24 are inclined at an angle θ with respect to the horizontal direction, when the acceleration a in the vertical direction acts on the article Q having the mass m, the force sensor 21 is m · (g + a ) The force of sin θ is detected, and the acceleration sensor 24 detects the acceleration of (g + a) sin θ. In addition, g is a gravitational acceleration. On the other hand, when the acceleration a in the horizontal direction acts on the article Q having the mass m, the force sensor 21 detects a force of m · a · cos θ, and the acceleration sensor 24 detects an acceleration of a · cos θ.

以上のように、第1変形例に係る質量測定装置200は、1個の力センサ21及び1個の加速度センサ24が鉛直方向と水平方向のいずれの方向に移動しても、そのときに物品Qに作用する力および加速度の感度方向成分を検出することができる。   As described above, the mass measuring device 200 according to the first modified example is not limited to the article even if one force sensor 21 and one acceleration sensor 24 move in either the vertical direction or the horizontal direction. Sensitivity direction components of force and acceleration acting on Q can be detected.

また、力センサ21及び加速度センサ24は水平軸61まわりに回転可能であるので、力センサ21及び加速度センサ24の傾斜角度θは任意に設定可能である。さらに、力センサ21及び加速度センサ24は任意の傾斜角度θで傾斜した状態のまま鉛直軸62まわりにも回転可能であるので、力センサ21及び加速度センサ24の感度方向は任意の方向に設定可能である。したがって、第1変形例に係る質量測定装置200は、力センサ21及び加速度センサ24の感度方向を物品Qの移動方向の変化に追従させることができる。   Moreover, since the force sensor 21 and the acceleration sensor 24 can rotate around the horizontal axis 61, the inclination angle θ of the force sensor 21 and the acceleration sensor 24 can be arbitrarily set. Further, since the force sensor 21 and the acceleration sensor 24 can rotate around the vertical axis 62 while being inclined at an arbitrary inclination angle θ, the sensitivity directions of the force sensor 21 and the acceleration sensor 24 can be set to arbitrary directions. It is. Therefore, the mass measuring apparatus 200 according to the first modification can cause the sensitivity directions of the force sensor 21 and the acceleration sensor 24 to follow changes in the moving direction of the article Q.

上記の通り、第1変形例に係る質量測定装置200では、ロボットハンド22とロボットアーム23との間に、平行の位置関係にない水平軸61及び鉛直軸62を含む切換機構60を備えているので、制御部40は切換機構60を介して、力センサ1及び加速度センサ4を水平軸61および/または鉛直軸62まわりに回転させて、力センサ1及び加速度センサ4の感度方向を切り換えることができる。   As described above, the mass measuring device 200 according to the first modification includes the switching mechanism 60 including the horizontal axis 61 and the vertical axis 62 that are not in a parallel positional relationship between the robot hand 22 and the robot arm 23. Therefore, the control unit 40 can rotate the force sensor 1 and the acceleration sensor 4 around the horizontal axis 61 and / or the vertical axis 62 via the switching mechanism 60 to switch the sensitivity directions of the force sensor 1 and the acceleration sensor 4. it can.

その結果、第1変形例に係る質量測定装置200では、力センサ21および加速度センサ24を増設することなく、鉛直方向を含む互いに直交する3方向のいずれに対しても、力および加速度を測定することができる。   As a result, in the mass measuring apparatus 200 according to the first modification, force and acceleration are measured in any of the three directions orthogonal to each other including the vertical direction without adding the force sensor 21 and the acceleration sensor 24. be able to.

