JPS6057407A - Robot controller - Google Patents

Robot controller

Info

Publication number
JPS6057407A
JPS6057407A JP16357683A JP16357683A JPS6057407A JP S6057407 A JPS6057407 A JP S6057407A JP 16357683 A JP16357683 A JP 16357683A JP 16357683 A JP16357683 A JP 16357683A JP S6057407 A JPS6057407 A JP S6057407A
Authority
JP
Japan
Prior art keywords
arm
acceleration
deceleration
drive
curves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16357683A
Other languages
Japanese (ja)
Other versions
JPH0623929B2 (en
Inventor
Kenji Sakai
坂井 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58163576A priority Critical patent/JPH0623929B2/en
Publication of JPS6057407A publication Critical patent/JPS6057407A/en
Publication of JPH0623929B2 publication Critical patent/JPH0623929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To increase the working speed of a robot by driving an arm in accordance with an acceleration/deceleration curve obtained by selecting plural acceleration/deceleration curves on the basis of the results of detection on the arm posture before drive and the arm expected posture after drive respectively. CONSTITUTION:When a drive command 9 is given, a present arm posture detecting means 10 detects the present position of the 2nd arm among areas 6-8. Then acceleration curves 14-16 are selected respectively. The position of the 2nd arm after drive is expected by an arm posture detecting means 11 after drive among those areas 6-8. Then deceleration curves 17-19 are selected respectively. These acceleration and deceleration curves are selected from memories 12 and 13 and added together to produce an acceleration/deceleration curve 21. A controller delivers a drive pulse in response to the curve 21 to drive the robot arm.

Description

【発明の詳細な説明】 本発明は組豆用ロボットコントローラに関する。[Detailed description of the invention] The present invention relates to a robot controller for assembling beans.

本発明の目的40ボツトの寿命に悪影響を与えることな
く加減速時間を短縮し、ロボットのスピードアップを図
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to shorten the acceleration/deceleration time and speed up the robot without adversely affecting the life of the robot.

ロボットのスピードアップを図るために、アームを軽く
したり、軸受構造を堅牢にしたり、または加減速曲線を
工夫したりすることは一般によく行なわれていることで
あるが、従来のロボットコントローラはただ一つの加減
速曲線しか持たなかったため、アームの姿勢にかかわら
ず移動距離が決まると一義的に移動時間も決まってしま
っていた。すなわちアームが最大限に伸びた状態ではロ
ボットの受ける衝撃が大きくなって寿命に悪影響を与え
、逆にアームが縮んだ状態では慣性が小さくなって負荷
的に余裕があるにもかかわらずスピードがおさえられる
という欠点があった。
In order to speed up a robot, it is common practice to make the arm lighter, make the bearing structure more robust, or modify the acceleration/deceleration curve, but conventional robot controllers simply Since it only had one acceleration/deceleration curve, once the travel distance was determined, regardless of the arm's posture, the travel time was also determined. In other words, when the arm is fully extended, the impact on the robot increases, which has a negative impact on its lifespan, while when the arm is retracted, the robot's inertia decreases, reducing its speed even though there is plenty of room for load. It had the disadvantage of being exposed.

本発明はかかる欠点を除去したもので、以下−実施例に
基づいて説明する。
The present invention eliminates such drawbacks and will be explained below based on examples.

第1図の1はいわゆる水平多関節型と呼ばれるロボット
で、2のモータが回転するとモータ2を中心に第1アー
ム3が揺動し、4のモータが回転するとモータ4全中尼
・に第2アーノ・5が」:4動する。
1 in Fig. 1 is a so-called horizontal multi-joint type robot. When the motor 2 rotates, the first arm 3 swings around the motor 2. When the motor 4 rotates, the first arm 3 swings around the motor 4. 2 Arno 5": 4 moves.

第1アーム3と第2アーム5とはDDA演算等によって
駆動量が違っても、同時に動き出し、同時に動き終るよ
うに2IlII同時制御される。
The first arm 3 and the second arm 5 are simultaneously controlled 2IlII so that they start moving at the same time and end their movement at the same time even if the driving amounts are different due to DDA calculation or the like.

第2図はロボットを真上から見た図で第2アーム5の動
作範囲を示している。この動作範囲を6゜7.8の3つ
のエリアに分割する。
FIG. 2 is a view of the robot viewed from directly above, showing the operating range of the second arm 5. This operating range is divided into three areas of 6°7.8.

