WO2016043227A1 - Mass measurement device - Google Patents

Mass measurement device Download PDF

Info

Publication number
WO2016043227A1
WO2016043227A1 PCT/JP2015/076327 JP2015076327W WO2016043227A1 WO 2016043227 A1 WO2016043227 A1 WO 2016043227A1 JP 2015076327 W JP2015076327 W JP 2015076327W WO 2016043227 A1 WO2016043227 A1 WO 2016043227A1
Authority
WO
WIPO (PCT)
Prior art keywords
article
mass
output
faz
fmz
Prior art date
Application number
PCT/JP2015/076327
Other languages
French (fr)
Japanese (ja)
Inventor
亮民 鈴木
誠 中谷
白石 元彦
泰彦 金井
友厚 谷口
Original Assignee
株式会社イシダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イシダ filed Critical 株式会社イシダ
Publication of WO2016043227A1 publication Critical patent/WO2016043227A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G9/00Methods of, or apparatus for, the determination of weight, not provided for in groups G01G1/00 - G01G7/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/18Indicating devices, e.g. for remote indication; Recording devices; Scales, e.g. graduated
    • G01G23/36Indicating the weight by electrical means, e.g. using photoelectric cells
    • G01G23/37Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting

Definitions

  • the present invention relates to a mass measuring device that detects the mass of an article while the speed of the article is changing.
  • This mass measuring device is intended to measure the mass of an article from the force and acceleration acting on the article while the speed of the article changes.
  • the basic configuration of the mass measuring apparatus 10 includes a force sensor 1 that detects a force acting on the article Q, a robot hand 2 that holds the article Q, and a robot that moves the article Q while accelerating it.
  • An arm 3 and an acceleration sensor 4 that detects acceleration acting on the article Q are provided.
  • the force sensor 1 is provided between the robot hand 2 and the robot arm 3, and the acceleration sensor 4 is provided adjacent to the robot hand 2.
  • the mass measuring device 10 having such a configuration is represented by a spring-mass system, it can be represented by a two-degree-of-freedom model as shown in FIG.
  • m is the mass of the article Q
  • M 1 is the mass of the force sensor 1
  • M 2 is the mass of the acceleration sensor 4.
  • K 1 is the spring constant of the force sensor 1
  • k 2 is the spring constant of the acceleration sensor 4.
  • x 1 is the displacement amount of the force sensor 1
  • x 2 is the displacement amount of the acceleration sensor 4.
  • ⁇ k 1 (x 1 ⁇ y) is the output of the force sensor 1
  • ⁇ k 2 (x 2 ⁇ x 1 ) is the output of the acceleration sensor 4.
  • FIG. 3 is a graph showing changes in output data of the force sensor 1 and the acceleration sensor 4 when the robot hand 2 is accelerated up and down in a no-load state in order to obtain a zero point.
  • the peak value of the output data of the force sensor 1 is Fmz
  • the peak value of the output data of the acceleration sensor 4 is Faz
  • 0 M 2 ⁇ C ⁇ (Fmz / Faz) + M 2 ⁇ M 1 (8) It becomes.
  • C is a conversion factor.
  • FIG. 4 is a graph showing changes in output data of the force sensor 1 and the acceleration sensor 4 when a mass ms of mass is held in the robot hand 2 and accelerated up and down.
  • FIG. 5 is a graph showing changes in output data of the force sensor 1 and the acceleration sensor 4 when the article Q having the mass m is held in the robot hand 2 and accelerated up and down.
  • m S ⁇ (Fm / Fa)-(Fmz / Faz) ⁇ (12) It becomes. Accordingly, the output of the force sensor 1 when the robot hand 2 is accelerating the article Q by obtaining the span coefficient S, the output (Fmz) of the force sensor 1 at no load, and the output (Faz) of the acceleration sensor 4. If (Fm) and the output (Fa) of the acceleration sensor 4 are detected, the mass m of the article Q can be measured.
  • the peak value of the output data of each sensor is adopted because there is a difference in the frequency characteristics of the force sensor and the acceleration sensor, resulting in a phase shift in each output data. This is a measure to minimize it.
  • the mass of the article can be obtained even during acceleration.
  • the equation (12) is derived based on the two-degree-of-freedom model
  • when vibration is applied to the robot hand for example, when carrying a bag-packed product or a bottled product with the robot hand, the contents are In order to move, a new vibration is added, which causes an error in the measured value.
  • an error occurs in the measured value depending on the type of the gripping mechanism of the robot hand. For example, when an article is gripped by a bellows-like suction pad to which negative pressure is applied, the suction pad expands and contracts during acceleration, and an error occurs in the measurement value due to the influence.
  • errors in the measured values may occur depending on the operation mode of the robot hand. For example, an error occurs in the measured value even when moving linearly between two points and when moving in a circular arc shape (using a centrifugal force).
  • the present invention is intended to solve the problems peculiar to the mass measuring device incorporated in such a robot arm, and even if there is a difference in the article gripping mechanism and operation mode of the robot arm, or there is a difference in the kind of article. Even if it exists, it aims at providing the new mass measuring device which can suppress a measurement error to the minimum.
  • the mass measuring device is a mass measuring device for measuring the mass of the article from the force and acceleration acting on the article while the speed of the article is changing, A gripping mechanism for gripping the article; A moving mechanism for moving the gripping mechanism; A force sensor provided between the gripping mechanism and the moving mechanism for detecting a force acting on the article while the speed is changing; An acceleration sensor that detects acceleration acting on the article while the speed is also changing; The first output (Fmz, Faz) of each sensor and the reference mass when the first article having the reference mass including zero mass is moved while changing the speed, and the type of the gripping mechanism The second output (Fms, Fas) of each sensor and the known mass when the second article having a different known mass is moved while changing its speed are stored in correspondence with the type of the second article.
  • the first table Article designating means for designating the type of the second article; The known mass corresponding to the second article of the specified type and its second output (Fms, Fas), and the reference mass of the first article and its first output (Fmz, Faz) from the first table.
  • First reading means for reading;
  • a span coefficient calculating means for calculating a span coefficient based on each read output (Fmz, Faz, Fms, Fas) and the known mass and the reference mass;
  • the article of unknown mass based on the calculated span coefficient, the read first output (Fmz, Faz), and the output of each sensor when the specified kind of article is gripped and moved
  • Computing means for calculating the mass of It is provided with.
  • the article that is gripped by the gripping mechanism vibrates during movement and causes an error in the output of each sensor, such as a bag-packed product or a bottled product.
  • an article of the same type it is not necessary to use the same kind of article.
  • an article with zero mass may be used. An article with zero mass corresponds to a case where the article is not gripped, and “when the first article with zero mass is gripped” means that the gripping mechanism does not grip the article and holds the gripping mechanism in an unloaded state. Is moved to output a first output from each sensor.
  • the first output (Fmz, Faz) of each sensor when the grasping mechanism grips the first article having the reference mass m1 and accelerates it is stored.
  • the span coefficient S is obtained from the equation (11).
  • two articles of the same type to be measured are prepared, and their masses are measured in advance with a precision balance.
  • one article whose mass is known is a first article, and a combination of both articles is a second article.
  • the first article is gripped by the gripping mechanism to determine the first output, and then both the articles are gripped by the gripping mechanism to determine the second output. Since the difference ms between the first load mass and the second load mass obtained is the mass of the other article, the span coefficient S is obtained from the above equation (11) with the mass of the other article.
  • each time a type of an article is specified basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) of the article corresponding to the type is read from each storage means, and a span coefficient is obtained.
  • the span coefficient corresponding to the type of article is stored in advance, and when the type of article is specified, the span coefficient corresponding to that type is read out. Also good.
  • the ratio (Fmz / Faz) of the first output when the first article is measured from the equation (12) is required. It may be stored together with the coefficient and read out together with the span coefficient.
  • the second invention stores the span coefficient and the ratio of the first output in advance.
  • the gripping mechanism for gripping an article the moving mechanism for moving the gripping mechanism, the gripping mechanism, and the movement according to the first invention.
  • a force sensor that detects a force acting on the article while the speed is changing
  • an acceleration sensor that detects an acceleration acting on the article while the speed is changing.
  • the span coefficient is obtained by using the same kind of article as the first article and the second article. Otherwise, the span coefficient may be obtained using a reference weight.
  • an article having a mass of zero means that the gripping mechanism is moved in an unloaded state without causing the gripping mechanism to grip any article as described above, and the first output is output from each sensor.
  • the span coefficient and the first output ratio (Fmz / Faz) for each type are obtained from the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) corresponding to the type of article.
  • the span coefficient and the first output ratio (Fmz / Faz) are stored in the span coefficient table in association with the type of article. If the article is designated, the span coefficient corresponding to the designated article and the first output (Fmz, Faz) or its output ratio (Fmz / Faz) are read from the span coefficient table to calculate the mass of the article. Use it. Thereby, the mass of the article can be calculated in a short time.
  • the first and second inventions described above handle a plurality of types of articles with a single type of gripping mechanism.
  • the vibration characteristics received by each sensor may change.
  • the gripping mechanism includes a type that grips an article with a plurality of fingers, and a type that grips an article with an accordion-shaped suction pad on which negative pressure is applied.
  • the vibration of the gripping mechanism itself is not considered, but when gripping an article with the latter suction pad, the suction pad expands and contracts during acceleration. May cause an error in the output of each sensor.
  • the vibration also changes depending on the suction force and suction position of the suction pad, the mass of the article to be sucked, and the like.
  • a mass measuring apparatus that handles a single type of article with a plurality of types of gripping mechanisms, the gripping mechanism for gripping an article of the first invention, and a movement for moving the gripping mechanism.
  • a mechanism, a force sensor provided between the gripping mechanism and the moving mechanism for detecting a force acting on the article while the speed is changing, and the article while the speed is changing In addition to an acceleration sensor that detects acceleration acting on The first output (Fmz, Faz) of each sensor and its reference mass when the first article having a reference mass including zero mass is moved while changing the speed thereof, and the gripping mechanism are known.
  • Computing means It is provided with.
  • the third invention selects one gripping mechanism from a plurality of gripping mechanisms of different types and grips one type of article, in the case of a bag-packed product whose contents move, the same as described above. , Prepare two articles of known mass of the same type, one as the first article and the combination of both as the second article, and the first output (Fmz, Faz) and the second output ( Fms, Fas) are obtained and stored. Then, when the gripping mechanism is replaced with a different type, the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) corresponding to the newly mounted gripping mechanism is read and the span coefficient is calculated. The mass of the article of unknown mass is calculated using the coefficient.
  • the types of gripping mechanisms include, for example, a finger type and an air adsorption type, and the “grip mechanisms of different types” here mean gripping mechanisms in which the output of each sensor changes. Therefore, for example, a mechanism in which the output of each sensor changes depending on the number of suction pads or the suction force is included in the “different types of gripping mechanisms” herein.
  • the gripping mechanism when the gripping mechanism is replaced with a different type, the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) corresponding to the newly mounted gripping mechanism is read and the span coefficient is read.
  • the span coefficient corresponding to the type of the gripping mechanism and the first output (Fmz, Faz) or its output ratio (Fmz / Faz) are stored in advance, and the gripping mechanism
  • the span coefficient corresponding to the type and the first output (Fmz, Faz) or the output ratio (Fmz / Faz) may be read out.
  • the next fourth invention stores such a span coefficient in advance, and includes a gripping mechanism for gripping an article, a moving mechanism for moving the gripping mechanism, and a gripping mechanism and the moving mechanism according to the first invention.
  • a gripping mechanism for gripping an article
  • a moving mechanism for moving the gripping mechanism
  • a gripping mechanism and the moving mechanism according to the first invention In addition to a force sensor for detecting a force acting on the article while the speed is changing, and an acceleration sensor for detecting an acceleration acting on the article while the speed is changing
  • the first output (Fmz, Faz) of each sensor and its reference mass when the first article having a reference mass including zero mass is moved while changing the speed thereof, and the gripping mechanism are known.
  • the span coefficient calculated based on the second output (Fms, Fas) of each sensor when the second article of mass is moved while changing its speed and the known mass is used as the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and a second span coefficient table stored corresponding to different types of gripping mechanisms; Gripping mechanism designating means for designating the type of gripping mechanism to be used; A fourth reading means for reading out a span coefficient corresponding to a specified type of gripping mechanism and the first output or its output ratio from the second span coefficient table; An arithmetic means for calculating the mass of the article of unknown mass based on the read span coefficient, the first output or its output ratio, and the output of each sensor when the article is gripped and moved, It is provided with.
  • a fifth invention is a mass measuring apparatus in which a plurality of different types of gripping mechanisms are handled, and a plurality of different types of articles are handled by one of the gripping mechanisms, and the gripping mechanism for gripping an article according to the first invention is provided.
  • a mechanism a moving mechanism that moves the gripping mechanism, a force sensor that is provided between the gripping mechanism and the moving mechanism, and detects a force acting on the article while the speed is changing, An acceleration sensor that detects acceleration acting on the article while the speed is changing;
  • the second output (Fms, Fas) of each sensor and the known mass when the second article having a different known mass is moved while changing the speed thereof correspond to the type of the second article.
  • the fifth aspect of the present invention provides basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) corresponding to the newly installed gripping mechanism and the type of the article each time the mounted gripping mechanism and the type of the article are changed. ) To calculate the span coefficient, but instead, the span coefficient corresponding to the type of the gripping mechanism and the type of article and the first output (Fmz, Faz) or its output ratio (Fmz / Faz) ) In advance, and when the gripping mechanism and the type of article are specified, the span coefficient and the first output (Fmz, Faz) or the output ratio (Fmz / Faz) corresponding to the type are read out. May be.
  • the next sixth invention stores such a span coefficient in advance, and includes a gripping mechanism for gripping an article, a moving mechanism for moving the gripping mechanism, a gripping mechanism, and the moving mechanism of the first invention.
  • a force sensor for detecting a force acting on the article while the speed is changing
  • an acceleration sensor for detecting an acceleration acting on the article while the speed is changing
  • the first output (Fmz, Faz) of each sensor and the reference mass when the first article having the reference mass including zero mass is moved while changing the speed, and the type of the gripping mechanism
  • the second article having a different known mass is calculated based on the second output (Fms, Fas) of each sensor when the second article is moved while changing its speed and the known mass, and classified by type of the second article.
  • a first span (Fmz, Faz) or its output ratio (Fmz / Faz) together with a third span coefficient table stored corresponding to different types of gripping mechanisms, Gripping mechanism designating means for designating the type of gripping mechanism to be used; Article designating means for designating the type of the second article to be gripped by the designated type of gripping mechanism; A sixth reading means for reading out the span coefficient corresponding to the gripping mechanism and the second article designated by each designation means and the first output or its output ratio from the third span coefficient table; Based on the read span coefficient, the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and the output of each sensor when a specified type of article is held and accelerated. Calculating means for calculating the mass of the article of unknown mass; It is provided with.
  • the seventh invention is a mass measuring apparatus capable of meeting such a demand, and in addition to the configurations of the first to sixth inventions, the first output (Fmz, Faz) and the second from each of the sensors.
  • the basic data Fmz, Faz, Fms) , Fas, reference mass, known mass
  • basic data (Fmz, Faz, Fms, Fas, reference mass, known mass) is acquired and then the normal operation is started.
  • the operation mode when the basic data is acquired is switched.
  • the warning means displays a warning message that prompts the user to retake basic data.
  • basic data is acquired under a new operation mode, if the basic data and the new operation mode are stored in association with each other, the basic data is stored even if the operation mode is switched to the new operation mode. There is no need to retake.
  • the eighth invention is a mass measuring apparatus capable of such correspondence, and in addition to the configuration of the seventh invention, the operation mode set in the moving mechanism is associated with each table created under the operation mode. And a fourth table stored therein.
  • FIG. 2 is a diagram illustrating a two-degree-of-freedom model in which the mass measuring device of FIG. 1 is represented by a spring-mass system.
  • the graph which shows the output of each sensor when not making a gripping mechanism hold
  • the graph which shows the output of each sensor when a grasping mechanism is made to grasp a known weight.
  • the graph which shows the output of each sensor when an article of mass m is made to grasp by a grasping mechanism.
  • 1 is a schematic configuration diagram of a mass measuring device according to an embodiment of the present invention.
  • the schematic block diagram which shows another example of the holding
  • the schematic block diagram of the signal processing circuit which processes the output signal of each sensor. 1 is a configuration block diagram of a first embodiment.
  • FIG. 6 is a schematic configuration diagram of a mass measuring device 100 according to an embodiment of the present invention.
  • a mass measuring apparatus 100 includes a moving mechanism 11 as a robot arm, a force sensor 21 for detecting a force acting on a moving article Q, an acceleration sensor 22 for detecting an acceleration acting on the article Q, And a gripping mechanism 23 for gripping the article Q.