(6−2)第2変形例
図9Aは、力センサ21及び加速度センサ24が所定姿勢をとる第2変形例に係る質量測定装置250の概略側面図である。また、図9Bは、力センサ21及び加速度センサ24が他の姿勢をとる第2変形例に係る質量測定装置250の概略側面図である。図9A及び図9Bにおける質量測定装置250の構成は図8で示した第1変形例から鉛直軸62まわりの回転機構を廃止した構成であり、その他の構成は第1変形例と同様である。つまり、質量測定装置250では、ロボットハンド22とロボットアーム223との間に水平軸61を含む切換機構60を備えている。
(6-2) Second Modification FIG. 9A is a schematic side view of a mass measuring apparatus 250 according to a second modification in which the force sensor 21 and the acceleration sensor 24 take a predetermined posture. FIG. 9B is a schematic side view of the mass measuring device 250 according to the second modification example in which the force sensor 21 and the acceleration sensor 24 take other postures. The configuration of the mass measuring device 250 in FIGS. 9A and 9B is a configuration in which the rotation mechanism around the vertical shaft 62 is eliminated from the first modification shown in FIG. 8, and the other configurations are the same as in the first modification. That is, the mass measuring device 250 includes the switching mechanism 60 including the horizontal axis 61 between the robot hand 22 and the robot arm 223.

図9Aにおいて、質量測定装置250の力センサ21及び加速度センサ24は感度方向が鉛直方向となる姿勢をとっている。通常、物品Qの移動には鉛直移動が含まれているので、力センサ21及び加速度センサ24が反応する。また、物品Qの移動が3次元的傾斜方向であっても力センサ21及び加速度センサ24には鉛直方向の成分が出力される。   In FIG. 9A, the force sensor 21 and the acceleration sensor 24 of the mass measuring device 250 take a posture in which the sensitivity direction is the vertical direction. Usually, since the movement of the article Q includes vertical movement, the force sensor 21 and the acceleration sensor 24 react. Even if the movement of the article Q is in a three-dimensional tilt direction, a vertical component is output to the force sensor 21 and the acceleration sensor 24.

制御部40は、ロボットハンド22及びロボットアーム223を制御して物品Qを移動させるので、物品Qが鉛直方向を含む移動している期間、力センサ21及び加速度センサ24の出力に基づいて質量を算出することができる。   Since the control unit 40 controls the robot hand 22 and the robot arm 223 to move the article Q, the mass is calculated based on the outputs of the force sensor 21 and the acceleration sensor 24 while the article Q is moving including the vertical direction. Can be calculated.

他方、図9Bにおいて、質量測定装置250の力センサ21及び加速度センサ24は感度方向が水平方向となる姿勢をとっている。なお、姿勢の変更は、力センサ21及び加速度センサ24が水平軸61まわりに回転可能であるので、力センサ21及び加速度センサ24の感度方向の傾斜角度は任意に設定可能である。   On the other hand, in FIG. 9B, the force sensor 21 and the acceleration sensor 24 of the mass measuring device 250 are in a posture in which the sensitivity direction is the horizontal direction. In addition, since the force sensor 21 and the acceleration sensor 24 can rotate around the horizontal axis 61, the inclination angle in the sensitivity direction of the force sensor 21 and the acceleration sensor 24 can be arbitrarily set.

通常、物品Qの移動には水平移動が含まれているので、力センサ21及び加速度センサ24が反応する。また、物品Qの移動が3次元的傾斜方向であっても力センサ21及び加速度センサ24には水平方向の成分が出力される。   Usually, since the movement of the article Q includes horizontal movement, the force sensor 21 and the acceleration sensor 24 react. Even when the movement of the article Q is in the three-dimensional tilt direction, the horizontal component is output to the force sensor 21 and the acceleration sensor 24.

制御部40は、ロボットハンド22及びロボットアーム223を制御して物品Qを移動させるので、物品Qが水平方向を含む移動している期間、力センサ21及び加速度センサ24の出力に基づいて質量を算出することができる。   Since the control unit 40 controls the robot hand 22 and the robot arm 223 to move the article Q, the mass is calculated based on the outputs of the force sensor 21 and the acceleration sensor 24 while the article Q is moving including the horizontal direction. Can be calculated.

それゆえ、この第2変形例に係る質量測定装置250では、鉛直方向および水平方向のいずれの方向に対しても、力センサ21及び加速度センサ24を増設することなく力および加速度を測定することができる。   Therefore, the mass measuring device 250 according to the second modification can measure force and acceleration without adding the force sensor 21 and the acceleration sensor 24 in both the vertical direction and the horizontal direction. it can.

