JPS6231406A - Positioning controller for articulated robot - Google Patents

Positioning controller for articulated robot

Info

Publication number
JPS6231406A
JPS6231406A JP17152385A JP17152385A JPS6231406A JP S6231406 A JPS6231406 A JP S6231406A JP 17152385 A JP17152385 A JP 17152385A JP 17152385 A JP17152385 A JP 17152385A JP S6231406 A JPS6231406 A JP S6231406A
Authority
JP
Japan
Prior art keywords
inertia
moment
motor
calculation means
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17152385A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inoue
博之 井上
Akio Hirahata
平畑 秋穂
Tomiyasu Ueda
富康 上田
Makoto Doi
誠 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17152385A priority Critical patent/JPS6231406A/en
Publication of JPS6231406A publication Critical patent/JPS6231406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To cope automatically with the change of the inertia of moment caused by the change of the weight of a work and the change of the posture of a robot, by performing in real time the estimation of the work weight, the correction of the moment of inertia and the calculation of the starting point of deceleration and a speed command when a shift of the robot is started. CONSTITUTION:The 1st arithmetic means 4 of a controller calculates the moment of inertia for axis conversion of each motor when a work 2 is not held. While the 2nd arithmetic means 7 calculates the weight of the work 2. At the same time, the acceleration of a motor 3 which drives each joint of a multi-joint robot 1 is detected by an acceleration detecting means 5. Then the torque of the motor 3 is detected by a torque detecting means 6. In addition, the 3rd arithmetic means 8 corrects each moment of inertia of a target shift point based on the moment of inertia of the target shift point of the means 4 and the work weight given from the means 7. The 4th arithmetic means 8 calculates the moment of inertia corrected by the means 8 and the torque detected by the means 6. Then the optimum deceleration is added to the 5th arithmetic means 12. The motor 3 is controlled with the outputs of a speed detecting means 10, a remaining shift amount detecting means 11 and the means 12.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多関節機構を有する産業用ロボットの位置決
め制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a positioning control device for an industrial robot having a multi-joint mechanism.

従来の技術 近年産業用ロボットは、生産の自動化の担手として普及
しつつあり、より高速化、高精度化が望まれている。
BACKGROUND OF THE INVENTION In recent years, industrial robots have become popular as a means of automating production, and higher speed and higher precision are desired.

一般的に、多関節ロボットの位置決め制御において・ロ
ボットを駆動するモータの発生最大トルりをT工、最高
速度を1と設定した時、最短時間で目標点まで移動させ
る方法は以下の通シである。Tmでモータの速度を直線
的に1まで立ち上げ、速度がω工に達してからはω。を
保持し、目標点に近づくと−T。で逆方向にトルクをか
け速度を直線的にゼロまで立ちさげ、速度ゼロになった
時ちょうど目標点に達するようにする。
Generally, when controlling the positioning of an articulated robot, when the maximum torque generated by the motor that drives the robot is set to T and the maximum speed is set to 1, the following method is used to move the robot to the target point in the shortest time. be. The motor speed is linearly ramped up to 1 at Tm, and after the speed reaches ω, ω. -T when approaching the target point. Apply torque in the opposite direction to raise the speed linearly to zero, so that the target point is reached exactly when the speed reaches zero.

第2図aは上記の場合の時間−速度特性、bは時間−ト
ルク特性、Cは時間−移動量特性を示す。
FIG. 2a shows the time-speed characteristic, b shows the time-torque characteristic, and C shows the time-travel characteristic in the above case.

ここで第2図aの速度の立ち上がりおよび立ち下がシの
傾きは加速度、減速度を示し、モータの発生トルクをモ
ータ軸換算された慣性モーメントで割ったもので近似さ
れ、慣性モーメントの変化に反比例して加減速度は変化
することになる。実際の多関節ロボットの制御を考えた
場合、把持したワーク重量の変化、ロボットの姿勢変化
による慣性モーメントの変化が起こるため、従来は設定
された作業内での最大慣性モーメントを想定して速度指
令を設定するか、数個の速度指令を用意し、このなかか
ら作業に応じて作業者が選択し段別するというような事
を行なっていた。
Here, the slopes of the rise and fall of the speed in Figure 2 a indicate acceleration and deceleration, which are approximated by dividing the torque generated by the motor by the moment of inertia converted to the motor shaft. Acceleration/deceleration will change in inverse proportion. When considering the control of an actual articulated robot, the moment of inertia changes due to changes in the weight of the gripped workpiece and changes in the robot's posture. In the past, a number of speed commands were prepared, and the operator selected one from among them according to the task.

発明が解決しようとする問題点 しかしながら、上記のような構成では、最大慣性モーメ
ントを想定して速度指令を設定している場合、慣性モー
メントの小さい領域での移動が最短時間での移動ではな
くなるといった問題点や、作業者が数個の速度指令の中
からその作業に最適なものを設定するのに専門知識と選
択時間を要するという問題点を有していた。
Problems to be Solved by the Invention However, with the above configuration, if the speed command is set assuming the maximum moment of inertia, movement in an area with a small moment of inertia will not be the shortest time. However, there are problems in that it requires specialized knowledge and selection time for the operator to select the optimum speed command for the work from among several speed commands.

本発明は上記問題点に鑑み、慣性モーメントの変化に対
して自動的に適応し、最適な速度指令及び減速開始点を
設定する多関節ロボットの位置決め制御装置を提供する
ものである。
In view of the above problems, the present invention provides a positioning control device for an articulated robot that automatically adapts to changes in the moment of inertia and sets an optimal speed command and deceleration start point.

問題点を解決するための手段 上記問題点を解決するために本発明の多関節ロボットの
位置決め制御装置は、ワークの重量を演算する手段と、
移動目標点における各関節の慣性モーメントを補正する
手段と、各関節を駆動するモータの減速開始点および速
度指令曲線を演算する手段を備えたものである。
Means for Solving the Problems In order to solve the above problems, the positioning control device for an articulated robot of the present invention includes means for calculating the weight of a workpiece;
The apparatus includes means for correcting the moment of inertia of each joint at the movement target point, and means for calculating the deceleration start point and speed command curve of the motor that drives each joint.

作  用 本発明は上記した構成によって、移動開始時にワーク重
量の推定、移動目標点近傍での慣性モーメントの補正、
減速開始点および速度指令の演算を実時間処理で行なう
ため、ワーク重量の変化、ロボット姿勢変化による慣性
モーメントの変化に対して自動的に適応し、最適な速度
指令および減速開始点を設定することとなる。
Operation The present invention has the above-described configuration to estimate the weight of the workpiece at the start of movement, correct the moment of inertia near the movement target point,
Since the calculation of the deceleration start point and speed command is performed in real time, it automatically adapts to changes in the moment of inertia due to changes in workpiece weight and robot posture, and sets the optimal speed command and deceleration start point. becomes.

実施例 以下本発明の一実施例の多関節ロボットの位置決め制御
装置について図面を参照しながら説明する。
Embodiment Hereinafter, a positioning control device for an articulated robot according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における多関節ロボットの全
体ブロック図を示すものである。第1図において、4は
ワークを把持していない時の各モータ軸換算の慣性モー
メントを演算する第1の演算手段、7はワーク重量を演
算する第2の演算手段、8は移動目標点における各慣性
モーメントを補正する第3の演算手段、9はモータの最
適な減速度を演算する第4の演算手段、12は速度指令
を演算する第5の演算手段である。
FIG. 1 shows an overall block diagram of an articulated robot according to an embodiment of the present invention. In FIG. 1, 4 is a first calculating means for calculating the moment of inertia converted to each motor axis when no workpiece is gripped, 7 is a second calculating means for calculating the weight of the workpiece, and 8 is a moving target point. A third calculating means corrects each moment of inertia, a fourth calculating means 9 calculates the optimum deceleration of the motor, and a fifth calculating means 12 calculates a speed command.

ここでは第3図に示すような2軸構成のロボットにおい
て、特にその1軸のモータに注目して動作説明を行なう
。第1の演算手段4より演算される移動開始点でのワー
クを把持していない時のモータ軸換算の慣性モーメント
をJA、移動開始点でのワーク把持部−モータ軸間距離
をrA%負荷重量をMLとする。
Here, we will explain the operation of a robot with a two-axis configuration as shown in FIG. 3, paying particular attention to its one-axis motor. The moment of inertia calculated by the first calculation means 4 when converting to the motor shaft when no workpiece is gripped at the movement start point is JA, and the distance between the workpiece gripping part and the motor axis at the movement start point is rA% Load weight Let be ML.

まずモータ駆動手段13によりモータ3の発生最大トル
クでモータ速度を直線的に立ち上げる。
First, the motor drive means 13 linearly ramps up the motor speed at the maximum torque generated by the motor 3.

この時、加速度検出手段5.トルク検出手段6より得ら
れる加速度、トルクをそれぞれαA+”mとすると以下
の関係式が成シ立つ。
At this time, acceleration detection means 5. When the acceleration and torque obtained from the torque detection means 6 are respectively αA+''m, the following relational expression holds true.

αA=T−/(JA+MLXrA )     ”””
(1)上式をもとに、第2の演算手段7によりワーク重
まだ前記第1の演算手段4より演算される移動目標点で
のワークを把持していない時のモータ軸換算の慣性モー
メントをJB、移動目標点でのワーク把持部−モータ軸
間距離をrBとすると、第3の演算手段8で演算される
補正された慣性モーメントJcは T c= I B +ML X r B2・・・・・・
(3)となる。
αA=T-/(JA+MLXrA) """
(1) Based on the above formula, the moment of inertia converted to the motor shaft when the workpiece weight is not gripped at the movement target point calculated by the first calculation means 4 is determined by the second calculation means 7. When JB is JB and the distance between the work gripping part and the motor axis at the movement target point is rB, the corrected moment of inertia Jc calculated by the third calculation means 8 is T c = I B + ML X r B2... ...
(3) becomes.

次に第4の演算手段9により演算される最適な減速度は
、ここではICを最大発生トルクTmで割った最大減速
αBであシ下式の様になる。
Next, the optimum deceleration calculated by the fourth calculation means 9 is the maximum deceleration αB obtained by dividing IC by the maximum generated torque Tm, as shown in the following formula.

αB=Tm/Jc=Tm/(JB+MLxrB2) 、
、、、、儂)上記の減速度αBは移動目標点近傍で出し
得る最大の減速度であるので、αBで減速すると最短時
間で減速が終了することになる。
αB=Tm/Jc=Tm/(JB+MLxrB2),
,,,,I) Since the above deceleration αB is the maximum deceleration that can be achieved near the moving target point, deceleration at αB will complete the deceleration in the shortest possible time.

モータの最高速度をω工とし、残り移動量演算手段11
より得られる残り移動量をθとすると、減速度αBで減
速し、残り移動量θがゼロの時、速度もゼロになるため
の速度指令ωCはとなる。ここでωC=ω。となるθの
値、すなわち減速開始点θCは と導かれ、(5) + (6)式の速度指令および減速
開始点を第5の演算手段12によって演算する。第4図
にθと速度指令ωCの関係を示す。
The maximum speed of the motor is ω, and the remaining travel amount calculation means 11
Assuming that the remaining movement amount obtained from the above is θ, the speed command ωC for decelerating at the deceleration αB and making the speed also zero when the remaining movement amount θ is zero is as follows. Here ωC=ω. The value of θ, that is, the deceleration starting point θC, is derived, and the speed command and deceleration starting point of equations (5) + (6) are calculated by the fifth calculation means 12. FIG. 4 shows the relationship between θ and speed command ωC.

第5の演算手段12より演算される速度指令と、速度検
出手段10によって検出される実際のモータの速度との
偏光をゼロにするようモータの駆動手段13がモータの
、駆動制御を行ない多関節ロボットの位置決め制御を行
なう。
The motor drive means 13 controls the drive of the motor so that the polarization between the speed command calculated by the fifth calculation means 12 and the actual motor speed detected by the speed detection means 10 becomes zero. Performs robot positioning control.

第5図に本実施例での(a)時間−速度特性、(b)時
間−トルク特性、(C)時間−移動量特性を示す。
FIG. 5 shows (a) time-speed characteristics, (b) time-torque characteristics, and (C) time-travel characteristics in this example.

発明の効果 以上のように本発明はワークを把持していない時の各モ
ータ軸換算の慣性モーメントを演算する第1の演算手段
と、ワーク重量を演算する第2の演算手段と、移動目標
点における各慣性モーメントを補正する第3の演算手段
と、最適な減速度を演算する第4の演算手段と、速度指
令および減速開始点を演算する第5の演算手段を設ける
ことにより、慣性モーメントの変化に自動的に適応して
最適な減速指令及び減速開始点が設定され位置決め制御
を行なうことができる。
Effects of the Invention As described above, the present invention includes a first calculating means for calculating the moment of inertia converted to each motor axis when no workpiece is gripped, a second calculating means for calculating the weight of the workpiece, and a moving target point. By providing a third calculation means for correcting each moment of inertia in , a fourth calculation means for calculating the optimum deceleration, and a fifth calculation means for calculating the speed command and deceleration start point, The optimum deceleration command and deceleration start point are automatically adjusted to the changes, and positioning control can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における多関節ロボットの位
置決め制御装置の全体ブロック図、第2図(a)〜(C
)は最短時間位置決め制御の際の時間−速度特性2時間
−トルク特性及び時間−移動量特性を示す図、第3図は
本実施例における多関節ロボットの構成図、第4図は本
実施例における残り移動量−速度指令特性図、第5図(
a)〜(C)は本実施例における時間−速度特性、時間
−トルク特性及び時間−移動量特性を示す図であ・る。 1・・・・・・多関節ロボット、2・・・・・・ワーク
、3・・・・・・モータ、4・・・・・・第1の演算手
段、5・・・・・・加速度検出手段、6・・・・・・ト
ルク検出手段、7・・・・・・第2の演算手段、8・・
・・・・第3の演算手段、9・・・・・・第4の演算手
段、10・・・・・・速度検出手段、11・・・・・・
残り移動量検出手段、12・・・・・・第5の演算手段
、13・・・・・・モータ駆動手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ’ −−−ダタ74 * n &′−i>2−m−ワー
ク 第2図 第3図 第4図 r 第5図
FIG. 1 is an overall block diagram of a positioning control device for an articulated robot according to an embodiment of the present invention, and FIGS. 2(a) to (C)
) is a diagram showing the time-velocity characteristic 2 hours-torque characteristic and time-travel characteristic during the shortest time positioning control, FIG. 3 is a configuration diagram of the articulated robot in this embodiment, and FIG. 4 is the diagram in this embodiment Remaining travel amount vs. speed command characteristic diagram in Figure 5 (
a) to (C) are diagrams showing time-speed characteristics, time-torque characteristics, and time-travel characteristics in this example. DESCRIPTION OF SYMBOLS 1...Multi-joint robot, 2...Workpiece, 3...Motor, 4...First calculation means, 5...Acceleration Detection means, 6...Torque detection means, 7...Second calculation means, 8...
...Third calculating means, 9... Fourth calculating means, 10... Speed detection means, 11...
Remaining movement amount detection means, 12...fifth calculation means, 13...motor drive means. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure' --- Data 74 * n &'-i>2-m- Work Figure 2 Figure 3 Figure 4 r Figure 5

Claims (1)

【特許請求の範囲】[Claims] 多関節機構を有するロボットを与えられた速度指令に従
い、各関節を駆動するモータを駆動制御する位置決め制
御装置において、ワークを把持していない時の各モータ
軸換算の慣性モーメントを演算する第1の演算手段と、
前記各関節を駆動するモータの加速度を検出する加速度
検出手段と、前記各関節を駆動するモータのトルクを検
出するトルク検出手段と、前記第1の演算手段より得ら
れる移動開始点における慣性モーメントと、ワークを把
持し移動開始した時に前記加速検出手段より得られる加
速度および前記トルク検出手段より得られるトルクより
ワーク重量を演算する第2の演算手段と、前記第1の演
算手段より得られる移動目標点における慣性モーメント
と前記第2の演算手段より得られるワーク重量より移動
目標点における各慣性モーメントを補正する第3の演算
手段と、前記トルク検出手段より得られるトルクと前記
第3の演算手段より得られる補正された慣性モーメント
より前記各関節を駆動するモータの最適な減速度を演算
する第4の演算手段と、前記各関節を駆動するモータの
速度を検出する速度検出手段と、前記各関節を駆動する
モータの現在点と移動目標点より残り移動量を演算する
残り移動量演算手段と、前記速度検出手段より得られる
速度と前記第4の演算手段より得られる減速度と前記残
り移動量演算手段より得られるモータの残り移動量より
速度指令および減速開始点を演算する第5の演算手段を
備えたことを特徴とする多関節ロボットの位置決め制御
装置。
In a positioning control device that drives and controls the motors that drive each joint of a robot with a multi-joint mechanism according to a speed command given to it, a first device calculates the moment of inertia converted to each motor axis when a workpiece is not gripped. calculation means;
an acceleration detection means for detecting the acceleration of a motor that drives each joint; a torque detection means for detecting the torque of a motor that drives each joint; and a moment of inertia at a movement start point obtained from the first calculation means; , second calculation means for calculating the weight of the workpiece from the acceleration obtained from the acceleration detection means and the torque obtained from the torque detection means when the workpiece is gripped and started to move; and a moving target obtained from the first calculation means. third calculation means for correcting each moment of inertia at the moving target point from the moment of inertia at the point and the workpiece weight obtained from the second calculation means; and the torque obtained from the torque detection means and the third calculation means. a fourth calculation means for calculating an optimal deceleration of the motor driving each joint from the obtained corrected moment of inertia; a speed detection means for detecting the speed of the motor driving each joint; remaining movement amount calculation means for calculating the remaining movement amount from the current point and the movement target point of the motor driving the motor; the speed obtained from the speed detection means, the deceleration obtained from the fourth calculation means, and the remaining movement amount. A positioning control device for an articulated robot, comprising a fifth calculation means for calculating a speed command and a deceleration start point from the remaining movement amount of the motor obtained by the calculation means.
JP17152385A 1985-08-02 1985-08-02 Positioning controller for articulated robot Pending JPS6231406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17152385A JPS6231406A (en) 1985-08-02 1985-08-02 Positioning controller for articulated robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17152385A JPS6231406A (en) 1985-08-02 1985-08-02 Positioning controller for articulated robot

Publications (1)

Publication Number Publication Date
JPS6231406A true JPS6231406A (en) 1987-02-10

Family

ID=15924692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17152385A Pending JPS6231406A (en) 1985-08-02 1985-08-02 Positioning controller for articulated robot

Country Status (1)

Country Link
JP (1) JPS6231406A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430203A (en) * 1990-05-25 1992-02-03 Fanuc Ltd Control system for acceleration/deceleration time constant of robot
WO1992012473A1 (en) * 1990-12-28 1992-07-23 Fanuc, Ltd Method of correcting deflection of robot
JPH04335410A (en) * 1991-05-10 1992-11-24 Fanuc Ltd Acceleration/deceleration time constant control system for servomotor
JPH05297917A (en) * 1992-04-21 1993-11-12 Mitsubishi Electric Corp Industrial robot device
US7344664B2 (en) 1991-01-14 2008-03-18 Fanuc Ltd Pressure waveform setting method for injection pressure control and an injection molding machine
JP2013195198A (en) * 2012-03-19 2013-09-30 Ishida Co Ltd Sort apparatus
JP2013195200A (en) * 2012-03-19 2013-09-30 Ishida Co Ltd Mass measurement apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856785A (en) * 1981-09-30 1983-04-04 株式会社三協精機製作所 Controller for operation of industrial robot
JPS58143985A (en) * 1982-02-20 1983-08-26 日本電信電話株式会社 Control system of multiple freedom-degree kinetic mechanism
JPS58222307A (en) * 1982-06-21 1983-12-24 Mitsubishi Electric Corp Control method of joint type robbot
JPS5945515A (en) * 1982-09-09 1984-03-14 Hitachi Ltd Method for controlling position of motor
JPS6057407A (en) * 1983-09-06 1985-04-03 Seiko Epson Corp Robot controller
JPS6077210A (en) * 1983-10-05 1985-05-01 Nippon Telegr & Teleph Corp <Ntt> Controlling method of spatial kinetic mechanism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856785A (en) * 1981-09-30 1983-04-04 株式会社三協精機製作所 Controller for operation of industrial robot
JPS58143985A (en) * 1982-02-20 1983-08-26 日本電信電話株式会社 Control system of multiple freedom-degree kinetic mechanism
JPS58222307A (en) * 1982-06-21 1983-12-24 Mitsubishi Electric Corp Control method of joint type robbot
JPS5945515A (en) * 1982-09-09 1984-03-14 Hitachi Ltd Method for controlling position of motor
JPS6057407A (en) * 1983-09-06 1985-04-03 Seiko Epson Corp Robot controller
JPS6077210A (en) * 1983-10-05 1985-05-01 Nippon Telegr & Teleph Corp <Ntt> Controlling method of spatial kinetic mechanism

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430203A (en) * 1990-05-25 1992-02-03 Fanuc Ltd Control system for acceleration/deceleration time constant of robot
WO1992012473A1 (en) * 1990-12-28 1992-07-23 Fanuc, Ltd Method of correcting deflection of robot
US5418441A (en) * 1990-12-28 1995-05-23 Fanuc, Ltd. Deflection correcting method for a robot
US7344664B2 (en) 1991-01-14 2008-03-18 Fanuc Ltd Pressure waveform setting method for injection pressure control and an injection molding machine
JPH04335410A (en) * 1991-05-10 1992-11-24 Fanuc Ltd Acceleration/deceleration time constant control system for servomotor
JPH05297917A (en) * 1992-04-21 1993-11-12 Mitsubishi Electric Corp Industrial robot device
JP2013195198A (en) * 2012-03-19 2013-09-30 Ishida Co Ltd Sort apparatus
JP2013195200A (en) * 2012-03-19 2013-09-30 Ishida Co Ltd Mass measurement apparatus

Similar Documents

Publication Publication Date Title
US4594671A (en) Velocity method of controlling industrial robot actuators
JP2524931B2 (en) Robot linear interpolation method
JPH11277468A (en) Control device for robot
US20110309782A1 (en) Method and device for monitoring a movement-controlled machine with an electronically commutated drive motor
JPH02160487A (en) Correction of manual feeding of robot
WO2005035205A1 (en) Robot controlling device
JPS6231406A (en) Positioning controller for articulated robot
JPH02256483A (en) Speed control device for industrial robot
JPH10138187A (en) Automatic computing method of load weight and load center-of-gravity position of articulated robot
WO1989006066A1 (en) Method of speed control for servomotor
JP3927454B2 (en) Automatic calculation method of load weight and load center of gravity position of articulated robot
JPS60263206A (en) Control device of manipulator
JPH07261844A (en) Motor control unit
JPH1153021A (en) Acceleration and deceleration pattern generating method for industrial robot
JPS61114317A (en) Teaching method of industrial robot
JPH09204216A (en) Acceleration/deceleration control method for articulated robot
JPS6380307A (en) Speed control method for industrial robot
JP5633268B2 (en) Robot control device
JP2771458B2 (en) Industrial robot deflection correction method
JPH05250029A (en) Industrial robot
JPS61159390A (en) Method of controlling industrial robot
JPS6214209A (en) Industrial robot
JP3194829B2 (en) Robot motion program generation device
JPH03234490A (en) Control method of robot
JPS62251810A (en) Acceleration/deceleration control device for robot arm