  • the moving mechanism 11 is a robot arm that three-dimensionally moves the gripping mechanism 23, and one end of the force sensor 21 is fixed to the tip base portion 12.
  • the moving mechanism 11 for example, a horizontal articulated robot, a vertical articulated robot, a parallel link robot, or the like is appropriate.
  • a strain gauge type load cell For the force sensor 21, for example, a strain gauge type load cell is employed.
  • the strain gauge type load cell detects a force applied to the free end side by the displacement of the free end side relative to the fixed end side due to the load of the article Q.
  • An acceleration sensor 22 and a gripping mechanism 23 are provided on the free end side of the force sensor 21.
  • acceleration sensor 22 for example, any of a strain gauge type load cell, a MEMS type small acceleration sensor, and a general commercially available acceleration sensor is appropriately employed.
  • the gripping mechanism 23 is a robot hand that grips the article Q.
  • the gripping mechanism 23 of FIG. 6 shows an example of a finger type, but instead of this, an air adsorption type that adsorbs and holds the article Q with a negative pressure as shown in FIG. 7 can be used.
  • the finger type of FIG. 6 is suitable when the article Q is a solid material, and the air adsorption type of FIG. 7 is suitable when the shape is not constant, such as a bag-packed product.
  • FIG. 7 shows a schematic configuration diagram of an air adsorption type.
  • a bellows-like suction pad P made of silicon rubber is attached to an aluminum box B so that the suction pad P communicates with the inside of the box B.
  • the suction pad P communicates with the inside of the box B.
  • the suction pads P By holding the inside of the aluminum box B at a negative pressure, the articles Q are sucked and held by the suction pads P.
  • the number, shape, arrangement, etc. of the suction pads are appropriately changed according to the type of the articles Q. Accordingly, a plurality of types of gripping mechanisms 23 are prepared according to the type of the article Q, and these are used properly according to the type of the article Q.
  • FIG. 8 is a block diagram of the control system of the mass measuring apparatus 100.
  • a moving mechanism 11, a gripping mechanism 23, a force sensor 21, an acceleration sensor 22, an input unit 24, and a display unit 25 are electrically connected to a control board 50 having a control unit 40 and a storage unit 30. .
  • the input unit 24 is a device for the operator to set the basic data (Fmz, Faz, Fms, Fas, reference mass, known mass) in the operation mode of the moving mechanism 11 and the mass measuring device 100 before starting operation. is there. Furthermore, it becomes an apparatus which designates the type of the article Q to be measured and the type of the gripping mechanism 23 that grips it. Specifically, it is composed of a keyboard and a touch panel.
  • the display unit 25 is a device that displays the operation status of the mass measuring apparatus 100 and an operation guide for setting the basic data.
  • an error display may be performed in order to eliminate the measurement error.
  • the storage unit 30 stores the above-described basic data and span coefficient as the mass measuring device 100 according to the type of the article Q and the gripping mechanism 23, and stores various tables described below.
  • the storage unit 30 also stores an operation mode of the moving mechanism 11 for how to move the gripping mechanism 23. For example, a series of “the article Q is sucked and held by the gripping mechanism 23, the article Q is moved from the suction position to the packing position by the moving mechanism 11, the mass is measured during that time, and then the article Q is placed in the packing container”.
  • an operation mode peculiar to the robot such as operation from the suction position to the packing position with 80% capacity of the specified value, and operation with 50% capacity in the process of storing in the packing container is stored. ing.
  • the control unit 40 moves the gripping mechanism 23 based on the stored operation mode. In synchronization with the movement, the controller 40 sequentially reads the outputs of the force sensor 21 and the acceleration sensor 22 and determines the maximum value of the outputs of the sensors 21 and 22. I will do it.
  • the control unit 40 is constituted by a DSP (digital signal processor), a microcomputer, and the like, and executes various programs stored in the storage unit 30 to thereby read out means, span coefficient calculation means, calculation means, etc., which will be described later. Perform the function.
  • DSP digital signal processor
  • FIG. 9 shows an example of a signal processing circuit diagram for processing the detection signals of the force sensor 21 and the acceleration sensor 22.
  • a / D converters 27a and 27b are connected to the force sensor 21 and the acceleration sensor 22 via amplifiers 26a and 26b, respectively.
  • the A / D converters 27 a and 27 b convert the input analog signal into a digital signal and input it to the control unit 40.
  • the control unit 40 performs a filtering process based on the input detection signal in a DSP (digital signal processor). For example, noise frequency components included in detection signals of the force sensor 21 and the acceleration sensor 22 are removed by a low-pass filter. Subsequently, the detection signal of the force sensor 21 from which the noise frequency component has been removed is divided by the detection signal of the acceleration sensor 4, and the tare mass is subtracted from the division result to calculate the mass m.
  • the tare mass is the sum of the tare mass loaded on the force sensor 21, the mass of the gripping mechanism 23, and the mass of the acceleration sensor 22.
  • FIG. 10 shows a configuration block diagram of the first embodiment.
  • a first table 31 as shown in FIG. 11 is stored.
  • the first table 31 includes a first output (Fmz, Faz) of each sensor 21 and 22 and its reference mass (when the gripping mechanism 23 grips and moves the first article of the reference mass m1 including zero mass). Zero or m1), and the second output (Fms, Fas) of each sensor 21 and 22 and its known mass (m2) when the gripping mechanism 23 grips and moves the second article of known mass (m2). Is stored in correspondence with the type of the second article.
  • the mass of the first article is zero, that is, the first output (Fmz, Faz) may be obtained without gripping the first article.
  • the product Q to be measured is used as the first product, and a plurality of products Q of the same type are used as the second product.
  • the second output (Fms, Fas) of the second product is obtained and stored for each type.
  • the mass measuring device 100 When storing these basic data (Fmz, Faz, Fms, Fas, known mass, reference mass), the mass measuring device 100 is switched to the setting mode, and in that state, first, the type of the article is input. For example, a product name or a product number is input from the input unit 24 and specified. Next, the reference mass m1 of the first article and the known mass m2 of the second article are input from the input unit 24, and the masses m1 and m2 are stored in the first table 31. These masses m1 and m2 are previously measured with a precision balance.
  • the gripping mechanism 23 grips and moves the first article having the reference mass (zero or m1), and stores the first outputs (Fmz, Faz) of the sensors 21 and 22 at that time. Subsequently, the second article obtained by collecting at least two first articles is gripped and moved, and the second output (Fms, Fas) of each sensor at that time is stored. As a result, the basic data is stored in the first table 31. Such a setting operation is performed according to an operation guide displayed on the display unit 25. Then, it is programmed so that data is automatically recorded in the first table 31.
  • the article designating means 28 designates the type of the second article, and is provided in the input unit 24. If the type of the second article is designated by operating the article designating means 28, the first reading means 41 of the designated type is designated.
  • the mass m2 of the second article and its second output (Fms, Fas), and the reference mass m1 of the first article and its first output (Fmz, Faz) are read from the first table 31.
  • the span coefficient calculation means 42 calculates the span coefficient S by substituting the read basic data (Fmz, Faz, Fms, Fas, reference mass m1, and known mass m2) into the equation (11).
  • the arithmetic means 43 calculates the span coefficient S, the first output (Fmz, Faz) read from the first table 31, and the sensors 21 and 22 inputted when the article Q is gripped and moved.
  • the mass m of the article Q is calculated based on the output (Fm, Fa).
  • the calculated mass m is displayed on the display unit 25 and used in a subsequent process. For example, if the measured mass m is less than the reference value, it is used to sort the article Q as a lightweight article.
  • FIG. 12 shows a configuration block diagram of the second embodiment.
  • the storage unit 30 in this figure stores a first span coefficient table 32 as shown in FIG.
  • the first span coefficient table 32 includes the first outputs (Fmz, Faz) of the sensors 21 and 22 when the gripping mechanism 23 grips and moves the first article having the reference mass m1 including the mass zero and the reference.
  • the mass (zero or m1), the second output (Fms, Fas) of each sensor 21 and 22 when the gripping mechanism 23 grips and moves the second article having the known mass (m2), and the known mass ( m2) and the first output (Fmz, Faz) and the output ratio (Fmz / Faz) are stored in association with the type of the second article.
  • the span coefficient S and the first output ratio (Fmz / Faz) are calculated.
  • the second embodiment There is a difference in that it was asked and memorized in advance. Therefore, when the type of the second article is designated by the article designation means 28, the second reading means 44 reads the span coefficient S of the designated type of the second article and the first output (Fmz, Faz) or its output ratio. (Fmz / Faz) is read from the first span coefficient table 32.
  • the calculation means 43 includes the read span coefficient S, the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and each sensor input when the article Q is held and moved. Based on the outputs 21 and 22 (Fm, Fa), the mass m of the article Q is calculated. The calculated mass m is displayed on the display unit 25 and used in a subsequent process.
  • FIG. 14 shows a configuration block diagram of the third embodiment.
  • the storage unit 30 in this figure stores a second table 33 as shown in FIG.
  • the second table 33 includes the first output (Fmz, Faz) of each sensor 21 and 22 and the reference when the gripping mechanism 23 grips and moves the first article having the reference mass (m1) including zero.
  • the mass (zero or m1), the second output (Fms, Fas) of each sensor 21 and 22 when the gripping mechanism 23 grips and moves the second article having the known mass (m2), and the known mass ( m2) is stored in association with different types of gripping mechanisms 23.
  • the different types of gripping mechanisms 23 are not only the difference between the finger-type gripping mechanism and the air suction type gripping mechanism, but also the same air suction type, depending on the number of suction pads and the difference in suction force, etc. Since the output of each of the sensors 21 and 22 is affected, the gripping mechanisms that have such effects are different types of gripping mechanisms.
  • the type of the gripping mechanism 23 is set according to the type of article, for example, , Type A, type B, etc. Thereafter, as in the case of the first embodiment, if the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) is stored, the second table 33 is completed.
  • the finger type is used as the gripping mechanism 23 and the mass is zero as the first article, that is, when nothing is gripped, the first article is used as the second article and the mass is input as the known mass. .
  • the gripping mechanism designating means 29 designates the type of the gripping mechanism 23 that is mounted.
  • the third reading unit 45 obtains each output (Fmz, Faz, Fms, Fas) corresponding to the designated type of the gripping mechanism 23, and the reference mass and the known mass. Read from the second table 33.
  • the span coefficient calculation means 42 calculates the span coefficient S by substituting the read basic data (Fmz, Faz, Fms, Fas, reference mass m1, and known mass m2) into the equation (11).
  • the calculation means 43 grips and moves the calculated span coefficient S, the first output (Fmz, Faz) or its output ratio (Fmz / Faz) read from the first table 31, and the article Q.
  • the mass m of the article Q is calculated based on the outputs (Fm, Fa) of the sensors 21 and 22 input during Others are the same as the first embodiment.
  • FIG. 16 shows a configuration block diagram of the fourth embodiment.
  • the storage unit 30 in this figure stores a second span coefficient table 34 as shown in FIG.
  • the second span coefficient table 34 includes a first output (Fmz,) of the sensors 21 and 22 when the gripping mechanism 23 grips and moves a first article having a reference mass (zero or m1) including zero. Faz), its reference mass (zero or m1), and the second output (Fms, Fas) of each sensor 21, 22 when the gripping mechanism 23 grips and moves the second article of known mass (m2).
  • the span coefficient S calculated based on the known mass (m2) and the first output (Fmz, Faz) or its output ratio (Fmz / Faz) in association with different types of gripping mechanisms 23. It is.
  • the span coefficient S is calculated every time basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) is read.
  • the span coefficient and the first output ratio ( There is a difference in that Fmz / Faz) is obtained and stored in advance. Therefore, when the type of the gripping mechanism 23 is specified by the gripping mechanism specifying means 29, the fourth reading means 46 outputs the span coefficient S corresponding to the specified gripping mechanism 23 and the first output (Fmz, Faz) or its output.
  • the ratio (Fmz / Faz) is read from the second span coefficient table 34.
  • the calculation means 43 grips and moves the read span coefficient S, the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and the article Q in the same manner as described above.
  • the mass m of the article Q is calculated on the basis of the outputs (Fm, Fa) of the sensors 21 and 22 input to.
  • FIG. 18 shows a configuration block diagram of the fifth embodiment.
  • a third table 35 as shown in FIG. 19 is stored.
  • the third table 35 includes the first outputs (Fmz, Faz) of the sensors 21 and 22 and the reference when the gripping mechanism 23 grips and moves the first article having the reference mass (m1) including zero.
  • the known mass (m2) is stored corresponding to the type of the second article and also corresponding to the gripping mechanisms 23 of different types.
  • the type C gripping mechanism 23 is a finger type, and in this case, the first output (Fmz, Faz) is obtained without gripping the first article.
  • the fifth embodiment is a combination of the first embodiment and the third embodiment.
  • the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) is made to correspond to the type of the second article.
  • the type of the second article is designated by the article designation means 28 and the type of the gripping mechanism 23 to be used by the gripping mechanism designation means 29 is designated.
  • the fifth reading means 47 reads basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) corresponding to the designated gripping mechanism and the second article from the third table 35.
  • the span coefficient calculation means 42 calculates the span coefficient S by substituting the read basic data (Fmz, Faz, Fms, Fas, reference mass m1 and known mass m2) into the above equation (11), as described above. To do.
  • the arithmetic means 43 calculates the span coefficient S, the first output (Fmz, Faz) read from the third table 35, and the sensors 21 input when the article Q is gripped and moved. , 22 based on the outputs (Fm, Fa), the mass m of the article Q is calculated.
  • FIG. 20 shows a configuration block diagram of the sixth embodiment.
  • the storage unit 30 in this figure stores a third span coefficient table 36 as shown in FIG.
  • the table 36 includes a first output (Fmz, Faz) of each of the sensors 21 and 22 and a reference mass (zero) when the gripping mechanism 23 grips and moves the first article having the reference mass m1 including the mass zero. Or m1), and the second output (Fms, Fas) of each sensor 21 and 22 and the known mass (m2) when the gripping mechanism 23 grips and moves the second article having the known mass m2.
  • the span coefficient S for each type of the second article calculated as described above is stored in association with the different types of gripping mechanisms 23 together with the first output (Fmz, Faz) and the output ratio (Fmz / Faz).
  • the type C gripping mechanism 23 is a finger type, and in this case as well, as in FIG. 19, the first output (Fmz, Faz) is obtained without gripping the first article.
  • the span coefficient S is calculated every time basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) is read.
  • the span coefficient S and the first output ratio are calculated. There is a difference in that (Fmz / Faz) is obtained and stored in advance. Therefore, when the type of the article is designated by the article designation means 28 and the kind of the gripping mechanism 23 is designated by the gripping mechanism designation means 29, the sixth reading means 48 designates the designated type of article.
  • the span coefficient S and the first output ratio (Fmz / Faz) corresponding to the type of gripping mechanism 23 are read from the third span coefficient table 36. Others are the same as in the third embodiment.
  • FIG. 22 shows a configuration block diagram of the seventh embodiment.
  • This block diagram has the same basic configuration as that of FIG. 8, but is different in that a warning means 60 is newly provided in the display unit 25.
  • This warning means 60 is the operation mode of the moving mechanism 11 when acquiring the basic data (Fmz, Faz, Fms, Fas, reference mass, known mass), and when the article Q is actually gripped and moved. An alarm is issued when the operation mode is different from the operation mode, thereby preventing an error caused by the difference in the operation mode.
  • the basic data (Fmz, Faz, Fms, Fas, reference mass, known mass) is read again.
  • the warning means 60 displays a message. If the operation mode is changed without doing so, the warning means 60 issues a warning. Thereby, a measurement error can be suppressed.
  • FIG. 23 shows a configuration block diagram of the eighth embodiment.
  • This block diagram has the same basic configuration as that of FIG. 22, but differs from the seventh embodiment in that a fourth table 37 is provided in the storage unit 30.
  • the fourth table 37 stores the operation mode set in the moving mechanism 11 and the tables 31 to 36 acquired under the operation mode in association with each other, and an example is shown in FIG. In FIG. 24, for example, the first, second, and third tables are registered as tables acquired under the operation mode of mode 1. Therefore, the operation mode is switched to mode 2, and even if an attempt is made to measure the mass of an article having an unknown mass from the second table under mode 2, the second table is not registered under mode 2, so the warning means 60 warns that the basic data is re-taken.
  • the second table When the basic data of the second table is acquired under mode 2 based on the warning, the second table is registered in mode 2 in the fourth table. After that, since the second table can be accessed under mode 2, the operation can be continued even if the operation mode is switched.
  • the present invention since the mass of an article can be measured more accurately while the article is moved by a robot hand, the present invention can be used in a field where an industrial robot is used.

Abstract

Provided is a mass measurement device that is for addressing a problem unique to mass measurement devices incorporated into robot hands and is capable of minimizing measurement error even if there are differences in robot hand gripping mechanisms, robot hand operation modes, or article types. The device stores, in association with the type of a second article of a known mass (m2) and of a different type than a first article of a mass (m1), first outputs (Fmz, Faz) of each sensor when a gripping mechanism for gripping an article holds and moves the first article, the mass (m1), second outputs (Fms, Fas) of each sensor when the gripping mechanism holds and moves the second article, and the known mass (m2). When the type of the second article is specified, the known mass (m2) and the second outputs (Fms, Fas) for the second article of the specified type and the mass (m1) and first outputs (Fmz, Faz) for the first article are read out, and the mass of an article of an unknown mass is calculated.