上記の通り、第2変形例に係る質量測定装置250では、切換機構60が力センサ21及び加速度センサ24を水平軸61まわりに回転させて、力センサ21及び加速度センサ24の感度方向を切り換える。その結果、力センサ21及び加速度センサ24の感度方向が鉛直面上または水平面上の任意の方向へ向くように調節される。   As described above, in the mass measuring device 250 according to the second modification, the switching mechanism 60 rotates the force sensor 21 and the acceleration sensor 24 around the horizontal axis 61 to switch the sensitivity directions of the force sensor 21 and the acceleration sensor 24. As a result, the sensitivity directions of the force sensor 21 and the acceleration sensor 24 are adjusted so as to be directed to arbitrary directions on the vertical plane or the horizontal plane.

以上にように、本願発明によれば、力センサ1及び加速度センサ4の感度方向を物品が移動する方向に向けで、移動する物品の質量を測定することができる。それゆえ、生産工程における物品の質量検査、物品の振り分けを行う産業用ロボットにも有用である。   As described above, according to the present invention, the mass of the moving article can be measured with the sensitivity direction of the force sensor 1 and the acceleration sensor 4 directed in the direction in which the article moves. Therefore, the present invention is also useful for industrial robots that perform mass inspection and distribution of articles in the production process.

1,21 力センサ(力測定部)
2,22 ロボットハンド(保持機構)
3,23,223 ロボットアーム(移動機構)
4,24 加速度センサ(加速度測定部)
40 制御部
60 切換機構
Q 物品
1,21 Force sensor (force measuring unit)
2,22 Robot hand (holding mechanism)
3, 23, 223 Robot arm (movement mechanism)
4,24 Acceleration sensor (acceleration measurement unit)
40 control unit 60 switching mechanism Q article

特開平10−339660号公報JP-A-10-339660

Claims (4)

物品を移動させ、その際に前記物品に作用する力および加速度から前記物品の質量を算出する質量測定装置であって、
前記物品を保持する保持機構と、
前記保持機構を移動させる移動機構と、
前記保持機構と前記移動機構との間に設けられて、移動時の前記物品に作用する力を測定する力測定部と、
移動時の前記物品に作用する加速度を測定する加速度測定部と、
前記保持機構および前記移動機構を運転制御し、移動時の前記物品に作用する力および加速度に基づいて前記物品の質量を算出する制御部と、
前記力測定部および前記加速度測定部の感度方向を切り換える切換機構と、
を備え
前記制御部は、前記物品の移動パターンを予め記憶しており、前記移動パターンに応じて前記力測定部および前記加速度測定部の前記感度方向を決定する、
質量測定装置。
A mass measuring device that moves the article and calculates the mass of the article from the force and acceleration acting on the article at that time,
A holding mechanism for holding the article;
A moving mechanism for moving the holding mechanism;
A force measuring unit that is provided between the holding mechanism and the moving mechanism and measures a force acting on the article during movement;
An acceleration measuring unit for measuring acceleration acting on the article during movement;
A controller that controls the operation of the holding mechanism and the moving mechanism, and calculates the mass of the article based on the force and acceleration acting on the article during movement;
A switching mechanism for switching the direction of sensitivity of the force measuring unit and the acceleration measuring unit;
Equipped with a,
The control unit stores a movement pattern of the article in advance, and determines the sensitivity direction of the force measurement unit and the acceleration measurement unit according to the movement pattern.
Mass measuring device.
前記制御部は、前記力測定部または前記加速度測定部が所定の閾値以上の出力が得られるように前記力測定部および前記加速度測定部の前記感度方向を切り換える、
請求項に記載の質量測定装置。
The control unit switches the sensitivity directions of the force measurement unit and the acceleration measurement unit so that the force measurement unit or the acceleration measurement unit obtains an output of a predetermined threshold value or more.
The mass measuring device according to claim 1 .
前記制御部は、前記移動パターンにおける前記物品の移動方向と、前記力測定部および前記加速度測定部の前記感度方向とを一致させる、
請求項に記載の質量測定装置。
The control unit matches the moving direction of the article in the moving pattern with the sensitivity direction of the force measuring unit and the acceleration measuring unit.
The mass measuring device according to claim 1 .
前記切換機構は、1つの回転軸を有し、前記力測定部および前記加速度測定部を前記回転軸まわりに回転させて、前記力測定部および前記加速度測定部の前記感度方向を切り換える、
請求項1に記載の質量測定装置。
The switching mechanism has one rotation axis, and rotates the force measurement unit and the acceleration measurement unit around the rotation axis to switch the sensitivity directions of the force measurement unit and the acceleration measurement unit.
The mass measuring device according to claim 1.
JP2012061903A 2012-03-19 2012-03-19 Mass measuring device Expired - Fee Related JP6001283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061903A JP6001283B2 (en) 2012-03-19 2012-03-19 Mass measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061903A JP6001283B2 (en) 2012-03-19 2012-03-19 Mass measuring device