一方コントローラには第6図匹示すように加速度の異な
る加速曲線14,15゜16と減速曲線17@18.1
9がそれぞれメモリ12.15に記憶されている。
On the other hand, the controller has acceleration curves 14, 15°16 and deceleration curves 17@18.1 with different accelerations, as shown in Figure 6.
9 are stored in the memories 12 and 15, respectively.

アームの駆動に際して駆動指令9が発生すると現在のア
ーム検出手段10によって第2アームの位置が現在6,
7.Bのどのエリアにあるかを検出し7、それぞれ加速
曲線14,15.16を選択する。また駆動後のアーム
姿勢検出手段11によって駆動後の第2アームの位置が
6.7.8のどのエリアにあるかを予想してそれぞれ減
速曲線17.18.19を選択し、加減速曲線生成手段
20によって先に選択したIJOI速曲線と合せて加減
速曲線21を生成する。
When the drive command 9 is generated when driving the arm, the current arm detection means 10 detects that the second arm is currently in the position 6,
7. Detect which area of B is in 7 and select acceleration curves 14, 15, and 16, respectively. Further, the arm posture detection means 11 after driving predicts in which area of 6.7.8 the position of the second arm after driving will be, and selects deceleration curves 17, 18, and 19, respectively, and generates acceleration/deceleration curves. The means 20 generates an acceleration/deceleration curve 21 in combination with the previously selected IJOI speed curve.

コントローラは7JI+減速曲線21にのっとって駆動
パルスを出力うる。
The controller can output drive pulses according to the 7JI+deceleration curve 21.

これをさらに具体的な例によって説明する。This will be explained using a more specific example.

第4図のPlからP2−\ロボットアームが駆動される
ものとすると、アーム先端がPlにちるとき第2アーム
の位置はエリア7にあり、慣性モーメントが中位である
ので加速曲線も加速度が中位の15を選択し、駆動後ア
ーム先端がP2へ行ったとき第2アームの位置はエリア
8にあって慣性モーメントが大きくなることが予想され
るので、減速曲線は加速度の小さい19を選択する。
Assuming that the robot arm is driven from P1 to P2-\ in Figure 4, when the tip of the arm touches Pl, the second arm is in area 7, and the moment of inertia is medium, so the acceleration curve also shows an acceleration. Select 15 which is in the middle, and when the arm tip goes to P2 after driving, the position of the second arm is in area 8 and the moment of inertia is expected to be large, so select 19 with small acceleration for the deceleration curve. do.

以上の説明によって明らかなように、本発明では慣性モ
ーメントが小さいと加速度の大きい加減速を行い、慣性
モーメントが大きいと加速度の小さい加減速を行うので
ロボットアームに不要な衝撃を与えずに加減速時間を短
縮することができる。
As is clear from the above explanation, in the present invention, when the moment of inertia is small, acceleration/deceleration with a large acceleration is performed, and when the moment of inertia is large, acceleration/deceleration with a small acceleration is performed, so that the robot arm can be accelerated/decelerated without giving unnecessary shock to the robot arm. It can save time.

ところで同時に2軸駆動のロボットでは第1アームと第
2アームの駆IJJb1tの比によって第5図に示すと
とく各軸の駆動パルス周波数が違う。ここでaは第1ア
ームの、駆動パルス数、b!”It第2アームの駆動パ
ルス数でちる。
At the same time, in a robot that drives two axes, the drive pulse frequency of each axis differs depending on the ratio of the drive IJJb1t of the first arm and the second arm, as shown in FIG. Here, a is the number of drive pulses for the first arm, and b! "It is divided by the number of driving pulses of the second arm.

第5図の例では(])と(2)とで第2アームの受ける
衝撃力はほぼ同じでを〕るが、第1アームの受ける衝撃
力は(2]の方が圧倒的に小さい。従ってもし第2アー
ムの駆動に余裕があれば(2)の」ろ合はもつと加速度
全土げても艮いということになる。
In the example of FIG. 5, the impact force applied to the second arm is almost the same in cases (]) and (2), but the impact force applied to the first arm is overwhelmingly smaller in case (2). Therefore, if there is enough margin in the drive of the second arm, the locking in (2) can be achieved even if the total acceleration is increased.

以上をかんがみ、第6図は第5図をさらに改良したもの
で、アームの駆動指令22が発生すると駆動前のアーム
姿勢検出手段23.駆動後のアーム姿勢検出手段24に
よってそれぞれ加速曲線25.26.27および減速曲
線28,29.50のうちから一つを選択することri
第6図と同様であるが、同時に駆動斌比較手段31によ
って第1アームの駆!IdImaと第2アームの駆動量
すとの比a/l)を計算し、大小判断32はその結果の
太きさを判断して一定値以下ならば先に選択した加速曲
線、減速曲線上さらに1ランクまたは2ランク加速度の
大きい曲線に変更して加減曲@33を生成する。
In consideration of the above, FIG. 6 is a further improvement of FIG. 5, in which when an arm drive command 22 is generated, the arm posture detecting means 23 before driving. One of the acceleration curves 25, 26, 27 and deceleration curves 28, 29.50 is selected by the arm posture detection means 24 after driving.
It is similar to FIG. 6, but at the same time, the first arm is driven by the drive comparison means 31. The ratio (a/l) between IdIma and the drive amount of the second arm is calculated, and the size judgment 32 judges the thickness of the result, and if it is less than a certain value, it is further added to the previously selected acceleration curve or deceleration curve. The curve is changed to a curve with a large acceleration of 1st or 2nd ranks to generate an adjustment song @33.

これを具体的な例に基ついて説明する。This will be explained based on a specific example.

第7図はロボットアームがP3からP4へ駆動されるさ
まを示しているが、駆動前の駆動後の第2アームの位置
は第4図の)9IIと同じであるので加速曲線26と減
速曲線30がいったん選択される。
Figure 7 shows the robot arm being driven from P3 to P4, but since the position of the second arm before and after driving is the same as in Figure 4) 9II, the acceleration curve 26 and the deceleration curve 30 is selected once.

同時にa/b を91痒しその結果が1/2以下なら加
速、減速曲線を1ランク加速度の大きいものに変更し、
1/4以下なら2ランク変更する。この」凸金は、1/
4 (a/b (1/2 であるので1ランクあがり加
速曲線は25、減速曲線は29となる。
At the same time, set a/b to 91, and if the result is 1/2 or less, change the acceleration/deceleration curve to one with one rank higher acceleration.
If it is 1/4 or less, change 2 ranks. This “convex gold” is 1/
4 (a/b (1/2), so the acceleration curve for one rank up is 25 and the deceleration curve is 29.

ここでa/b値の比較に用いた基準値1/2や1/4は
加速、減速曲線の形状や各ランクでの加速度の違いによ
って最適値が設定される。
The reference values 1/2 and 1/4 used for the comparison of the a/b values are set to optimal values depending on the shape of the acceleration and deceleration curves and the difference in acceleration in each rank.

なお、第7図では同時制御軸が第1アームと第2アーム
の2軸であったが、アームの上T軸や手首水平回転軸等
が付加され、同時3軸、同時4軸駆動となった場合は、
アームの姿勢変化による負荷変動の影響を最も大きくう
ける第1アームの駆動パルス数をaとし、第2アームお
よび上下軸。
In Figure 7, the simultaneous control axes were two axes, the first arm and the second arm, but the upper T-axis of the arm and the wrist horizontal rotation axis were added, making it possible to drive three or four axes simultaneously. If
Let a be the number of drive pulses for the first arm, which is most affected by load fluctuations due to changes in arm posture, and for the second arm and the vertical axis.

手首水平回転軸のうち駆動パルス数がその時最も多い軸
のパルス数をbとして演算を行なえば良い。
The calculation may be performed by setting b to the pulse number of the axis with the largest number of drive pulses at that time among the wrist horizontal rotation axes.

以上、水平多関節ロボットをIZQに説明したが、本発
明は垂直多関節ロボット、円筒座標ロボットにもそのま
ま1商用できる。
Although the horizontal articulated robot has been described above for IZQ, the present invention can also be applied to vertical articulated robots and cylindrical coordinate robots.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水平多関節ロボットを示す図である。 第2図は水平多1刈節ロボットを真上から(也で第2ア
ームの動作範囲を示した図である。第6図は本発明の一
実施例を示す図であり、第4図はロボットアームの動作
の一例を示す図である。第5図は第1.第2アームの各
軸分配パルス列を示した図であり、第6図は本発明の一
実施例を示す図であり、第7図はロボットアーム動作の
一1tiJを示す図である。 1・・・・・・水平多関節ロボット 2・・・・・・第1アーム揺動モータ 5・・・・・・第1アーム 4・・・・第2アーム揺動モータ 5・・・・・・第2アーム /1,7.8・・・・・・第2アームのエリア?922
・・・・・・L′イ乙勤指令 10.23・・・・・・現在のアーム姿勢検出手段11
.24・・・・・・駆動後のアーム姿勢検出手段12.
13・・・・・・メモリ 14.15,16,25,26.27・・・・・・加速
曲線17.18.19.28,29.30 ・=−・減
速曲線20・・・・・・加減速曲線生成手段 21.23・・・・・・加減速曲線 61・・・・・・a/b計算手段 52・・・・・・a/D大小判定手段 以 上 出願人 株式会社 諏訪精工舎 代理人弁理士最上 務 青斗図 矛1了−ム 予2’F−,IA c%) (Li−t b 才5 オフ1閏 矛1了−ム 會z7−ム (2) ^<<b 図 手続補正書(自発) w4.、5)) 、、 io 己2゜ 1、事件の表示 昭和58年特許願第165576号 2 発明の名称 ロボットコントa−ラ 3、補正をする者 事件との関係 出願人 東児都W[宿区西1/r宿2丁目4番1号(236)株
式会社 諏 訪 精 工 舎代表取締役 中 村 恒 
也 4代理人 〒104 東京都中央区にζ橋2−J’146番21号
株式会社 版部セイコー内 最上特許事務所6、補正の
対象 明細臀 手 続 it’ 正 τ11(1研、)1、 唱#′l
情求の範囲全別紙のU]」(補正する。 2、 明約目1)6頁3行目 「加減1111.11!53 、lとあ2)を、「加7
41逗41111糾53」に補正する。 s、on 4u+ v4811s行目 「21.23」とあるを、「21,33Jに補正する。 隻 −t ’l”F irF it^」にの範囲 +11 加速!1,1の曜なる加速曲mおよび減速曲線
を杓lタイβ1記干、傍するための制憶装置直と、駆虫
11前の了−7−姿勢および!lηφメ1後の予44了
−ム姿勢を検出するおのおの一つを選択し、て加減速曲
#を生成する手段とをイ11、生成された前P加減速曲
線にのっとってアーb f、c) l[べIIIハする
ことを特徴とするロボットコントローラ。 (21同11.¥Fに、四QI〕!されると!!数個の
駆!IIl軸のうちアームの姿勲労゛化によるvI荷変
動の影響を最も大きく蟹・ける輔の駆動パルス数とそれ
以外の軸の駆動バルヌ勃との比を計豹−する手段ケ有し
7、この計算結果が一足値り、下lらけFit配了−五
姿勢によってズベ択した加速、ン^ム、速曲線をより加
速電の大きいものに選択し面すことを4−s r+Xと
するロボットコントローラ。
FIG. 1 is a diagram showing a horizontal articulated robot. Fig. 2 is a view of the horizontal multi-branch robot viewed from directly above (ya) showing the operating range of the second arm. Fig. 6 is a view showing an embodiment of the present invention, and Fig. 4 is FIG. 5 is a diagram showing an example of the operation of a robot arm. FIG. 5 is a diagram showing pulse trains distributed in each axis of the first and second arms, and FIG. 6 is a diagram showing an embodiment of the present invention. Fig. 7 is a diagram showing one of the robot arm movements. 1...Horizontal articulated robot 2...First arm swing motor 5...First arm 4...Second arm swing motor 5...Second arm/1,7.8...Second arm area?922
・・・・・・L'I Otsuki command 10.23 ・・・・Current arm posture detection means 11
.. 24...Arm attitude detection means after driving 12.
13... Memory 14.15, 16, 25, 26.27... Acceleration curve 17.18.19.28, 29.30 ・=-・Deceleration curve 20... - Acceleration/deceleration curve generation means 21.23...Acceleration/deceleration curve 61...A/B calculation means 52...A/D size determination means and above Applicant: Suwa Co., Ltd. Seikosha Agent Patent Attorney Mogami Mu Seito Zuyo 1 Ryo-Muyo 2'F-, IA c%) <b Drawing procedure amendment (voluntary) w4., 5)) ,, io Self 2゜1, Indication of the case 1982 Patent Application No. 165576 2 Name of the invention Robot controller 3, Person making the amendment Case Relationship with Applicant Higashijito W [Shuku-ku Nishi 1/R Shuku 2-4-1 (236) Suwa Seikosha Co., Ltd. Representative Director Hisashi Nakamura
No. 4 Agent No. 146-21 Zebashi 2-J' Chuo-ku, Tokyo 104, Hanbe Seiko Co., Ltd. Mogami Patent Office 6, Specification Subject to Amendment Procedure it' Positive τ11 (1st Lab,) 1 , chant#'l
Range of request, complete appendix U] (Amend. 2, Clear clause 1) Page 6, line 3, ``Addition and subtraction 1111.11!53, l and A2)
41闗41111糾53''. s, on 4u+ v4811S line "21.23" is corrected to "21,33J. Range of ship -t 'l"F irFit^ +11 acceleration! 1, 1's acceleration curve m and deceleration curve are memorized, the control device is fixed, and the posture before deworming 11 is determined! lηφ Me 1 Select one of each of the pre-arm postures to be detected and generate an acceleration/deceleration tune #11. c) A robot controller characterized in that: (21.11.¥F, 4 QI]!!! Among the several drive! IIl axes, the influence of the vI load fluctuation due to the change in the arm's appearance is the greatest, and the drive pulse of the crab/kerusuke We have a means to calculate the ratio between the number and the drive force of the other axes7, and the result of this calculation is one step higher, and the lower fit is completed - acceleration that is completely selected by the five postures. A robot controller that selects and faces a speed curve with a larger acceleration voltage as 4-sr+X.

Claims (2)

【特許請求の範囲】[Claims] (1)加速度の異なる加速曲線および減速曲線を複数個
記憶するための記憶装置と、駆動前のアーム姿勢および
駆動後の予想アーム姿勢を検出する手段と、前記検出結
果に基づいて前記記憶装置の複数の加速の加速曲線およ
び減速曲線のうちからおのおの一つを選択して加減速曲
線を生成する手段とを有し、生成された前記加減速曲線
にのっとってアームを駆動することを特徴とするロボッ
トコントローラ。
(1) A storage device for storing a plurality of acceleration curves and deceleration curves having different accelerations, a means for detecting an arm posture before driving and a predicted arm posture after driving, and a means for storing a plurality of acceleration curves and deceleration curves having different accelerations, and means for generating an acceleration/deceleration curve by selecting one of a plurality of acceleration and deceleration curves, and driving the arm according to the generated acceleration/deceleration curve. robot controller.
(2)同時に駆動される複数個の駆動軸のうちアームの
姿勢変化による負荷変動の影響を最も大きく受ける軸の
駆動パルス数とそれ以外の軸の駆動パルス数との比な計
算する手段を有し、このi!i算結果が一定値以下なら
ば前記アーム姿勢によって選択した加速、減速曲線に選
択し直すことを49敬とするロボットコントローラ。
(2) A means for calculating the ratio of the number of drive pulses for the axis that is most affected by load fluctuations due to changes in arm posture among multiple drive axes driven simultaneously to the number of drive pulses for the other axes. This i! If the i calculation result is less than a certain value, the robot controller reselects the acceleration and deceleration curves selected according to the arm posture.
JP58163576A 1983-09-06 1983-09-06 Robot controller Expired - Lifetime JPH0623929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163576A JPH0623929B2 (en) 1983-09-06 1983-09-06 Robot controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163576A JPH0623929B2 (en) 1983-09-06 1983-09-06 Robot controller

Publications (2)

Publication Number Publication Date
JPS6057407A true JPS6057407A (en) 1985-04-03
JPH0623929B2 JPH0623929B2 (en) 1994-03-30

Family

ID=15776531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163576A Expired - Lifetime JPH0623929B2 (en) 1983-09-06 1983-09-06 Robot controller

Country Status (1)

Country Link
JP (1) JPH0623929B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231406A (en) * 1985-08-02 1987-02-10 Matsushita Electric Ind Co Ltd Positioning controller for articulated robot
JPS6261104A (en) * 1985-09-11 1987-03-17 Fanuc Ltd Acceleration/deceleration control system for horizontal articulation type robot
JPS62251810A (en) * 1986-04-24 1987-11-02 Seiko Epson Corp Acceleration/deceleration control device for robot arm
JPH01156804A (en) * 1987-12-14 1989-06-20 Fanuc Ltd Teaching/reproducing method for industrial joint type robot
JPH04314107A (en) * 1990-09-29 1992-11-05 Danfoss As Method and apparatus for controlling motion of working apparatus
JPH05297917A (en) * 1992-04-21 1993-11-12 Mitsubishi Electric Corp Industrial robot device
US5367610A (en) * 1988-09-28 1994-11-22 Omron Tateisi Electronics Co. Fuzzy controller for selecting an input signal
JP2004291132A (en) * 2003-03-26 2004-10-21 Kawasaki Heavy Ind Ltd Holding device and articulated robot having the same
CN114872035A (en) * 2020-10-16 2022-08-09 深圳市华成工业控制股份有限公司 Local deceleration control method, movement speed planning method, movement path planning method and data updating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856785A (en) * 1981-09-30 1983-04-04 株式会社三協精機製作所 Controller for operation of industrial robot
JPS58222307A (en) * 1982-06-21 1983-12-24 Mitsubishi Electric Corp Control method of joint type robbot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856785A (en) * 1981-09-30 1983-04-04 株式会社三協精機製作所 Controller for operation of industrial robot
JPS58222307A (en) * 1982-06-21 1983-12-24 Mitsubishi Electric Corp Control method of joint type robbot

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231406A (en) * 1985-08-02 1987-02-10 Matsushita Electric Ind Co Ltd Positioning controller for articulated robot
JPS6261104A (en) * 1985-09-11 1987-03-17 Fanuc Ltd Acceleration/deceleration control system for horizontal articulation type robot
JPS62251810A (en) * 1986-04-24 1987-11-02 Seiko Epson Corp Acceleration/deceleration control device for robot arm
JPH01156804A (en) * 1987-12-14 1989-06-20 Fanuc Ltd Teaching/reproducing method for industrial joint type robot
US5367610A (en) * 1988-09-28 1994-11-22 Omron Tateisi Electronics Co. Fuzzy controller for selecting an input signal
USRE36421E (en) * 1988-09-28 1999-11-30 Omron Corporation Fuzzy controller for selecting an input signal
JPH04314107A (en) * 1990-09-29 1992-11-05 Danfoss As Method and apparatus for controlling motion of working apparatus
JPH05297917A (en) * 1992-04-21 1993-11-12 Mitsubishi Electric Corp Industrial robot device
JP2004291132A (en) * 2003-03-26 2004-10-21 Kawasaki Heavy Ind Ltd Holding device and articulated robot having the same
CN114872035A (en) * 2020-10-16 2022-08-09 深圳市华成工业控制股份有限公司 Local deceleration control method, movement speed planning method, movement path planning method and data updating method
CN114872035B (en) * 2020-10-16 2023-08-22 深圳市华成工业控制股份有限公司 Planning method for movement speed and path and method for deceleration control and data updating

Also Published As

Publication number Publication date
JPH0623929B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JPS6057407A (en) Robot controller
Lee et al. A robust neural controller for underwater robot manipulators
Lan Analysis of an optimal control model of multi-joint arm movements
Moosavian et al. Modified transpose Jacobian control of robotic systems
JPH05216504A (en) Adaptive sliding mode control system for control object including spring system
JPH05104469A (en) Control device for space robot
CN111684380B (en) Robot motion control method, control system and storage device
CN111290272A (en) Attitude stationarity adjusting method based on multi-legged robot
Stephens et al. Modeling and control of periodic humanoid balance using the linear biped model
JP3429048B2 (en) Walking control device for legged mobile robot
WO2021170623A1 (en) Robot control
US20010045807A1 (en) System and method for using joint torque feedback to prevent oscillation in a flexible robotic manipulator
Shan et al. Design for robust component synthesis vibration suppression of flexible structures with on-off actuators
Filipovic et al. Complement of source equation of elastic line
JP2008194760A (en) Robot arm and control method therefor
JPH03130808A (en) Method and device for control of robot
JP4408616B2 (en) Motion control device and motion control method for legged mobile robot
CN109159123B (en) Robot turning control method based on energy optimization
JPH04324507A (en) Method for controlling acceleration/deceleration of drive device and robot system
Lee et al. Hybrid control scheme for robust tracking of two-link flexible manipulator
CN114063490A (en) Intelligent bionic foot type robot control system and method
Wedding et al. Flexible link control using multiple forward paths, multiple RBF neural networks in a direct control application
JPH11184512A (en) Control gain determining method for robot
JPH0255803B2 (en)
US20240149439A1 (en) Robot control method, robot, and control terminal