Description

質量計測装置Mass measuring device
 本発明は、物品の速度が変化している間にその物品の質量を検出する質量計測装置に関する。 The present invention relates to a mass measuring device that detects the mass of an article while the speed of the article is changing.
 ばね秤や電子秤では、重力加速度以外の加速度の影響を排除するため、物品を静止させた状態でその質量を測定することを前提としている。しかし、最近では、ロボットハンドで物品を持ち上げて移動させる機会が増え、それに伴い、物品を持ち上げた際に、その質量を検出して、後処理に利用したいという要求がある。 In spring balances and electronic balances, in order to eliminate the influence of acceleration other than gravitational acceleration, it is assumed that the mass is measured while the article is stationary. However, recently, the opportunity to lift and move an article with a robot hand increases, and accordingly, there is a demand for detecting the mass of the article when it is lifted and using it for post-processing.
 この要求に応えるために、本件出願人は、下記特許文献に開示されるような一連の質量測定装置を開発してきた。この質量測定装置は、物品の速度が変化する間に、その物品に作用する力と加速度から物品の質量を測定しようとするものである。 In order to meet this requirement, the applicant has developed a series of mass measuring devices as disclosed in the following patent documents. This mass measuring device is intended to measure the mass of an article from the force and acceleration acting on the article while the speed of the article changes.
 この質量測定装置10の基本構成は、図1に示すように、物品Qに作用する力を検出する力センサ1と、物品Qを把持するロボットハンド2と、物品Qを加速しながら移動させるロボットアーム3と、物品Qに作用する加速度を検出する加速度センサ4とを備える。 As shown in FIG. 1, the basic configuration of the mass measuring apparatus 10 includes a force sensor 1 that detects a force acting on the article Q, a robot hand 2 that holds the article Q, and a robot that moves the article Q while accelerating it. An arm 3 and an acceleration sensor 4 that detects acceleration acting on the article Q are provided.
 力センサ1は、ロボットハンド2とロボットアーム3との間に設けられ、加速度センサ4は、ロボットハンド2に隣接するように設けられる。こうした構成の質量測定装置10をばね-質量系で表すと、図2のような、2自由度モデルで表すことができる。 The force sensor 1 is provided between the robot hand 2 and the robot arm 3, and the acceleration sensor 4 is provided adjacent to the robot hand 2. When the mass measuring device 10 having such a configuration is represented by a spring-mass system, it can be represented by a two-degree-of-freedom model as shown in FIG.
 このモデルに基づいて、加速中に物品の質量を測定する原理について以下に説明する。
 図2において、mは物品Qの質量、M1は力センサ1の質量、M2は加速度センサ4の質量である。また、k1は力センサ1のばね定数、k2は加速度センサ4のばね定数である。x1は力センサ1の変位量、x2は加速度センサ4の変位量である。これらの変位量は、X,Y,Zの3軸に分解して計算すべきであるが、何れの軸で計算しても、結果は同じになるので、ここでは、合成した変位量で表している。
Based on this model, the principle of measuring the mass of an article during acceleration will be described below.
In FIG. 2, m is the mass of the article Q, M 1 is the mass of the force sensor 1, and M 2 is the mass of the acceleration sensor 4. K 1 is the spring constant of the force sensor 1, and k 2 is the spring constant of the acceleration sensor 4. x 1 is the displacement amount of the force sensor 1, and x 2 is the displacement amount of the acceleration sensor 4. These displacement amounts should be calculated by decomposing into three axes of X, Y and Z, but the result will be the same regardless of which axis is calculated. ing.
 このモデルにおいて、物品Qに加速度が作用するときの運動方程式は、
 (m+M1)d21/dt2=-k1(x1-y)+k2(x1-x2) (1)
 M222/dt2=-k2(x2-x1)       (2)
として表される。また(1)式を変形すると、
 m=[-k1(x1-y)+k2(x1-x2)]/(d21/dt2)-M1(3)
となる。さらに、加速度センサ4の剛性が大きいことを考慮すると、
 d21/dt2≒d22/dt2        (4)
として近似できる。それゆえ、(3)及び(4)式より、
 m=[-k1(x1-y)+k2(x1-x2)]/(d22/dt2)-M1(5)
が導き出される。また、(2)式を変形すると、
 d22/dt2=-k2(x2-x1)/M2    (6)
となるので、(5)、(6)式より、
 m=[-k1(x1-y)/-k2(x2-x1)]M2+M2-M1 (7)
が導き出される。
In this model, the equation of motion when acceleration acts on the article Q is
(M + M 1 ) d 2 x 1 / dt 2 = −k 1 (x 1 −y) + k 2 (x 1 −x 2 ) (1)
M 2 d 2 x 2 / dt 2 = −k 2 (x 2 −x 1 ) (2)
Represented as: Moreover, when the equation (1) is transformed,
m = [− k 1 (x 1 −y) + k 2 (x 1 −x 2 )] / (d 2 x 1 / dt 2 ) −M 1 (3)
It becomes. Furthermore, considering that the rigidity of the acceleration sensor 4 is large,
d 2 x 1 / dt 2 ≈d 2 x 2 / dt 2 (4)
Can be approximated as Therefore, from equations (3) and (4)
m = [− k 1 (x 1 −y) + k 2 (x 1 −x 2 )] / (d 2 x 2 / dt 2 ) −M 1 (5)
Is derived. Moreover, when the equation (2) is transformed,
d 2 x 2 / dt 2 = −k 2 (x 2 −x 1 ) / M 2 (6)
Therefore, from equations (5) and (6),
m = [− k 1 (x 1 −y) / − k 2 (x 2 −x 1 )] M 2 + M 2 −M 1 (7)
Is derived.
 ここで、-k1(x1-y)は力センサ1の出力、-k2(x2-x1)は加速度センサ4の出力であるが、これらの出力は、質量との関連付けがなされていないから、ロボットハンド2が何も持たずに加速したときの各センサの出力を零点として求め、次に質量が既知である分銅をロボットハンド2に持たせて加速したときのこれらの出力からスパン係数を求めておく必要がある。 Here, −k 1 (x 1 −y) is the output of the force sensor 1, and −k 2 (x 2 −x 1 ) is the output of the acceleration sensor 4. These outputs are related to the mass. Therefore, the output of each sensor when the robot hand 2 accelerates without anything is obtained as a zero point, and then the output when the robot hand 2 accelerates with a weight having a known mass is obtained. It is necessary to obtain the span coefficient.
 図3は、零点を求めるために、ロボットハンド2を無負荷状態で上下に加速させたときの力センサ1と加速度センサ4の各出力データの変化を示したグラフである。この図において、力センサ1の出力データのピーク値をFmz、加速度センサ4の出力データのピーク値をFazとしたとき、(7)式より、
   0=M2・C・(Fmz/Faz)+M2-M1  (8)
となる。但し、Fazは0でない場合を想定し、Cは換算係数としている。
FIG. 3 is a graph showing changes in output data of the force sensor 1 and the acceleration sensor 4 when the robot hand 2 is accelerated up and down in a no-load state in order to obtain a zero point. In this figure, when the peak value of the output data of the force sensor 1 is Fmz and the peak value of the output data of the acceleration sensor 4 is Faz,
0 = M 2 · C · (Fmz / Faz) + M 2 −M 1 (8)
It becomes. However, assuming that Faz is not 0, C is a conversion factor.
 図4は、質量msの分銅をロボットハンド2に持たせて上下に加速させたときの力センサ1と加速度センサ4の各出力データの変化を示したグラフである。この図において、力センサ1の出力データのピーク値をFms、加速度センサ4の出力データのピーク値をFasとしたとき、(7)式より、
   ms=M2・C・(Fms/Fas)+ M2-M1  (9)
となる。そして、(8)、(9)式より、
 C=ms/M2{(Fms/Fas)-(Fmz/Faz)}(10)
が導き出される。また、(10)式より、M2は定数であるからスパン係数をSと置くと、
  S=C・M2=ms/{(Fms/Fas)-(Fmz/Faz)}(11)
となる。
FIG. 4 is a graph showing changes in output data of the force sensor 1 and the acceleration sensor 4 when a mass ms of mass is held in the robot hand 2 and accelerated up and down. In this figure, when the peak value of the output data of the force sensor 1 is Fms and the peak value of the output data of the acceleration sensor 4 is Fas,
ms = M 2 · C · (Fms / Fas) + M 2 −M 1 (9)
It becomes. From the equations (8) and (9),
C = ms / M 2 {(Fms / Fas) − (Fmz / Faz)} (10)
Is derived. Also, from equation (10), since M 2 is a constant, if the span coefficient is set to S,
S = C · M 2 = ms / {(Fms / Fas) − (Fmz / Faz)} (11)
It becomes.
 図5は、質量mの物品Qをロボットハンド2に持たせて上下に加速させたときの力センサ1と加速度センサ4の各出力データの変化を示したグラフである。この図において、力センサ1の出力データのピーク値をFm、加速度センサ4の出力データのピーク値をFaとしたとき、(11)式より、
   m=S{(Fm/Fa)-(Fmz/Faz)}  (12)
となる。したがって、スパン係数Sと無負荷時の力センサ1の出力(Fmz)と、加速度センサ4の出力(Faz)を求めて、ロボットハンド2が物品Qを加速させているときの力センサ1の出力(Fm)と、加速度センサ4の出力(Fa)とを検出すれば、その物品Qの質量mを測定することができる。
FIG. 5 is a graph showing changes in output data of the force sensor 1 and the acceleration sensor 4 when the article Q having the mass m is held in the robot hand 2 and accelerated up and down. In this figure, when the peak value of the output data of the force sensor 1 is Fm and the peak value of the output data of the acceleration sensor 4 is Fa,
m = S {(Fm / Fa)-(Fmz / Faz)} (12)
It becomes. Accordingly, the output of the force sensor 1 when the robot hand 2 is accelerating the article Q by obtaining the span coefficient S, the output (Fmz) of the force sensor 1 at no load, and the output (Faz) of the acceleration sensor 4. If (Fm) and the output (Fa) of the acceleration sensor 4 are detected, the mass m of the article Q can be measured.
 ここで、各センサの出力データのピーク値を採用しているのは、力センサと加速度センサの周波数特性に差があり、それに起因して各出力データに位相のズレが生じるから、その影響を最小限に抑えるための措置である。 Here, the peak value of the output data of each sensor is adopted because there is a difference in the frequency characteristics of the force sensor and the acceleration sensor, resulting in a phase shift in each output data. This is a measure to minimize it.
特開2013-079931号公報JP 2013-079931 A 特開2013-174503号公報JP 2013-174503 A 特開2013-174570号公報JP 2013-174570 A 特開2013-185846号公報JP 2013-185846 A 特開2013-185847号公報JP 2013-185847 A 特開2013-185848号公報JP 2013-185848 A 特開2013-195200号公報JP 2013-195200 A
 前述のように(12)式を用いれば、加速中でも物品の質量を求めることができる。ところが、この(12)式は、2自由度モデルに基づいて導き出したものであるから、ロボットハンドに振動が加わる場合、例えば、袋詰め商品や瓶詰め商品をロボットハンドで運ぶときは、内容物が動くために新たな振動が加わり、それによって測定値に誤差が生ずる。また、ロボットハンドの把持機構の種類によっても測定値に誤差が生ずる。例えば、負圧を作用させた蛇腹状の吸着パッドで物品を掴むときは、加速中に吸着パッドが伸縮して振動するため、その影響で測定値に誤差が生ずる。 As described above, if the equation (12) is used, the mass of the article can be obtained even during acceleration. However, since the equation (12) is derived based on the two-degree-of-freedom model, when vibration is applied to the robot hand, for example, when carrying a bag-packed product or a bottled product with the robot hand, the contents are In order to move, a new vibration is added, which causes an error in the measured value. Also, an error occurs in the measured value depending on the type of the gripping mechanism of the robot hand. For example, when an article is gripped by a bellows-like suction pad to which negative pressure is applied, the suction pad expands and contracts during acceleration, and an error occurs in the measurement value due to the influence.
 さらに、ロボットハンドの動作モードによっても測定値に誤差が生ずる。例えば、2点間を直線的に動かす場合と、円弧状に動かす(遠心力を働かせる)場合においても、測定値に誤差が生じる。 In addition, errors in the measured values may occur depending on the operation mode of the robot hand. For example, an error occurs in the measured value even when moving linearly between two points and when moving in a circular arc shape (using a centrifugal force).
 本発明は、こうしたロボットアームに組み込まれた質量測定装置に特有な問題を解決せんとするもので、ロボットアームの物品把持機構や動作モードに違いがあっても、あるいは、物品の種類に違いがあっても、測定誤差を最小限に抑えることのできる新たな質量測定装置を提供することを課題とする。 The present invention is intended to solve the problems peculiar to the mass measuring device incorporated in such a robot arm, and even if there is a difference in the article gripping mechanism and operation mode of the robot arm, or there is a difference in the kind of article. Even if it exists, it aims at providing the new mass measuring device which can suppress a measurement error to the minimum.
 本発明に係る質量測定装置は、物品の速度が変化している間に前記物品に作用する力と加速度から、前記物品の質量を測定する質量測定装置であって、
 前記物品を把持する把持機構と、
 前記把持機構を移動させる移動機構と、
 前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に
作用する力を検出する力センサと、
 同じく速度が変化している間の前記物品に作用する加速度を検出する加速度センサと、
前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が種類の異なる既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量を、前記第2物品の種類に対応させて記憶した第1テーブルと、
 前記第2物品の種類を指定する物品指定手段と、
 指定された種類の前記第2物品に対応する既知質量とその第2出力(Fms、Fas)、並びに、前記第1物品の基準質量とその第1出力(Fmz,Faz)を前記第1テーブルから読み出す第1読出手段と、
 読み出された各出力(Fmz、Faz、Fms、Fas)並びに既知質量と基準質量に基づいて、スパン係数を算出するスパン係数算出手段と、
 算出されたスパン係数と、読み出された第1出力(Fmz,Faz)と、指定された種類の物品を把持して移動させたときの各センサの出力とに基づいて、未知質量の前記物品の質量を算出する演算手段と、
を備えたことを特徴とする。
The mass measuring device according to the present invention is a mass measuring device for measuring the mass of the article from the force and acceleration acting on the article while the speed of the article is changing,
A gripping mechanism for gripping the article;
A moving mechanism for moving the gripping mechanism;
A force sensor provided between the gripping mechanism and the moving mechanism for detecting a force acting on the article while the speed is changing;
An acceleration sensor that detects acceleration acting on the article while the speed is also changing;
The first output (Fmz, Faz) of each sensor and the reference mass when the first article having the reference mass including zero mass is moved while changing the speed, and the type of the gripping mechanism The second output (Fms, Fas) of each sensor and the known mass when the second article having a different known mass is moved while changing its speed are stored in correspondence with the type of the second article. The first table;
Article designating means for designating the type of the second article;
The known mass corresponding to the second article of the specified type and its second output (Fms, Fas), and the reference mass of the first article and its first output (Fmz, Faz) from the first table. First reading means for reading;
A span coefficient calculating means for calculating a span coefficient based on each read output (Fmz, Faz, Fms, Fas) and the known mass and the reference mass;
The article of unknown mass based on the calculated span coefficient, the read first output (Fmz, Faz), and the output of each sensor when the specified kind of article is gripped and moved Computing means for calculating the mass of
It is provided with.
 ロボットハンドで物品を持ち上げるとき、物品が袋詰め商品や瓶詰め商品であれば、内容物が移動してロボットハンドに振動が加わり、それによって各センサの出力に誤差が生ずる。そうした誤差を抑えるために、ここでは、各センサの出力に誤差を生じさせるような物品を「種類の異なる」物品として位置づけ、そうした種類の異なる物品毎にスパン係数を求めるための基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を取得する。そして、物品の種類が指定されると、指定された種類の物品に対応する基礎データを読み出してスパン係数を算出し、そのスパン係数に基づいて、指定された種類の未知質量の物品について、その質量を求めるのである。 When lifting an article with a robot hand, if the article is a bag-packed product or a bottled product, the contents move and vibration is applied to the robot hand, thereby causing an error in the output of each sensor. In order to suppress such errors, here, articles that cause an error in the output of each sensor are positioned as "different types" articles, and basic data (Fmz, Faz, Fms, Fas, known mass, reference mass). Then, when the type of article is specified, basic data corresponding to the specified type of article is read out and a span coefficient is calculated. Based on the span coefficient, an article of unknown mass of the specified type is Find the mass.
 この場合において、把持機構によって把持される物品が袋詰め商品や瓶詰め商品のように、移動中に振動して各センサの出力に誤差を生じさせるものは、第1物品と第2物品を同一種類の物品とするのが好ましいが、そうでない場合は、同一種類の物品でなくても良い。また、質量がゼロの物品であっても良い。質量がゼロの物品とは、物品を把持させない場合に相当するから「質量ゼロの第1物品を把持したとき」とは、把持機構に物品を何も把持させずに、無負荷状態で把持機構を動かして、各センサから第1出力を出力させることを意味する。 In this case, the article that is gripped by the gripping mechanism vibrates during movement and causes an error in the output of each sensor, such as a bag-packed product or a bottled product. Although it is preferable to use an article of the same type, it is not necessary to use the same kind of article. Moreover, an article with zero mass may be used. An article with zero mass corresponds to a case where the article is not gripped, and “when the first article with zero mass is gripped” means that the gripping mechanism does not grip the article and holds the gripping mechanism in an unloaded state. Is moved to output a first output from each sensor.
 また、質量のある第1物品を使用するときは、把持機構に基準質量m1の第1物品を把持させて加速させたときの各センサの第1出力(Fmz、Faz)を記憶し、次に既知質量m2の第2物品を把持させて加速させたときの各センサの第2出力(Fms、Fas)を記憶し、それらの出力と各質量の差(m2-m1)=msから、前述の(11)式からスパン係数Sを求める。 In addition, when using a first article having a mass, the first output (Fmz, Faz) of each sensor when the grasping mechanism grips the first article having the reference mass m1 and accelerates it is stored. The second output (Fms, Fas) of each sensor when the second article of known mass m2 is gripped and accelerated is stored, and the difference between the output and each mass (m2−m1) = ms The span coefficient S is obtained from the equation (11).
 具体的には、例えば、測定しようとする同一種類の物品を2個用意し、それらの質量を精密天秤で事前に測定しておく。次に、質量が既知となった一方の物品を第1物品とし、両方の物品を合わせたものを第2物品とする。そして、まず、第1物品を把持機構に把持させて第1出力を求め、次に、両方の物品を把持機構に把持させて第2出力を求める。求めた1回目と2回目の負荷質量の差msは、他方の物品の質量となるから、その他方の物品の質量でもって前述の(11)式からスパン係数Sを求めるのである。 Specifically, for example, two articles of the same type to be measured are prepared, and their masses are measured in advance with a precision balance. Next, one article whose mass is known is a first article, and a combination of both articles is a second article. First, the first article is gripped by the gripping mechanism to determine the first output, and then both the articles are gripped by the gripping mechanism to determine the second output. Since the difference ms between the first load mass and the second load mass obtained is the mass of the other article, the span coefficient S is obtained from the above equation (11) with the mass of the other article.
 上記第1発明は、物品の種類が指定される度に、その種類に対応する物品の基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を各記憶手段から読み出してスパン係数を算出するものであったが、これに代えて、物品の種類に対応させたスパン係数を予め記憶しておき、物品の種類が指定されると、その種類に対応するスパン係数を読み出すようにしても良い。その際、未知質量の物品の質量を求めるときは、前記(12)式から第1物品を測定したときの第1出力の比(Fmz/Faz)が必要となるから、これを所謂零点としてスパン係数とともに記憶し、これをスパン係数とともに読み出すようにしても良い。 In the first invention, each time a type of an article is specified, basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) of the article corresponding to the type is read from each storage means, and a span coefficient is obtained. Instead of this, instead of this, the span coefficient corresponding to the type of article is stored in advance, and when the type of article is specified, the span coefficient corresponding to that type is read out. Also good. At this time, when obtaining the mass of the article of unknown mass, the ratio (Fmz / Faz) of the first output when the first article is measured from the equation (12) is required. It may be stored together with the coefficient and read out together with the span coefficient.
 第2発明は、そうしたスパン係数や第1出力の比を予め記憶したもので、第1発明の、物品を把持する把持機構と、前記把持機構を移動させる移動機構と、前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する力を検出する力センサと、同じく速度が変化している間の前記物品に作用する加速度を検出する加速度センサとに加えて、
 前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が種類の異なる既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量とに基づいて算出したスパン係数を、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とともに、前記第2物品の種類に対応させて記憶した第1スパン係数テーブルと、
 前記第2物品の種類を指定する物品指定手段と、
 指定された種類の前記第2物品に対応するスパン係数と前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とを前記第1スパン係数テーブルから読み出す第2読出手段と、
 読み出されたスパン係数と、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)と、指定された種類の物品を把持して移動させたときの各センサの出力とに基づいて、未知質量の前記物品の質量を算出する演算手段と、
を備えたことを特徴とする。
The second invention stores the span coefficient and the ratio of the first output in advance. The gripping mechanism for gripping an article, the moving mechanism for moving the gripping mechanism, the gripping mechanism, and the movement according to the first invention. And a force sensor that detects a force acting on the article while the speed is changing, and an acceleration sensor that detects an acceleration acting on the article while the speed is changing. In addition to
The first output (Fmz, Faz) of each sensor and the reference mass when the first article having the reference mass including zero mass is moved while changing the speed, and the type of the gripping mechanism Span coefficients calculated based on the second outputs (Fms, Fas) of the sensors and the known masses when the second articles having different known masses are moved while changing their speeds, the first output (Fmz, Faz) or its output ratio (Fmz / Faz) together with the first span coefficient table stored corresponding to the type of the second article,
Article designating means for designating the type of the second article;
A second reading means for reading out a span coefficient corresponding to the second article of the specified type and the first output (Fmz, Faz) or its output ratio (Fmz / Faz) from the first span coefficient table;
Based on the read span coefficient, the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and the output of each sensor when a specified type of article is held and moved Calculating means for calculating the mass of the article of unknown mass;
It is provided with.
 この場合も、物品によって出力に誤差を生じさせるときは、第1物品と第2物品を同一種類の物品を使ってスパン係数を求めておく。そうでない場合は、基準分銅を使ってスパン係数を求めも良い。また、質量ゼロの物品とは、前述のように把持機構に物品を何も把持させずに、無負荷状態で把持機構を移動させて、各センサから第1出力を出力させることを意味する。 Also in this case, when an error occurs in the output depending on the article, the span coefficient is obtained by using the same kind of article as the first article and the second article. Otherwise, the span coefficient may be obtained using a reference weight. In addition, an article having a mass of zero means that the gripping mechanism is moved in an unloaded state without causing the gripping mechanism to grip any article as described above, and the first output is output from each sensor.
 この第2発明では、物品の種類に対応させた基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)から種類別のスパン係数と第1出力比(Fmz/Faz)を求め、求めたスパン係数や第1出力比(Fmz/Faz)を物品の種類に対応させてスパン係数テーブルに記憶させておく。そして、物品が指定されれば、指定された物品に対応するスパン係数と第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とをスパン係数テーブルから読み出して、物品の質量算出に利用するのである。これにより、短時間で物品の質量を算出することができる。 In the second invention, the span coefficient and the first output ratio (Fmz / Faz) for each type are obtained from the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) corresponding to the type of article. The span coefficient and the first output ratio (Fmz / Faz) are stored in the span coefficient table in association with the type of article. If the article is designated, the span coefficient corresponding to the designated article and the first output (Fmz, Faz) or its output ratio (Fmz / Faz) are read from the span coefficient table to calculate the mass of the article. Use it. Thereby, the mass of the article can be calculated in a short time.
 以上の第1、第2発明は、一種類の把持機構でもって複数種類の物品を扱うものであったが、把持機構の種類が変わると、各センサが受ける振動特性が変わることがある。例えば、把持機構には、複数本のフィンガーで物品を把持するタイプや、負圧を作用させた蛇腹状の吸着パッドで物品を把持するタイプ等がある。前者のフィンガータイプで物品を把持する場合は、把持機構自体の振動を考慮することはないが、後者の吸着パッドで物品を把持する場合は、加速中に吸着パッドが伸縮するため、それによる振動によって各センサの出力に誤差が生ずるおそれがある。また、その振動は吸着パッドの吸引力や吸着位置、吸着される物品の質量等によっても変化する。 The first and second inventions described above handle a plurality of types of articles with a single type of gripping mechanism. However, when the type of the gripping mechanism changes, the vibration characteristics received by each sensor may change. For example, the gripping mechanism includes a type that grips an article with a plurality of fingers, and a type that grips an article with an accordion-shaped suction pad on which negative pressure is applied. When gripping an article with the former finger type, the vibration of the gripping mechanism itself is not considered, but when gripping an article with the latter suction pad, the suction pad expands and contracts during acceleration. May cause an error in the output of each sensor. The vibration also changes depending on the suction force and suction position of the suction pad, the mass of the article to be sucked, and the like.
 そこで、第3発明では、複数種類の把持機構でもって一種類の物品を扱うようにした質量測定装置であって、第1発明の、物品を把持する把持機構と、前記把持機構を移動させる移動機構と、前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する力を検出する力センサと、同じく速度が変化している間の前記物品に作用する加速度を検出する加速度センサとに加えて、
 前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量を、種類の異なる把持機構に対応させて記憶した第2テーブルと、
 使用する前記把持機構の種類を指定する把持機構指定手段と、
 指定された種類の把持機構に対応する各出力(Fmz、Faz、Fms、Fas)、並びに、基準質量と既知質量を前記第2テーブルから読み出す第3読出手段と、
 読み出された各出力(Fmz、Faz、Fms、Fas)並びに既知質量と基準質量に基づいて、スパン係数を算出するスパン係数算出手段と、
 算出されたスパン係数と、読み出された第1出力(Fmz,Faz)と、物品を把持して移動させたときの各センサの出力とに基づいて、未知質量の前記物品の質量を算出する演算手段と、
を備えたことを特徴とする。
Therefore, in the third invention, there is provided a mass measuring apparatus that handles a single type of article with a plurality of types of gripping mechanisms, the gripping mechanism for gripping an article of the first invention, and a movement for moving the gripping mechanism. A mechanism, a force sensor provided between the gripping mechanism and the moving mechanism for detecting a force acting on the article while the speed is changing, and the article while the speed is changing In addition to an acceleration sensor that detects acceleration acting on
The first output (Fmz, Faz) of each sensor and its reference mass when the first article having a reference mass including zero mass is moved while changing the speed thereof, and the gripping mechanism are known. A second table in which the second output (Fms, Fas) of each sensor when the second article of mass is moved while changing its speed and the known mass are stored corresponding to different types of gripping mechanisms; ,
Gripping mechanism designating means for designating the type of gripping mechanism to be used;
Each output (Fmz, Faz, Fms, Fas) corresponding to the designated type of gripping mechanism, and a third reading means for reading the reference mass and the known mass from the second table;
A span coefficient calculating means for calculating a span coefficient based on each read output (Fmz, Faz, Fms, Fas) and the known mass and the reference mass;
Based on the calculated span coefficient, the read first output (Fmz, Faz), and the output of each sensor when the article is gripped and moved, the mass of the article having an unknown mass is calculated. Computing means;
It is provided with.
 この第3発明は、種類の異なる複数の把持機構の中から1つの把持機構を選んで一種類の物品を把持するものであるから、内容物が動く袋詰め商品の場合は、前述と同様に、同一種類の既知質量の物品を2個用意し、一方を第1物品、両方を合わせたものを第2物品として、種類の異なる把持機構別に第1出力(Fmz、Faz)と第2出力(Fms、Fas)をそれぞれ求めて記憶しておく。そして、種類の違う把持機構に取り替えられると、新たに装着された把持機構に対応する基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を読み出してスパン係数を算出し、そのスパン係数を用いて未知質量の物品の質量を算出するのである。 Since the third invention selects one gripping mechanism from a plurality of gripping mechanisms of different types and grips one type of article, in the case of a bag-packed product whose contents move, the same as described above. , Prepare two articles of known mass of the same type, one as the first article and the combination of both as the second article, and the first output (Fmz, Faz) and the second output ( Fms, Fas) are obtained and stored. Then, when the gripping mechanism is replaced with a different type, the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) corresponding to the newly mounted gripping mechanism is read and the span coefficient is calculated. The mass of the article of unknown mass is calculated using the coefficient.
 把持機構の種類には、例えば、フィンガータイプやエアー吸着タイプ等があるが、ここでいう「種類の異なる把持機構」には、各センサの出力が変化するような把持機構を意味する。したがって、例えば、吸着パッドの数や吸引力が異なることによって、各センサの出力が変化するようなものは、ここでいう「種類の異なる把持機構」に含める。 The types of gripping mechanisms include, for example, a finger type and an air adsorption type, and the “grip mechanisms of different types” here mean gripping mechanisms in which the output of each sensor changes. Therefore, for example, a mechanism in which the output of each sensor changes depending on the number of suction pads or the suction force is included in the “different types of gripping mechanisms” herein.
 以上の第3発明は、把持機構を種類の異なるものと交換すると、新たに装着された把持機構に対応する基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を読み出してスパン係数を算出するものであるが、これに代えて、把持機構の種類に対応させたスパン係数と第1出力(Fmz、Faz)又はその出力比(Fmz/Faz)を予め記憶しておき、把持機構の種類が指定されると、その種類に対応するスパン係数と第1出力(Fmz、Faz)又はその出力比(Fmz/Faz)を読み出すようにしても良い。 In the third invention described above, when the gripping mechanism is replaced with a different type, the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) corresponding to the newly mounted gripping mechanism is read and the span coefficient is read. However, instead of this, the span coefficient corresponding to the type of the gripping mechanism and the first output (Fmz, Faz) or its output ratio (Fmz / Faz) are stored in advance, and the gripping mechanism When the type of the specified value is designated, the span coefficient corresponding to the type and the first output (Fmz, Faz) or the output ratio (Fmz / Faz) may be read out.
 次の第4発明は、そうしたスパン係数等を予め記憶したもので、第1発明の、物品を把持する把持機構と、前記把持機構を移動させる移動機構と、前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する力を検出する力センサと、同じく速度が変化している間の前記物品に作用する加速度を検出する加速度センサとに加えて、
 前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量とに基づいて算出したスパン係数を、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とともに、種類の異なる把持機構に対応させて記憶した第2スパン係数テーブルと、
 使用する前記把持機構の種類を指定する把持機構指定手段と、
 指定された種類の把持機構に対応するスパン係数と前記第1出力又はその出力比とを前記第2スパン係数テーブルから読み出す第4読出手段と、
 読み出されたスパン係数と、前記第1出力又はその出力比と、物品を把持して移動させたときの各センサの出力とに基づいて未知質量の前記物品の質量を算出する演算手段と、を備えたことを特徴とする。
The next fourth invention stores such a span coefficient in advance, and includes a gripping mechanism for gripping an article, a moving mechanism for moving the gripping mechanism, and a gripping mechanism and the moving mechanism according to the first invention. In addition to a force sensor for detecting a force acting on the article while the speed is changing, and an acceleration sensor for detecting an acceleration acting on the article while the speed is changing And
The first output (Fmz, Faz) of each sensor and its reference mass when the first article having a reference mass including zero mass is moved while changing the speed thereof, and the gripping mechanism are known. The span coefficient calculated based on the second output (Fms, Fas) of each sensor when the second article of mass is moved while changing its speed and the known mass is used as the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and a second span coefficient table stored corresponding to different types of gripping mechanisms;
Gripping mechanism designating means for designating the type of gripping mechanism to be used;
A fourth reading means for reading out a span coefficient corresponding to a specified type of gripping mechanism and the first output or its output ratio from the second span coefficient table;
An arithmetic means for calculating the mass of the article of unknown mass based on the read span coefficient, the first output or its output ratio, and the output of each sensor when the article is gripped and moved, It is provided with.
 第5発明は、種類の異なる把持機構が複数あり、その中の一つの把持機構で種類の異なる複数の物品を扱うようにした質量測定装置であって、第1発明の、物品を把持する把持機構と、前記把持機構を移動させる移動機構と、前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する力を検出する力センサと、同じく速度が変化している間の前記物品に作用する加速度を検出する加速度センサと、
 前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が種類の異なる既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量を、前記第2物品の種類に対応させるとともに、種類の異なる把持機構にも対応させて記憶した第3テーブルと、
 使用する種類の前記把持機構を指定する把持機構指定手段と、
 指定された種類の把持機構で把持される第2物品の種類を指定する物品指定手段と、
 前記各指定手段で指定された把持機構と第2物品とに対応する各出力(Fmz、Faz、Fms、Fas)、並びに、基準質量と既知質量を前記第3テーブルから読み出す第5読出手段と、
 読み出された各出力(Fmz、Faz、Fms、Fas)並びに既知質量と基準質量に基づいて、スパン係数を算出するスパン係数演算手段と、
 算出されたスパン係数と、読み出された第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)と、物品を把持して移動させたときの各センサの出力とに基づいて、未知質量の前記物品の質量を算出する演算手段と、
を備えたことを特徴とする。
A fifth invention is a mass measuring apparatus in which a plurality of different types of gripping mechanisms are handled, and a plurality of different types of articles are handled by one of the gripping mechanisms, and the gripping mechanism for gripping an article according to the first invention is provided. A mechanism, a moving mechanism that moves the gripping mechanism, a force sensor that is provided between the gripping mechanism and the moving mechanism, and detects a force acting on the article while the speed is changing, An acceleration sensor that detects acceleration acting on the article while the speed is changing;
The first output (Fmz, Faz) of each sensor and the reference mass when the first article having the reference mass including zero mass is moved while changing the speed, and the type of the gripping mechanism The second output (Fms, Fas) of each sensor and the known mass when the second article having a different known mass is moved while changing the speed thereof correspond to the type of the second article. A third table stored corresponding to different gripping mechanisms;
Gripping mechanism designating means for designating the type of gripping mechanism to be used;
Article designating means for designating the type of the second article to be gripped by the designated type of gripping mechanism;
A fifth reading means for reading each output (Fmz, Faz, Fms, Fas) corresponding to the gripping mechanism designated by each designation means and the second article, and a reference mass and a known mass from the third table;
A span coefficient calculation means for calculating a span coefficient based on each read output (Fmz, Faz, Fms, Fas) and the known mass and the reference mass;
Based on the calculated span coefficient, the read first output (Fmz, Faz) or its output ratio (Fmz / Faz), and the output of each sensor when the article is held and moved, it is unknown Computing means for calculating the mass of the article of mass;
It is provided with.
 この第5発明は、装着された把持機構や物品の種類が変わる度に、新たに装着された把持機構と物品の種類に対応する基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を読み出してスパン係数を算出するものであるが、これに代えて、把持機構の種類や物品の種類に対応させたスパン係数と第1出力(Fmz、Faz)又はその出力比(Fmz/Faz)を予め記憶しておき、把持機構と物品の種類が指定されると、それらの種類に対応するスパン係数と第1出力(Fmz、Faz)又はその出力比(Fmz/Faz)を読み出すようにしても良い。 The fifth aspect of the present invention provides basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) corresponding to the newly installed gripping mechanism and the type of the article each time the mounted gripping mechanism and the type of the article are changed. ) To calculate the span coefficient, but instead, the span coefficient corresponding to the type of the gripping mechanism and the type of article and the first output (Fmz, Faz) or its output ratio (Fmz / Faz) ) In advance, and when the gripping mechanism and the type of article are specified, the span coefficient and the first output (Fmz, Faz) or the output ratio (Fmz / Faz) corresponding to the type are read out. May be.
 次の第6発明は、そうしたスパン係数等を予め記憶したもので、第1発明の、物品を把持する把持機構と、前記把持機構を移動させる移動機構と、前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する力を検出する力センサと、同じく速度が変化している間の前記物品に作用する加速度を検出する加速度センサとに加えて、
 前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が種類の異なる既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量とに基づいて算出した、前記第2物品の種類別のスパン係数を、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とともに、種類の異なる把持機構に対応させて記憶した第3スパン係数テーブルと、
 使用する種類の前記把持機構を指定する把持機構指定手段と、
 指定された種類の把持機構で把持される第2物品の種類を指定する物品指定手段と、
 前記各指定手段で指定された把持機構と第2物品とに対応するスパン係数と前記第1出力又はその出力比とを前記第3スパン係数テーブルから読み出す第6読出手段と、
 読み出されたスパン係数と、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)と、指定された種類の物品を把持して加速させたときの各センサの出力とに基づいて、未知質量の前記物品の質量を算出する演算手段と、
を備えたことを特徴とする。
The next sixth invention stores such a span coefficient in advance, and includes a gripping mechanism for gripping an article, a moving mechanism for moving the gripping mechanism, a gripping mechanism, and the moving mechanism of the first invention. In addition to a force sensor for detecting a force acting on the article while the speed is changing, and an acceleration sensor for detecting an acceleration acting on the article while the speed is changing And
The first output (Fmz, Faz) of each sensor and the reference mass when the first article having the reference mass including zero mass is moved while changing the speed, and the type of the gripping mechanism The second article having a different known mass is calculated based on the second output (Fms, Fas) of each sensor when the second article is moved while changing its speed and the known mass, and classified by type of the second article. And a first span (Fmz, Faz) or its output ratio (Fmz / Faz) together with a third span coefficient table stored corresponding to different types of gripping mechanisms,
Gripping mechanism designating means for designating the type of gripping mechanism to be used;
Article designating means for designating the type of the second article to be gripped by the designated type of gripping mechanism;
A sixth reading means for reading out the span coefficient corresponding to the gripping mechanism and the second article designated by each designation means and the first output or its output ratio from the third span coefficient table;
Based on the read span coefficient, the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and the output of each sensor when a specified type of article is held and accelerated. Calculating means for calculating the mass of the article of unknown mass;
It is provided with.
 以上の第5、6発明は、種類の異なる把持機構で種類の異なる物品を把持するものであるが、同じ把持機構で同じ物品を把持する場合でも、把持機構の動作モードが異なると、各センサの出力に誤差が生ずることがある。例えば、スパン係数を求めるための基礎データ(Fmz、Faz、Fms、Fas)を得るときの動作と、把持機構を実際に動かしながら物品の質量を測定するときの動作とが異なる場合、例えば、物品を把持して移動させるときに、これまでとは違う動作によって新たな加速度や遠心力が加わると、それに起因して各センサの出力が変化し、ときには各出力に誤差を生ずることがある。そのため、物品を把持するときの動作モードと同じ動作モードで基礎データ(Fmz、Faz、Fms、Fas)を取得する必要がある。 In the fifth and sixth inventions described above, different types of articles are gripped by different types of gripping mechanisms. Even when the same article is gripped by the same gripping mechanism, each sensor is different if the operation mode of the gripping mechanism is different. An error may occur in the output of. For example, when the operation for obtaining the basic data (Fmz, Faz, Fms, Fas) for obtaining the span coefficient is different from the operation for measuring the mass of the article while actually moving the gripping mechanism, for example, the article When a new acceleration or centrifugal force is applied by a different operation when gripping and moving the sensor, the output of each sensor changes, and sometimes an error occurs in each output. Therefore, it is necessary to acquire basic data (Fmz, Faz, Fms, Fas) in the same operation mode as the operation mode for gripping an article.
 第7発明は、そうした要求に応えることができる質量測定装置であって、第1発明から第6発明の構成に加えて、さらに、前記各センサから、第1出力(Fmz,Faz)と第2出力(Fms,Fas)を取得したときの前記移動機構の動作モードと、速度を変更しながら未知質量の物品質量を測定するときの動作モードとが異なるときは、基礎データ(Fmz、Faz、Fms、Fas、基準質量、既知質量)を後者の動作モードの下で取り直すことを警告する警告手段を設けたことを特徴とする。 The seventh invention is a mass measuring apparatus capable of meeting such a demand, and in addition to the configurations of the first to sixth inventions, the first output (Fmz, Faz) and the second from each of the sensors. When the operation mode of the moving mechanism when the output (Fms, Fas) is acquired and the operation mode when measuring the mass of the unknown mass while changing the speed are different, the basic data (Fmz, Faz, Fms) , Fas, reference mass, known mass) is provided with a warning means for warning that it will be retaken under the latter operation mode.
 運転に際しては、まず基礎データ(Fmz、Faz、Fms、Fas、基準質量、既知質量)を取得してから通常運転に移行するが、その際、基礎データを取得したときの動作モードが切り替えられると、警告手段は、基礎データの取り直しを促す警告メッセージを表示する。そして、新たな動作モードの下で、基礎データが取得されると、その基礎データと新たな動作モードとを対応させて記憶しておけば、新たな動作モードに切り替えられても、基礎データを取り直す必要がなくなる。 At the time of operation, first, basic data (Fmz, Faz, Fms, Fas, reference mass, known mass) is acquired and then the normal operation is started. At that time, when the operation mode when the basic data is acquired is switched. The warning means displays a warning message that prompts the user to retake basic data. When basic data is acquired under a new operation mode, if the basic data and the new operation mode are stored in association with each other, the basic data is stored even if the operation mode is switched to the new operation mode. There is no need to retake.
 第8発明は、そうした対応ができる質量測定装置であって、第7発明の構成に加えて、移動機構に設定された動作モードと、その動作モードの下で作成された各テーブルとを対応させて記憶した第4テーブルをさらに備えたことを特徴とする。 The eighth invention is a mass measuring apparatus capable of such correspondence, and in addition to the configuration of the seventh invention, the operation mode set in the moving mechanism is associated with each table created under the operation mode. And a fourth table stored therein.
 これにより、移動機構の動作モードが変更されても、その動作モードに対応した基礎データが第4テーブルから読み出されて設定されるから、測定誤差をより少なくすることができる。 Thereby, even if the operation mode of the moving mechanism is changed, the basic data corresponding to the operation mode is read and set from the fourth table, so that the measurement error can be further reduced.
 本発明によれば、種類の異なる種々の把持機構で、種類の異なる種々の物品を把持する場合でも、さらには、物品を移動させるときの動作モードに違いがあっても、各センサによる測定誤差を最小限に抑えることができる。 According to the present invention, even when various types of different articles are gripped by different types of gripping mechanisms, and even when there is a difference in operation mode when moving the articles, measurement errors caused by the sensors are different. Can be minimized.
本発明に係る質量測定装置の測定原理を説明するための概略構成図。The schematic block diagram for demonstrating the measurement principle of the mass measuring device which concerns on this invention. 図1の質量測定装置をばね-質量系で表した2自由度モデルを表す図。FIG. 2 is a diagram illustrating a two-degree-of-freedom model in which the mass measuring device of FIG. 1 is represented by a spring-mass system. 把持機構に何も把持させないときの各センサの出力を示すグラフ。The graph which shows the output of each sensor when not making a gripping mechanism hold | grip. 既知分銅を把持機構に把持させたときの各センサの出力を示すグラフ。The graph which shows the output of each sensor when a grasping mechanism is made to grasp a known weight. 質量mの物品を把持機構に把持させたときの各センサの出力を示すグラフ。The graph which shows the output of each sensor when an article of mass m is made to grasp by a grasping mechanism. 本発明の一実施形態に係る質量測定装置の概略構成図。1 is a schematic configuration diagram of a mass measuring device according to an embodiment of the present invention. 上記実施形態で使用する把持機構の他の一例を示す概略構成図。The schematic block diagram which shows another example of the holding | grip mechanism used in the said embodiment. 上記実施形態の構成ブロック図。The configuration block diagram of the embodiment. 各センサの出力信号を処理する信号処理回路の概略構成図。The schematic block diagram of the signal processing circuit which processes the output signal of each sensor. 第1実施形態の構成ブロック図。1 is a configuration block diagram of a first embodiment. 第1テーブルの一例を示す表。The table | surface which shows an example of a 1st table. 第2実施形態の構成ブロック図。The configuration block diagram of a 2nd embodiment. 第1スパン係数テーブルの一例を示す表。The table | surface which shows an example of a 1st span coefficient table. 第3実施形態の構成ブロック図。The configuration block diagram of a 3rd embodiment. 第2テーブルの一例を示す表。The table | surface which shows an example of a 2nd table. 第4実施形態の構成ブロック図。The configuration block diagram of a 4th embodiment. 第2スパン係数テーブルの一例を示す表。The table | surface which shows an example of a 2nd span coefficient table. 第5実施形態の構成ブロック図。The configuration block diagram of a 5th embodiment. 第3テーブルの一例を示す表。The table | surface which shows an example of a 3rd table. 第6実施形態の構成ブロック図。The configuration block diagram of a 6th embodiment. 第3スパン係数テーブルの一例を示す表。The table | surface which shows an example of a 3rd span coefficient table. 第7実施形態の構成ブロック図。The configuration block diagram of a 7th embodiment. 第8実施形態の構成ブロック図。The configuration block diagram of an 8th embodiment. 動作モード別に各テーブル内容を記憶した第4テーブルの一例を示す図。The figure which shows an example of the 4th table which memorize | stored the content of each table according to operation mode.
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の技術的範囲を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments do not limit the technical scope of the present invention.
 (1)質量測定装置の基本構成
 図6は、本発明の一実施形態に係る質量測定装置100の概略構成図を示す。この図において、質量測定装置100は、ロボットアームとしての移動機構11と、移動中の物品Qに作用する力を検出する力センサ21と、物品Qに作用する加速度を検出する加速度センサ22と、物品Qを把持する把持機構23とを備えている。
(1) Basic Configuration of Mass Measuring Device FIG. 6 is a schematic configuration diagram of a mass measuring device 100 according to an embodiment of the present invention. In this figure, a mass measuring apparatus 100 includes a moving mechanism 11 as a robot arm, a force sensor 21 for detecting a force acting on a moving article Q, an acceleration sensor 22 for detecting an acceleration acting on the article Q, And a gripping mechanism 23 for gripping the article Q.
 移動機構11は、把持機構23を3次元的に移動させるロボットアームであり、その先端ベース部12には、力センサ21の一端が固定されている。この移動機構11としては、例えば、水平多関節ロボットや垂直多関節ロボット、あるいは、パラレルリンクロボット等が適切である。 The moving mechanism 11 is a robot arm that three-dimensionally moves the gripping mechanism 23, and one end of the force sensor 21 is fixed to the tip base portion 12. As the moving mechanism 11, for example, a horizontal articulated robot, a vertical articulated robot, a parallel link robot, or the like is appropriate.
 力センサ21には、例えば、歪みゲージ式ロードセルが採用される。歪ゲージ式ロードセルは、物品Qの負荷によって自由端側が固定端側に対して相対的に変位し、それによって自由端側に負荷される力を検出する。また、加速度センサ22と把持機構23とが力センサ21の自由端側に設けられている。 For the force sensor 21, for example, a strain gauge type load cell is employed. The strain gauge type load cell detects a force applied to the free end side by the displacement of the free end side relative to the fixed end side due to the load of the article Q. An acceleration sensor 22 and a gripping mechanism 23 are provided on the free end side of the force sensor 21.
 加速度センサ22としては、例えば、歪みゲージ式ロードセルの他、MEMS型の小型加速度センサ、及び一般的な市販の加速度センサのいずれかが適宜採用される。 As the acceleration sensor 22, for example, any of a strain gauge type load cell, a MEMS type small acceleration sensor, and a general commercially available acceleration sensor is appropriately employed.
 把持機構23は、物品Qを把持するロボットハンドである。図6の把持機構23は、フィンガータイプの一例を示すが、これに代えて、図7に示すような負圧で物品Qを吸着保持するエアー吸着タイプを使用することができる。図6のフィンガータイプは、物品Qが固形物である場合に適し、図7のエアー吸着タイプは、例えば、袋詰め商品のように、形状が一定しない場合に適する。 The gripping mechanism 23 is a robot hand that grips the article Q. The gripping mechanism 23 of FIG. 6 shows an example of a finger type, but instead of this, an air adsorption type that adsorbs and holds the article Q with a negative pressure as shown in FIG. 7 can be used. The finger type of FIG. 6 is suitable when the article Q is a solid material, and the air adsorption type of FIG. 7 is suitable when the shape is not constant, such as a bag-packed product.
 図7は、エアー吸着タイプの概略構成図を示したものである。このタイプは、アルミニウム製の箱Bにシリコンゴム製の蛇腹状の吸着パッドPを取り付けて、吸着パッドPと箱B内とを連通させたものである。このアルミニウム製の箱B内を負圧に保持することにより、各吸着パッドPで物品Qを吸着保持する。また、多数の吸着パッドPで複数の物品Qを同時に把持する場合もあるので、吸着パッドの数、形状、配置等は、物品Qの種類に応じて適宜変更される。したがって、物品Qの種類に応じて把持機構23も複数種類用意され、これらを物品Qの種類に応じて使い分けている。 FIG. 7 shows a schematic configuration diagram of an air adsorption type. In this type, a bellows-like suction pad P made of silicon rubber is attached to an aluminum box B so that the suction pad P communicates with the inside of the box B. By holding the inside of the aluminum box B at a negative pressure, the articles Q are sucked and held by the suction pads P. In addition, since a plurality of articles Q may be simultaneously held by a large number of suction pads P, the number, shape, arrangement, etc. of the suction pads are appropriately changed according to the type of the articles Q. Accordingly, a plurality of types of gripping mechanisms 23 are prepared according to the type of the article Q, and these are used properly according to the type of the article Q.
 (2)制御系の基本構成
 図8は、質量測定装置100の制御系のブロック図である。図8において、制御部40及び記憶部30を有する制御基板50には、移動機構11、把持機構23、力センサ21、加速度センサ22、入力部24及び表示部25が電気的に接続されている。
(2) Basic Configuration of Control System FIG. 8 is a block diagram of the control system of the mass measuring apparatus 100. In FIG. 8, a moving mechanism 11, a gripping mechanism 23, a force sensor 21, an acceleration sensor 22, an input unit 24, and a display unit 25 are electrically connected to a control board 50 having a control unit 40 and a storage unit 30. .
 入力部24は、運転開始前にオペレータが移動機構11の動作モードや、質量測定装置100に、前記基礎データ(Fmz、Faz、Fms、Fas、基準質量、既知質量)を設定するための機器である。さらに、測定対象となった物品Qの種類やそれを把持する把持機構23の種類を指定する機器にもなる。具体的には、キーボードやタッチパネルで構成される。 The input unit 24 is a device for the operator to set the basic data (Fmz, Faz, Fms, Fas, reference mass, known mass) in the operation mode of the moving mechanism 11 and the mass measuring device 100 before starting operation. is there. Furthermore, it becomes an apparatus which designates the type of the article Q to be measured and the type of the gripping mechanism 23 that grips it. Specifically, it is composed of a keyboard and a touch panel.
 表示部25は、質量測定装置100の動作状況や、前記基礎データを設定するときの操作ガイドを表示する機器である。また、運転時の動作モードとスパン係数を求めるときの動作モードとが相違する場合は、測定誤差を無くすため、エラー表示を行うこともある。 The display unit 25 is a device that displays the operation status of the mass measuring apparatus 100 and an operation guide for setting the basic data. In addition, when the operation mode during operation is different from the operation mode for obtaining the span coefficient, an error display may be performed in order to eliminate the measurement error.
 記憶部30は、質量測定装置100としての前述の基礎データやスパン係数を物品Qや把持機構23の種類に応じて記憶するもので、後述の各種のテーブルが記憶されている。 The storage unit 30 stores the above-described basic data and span coefficient as the mass measuring device 100 according to the type of the article Q and the gripping mechanism 23, and stores various tables described below.
 また、この記憶部30には、把持機構23をどのように動かすかの移動機構11の動作モードも記憶されている。例えば、「把持機構23によって物品Qを吸着保持し、移動機構11によって物品Qを吸着位置から梱包位置まで移動させ、その間に質量を測定し、続いて物品Qを梱包容器に納める」という一連の動作を行わせる場合、吸着位置から梱包位置までは、規定値の80%能力で動作させ、梱包容器に収める工程では、50%能力で動作させるというような、ロボットに特有の動作モードが記憶されている。 The storage unit 30 also stores an operation mode of the moving mechanism 11 for how to move the gripping mechanism 23. For example, a series of “the article Q is sucked and held by the gripping mechanism 23, the article Q is moved from the suction position to the packing position by the moving mechanism 11, the mass is measured during that time, and then the article Q is placed in the packing container”. When performing the operation, an operation mode peculiar to the robot, such as operation from the suction position to the packing position with 80% capacity of the specified value, and operation with 50% capacity in the process of storing in the packing container is stored. ing.
 制御部40は、記憶された動作モードに基づいて把持機構23を移動させるが、それと同期して力センサ21と加速度センサ22の出力を逐次読み取り、各センサ21、22の出力の最大値を確定していく。この制御部40は、DSP(ディジタル・シグナル・プロセッサ)やマイクロコンピュータ等で構成され、記憶部30に記憶された各種プログラムを実行することにより、後述の読出手段、スパン係数算出手段、演算手段等の機能を実行する。 The control unit 40 moves the gripping mechanism 23 based on the stored operation mode. In synchronization with the movement, the controller 40 sequentially reads the outputs of the force sensor 21 and the acceleration sensor 22 and determines the maximum value of the outputs of the sensors 21 and 22. I will do it. The control unit 40 is constituted by a DSP (digital signal processor), a microcomputer, and the like, and executes various programs stored in the storage unit 30 to thereby read out means, span coefficient calculation means, calculation means, etc., which will be described later. Perform the function.
 図9は、力センサ21及び加速度センサ22の検出信号を処理する信号処理回路図の一例を示したものである。図9において、力センサ21と加速度センサ22には、それぞれ増幅器26a、26bを介してA/D変換器27a、27bがそれぞれ接続されている。A/D変換器27a、27bは、入力されたアナログ信号をディジタル信号に変換し、それを制御部40に入力する。 FIG. 9 shows an example of a signal processing circuit diagram for processing the detection signals of the force sensor 21 and the acceleration sensor 22. In FIG. 9, A / D converters 27a and 27b are connected to the force sensor 21 and the acceleration sensor 22 via amplifiers 26a and 26b, respectively. The A / D converters 27 a and 27 b convert the input analog signal into a digital signal and input it to the control unit 40.
 制御部40は、DSP(ディジタル・シグナル・プロセッサ)において、入力された検出信号に基づいてフィルタリング処理を実行する。例えば、力センサ21及び加速度センサ22の検出信号に含まれるノイズ周波数成分をローパスフィルタにより除去する。続いて、そのノイズ周波数成分が除去された力センサ21の検出信号を加速度センサ4の検出信号で除算する処理を行い、その除算結果から風袋質量を減算して質量mを算出する。
 なお、風袋質量とは、力センサ21に負荷される風袋質量と把持機構23の質量と加速度センサ22の質量との和である。
The control unit 40 performs a filtering process based on the input detection signal in a DSP (digital signal processor). For example, noise frequency components included in detection signals of the force sensor 21 and the acceleration sensor 22 are removed by a low-pass filter. Subsequently, the detection signal of the force sensor 21 from which the noise frequency component has been removed is divided by the detection signal of the acceleration sensor 4, and the tare mass is subtracted from the division result to calculate the mass m.
The tare mass is the sum of the tare mass loaded on the force sensor 21, the mass of the gripping mechanism 23, and the mass of the acceleration sensor 22.
 <第1実施形態>
 図10は、第1実施形態の構成ブロック図を示す。この図の記憶部30には、図11に示すような第1テーブル31が記憶されている。この第1テーブル31は、把持機構23が質量ゼロを含む基準質量m1の第1物品を把持して移動させたときの各センサ21、22の第1出力(Fmz,Faz)とその基準質量(ゼロ又はm1)、並びに、把持機構23が既知質量(m2)の第2物品を把持して移動させたときの各センサ21、22の第2出力(Fms,Fas)とその既知質量(m2)を、前記第2物品の種類に対応させて記憶したものである。
<First Embodiment>
FIG. 10 shows a configuration block diagram of the first embodiment. In the storage unit 30 in this figure, a first table 31 as shown in FIG. 11 is stored. The first table 31 includes a first output (Fmz, Faz) of each sensor 21 and 22 and its reference mass (when the gripping mechanism 23 grips and moves the first article of the reference mass m1 including zero mass). Zero or m1), and the second output (Fms, Fas) of each sensor 21 and 22 and its known mass (m2) when the gripping mechanism 23 grips and moves the second article of known mass (m2). Is stored in correspondence with the type of the second article.
 フィンガータイプの把持機構23が固形物を把持するときは、第1物品の質量が零、すなわち、第1物品を把持せずに第1出力(Fmz,Faz)を求めても良いが、エアー吸着タイプの把持機構23で袋詰め商品を把持するときは、測定対象となる物品Qを第1物品として使用し、同じ種類の複数の物品Qを第2物品しても使用するが、特に移動中に物品自体が振動するようなもの、例えば、袋詰め商品や瓶詰め商品の場合は、種類毎に第2物品の第2出力(Fms、Fas)を求めて記憶しておく。 When the finger-type gripping mechanism 23 grips a solid object, the mass of the first article is zero, that is, the first output (Fmz, Faz) may be obtained without gripping the first article. When gripping a bag-packed product with the type gripping mechanism 23, the product Q to be measured is used as the first product, and a plurality of products Q of the same type are used as the second product. In the case of a product that vibrates itself, for example, a bag-packed product or a bottled product, the second output (Fms, Fas) of the second product is obtained and stored for each type.
 これらの基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を記憶させるときは、質量測定装置100を設定モードに切り替え、その状態で、まず、物品の種類を入力する。例えば、商品名とか商品番号等を入力部24から入力して特定する。次に、第1物品の基準質量m1と、第2物品の既知質量m2を入力部24から入力して、これらの質量m1、m2を第1テーブル31に記憶させる。
 なお、これらの質量m1、m2は、予め精密天秤で測定したものである。
When storing these basic data (Fmz, Faz, Fms, Fas, known mass, reference mass), the mass measuring device 100 is switched to the setting mode, and in that state, first, the type of the article is input. For example, a product name or a product number is input from the input unit 24 and specified. Next, the reference mass m1 of the first article and the known mass m2 of the second article are input from the input unit 24, and the masses m1 and m2 are stored in the first table 31.
These masses m1 and m2 are previously measured with a precision balance.
 次に、把持機構23に基準質量(ゼロ又はm1)の第1物品を把持させて移動させ、そのときの各センサ21、22の第1出力(Fmz、Faz)を記憶する。続いて、第1物品を少なくとも2個集めた第2物品を把持させて移動させ、そのときの各センサの第2出力(Fms、Fas)を記憶する。これにより、前述の基礎データは、第1テーブル31に記憶される。
 こうした設定操作は、表示部25に表示される操作ガイドにしたがって操作する。そうすれば、自動的に第1テーブル31にデータが記録されるようにプログラムされている。
Next, the gripping mechanism 23 grips and moves the first article having the reference mass (zero or m1), and stores the first outputs (Fmz, Faz) of the sensors 21 and 22 at that time. Subsequently, the second article obtained by collecting at least two first articles is gripped and moved, and the second output (Fms, Fas) of each sensor at that time is stored. As a result, the basic data is stored in the first table 31.
Such a setting operation is performed according to an operation guide displayed on the display unit 25. Then, it is programmed so that data is automatically recorded in the first table 31.
 物品指定手段28は、第2物品の種類を指定するもので、入力部24に設けられ、それを操作して第2物品の種類を指定すれば、第1読出手段41が指定された種類の第2物品の質量m2とその第2出力(Fms、Fas)、並びに、前記第1物品の基準質量m1とその第1出力(Fmz,Faz)を前記第1テーブル31から読み出す。 The article designating means 28 designates the type of the second article, and is provided in the input unit 24. If the type of the second article is designated by operating the article designating means 28, the first reading means 41 of the designated type is designated. The mass m2 of the second article and its second output (Fms, Fas), and the reference mass m1 of the first article and its first output (Fmz, Faz) are read from the first table 31.
 スパン係数算出手段42は、読み出された基礎データ(Fmz、Faz、Fms、Fas、基準質量m1、既知質量m2)を前記(11)式に代入してスパン係数Sを算出する。 The span coefficient calculation means 42 calculates the span coefficient S by substituting the read basic data (Fmz, Faz, Fms, Fas, reference mass m1, and known mass m2) into the equation (11).
 演算手段43は、算出されたスパン係数Sと、第1テーブル31から読み出された第1出力(Fmz,Faz)並びに物品Qを把持して移動させているときに入力した各センサ21、22の出力(Fm、Fa)とに基づいて、その物品Qの質量mを算出する。算出された質量mは、表示部25に表示されるとともに、後工程に利用される。例えば、測定質量mが基準値より少なければ、その物品Qを軽量品として仕分けるのに利用される。 The arithmetic means 43 calculates the span coefficient S, the first output (Fmz, Faz) read from the first table 31, and the sensors 21 and 22 inputted when the article Q is gripped and moved. The mass m of the article Q is calculated based on the output (Fm, Fa). The calculated mass m is displayed on the display unit 25 and used in a subsequent process. For example, if the measured mass m is less than the reference value, it is used to sort the article Q as a lightweight article.
 <第2実施形態>
 図12は、第2実施形態の構成ブロック図を示す。この図の記憶部30には、図13に示すような第1スパン係数テーブル32が記憶されている。この第1スパン係数テーブル32は、把持機構23が質量ゼロを含む基準質量m1の第1物品を把持して移動させたときの各センサ21、22の第1出力(Fmz,Faz)とその基準質量(ゼロ又はm1)、並びに、把持機構23が既知質量(m2)の第2物品を把持して移動させたときの各センサ21、22の第2出力(Fms,Fas)とその既知質量(m2)とに基づいて算出したスパン係数Sを、前記第1出力(Fmz,Faz)及びその出力比(Fmz/Faz)とともに、前記第2物品の種類に対応させて記憶したものである。
Second Embodiment
FIG. 12 shows a configuration block diagram of the second embodiment. The storage unit 30 in this figure stores a first span coefficient table 32 as shown in FIG. The first span coefficient table 32 includes the first outputs (Fmz, Faz) of the sensors 21 and 22 when the gripping mechanism 23 grips and moves the first article having the reference mass m1 including the mass zero and the reference. The mass (zero or m1), the second output (Fms, Fas) of each sensor 21 and 22 when the gripping mechanism 23 grips and moves the second article having the known mass (m2), and the known mass ( m2) and the first output (Fmz, Faz) and the output ratio (Fmz / Faz) are stored in association with the type of the second article.
 第1実施形態では、基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を読み出す都度、スパン係数Sと第1出力比(Fmz/Faz)を算出したが、第2実施形態では、それを事前に求めて記憶した点に違いがある。したがって、物品指定手段28で第2物品の種類が指定されると、第2読出手段44は、指定された種類の第2物品のスパン係数Sと第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とを第1スパン係数テーブル32から読み出す。 In the first embodiment, every time basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) is read, the span coefficient S and the first output ratio (Fmz / Faz) are calculated. In the second embodiment, , There is a difference in that it was asked and memorized in advance. Therefore, when the type of the second article is designated by the article designation means 28, the second reading means 44 reads the span coefficient S of the designated type of the second article and the first output (Fmz, Faz) or its output ratio. (Fmz / Faz) is read from the first span coefficient table 32.
 演算手段43は、読み出されたスパン係数Sと、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)と、物品Qを把持して移動させているときに入力した各センサ21、22の出力(Fm、Fa)とに基づいて、その物品Qの質量mを算出する。算出された質量mは、表示部25に表示されるとともに、後工程に利用される。 The calculation means 43 includes the read span coefficient S, the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and each sensor input when the article Q is held and moved. Based on the outputs 21 and 22 (Fm, Fa), the mass m of the article Q is calculated. The calculated mass m is displayed on the display unit 25 and used in a subsequent process.
 <第3実施形態>
 図14は、第3実施形態の構成ブロック図を示す。この図の記憶部30には、図15に示すような第2テーブル33が記憶されている。この第2テーブル33は、把持機構23が質量ゼロを含む基準質量(m1)の第1物品を把持して移動させたときの各センサ21、22の第1出力(Fmz,Faz)とその基準質量(ゼロ又はm1)、並びに、把持機構23が既知質量(m2)の第2物品を把持して移動させたときの各センサ21、22の第2出力(Fms,Fas)とその既知質量(m2)を、種類の異なる把持機構23に対応させて記憶したものである。
<Third Embodiment>
FIG. 14 shows a configuration block diagram of the third embodiment. The storage unit 30 in this figure stores a second table 33 as shown in FIG. The second table 33 includes the first output (Fmz, Faz) of each sensor 21 and 22 and the reference when the gripping mechanism 23 grips and moves the first article having the reference mass (m1) including zero. The mass (zero or m1), the second output (Fms, Fas) of each sensor 21 and 22 when the gripping mechanism 23 grips and moves the second article having the known mass (m2), and the known mass ( m2) is stored in association with different types of gripping mechanisms 23.
 種類の異なる把持機構23とは、フィンガータイプの把持機構やエアー吸着タイプの把持機構だけの違いだけでなく、同じエアー吸着タイプであっても、吸着パッドの数や吸引力の違い等によっても、各センサ21、22の出力に影響を与えるので、そうした影響を与える把持機構を種類の異なる把持機構としている。 The different types of gripping mechanisms 23 are not only the difference between the finger-type gripping mechanism and the air suction type gripping mechanism, but also the same air suction type, depending on the number of suction pads and the difference in suction force, etc. Since the output of each of the sensors 21 and 22 is affected, the gripping mechanisms that have such effects are different types of gripping mechanisms.
 そして、第2テーブル33に基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を記憶させるときは、設定モードに切り替えた後、物品の種類別に、把持機構23の種類を、例えば、タイプA、タイプB等として特定する。その後は、第1実施形態の場合と同様に、基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を記憶させていけば、第2テーブル33が完成する。
 なお、把持機構23としてフィンガータイプを使用し、第1物品として質量ゼロとする場合、すなわち、何も把持させないときは、第1物品を第2物品として使用し、その質量を既知質量として入力する。
When the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) is stored in the second table 33, after switching to the setting mode, the type of the gripping mechanism 23 is set according to the type of article, for example, , Type A, type B, etc. Thereafter, as in the case of the first embodiment, if the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) is stored, the second table 33 is completed.
When the finger type is used as the gripping mechanism 23 and the mass is zero as the first article, that is, when nothing is gripped, the first article is used as the second article and the mass is input as the known mass. .
 把持機構指定手段29は、装着された把持機構23の種類を指定するもので、前述の例では、タイプA,タイプB等と入力部24において指定する。こうして把持機構23の種類が指定されると、第3読出手段45は、指定された種類の把持機構23に対応する各出力(Fmz、Faz、Fms、Fas)、並びに、基準質量と既知質量を第2テーブル33から読み出す。 The gripping mechanism designating means 29 designates the type of the gripping mechanism 23 that is mounted. When the type of the gripping mechanism 23 is designated in this way, the third reading unit 45 obtains each output (Fmz, Faz, Fms, Fas) corresponding to the designated type of the gripping mechanism 23, and the reference mass and the known mass. Read from the second table 33.
 スパン係数算出手段42は、読み出された基礎データ(Fmz、Faz、Fms、Fas、基準質量m1、既知質量m2)を前記(11)式に代入してスパン係数Sを算出する。
 演算手段43は、算出されたスパン係数Sと、第1テーブル31から読み出された第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)、並びに、物品Qを把持して移動させているときに入力した各センサ21、22の出力(Fm、Fa)とに基づいて、その物品Qの質量mを算出する。その他は、第1実施形態と同じである。
The span coefficient calculation means 42 calculates the span coefficient S by substituting the read basic data (Fmz, Faz, Fms, Fas, reference mass m1, and known mass m2) into the equation (11).
The calculation means 43 grips and moves the calculated span coefficient S, the first output (Fmz, Faz) or its output ratio (Fmz / Faz) read from the first table 31, and the article Q. The mass m of the article Q is calculated based on the outputs (Fm, Fa) of the sensors 21 and 22 input during Others are the same as the first embodiment.
 <第4実施形態>
 図16は、第4実施形態の構成ブロック図を示す。この図の記憶部30には、図17に示すような第2スパン係数テーブル34が記憶されている。この第2スパン係数テーブル34は、把持機構23が質量ゼロを含む基準質量(ゼロ又はm1)の第1物品を把持して移動させたときの前記各センサ21、22の第1出力(Fmz,Faz)とその基準質量(ゼロ又はm1)、並びに、把持機構23が既知質量(m2)の第2物品を把持して移動させたときの各センサ21、22の第2出力(Fms,Fas)とその既知質量(m2)とに基づいて算出したスパン係数Sを前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とともに、種類の異なる把持機構23に対応させて記憶したものである。
<Fourth embodiment>
FIG. 16 shows a configuration block diagram of the fourth embodiment. The storage unit 30 in this figure stores a second span coefficient table 34 as shown in FIG. The second span coefficient table 34 includes a first output (Fmz,) of the sensors 21 and 22 when the gripping mechanism 23 grips and moves a first article having a reference mass (zero or m1) including zero. Faz), its reference mass (zero or m1), and the second output (Fms, Fas) of each sensor 21, 22 when the gripping mechanism 23 grips and moves the second article of known mass (m2). And the span coefficient S calculated based on the known mass (m2) and the first output (Fmz, Faz) or its output ratio (Fmz / Faz) in association with different types of gripping mechanisms 23. It is.
 第3実施形態では、基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を読み出す都度、スパン係数Sを算出したが、第4実施形態では、そのスパン係数と第1出力比(Fmz/Faz)を事前に求めて記憶した点に違いがある。したがって、把持機構指定手段29で把持機構23の種類が指定されると、第4読出手段46は、指定された把持機構23に対応するスパン係数Sと第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とを第2スパン係数テーブル34から読み出す。 In the third embodiment, the span coefficient S is calculated every time basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) is read. In the fourth embodiment, the span coefficient and the first output ratio ( There is a difference in that Fmz / Faz) is obtained and stored in advance. Therefore, when the type of the gripping mechanism 23 is specified by the gripping mechanism specifying means 29, the fourth reading means 46 outputs the span coefficient S corresponding to the specified gripping mechanism 23 and the first output (Fmz, Faz) or its output. The ratio (Fmz / Faz) is read from the second span coefficient table 34.
 演算手段43は、前述と同様にして、読み出されたスパン係数Sと、第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)と、物品Qを把持して移動させているときに入力した各センサ21、22の出力(Fm、Fa)とに基づいて、その物品Qの質量mを算出する。 When the calculation means 43 grips and moves the read span coefficient S, the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and the article Q in the same manner as described above. The mass m of the article Q is calculated on the basis of the outputs (Fm, Fa) of the sensors 21 and 22 input to.
 <第5実施形態>
 図18は、第5実施形態の構成ブロック図を示す。この図の記憶部30には、図19に示すような第3テーブル35が記憶されている。この第3テーブル35は、把持機構23が質量ゼロを含む基準質量(m1)の第1物品を把持して移動させたときの各センサ21、22の第1出力(Fmz,Faz)とその基準質量(ゼロ又はm1)、並びに、把持機構23が種類の異なる既知質量(m2)の第2物品を把持して移動させたときの各センサ21、22の第2出力(Fms,Fas)とその既知質量(m2)を、第2物品の種類に対応させるとともに、種類の異なる把持機構23にも対応させて記憶したものである。
 なお、図19において、タイプCの把持機構23は、フィンガータイプであって、この場合には、第1物品を把持させずに第1出力(Fmz,Faz)を求めている。
<Fifth Embodiment>
FIG. 18 shows a configuration block diagram of the fifth embodiment. In the storage unit 30 in this figure, a third table 35 as shown in FIG. 19 is stored. The third table 35 includes the first outputs (Fmz, Faz) of the sensors 21 and 22 and the reference when the gripping mechanism 23 grips and moves the first article having the reference mass (m1) including zero. The second output (Fms, Fas) of each sensor 21 and 22 when the gripping mechanism 23 grips and moves the second article of different known mass (m2), and the mass (zero or m1) The known mass (m2) is stored corresponding to the type of the second article and also corresponding to the gripping mechanisms 23 of different types.
In FIG. 19, the type C gripping mechanism 23 is a finger type, and in this case, the first output (Fmz, Faz) is obtained without gripping the first article.
 この第5実施形態は、第1実施形態と第3実施形態とを合わせたもので、特に基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を第2物品の種類に対応させるとともに、種類の異なる把持機構23にも対応させて記憶した点に違いがある。したがって、使用に際しては、物品指定手段28で第2物品の種類を指定するとともに、把持機構指定手段29で使用する把持機構23の種類を指定する。すると、第5読出手段47は、指定された把持機構と第2物品とに対応する基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を第3テーブル35から読み出す。例えば、把持機構23がタイプA、物品Qの種類がN0.2として指定されたときは、図19の太線で囲まれた基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を第3テーブル35から読み出す。 The fifth embodiment is a combination of the first embodiment and the third embodiment. In particular, the basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) is made to correspond to the type of the second article. In addition, there is a difference in the points stored corresponding to different types of gripping mechanisms 23. Therefore, in use, the type of the second article is designated by the article designation means 28 and the type of the gripping mechanism 23 to be used by the gripping mechanism designation means 29 is designated. Then, the fifth reading means 47 reads basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) corresponding to the designated gripping mechanism and the second article from the third table 35. For example, when the gripping mechanism 23 is designated as type A and the type of the article Q is designated as N0.2, basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) surrounded by a thick line in FIG. Read from the third table 35.
 スパン係数算出手段42は、前述と同様に、読み出された基礎データ(Fmz、Faz、Fms、Fas、基準質量m1と既知質量m2)を前記(11)式に代入してスパン係数Sを算出する。
 演算手段43は、算出されたスパン係数Sと、第3テーブル35から読み出された第1出力(Fmz,Faz)、並びに、物品Qを把持して移動させているときに入力した各センサ21、22の出力(Fm、Fa)とに基づいて、その物品Qの質量mを算出する。
The span coefficient calculation means 42 calculates the span coefficient S by substituting the read basic data (Fmz, Faz, Fms, Fas, reference mass m1 and known mass m2) into the above equation (11), as described above. To do.
The arithmetic means 43 calculates the span coefficient S, the first output (Fmz, Faz) read from the third table 35, and the sensors 21 input when the article Q is gripped and moved. , 22 based on the outputs (Fm, Fa), the mass m of the article Q is calculated.
 <第6実施形態>
 図20は、第6実施形態の構成ブロック図を示す。この図の記憶部30には、図21に示すような第3スパン係数テーブル36が記憶されている。このテーブル36は、把持機構23が質量ゼロを含む基準質量m1の第1物品を把持して移動させたときの前記各センサ21、22の第1出力(Fmz,Faz)とその基準質量(ゼロ又はm1)、並びに、把持機構23が既知質量m2の第2物品を把持して移動させたときの各センサ21、22の第2出力(Fms,Fas)とその既知質量(m2)とに基づいて算出した、第2物品の種類別のスパン係数Sを、第1出力(Fmz,Faz)とその出力比(Fmz/Faz)とともに、種類の異なる把持機構23に対応させて記憶したものである。
 この図21において、タイプCの把持機構23は、フィンガータイプであって、この場合も図19と同様、第1物品を把持させずに第1出力(Fmz,Faz)を求めている。
<Sixth Embodiment>
FIG. 20 shows a configuration block diagram of the sixth embodiment. The storage unit 30 in this figure stores a third span coefficient table 36 as shown in FIG. The table 36 includes a first output (Fmz, Faz) of each of the sensors 21 and 22 and a reference mass (zero) when the gripping mechanism 23 grips and moves the first article having the reference mass m1 including the mass zero. Or m1), and the second output (Fms, Fas) of each sensor 21 and 22 and the known mass (m2) when the gripping mechanism 23 grips and moves the second article having the known mass m2. The span coefficient S for each type of the second article calculated as described above is stored in association with the different types of gripping mechanisms 23 together with the first output (Fmz, Faz) and the output ratio (Fmz / Faz). .
In FIG. 21, the type C gripping mechanism 23 is a finger type, and in this case as well, as in FIG. 19, the first output (Fmz, Faz) is obtained without gripping the first article.
 第5実施形態では、基礎データ(Fmz、Faz、Fms、Fas、既知質量、基準質量)を読み出す都度、スパン係数Sを算出したが、第6実施形態では、そのスパン係数Sと第1出力比(Fmz/Faz)を事前に求めて記憶した点に違いがある。したがって、物品指定手段28で物品の種類が指定され、さらに把持機構指定手段29で把持機構23の種類が指定されると、第6読出手段48は、指定された種類の物品と、指定された種類の把持機構23とに対応するスパン係数Sと第1出力比(Fmz/Faz)を第3スパン係数テーブル36から読み出す。その他は、第3実施形態と同様である。 In the fifth embodiment, the span coefficient S is calculated every time basic data (Fmz, Faz, Fms, Fas, known mass, reference mass) is read. In the sixth embodiment, the span coefficient S and the first output ratio are calculated. There is a difference in that (Fmz / Faz) is obtained and stored in advance. Therefore, when the type of the article is designated by the article designation means 28 and the kind of the gripping mechanism 23 is designated by the gripping mechanism designation means 29, the sixth reading means 48 designates the designated type of article. The span coefficient S and the first output ratio (Fmz / Faz) corresponding to the type of gripping mechanism 23 are read from the third span coefficient table 36. Others are the same as in the third embodiment.
 <第7実施形態>
 図22は、第7実施形態の構成ブロック図を示す。このブロック図は、図8と基本的構成は同じであるが、表示部25に警告手段60を新たに設けた点で相違する。この警告手段60は、前述の基礎データ(Fmz、Faz、Fms、Fas、基準質量、既知質量)を取得するときの移動機構11の動作モードと、物品Qを実際に把持して移動させるときの動作モードとが異なるときに警報を発するもので、これにより、動作モードの相違による誤差の発生を抑えようとするものである。
<Seventh embodiment>
FIG. 22 shows a configuration block diagram of the seventh embodiment. This block diagram has the same basic configuration as that of FIG. 8, but is different in that a warning means 60 is newly provided in the display unit 25. This warning means 60 is the operation mode of the moving mechanism 11 when acquiring the basic data (Fmz, Faz, Fms, Fas, reference mass, known mass), and when the article Q is actually gripped and moved. An alarm is issued when the operation mode is different from the operation mode, thereby preventing an error caused by the difference in the operation mode.
 したがって、設定モードにおいて、移動機構11の新たな動作モードを設定したり変更したりするときは、その都度、基礎データ(Fmz、Faz、Fms、Fas、基準質量、既知質量)の取り直しをするよう、警告手段60がメッセージを表示する。それをせずに動作モードが変更されると、警告手段60が警告を発する。これにより、測定誤差を抑えることができる。 Therefore, each time the new operation mode of the moving mechanism 11 is set or changed in the setting mode, the basic data (Fmz, Faz, Fms, Fas, reference mass, known mass) is read again. The warning means 60 displays a message. If the operation mode is changed without doing so, the warning means 60 issues a warning. Thereby, a measurement error can be suppressed.
 <第8実施形態>
 図23は、第8実施形態の構成ブロック図を示す。このブロック図は、図22と基本的構成は同じであるが、記憶部30に第4テーブル37を設けた点で、第7実施形態と相違する。
<Eighth Embodiment>
FIG. 23 shows a configuration block diagram of the eighth embodiment. This block diagram has the same basic configuration as that of FIG. 22, but differs from the seventh embodiment in that a fourth table 37 is provided in the storage unit 30.
 第4テーブル37は、移動機構11に設定された動作モードと、その動作モードの下で取得された各テーブル31~36とを対応させて記憶したもので、その一例を図24に示す。この図24において、例えば、モード1の動作モードの下で取得されたテーブルとしては、第1、第2、第3テーブルが登録されていることを示している。したがって、動作モードがモード2に切り替わり、そのモード2の下で、第2テーブルから未知質量の物品の質量を測定しようとしても、モード2の下では第2テーブルが登録されていないので、警告手段60は、基礎データの取り直しを警告する。 The fourth table 37 stores the operation mode set in the moving mechanism 11 and the tables 31 to 36 acquired under the operation mode in association with each other, and an example is shown in FIG. In FIG. 24, for example, the first, second, and third tables are registered as tables acquired under the operation mode of mode 1. Therefore, the operation mode is switched to mode 2, and even if an attempt is made to measure the mass of an article having an unknown mass from the second table under mode 2, the second table is not registered under mode 2, so the warning means 60 warns that the basic data is re-taken.
 その警告に基づいて、モード2の下で第2テーブルの基礎データが取得されると、第4テーブルでは、モード2に第2テーブルが登録される。これ以降は、モード2の下で第2テーブルのアクセスが可能とるから、動作モードが切り替えられても運転を継続することができる。 When the basic data of the second table is acquired under mode 2 based on the warning, the second table is registered in mode 2 in the fourth table. After that, since the second table can be accessed under mode 2, the operation can be continued even if the operation mode is switched.
 以上のように、本発明によれば、ロボットハンドで物品を移動しながらその物品の質量をより正確に測定することができるので、産業用ロボットを使用する分野において利用可能である。 As described above, according to the present invention, since the mass of an article can be measured more accurately while the article is moved by a robot hand, the present invention can be used in a field where an industrial robot is used.
  1  力センサ
  2  把持機構
  3  移動機構
  4  加速度センサ
 11  移動機構
 12  先端ベース部
 21  力センサ
 22  加速度センサ
 23  把持機構
 28  物品指定手段
 29  把持機構指定手段
 31  第1テーブル
 32  第1スパン係数テーブル
 33  第2テーブル
 34  第2スパン係数テーブル
 35  第3テーブル
 36  第3スパン係数テーブル
 37  第4テーブル
 41  第1読出手段
 42  スパン係数算出手段
 43  演算手段
 44  第2読出手段
 45  第3読出手段
 46  第4読出手段
 47  第5読出手段
 48  第6読出手段
 60  警告手段
  Q  物品
DESCRIPTION OF SYMBOLS 1 Force sensor 2 Grip mechanism 3 Movement mechanism 4 Acceleration sensor 11 Movement mechanism 12 Tip base part 21 Force sensor 22 Acceleration sensor 23 Grip mechanism 28 Article designation means 29 Grip mechanism designation means 31 First table 32 First span coefficient table 33 Second Table 34 Second span coefficient table 35 Third table 36 Third span coefficient table 37 Fourth table 41 First reading means 42 Span coefficient calculating means 43 Computing means 44 Second reading means 45 Third reading means 46 Fourth reading means 47 5th reading means 48 6th reading means 60 Warning means Q Goods

Claims (8)

  1.  物品の速度が変化している間に前記物品に作用する力と加速度から、前記物品の質量を測定する、質量測定装置であって、
     前記物品を把持する、把持機構と、
     前記把持機構を移動させる、移動機構と、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に
    作用する力を検出する、力センサと、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する加速度を検出する、加速度センサと、
     前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が種類の異なる既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量を、前記第2物品の種類に対応させて記憶した、第1テーブルと、
     前記第2物品の種類を指定する、物品指定手段と、
     指定された種類の前記第2物品に対応する既知質量とその第2出力(Fms、Fas)、並びに、前記第1物品の基準質量とその第1出力(Fmz,Faz)を、前記第1テーブルから読み出す、第1読出手段と、
     読み出された各出力(Fmz、Faz、Fms、Fas)、並びに、既知質量と基準質量に基づいて、スパン係数を算出する、スパン係数算出手段と、
    算出されたスパン係数と、読み出された第1出力(Fmz,Faz)と、指定された種類の物品を把持して移動させたときの各センサの出力とに基づいて、未知質量の前記物品の質量を算出する、演算手段と、
    を備えたことを特徴とする質量測定装置。
    A mass measuring device that measures the mass of an article from the force and acceleration acting on the article while the speed of the article is changing,
    A gripping mechanism for gripping the article;
    A moving mechanism for moving the gripping mechanism;
    A force sensor that is provided between the gripping mechanism and the moving mechanism and detects a force acting on the article while the speed is changing;
    An acceleration sensor that is provided between the gripping mechanism and the moving mechanism and detects an acceleration acting on the article while the speed is changing;
    The first output (Fmz, Faz) of each sensor and the reference mass when the first article having the reference mass including zero mass is moved while changing the speed, and the type of the gripping mechanism The second output (Fms, Fas) of each sensor and the known mass when the second article having a different known mass is moved while changing its speed are stored in correspondence with the type of the second article. The first table;
    Article designating means for designating the type of the second article;
    The known mass and its second output (Fms, Fas) corresponding to the specified type of the second article, and the reference mass of the first article and its first output (Fmz, Faz) are stored in the first table. Reading from the first reading means;
    A span coefficient calculating means for calculating a span coefficient based on each read output (Fmz, Faz, Fms, Fas) and the known mass and the reference mass;
    The article of unknown mass based on the calculated span coefficient, the read first output (Fmz, Faz), and the output of each sensor when the specified kind of article is gripped and moved Computing means for calculating the mass of
    A mass measuring apparatus comprising:
  2.  物品の速度が変化している間に前記物品に作用する力と加速度から、前記物品の質量を測定する、質量測定装置であって、
     前記物品を把持する、把持機構と、
     前記把持機構を移動させる、移動機構と、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する力を検出する、力センサと、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する加速度を検出する、加速度センサと、
     前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が種類の異なる既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量、に基づいて算出したスパン係数を、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とともに、前記第2物品の種類に対応させて記憶した、第1スパン係数テーブルと、
     前記第2物品の種類を指定する、物品指定手段と、
     指定された種類の前記第2物品に対応するスパン係数と、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)と、を前記第1スパン係数テーブルから読み出す、第2読出手段と、
     読み出されたスパン係数と、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)と、指定された種類の物品を把持して移動させたときの各センサの出力と、に基づいて、未知質量の前記物品の質量を算出する、演算手段と、
    を備えたことを特徴とする質量測定装置。
    A mass measuring device that measures the mass of an article from the force and acceleration acting on the article while the speed of the article is changing,
    A gripping mechanism for gripping the article;
    A moving mechanism for moving the gripping mechanism;
    A force sensor that is provided between the gripping mechanism and the moving mechanism and detects a force acting on the article while the speed is changing;
    An acceleration sensor that is provided between the gripping mechanism and the moving mechanism and detects an acceleration acting on the article while the speed is changing;
    The first output (Fmz, Faz) of each sensor and the reference mass when the first article having the reference mass including zero mass is moved while changing the speed, and the type of the gripping mechanism Span coefficients calculated based on the second outputs (Fms, Fas) of the sensors and the known masses when the second articles having different known masses are moved while changing their speeds, are used as the first output. (Fmz, Faz) or its output ratio (Fmz / Faz) together with the first span coefficient table stored corresponding to the type of the second article,
    Article designating means for designating the type of the second article;
    Second reading means for reading a span coefficient corresponding to the second article of the specified type and the first output (Fmz, Faz) or its output ratio (Fmz / Faz) from the first span coefficient table. When,
    The read span coefficient, the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and the output of each sensor when a specified type of article is held and moved. A computing means for calculating the mass of the article of unknown mass based on:
    A mass measuring apparatus comprising:
  3.  物品の速度が変化している間に前記物品に作用する力と加速度から、前記物品の質量を測定する、質量測定装置であって、
     前記物品を把持する、把持機構と、
     前記把持機構を移動させる、移動機構と、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する力を検出する、力センサと、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する加速度を検出する、加速度センサと、
     前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量、を種類の異なる把持機構に対応させて記憶した、第2テーブルと、
     使用する前記把持機構の種類を指定する、把持機構指定手段と、
     指定された種類の把持機構に対応する各出力(Fmz、Faz、Fms、Fas)、並びに、基準質量と既知質量、を前記第2テーブルから読み出す、第3読出手段と、
     読み出された各出力(Fmz、Faz、Fms、Fas)、並びに、既知質量と基準質量、に基づいてスパン係数を算出する、スパン係数算出手段と、
     算出されたスパン係数と、読み出された第1出力(Fmz,Faz)と、物品を把持して移動させたときの各センサの出力と、に基づいて、未知質量の前記物品の質量を算出する、演算手段と、
    を備えたことを特徴とする質量測定装置。
    A mass measuring device that measures the mass of an article from the force and acceleration acting on the article while the speed of the article is changing,
    A gripping mechanism for gripping the article;
    A moving mechanism for moving the gripping mechanism;
    A force sensor that is provided between the gripping mechanism and the moving mechanism and detects a force acting on the article while the speed is changing;
    An acceleration sensor that is provided between the gripping mechanism and the moving mechanism and detects an acceleration acting on the article while the speed is changing;
    The first output (Fmz, Faz) of each sensor and its reference mass when the first article having a reference mass including zero mass is moved while changing the speed thereof, and the gripping mechanism are known. A second table in which the second output (Fms, Fas) of each sensor and its known mass when the second article of mass is moved while changing its speed are stored in association with different types of gripping mechanisms. When,
    A gripping mechanism designating means for designating a type of the gripping mechanism to be used;
    A third readout means for reading out each output (Fmz, Faz, Fms, Fas) corresponding to the designated type of gripping mechanism, as well as a reference mass and a known mass, from the second table;
    A span coefficient calculation means for calculating a span coefficient based on each read output (Fmz, Faz, Fms, Fas) and a known mass and a reference mass;
    Based on the calculated span coefficient, the read first output (Fmz, Faz), and the output of each sensor when the article is gripped and moved, the mass of the article having an unknown mass is calculated. Calculating means,
    A mass measuring apparatus comprising:
  4.  物品の速度が変化している間に前記物品に作用する力と加速度から、前記物品の質量を測定する、質量測定装置であって、
     前記物品を把持する、把持機構と、
     前記把持機構を移動させる、移動機構と、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する力を検出する、力センサと、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する加速度を検出する、加速度センサと、
     前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量、に基づいて算出したスパン係数を、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とともに、種類の異なる把持機構に対応させて記憶した、第2スパン係数テーブルと、
     使用する前記把持機構の種類を指定する、把持機構指定手段と、
     指定された種類の把持機構に対応するスパン係数と、前記第1出力又はその出力比と、を前記第2スパン係数テーブルから読み出す、第4読出手段と、
     読み出されたスパン係数と、前記第1出力又はその出力比と、物品を把持して移動させたときの各センサの出力と、に基づいて未知質量の前記物品の質量を算出する、演算手段と、
    を備えたことを特徴とする質量測定装置。
    A mass measuring device that measures the mass of an article from the force and acceleration acting on the article while the speed of the article is changing,
    A gripping mechanism for gripping the article;
    A moving mechanism for moving the gripping mechanism;
    A force sensor that is provided between the gripping mechanism and the moving mechanism and detects a force acting on the article while the speed is changing;
    An acceleration sensor that is provided between the gripping mechanism and the moving mechanism and detects an acceleration acting on the article while the speed is changing;
    The first output (Fmz, Faz) of each sensor and its reference mass when the first article having a reference mass including zero mass is moved while changing the speed thereof, and the gripping mechanism are known. The span coefficient calculated based on the second output (Fms, Fas) of each sensor and its known mass when the second article of mass is moved while changing its speed is the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and a second span coefficient table stored corresponding to different types of gripping mechanisms;
    A gripping mechanism designating means for designating a type of the gripping mechanism to be used;
    A fourth reading means for reading a span coefficient corresponding to a specified type of gripping mechanism and the first output or its output ratio from the second span coefficient table;
    Calculation means for calculating the mass of the article having an unknown mass based on the read span coefficient, the first output or its output ratio, and the output of each sensor when the article is gripped and moved When,
    A mass measuring apparatus comprising:
  5.  物品の速度が変化している間に前記物品に作用する力と加速度から、前記物品の質量を測定する、質量測定装置であって、
     前記物品を把持する、把持機構と、
     前記把持機構を移動させる、移動機構と、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する力を検出する、力センサと、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する加速度を検出する、加速度センサと、
     前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が種類の異なる既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量、を前記第2物品の種類に対応させるとともに、種類の異なる把持機構にも対応させて記憶した、第3テーブルと、
     使用する種類の前記把持機構を指定する、把持機構指定手段と、
     指定された種類の把持機構で把持される第2物品の種類を指定する、物品指定手段と、
     前記各指定手段で指定された把持機構と第2物品とに対応する各出力(Fmz、Faz、Fms、Fas)、並びに、基準質量と既知質量、を前記第3テーブルから読み出す、第5読出手段と、
     読み出された各出力(Fmz、Faz、Fms、Fas)、並びに、既知質量と基準質量、に基づいてスパン係数を算出する、スパン係数演算手段と、
     算出されたスパン係数と、読み出された第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)と、物品を把持して移動させたときの各センサの出力と、に基づいて未知質量の前記物品の質量を算出する、演算手段と、
    を備えたことを特徴とする質量測定装置。
    A mass measuring device that measures the mass of an article from the force and acceleration acting on the article while the speed of the article is changing,
    A gripping mechanism for gripping the article;
    A moving mechanism for moving the gripping mechanism;
    A force sensor that is provided between the gripping mechanism and the moving mechanism and detects a force acting on the article while the speed is changing;
    An acceleration sensor that is provided between the gripping mechanism and the moving mechanism and detects an acceleration acting on the article while the speed is changing;
    The first output (Fmz, Faz) of each sensor and the reference mass when the first article having the reference mass including zero mass is moved while changing the speed, and the type of the gripping mechanism The second output (Fms, Fas) and the known mass of each sensor when the second article having a different known mass is moved while changing its speed correspond to the type of the second article. A third table stored corresponding to different gripping mechanisms;
    A gripping mechanism designating means for designating the type of gripping mechanism to be used;
    Article designating means for designating a type of the second article to be gripped by the designated type of gripping mechanism;
    Fifth reading means for reading each output (Fmz, Faz, Fms, Fas) corresponding to the gripping mechanism designated by each designation means and the second article, and the reference mass and the known mass from the third table. When,
    A span coefficient calculation means for calculating a span coefficient based on each read output (Fmz, Faz, Fms, Fas) and a known mass and a reference mass;
    Unknown based on the calculated span coefficient, the read first output (Fmz, Faz) or its output ratio (Fmz / Faz), and the output of each sensor when the article is held and moved Computing means for calculating the mass of the article of mass;
    A mass measuring apparatus comprising:
  6.  物品の速度が変化している間に前記物品に作用する力と加速度から、前記物品の質量を測定する、質量測定装置であって、
     前記物品を把持する、把持機構と、
     前記把持機構を移動させる、移動機構と、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する力を検出する、力センサと、
     前記把持機構と前記移動機構との間に設けられて、速度が変化している間の前記物品に作用する加速度を検出する、加速度センサと、
     前記把持機構が質量ゼロを含む基準質量の第1物品を、その速度を変えながら移動させたときの前記各センサの第1出力(Fmz,Faz)とその基準質量、並びに、前記把持機構が種類の異なる既知質量の第2物品を、その速度を変えながら移動させたときの前記各センサの第2出力(Fms,Fas)とその既知質量、に基づいて算出した前記第2物品の種類別のスパン係数を、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)とともに、種類の異なる把持機構に対応させて記憶した、第3スパン係数テーブルと、
     使用する種類の前記把持機構を指定する、把持機構指定手段と、
     指定された種類の把持機構で把持される第2物品の種類を指定する、物品指定手段と、
     前記各指定手段で指定された把持機構と第2物品とに対応するスパン係数と、前記第1出力又はその出力比と、を前記第3スパン係数テーブルから読み出す、第6読出手段と、
     読み出されたスパン係数と、前記第1出力(Fmz,Faz)又はその出力比(Fmz/Faz)と、指定された種類の物品を把持して加速させたときの各センサの出力と、に基づいて、未知質量の前記物品の質量を算出する、演算手段と、
    を備えたことを特徴とする質量測定装置。
    A mass measuring device that measures the mass of an article from the force and acceleration acting on the article while the speed of the article is changing,
    A gripping mechanism for gripping the article;
    A moving mechanism for moving the gripping mechanism;
    A force sensor that is provided between the gripping mechanism and the moving mechanism and detects a force acting on the article while the speed is changing;
    An acceleration sensor that is provided between the gripping mechanism and the moving mechanism and detects an acceleration acting on the article while the speed is changing;
    The first output (Fmz, Faz) of each sensor and the reference mass when the first article having the reference mass including zero mass is moved while changing the speed, and the type of the gripping mechanism For each type of the second article calculated based on the second output (Fms, Fas) of each sensor and its known mass when the second article having a different known mass is moved while changing its speed. A third span coefficient table storing the span coefficient in association with different types of gripping mechanisms together with the first output (Fmz, Faz) or its output ratio (Fmz / Faz);
    A gripping mechanism designating means for designating the type of gripping mechanism to be used;
    Article designating means for designating a type of the second article to be gripped by the designated type of gripping mechanism;
    Sixth reading means for reading from the third span coefficient table the span coefficient corresponding to the gripping mechanism designated by each designation means and the second article, and the first output or its output ratio;
    The read span coefficient, the first output (Fmz, Faz) or its output ratio (Fmz / Faz), and the output of each sensor when a specified type of article is held and accelerated. A computing means for calculating the mass of the article of unknown mass based on:
    A mass measuring apparatus comprising:
  7.  請求項1から請求項6の何れかの質量測定装置において、
     前記各センサから第1出力(Fmz,Faz)と第2出力(Fms,Fas)を取得したときの前記移動機構の動作モードと、未知質量の物品の質量を測定するときの前記移動機構の動作モードと、が異なるときは、前記各出力(Fmz、Faz、Fms、Fas)を新たな動作モードの下で取り直すことを警告する警告手段、
    を設けたことを特徴とする質量測定装置。
    In the mass measuring device in any one of Claims 1-6,
    The operation mode of the moving mechanism when the first output (Fmz, Faz) and the second output (Fms, Fas) are obtained from each sensor, and the operation of the moving mechanism when measuring the mass of an article of unknown mass When the mode is different, warning means for warning that each of the outputs (Fmz, Faz, Fms, Fas) is retaken under a new operation mode;
    A mass measuring apparatus characterized by comprising:
  8.  前記移動機構に設定された動作モードと、その動作モードの下で作成された各テーブルとを対応させて記憶した第4テーブル、
    をさらに備えたことを特徴とする請求項7に記載の質量測定装置。
    A fourth table that stores the operation mode set in the moving mechanism in association with each table created under the operation mode;
    The mass measuring device according to claim 7, further comprising:
PCT/JP2015/076327 2014-09-20 2015-09-16 Mass measurement device WO2016043227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014192057A JP6513357B2 (en) 2014-09-20 2014-09-20 Mass measuring device
JP2014-192057 2014-09-20

Publications (1)

Publication Number Publication Date
WO2016043227A1 true WO2016043227A1 (en) 2016-03-24

Family

ID=55533263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076327 WO2016043227A1 (en) 2014-09-20 2015-09-16 Mass measurement device

Country Status (2)

Country Link
JP (1) JP6513357B2 (en)
WO (1) WO2016043227A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165102A (en) * 1983-03-11 1984-09-18 Hitachi Ltd Sequence controller
JPS6062496A (en) * 1983-09-12 1985-04-10 沖電気工業株式会社 Tactile sensor
JPH02190292A (en) * 1989-01-18 1990-07-26 Fanuc Ltd Safety countermeasure method by override of robot
JPH06315881A (en) * 1993-05-07 1994-11-15 Hitachi Constr Mach Co Ltd Force control device for force control working machine
JP2001219354A (en) * 2000-02-04 2001-08-14 Kawasaki Heavy Ind Ltd Polishing system
JP2004001226A (en) * 2003-07-18 2004-01-08 Jfe Engineering Kk Automatic preparation system for welding robot operation program
JP2008049459A (en) * 2006-08-28 2008-03-06 Toshiba Corp System, method and program for controlling manipulator
JP2013174570A (en) * 2012-02-27 2013-09-05 Ishida Co Ltd Mass measurement device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514639B2 (en) * 2006-09-21 2009-04-07 Technical Weighing Services, Inc. Apparatus, system and method for weighing loads in motion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165102A (en) * 1983-03-11 1984-09-18 Hitachi Ltd Sequence controller
JPS6062496A (en) * 1983-09-12 1985-04-10 沖電気工業株式会社 Tactile sensor
JPH02190292A (en) * 1989-01-18 1990-07-26 Fanuc Ltd Safety countermeasure method by override of robot
JPH06315881A (en) * 1993-05-07 1994-11-15 Hitachi Constr Mach Co Ltd Force control device for force control working machine
JP2001219354A (en) * 2000-02-04 2001-08-14 Kawasaki Heavy Ind Ltd Polishing system
JP2004001226A (en) * 2003-07-18 2004-01-08 Jfe Engineering Kk Automatic preparation system for welding robot operation program
JP2008049459A (en) * 2006-08-28 2008-03-06 Toshiba Corp System, method and program for controlling manipulator
JP2013174570A (en) * 2012-02-27 2013-09-05 Ishida Co Ltd Mass measurement device

Also Published As

Publication number Publication date
JP6513357B2 (en) 2019-05-15
JP2016061748A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
US9140598B2 (en) Mass measurement device
US10329042B2 (en) Packing apparatus and packing method
JP5383760B2 (en) Robot with workpiece mass measurement function
JP2013079931A (en) Mass measurement device
JP5287462B2 (en) Angular velocity or angle detection method and robot control method
JP6579648B2 (en) Digital filter, mass measuring device and robot system incorporating it
JP6480224B2 (en) Mass measuring device
JP5977971B2 (en) Mass measuring device
JP6472136B2 (en) Mass measuring device
WO2016063808A1 (en) Mass measurement device
WO2016043227A1 (en) Mass measurement device
JP6536110B2 (en) Robot control device and control method
JP5977983B2 (en) Mass measuring device
JP2013193158A (en) Industrial robot
JP2013174570A (en) Mass measurement device
JP2018155555A (en) Mass measurement device
JP5977960B2 (en) Mass measuring device
JP6001283B2 (en) Mass measuring device
JP2013185847A (en) Mass measurement device
JP2013185848A (en) Mass measurement device
JP6001282B2 (en) Sorting device
JP4170516B2 (en) Weighing device
JP2013174503A (en) Mass measurement device
JP3642639B2 (en) A weighing device having a plurality of load converting means
JP4119129B2 (en) Electronic balance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841379

Country of ref document: EP

Kind code of ref document: A1