Publications (2)

Publication Number Publication Date
JP2013195200A JP2013195200A (en) 2013-09-30
JP6001283B2 true JP6001283B2 (en) 2016-10-05

Family

ID=49394337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061903A Expired - Fee Related JP6001283B2 (en) 2012-03-19 2012-03-19 Mass measuring device

Country Status (1)

Country Link
JP (1) JP6001283B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231406A (en) * 1985-08-02 1987-02-10 Matsushita Electric Ind Co Ltd Positioning controller for articulated robot
JPH01260324A (en) * 1988-04-11 1989-10-17 Kawasaki Steel Corp Method for measuring weight of suspended load of crane
JPH04336987A (en) * 1991-05-10 1992-11-25 Nippon Telegr & Teleph Corp <Ntt> Gripping device
JPH04354679A (en) * 1991-05-31 1992-12-09 Nippon Telegr & Teleph Corp <Ntt> Master/slave manipulator control device
JPH0631667A (en) * 1992-07-21 1994-02-08 Hitachi Ltd Industrial robot
JPH0732284A (en) * 1993-07-15 1995-02-03 Nakai:Kk Food carrying robot device
JP3328414B2 (en) * 1994-02-17 2002-09-24 三洋電機株式会社 Robot hand attitude control device
JPH0894424A (en) * 1994-09-26 1996-04-12 Tohoku Munekata Kk Weight measuring apparatus
DE19637554B4 (en) * 1995-09-19 2004-01-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for measuring error compensation in measuring robots
JP2009269110A (en) * 2008-05-02 2009-11-19 Olympus Corp Assembly equipment
JP5327722B2 (en) * 2010-05-07 2013-10-30 株式会社安川電機 Robot load estimation apparatus and load estimation method

Also Published As

Publication number Publication date
JP2013195200A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
US9140598B2 (en) Mass measurement device
JP5383760B2 (en) Robot with workpiece mass measurement function
US10329042B2 (en) Packing apparatus and packing method
CN108463314A (en) Determination of the robot relative to the orientation of gravity direction
JP5977971B2 (en) Mass measuring device
CN105690383A (en) Human-interactive type robot system
CN103963051A (en) Robot and robot controller
JPH11502776A (en) Apparatus and method for calibration of multi-axis industrial robot
JP2013079931A (en) Mass measurement device
JP5287462B2 (en) Angular velocity or angle detection method and robot control method
US11618163B2 (en) Industrial robot system
KR20110004788A (en) Method and apparatus for operating a manipulator
KR101601094B1 (en) Measuring System of Inertia and Mass Center
JP2019141967A (en) Vibration analysis device and vibration analysis method
JP7136729B2 (en) Apparatus, method, program, controller and robot system for estimating load weight and center-of-gravity position using a robot
JP6001283B2 (en) Mass measuring device
JP5977983B2 (en) Mass measuring device
CN108621124A (en) Holding mechanism, transfer device, handling robot system and robot method for carrying
CN105666489A (en) Manipulator used for correcting offline training data and method
JP2013174570A (en) Mass measurement device
JP6513367B2 (en) Mass measuring device
JP5977960B2 (en) Mass measuring device
JP3204177U (en) Force detection system
JP6001282B2 (en) Sorting device
WO2016043227A1 (en) Mass measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees