JP5999782B2 - Treatment method and facilities in water treatment plant - Google Patents

Treatment method and facilities in water treatment plant Download PDF

Info

Publication number
JP5999782B2
JP5999782B2 JP2014189290A JP2014189290A JP5999782B2 JP 5999782 B2 JP5999782 B2 JP 5999782B2 JP 2014189290 A JP2014189290 A JP 2014189290A JP 2014189290 A JP2014189290 A JP 2014189290A JP 5999782 B2 JP5999782 B2 JP 5999782B2
Authority
JP
Japan
Prior art keywords
water
treatment
ultraviolet irradiation
ultraviolet
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014189290A
Other languages
Japanese (ja)
Other versions
JP2016059867A (en
Inventor
今川 洋介
洋介 今川
山根 陽一
陽一 山根
武雄 大島
武雄 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2014189290A priority Critical patent/JP5999782B2/en
Publication of JP2016059867A publication Critical patent/JP2016059867A/en
Application granted granted Critical
Publication of JP5999782B2 publication Critical patent/JP5999782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

本発明は、浄水場における処理方法及びその設備に関するものである。   The present invention relates to a treatment method and equipment in a water purification plant.

浄水場で原水を浄水処理する際には、例えば凝集沈澱池底部から引き抜かれた汚泥が排泥池に排出され、またろ過池等からは洗浄水等が排水池に排水される。排泥池の排泥は濃縮槽等の濃縮手段で濃縮され、さらに脱水機で脱水された後に再利用等の処置がなされる。これら汚泥や排水の処理は、着水井から送水へ向かう浄水処理と区別して、排水処理といわれている。以下、この排水処理の処理物である汚泥や、排水、又はそれらの濃縮物を排水処理物という。   When the raw water is purified at the water purification plant, for example, sludge extracted from the bottom of the coagulation sedimentation basin is discharged to the drainage pond, and washing water is drained from the filtration basin to the drainage basin. The waste mud in the waste mud pond is concentrated by a concentration means such as a concentration tank, and further dehydrated by a dehydrator and then treated for reuse. These sludge and wastewater treatments are said to be wastewater treatment, as distinguished from water purification treatments from the landing well to the water supply. Hereinafter, sludge, wastewater, or a concentrate thereof, which is a wastewater treatment product, is referred to as a wastewater treatment product.

多くの浄水場における排水処理では、水資源の有効利用のために、排水池の貯留水、または、排泥池の上澄水を抜き出して、着水井等に返送し、原水に混合することが行われている。しかし、春季から秋季にかけて、排水処理(特に排泥池や濃縮槽、排水池)において、増殖した小型藻類(例えば、ピコプランクトン。細胞径0.2〜2.0μm程度のプランクトン)が、排泥池等からの上澄水の返送に伴って原水に混合され、原水濁度、ひいてはろ過池出口の濁度を上昇させることがあった。   In many wastewater treatment plants, in order to use water resources effectively, the stored water in the drainage basin or the supernatant water of the drainage pond is extracted, returned to the landing well, etc., and mixed with the raw water. Yes. However, from spring to autumn, small algae (for example, picoplankton; plankton with a cell diameter of about 0.2 to 2.0 μm) grown in wastewater treatment (especially, mud ponds, concentration tanks, drainage ponds) When the supernatant water was returned from the pond, etc., it was mixed with the raw water, and the raw water turbidity and eventually the turbidity at the outlet of the filtration pond were sometimes increased.

小型藻類の増殖は、ろ過池の濁度管理に支障をきたすことが懸念される。特に、クリプトスポリジウム等による汚染のおそれが高いと判断された浄水場の浄水処理ではろ過池出口の濁度を0.1度以下に維持することが求められており、水道事業体によってはより厳密な濁度管理を行っているため、その影響を低減することが望まれている。   There is a concern that the growth of small algae may hinder the turbidity management of the filtration pond. In particular, in the water treatment of water treatment plants that are judged to be highly contaminated with Cryptosporidium, etc., it is required to maintain the turbidity at the outlet of the filtration basin at 0.1 degrees or less. Therefore, it is desired to reduce the influence of turbidity management.

小型藻類対策としては、次亜塩素酸ナトリウムに代表される塩素系薬剤を用いて不活化(殺藻)を行う手法の他、覆蓋により遮光する手法も知られているが、前者には薬剤の大量添加による消毒副生成物の懸念や、薬剤耐性のある小型藻類への対応ができないという問題があり、後者には、簡易的な覆蓋の場合は効果が限定的となり、完全遮光覆蓋の場合は多額の建設費用を要するという問題がある。   As a countermeasure against small algae, in addition to the method of inactivation (algaecidal) using a chlorine-based chemical typified by sodium hypochlorite, a method of shielding light with a cover lid is also known. There are concerns about disinfection by-products due to the addition of large amounts, and there is a problem that it is not possible to cope with drug-resistant small algae. For the latter, the effect is limited in the case of a simple cover, and in the case of a completely light-shielding cover There is a problem that a large amount of construction costs are required.

また、これらの問題点を解決するものとして紫外線照射も知られている(例えば特許文献1、2参照)が、排水処理で増殖する小型藻類への応用はなされていない。   Moreover, although ultraviolet irradiation is also known as what solves these problems (for example, refer patent documents 1 and 2), the application to the small algae which proliferates by waste water treatment is not made.

特許第4690976号公報Japanese Patent No. 4690976 特開2013−220395号公報JP 2013-220395 A

そこで、本発明の主たる課題は、排水処理におけるピコプランクトンの増殖を防止することにある。 Then, the main subject of this invention is to prevent the proliferation of picoplankton in waste water treatment.

上記課題を解決した本発明は次記のとおりである。
<請求項1記載の発明>
浄水場における排水処理で、排泥池、濃縮槽、及び排水池の少なくとも一つにおける排水処理物及びその上澄水の少なくとも一方を抜き出して、浄水処理における処理水に混合する、浄水場における処理方法であって、
前記排水処理物の表層水を抜き出して抜き出し元の排水処理物に戻す紫外線照射処理流路を介して連続的又は断続的な循環を継続しつつ、その紫外線照射処理流路を流通する前記表層水に紫外線を照射し、前記排水処理物中のピコプランクトンの増殖を防止する、紫外線照射処理を行う、
ことを特徴とする浄水場における処理方法。
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
In the water treatment at the water purification plant, at least one of the wastewater treatment product and its supernatant water in at least one of the drainage pond, concentration tank, and drainage basin is extracted and mixed with the treated water in the water purification treatment. Because
The surface layer water that circulates through the ultraviolet irradiation treatment flow path while continuing the continuous or intermittent circulation through the ultraviolet irradiation treatment flow path that extracts the surface water of the wastewater treatment product and returns it to the original wastewater treatment product. Irradiating with ultraviolet rays, preventing the proliferation of picoplankton in the wastewater treatment product, performing ultraviolet irradiation treatment,
The processing method in the water purification plant characterized by this.

(作用効果)
本発明者は、既存の排水処理物の流路において流通する排水処理物に紫外線照射処理を行うことでも対応できると考えたが、既存の排水処理物の流路(例えば凝集沈澱池から排泥池への流路や、ろ過池から排水池への流路)では流入が間欠的で、かつ、瞬間流量が多く、濁度も高い状態にあるため、紫外線照射の効果を十分に得ることが困難であるとの知見を得て本発明をなしたものである。すなわち、本発明では、表層水を抜き出して紫外線照射した後に排水処理物に戻す処理を行うため、紫外線照射対象の瞬間流量を少なく、かつ濁度を低く設定することが可能となる。よって、紫外線を対象に対して効率良く照射できるため、ピコプランクトンの不活化を効率良く行うことができる。その結果、排水処理におけるピコプランクトンの増殖を、簡素、省エネルギー、低コストに防止できるようになる。さらに、ピコプランクトンは排水処理物全体に分布していると考えられるが、増殖防止の観点からは表層水のピコプランクトンを不活化させることで排水処理物のピコプランクトン増殖を抑制可能との実験結果も得られているため、表層水のみを紫外線照射対象とすることの技術的意義は大きいものである。なお、用語「表層水」は、濁度の高低に関係なく表層から採水されるものを意味し、従って上澄水の他、例えば排泥池における流入直後の表層水のように上澄水より濁度の高いものも含む意味である。
(Function and effect)
The present inventor considered that the wastewater treatment product distributed in the existing wastewater treatment product flow path can also be treated by ultraviolet irradiation treatment. The flow to the pond and the flow path from the filtration pond to the drainage basin are intermittent inflow, have a high instantaneous flow rate, and have a high turbidity. The present invention has been made by obtaining knowledge that it is difficult. That is, in the present invention, since the surface water is extracted and irradiated with ultraviolet rays and then returned to the wastewater treatment product, the instantaneous flow rate of the ultraviolet irradiation target can be reduced and the turbidity can be set low. Therefore, since ultraviolet rays can be efficiently irradiated to the target, inactivation of picoplankton can be performed efficiently. As a result, the growth of picoplankton in wastewater treatment can be prevented simply, energy saving and at low cost. Furthermore, although it is considered that picoplankton is distributed throughout the wastewater treatment product, from the viewpoint of prevention of growth, the experimental result that it is possible to suppress the picoplankton growth of the wastewater treatment product by inactivating the picoplankton of the surface water Therefore, the technical significance of using only surface water as an ultraviolet irradiation target is great. The term “surface water” means water collected from the surface layer regardless of the level of turbidity. Therefore, in addition to the supernatant water, it is more turbid than the supernatant water, such as the surface water immediately after flowing into the mud pond. It means to include those with high degrees.

特に、本発明では循環処理とすることにより、対象の排水処理物全体におけるピコプランクトンの増殖抑制を効果的に図ることができ、また、既存設備のフローを変更する必要無く適用できる。この場合、紫外線照射設備を別途設ける必要があるものの、その設備自体は簡素である。 In particular, in the present invention, the circulation treatment can effectively suppress the growth of picoplankton in the entire target wastewater treatment product, and can be applied without the need to change the flow of existing equipment. In this case, although it is necessary to separately provide an ultraviolet irradiation facility, the facility itself is simple.

排泥池、濃縮槽及び排水池は、排水処理物がある程度の時間滞留し、日光も十分に供給される可能性のある工程であり、特にこのような排水処理物の滞留を伴う工程でピコプランクトンの増殖が発生し易いことが分かっている。よって、本発明の紫外線照射処理は排泥池、濃縮槽、及び排水池の少なくとも一つで行うのである。 Sludge basin, sludge chamber, the concentration tank and drainage pond, waste water treatment product has accumulated some time, daylight is also a process that may be sufficiently supplied, especially Pico in step with the retention of such waste water treated It has been found that plankton growth is likely to occur. Therefore, the ultraviolet irradiation treatment of the present invention is performed in at least one of a waste mud pond, a concentration tank, and a drain pond.

<請求項2記載の発明>
前記紫外線照射処理流路への流入水量及び濁度の少なくとも一方を計測し、その計測結果の増減に応じて前記紫外線照射処理における紫外線照射量を増減する、請求項1記載の浄水場における処理方法。
<Invention of Claim 2>
The treatment method in a water purification plant according to claim 1, wherein at least one of the amount of inflow water and turbidity into the ultraviolet irradiation treatment flow path is measured, and the ultraviolet irradiation amount in the ultraviolet irradiation treatment is increased or decreased according to an increase or decrease in the measurement result. .

(作用効果)
排泥池、濃縮槽、及び排水池は流入が間欠的であり、また、流入量及び濁度の日内変動、日間変動が一定していない。例えば、凝集沈澱池から引き抜いた汚泥を排泥池に送る際には、流入直後に排泥池で急激に濁度が上昇し、一定時間経過して流入汚泥が沈降すると表層水の濁度が低下する。このような場合、紫外線照射にとって最も厳しい条件を想定して紫外線照射量を多めに設定しても良いが、濁度が低い時には紫外線の過剰照射により、エネルギーが無駄になってしまう。これに対して、本項記載のように、紫外線照射処理流路への流入水量及び濁度の少なくとも一方の計測結果の増減に応じて、紫外線照射処理における紫外線照射量を増減すると、省エネルギーで且つ効果的な紫外線照射処理を行うことができるようになる。
(Function and effect)
Sludge ponds, concentrating tanks, and drainage basins are intermittently inflowing, and the inflow and turbidity of daily fluctuations and daily fluctuations are not constant. For example, when sending sludge extracted from a coagulation sedimentation basin to a sludge pond, the turbidity suddenly increases immediately after the inflow, and if the inflow sludge settles after a certain period of time, the turbidity of the surface water descend. In such a case, it is possible to set a larger amount of ultraviolet irradiation assuming the severest conditions for ultraviolet irradiation, but when turbidity is low, energy is wasted due to excessive irradiation of ultraviolet rays. On the other hand, as described in this section, when the amount of ultraviolet irradiation in the ultraviolet irradiation treatment is increased or decreased in accordance with the increase or decrease in the measurement result of at least one of the amount of water flowing into the ultraviolet irradiation treatment channel and the turbidity, energy saving and Effective ultraviolet irradiation treatment can be performed.

<請求項3記載の発明>
前記紫外線照射処理における表層水の抜き出しを、前記排水処理物の水深1mまでの表層から行う、請求項1又は2記載の浄水場における処理方法。
<Invention of Claim 3>
The processing method in the water purification plant of Claim 1 or 2 which extracts the surface layer water in the said ultraviolet irradiation process from the surface layer to the water depth of 1 m of the said wastewater treatment thing.

(作用効果)
ピコプランクトンが増殖する時には水面から水深1mまでの表層に大量に分布し、かつ、増殖活性が高いことが確認されているため、この深さ範囲から紫外線照射処理における表層水の抜き出しを行うことが好ましい。
(Function and effect)
When picoplankton grows, it is distributed in large quantities on the surface layer from the water surface to a depth of 1 m, and it has been confirmed that the growth activity is high. Therefore, it is possible to extract surface water in the ultraviolet irradiation treatment from this depth range. preferable.

<請求項4記載の発明>
前記紫外線照射処理で、中圧紫外線ランプを備えた紫外線処理装置を用いて前記紫外線照射を行う、請求項1〜3のいずれか1項に記載の浄水場における処理方法。
<Invention of Claim 4>
The processing method in the water purification plant of any one of Claims 1-3 which performs the said ultraviolet irradiation using the ultraviolet-ray processing apparatus provided with the medium pressure ultraviolet lamp by the said ultraviolet irradiation process.

(作用効果)
浄水処理における紫外線照射処理では低圧紫外線ランプ、中圧紫外線ランプのいずれかを備えた紫外線処理装置を用いることが知られているが、同じ紫外線照射量でピコプランクトンの不活化処理を行った場合、波長253.7nm付近にシャープなピークを有する低圧紫外線ランプよりも、広範囲の出力波長を有する中圧紫外線ランプの方が不活化効果が高いことが判明しているため、本発明では中圧紫外線ランプを用いることが好ましい。
(Function and effect)
It is known to use an ultraviolet treatment apparatus equipped with either a low-pressure ultraviolet lamp or an intermediate-pressure ultraviolet lamp in the ultraviolet irradiation treatment in the water purification treatment, but when inactivating the picoplankton with the same ultraviolet irradiation amount, Since it has been found that a medium pressure ultraviolet lamp having a wide range of output wavelengths has a higher inactivation effect than a low pressure ultraviolet lamp having a sharp peak in the vicinity of a wavelength of 253.7 nm, the present invention has a medium pressure ultraviolet lamp. Is preferably used.

<請求項5記載の発明>
前記紫外線照射処理で、20〜200mJ/cm2の照射量で前記紫外線照射を行う、請求項4記載の浄水場における処理方法。
<Invention of Claim 5>
The processing method in the water purification plant of Claim 4 which performs the said ultraviolet irradiation with the irradiation amount of 20-200 mJ / cm < 2 > by the said ultraviolet irradiation treatment.

(作用効果)
中圧紫外線ランプを用いる場合、紫外線照射量が低すぎるとピコプランクトンの不活化効果が不十分となるおそれがあり、高すぎるとピコプランクトンを捕食する大型プランクトンが死滅し、小型プランクトンの増殖が促進されるおそれがあるため、本発明では上記範囲内とすることが好ましい。なお、併せてクリプトスポリジウム等の耐塩素性原虫類不活化効果を期待する場合には40mJ/cm2以上とすることが好ましい。
(Function and effect)
When using a medium pressure UV lamp, there is a possibility that the amount of ultraviolet irradiation becomes insufficient inactivation effect of too low picoplankton, large plankton die to too high prey picoplankton, proliferation of small plankton promote In the present invention, it is preferable to be within the above range. In addition, when it is expected to inactivate chlorine-resistant protozoa such as Cryptosporidium, it is preferably 40 mJ / cm 2 or more.

<請求項6記載の発明>
浄水場における排水処理で、排泥池、濃縮槽、及び排水池の少なくとも一つにおける排水処理物及びその上澄水の少なくとも一方を抜き出して、浄水処理における処理水に混合する、浄水場における処理設備であって、
前記排水処理物の表層水を抜き出して抜き出し元の排水処理物に戻す循環を連続的又は断続的に行う紫外線照射処理流路と、この紫外線照射処理流路を流通する前記表層水に紫外線を照射し、前記排水処理物中のピコプランクトンの増殖を防止する紫外線照射装置と、を備えた、
ことを特徴とする浄水場における処理設備。
<Invention of Claim 6>
A treatment facility in the water treatment plant that extracts at least one of the wastewater treatment product and its supernatant water in at least one of the drainage pond, the concentration tank, and the drainage basin, and mixes it with the treated water in the water purification treatment. Because
An ultraviolet irradiation treatment channel that continuously or intermittently circulates the surface water of the wastewater treatment product and returns it to the original wastewater treatment product, and the surface water that circulates through the ultraviolet irradiation treatment channel is irradiated with ultraviolet rays. And an ultraviolet irradiation device for preventing the growth of picoplankton in the wastewater treatment product,
The treatment facility in the water purification plant characterized by that.

(作用効果)
請求項1記載の発明と同様の作用効果を奏する。
(Function and effect)
The same effects as those of the first aspect of the invention can be achieved.

以上のとおり、本発明によれば、排水処理におけるピコプランクトンの増殖を防止できるようになる、等の利点がもたらされる。 As described above, according to the present invention, there are advantages such as prevention of proliferation of picoplankton in wastewater treatment.

浄水場のフロー図である。It is a flow chart of a water purification plant. 排泥池における紫外線照射設備のフロー図である。It is a flowchart of the ultraviolet irradiation equipment in a waste mud pond. (a)紫外線照射装置の横断面図、及び(a)のIII-III線断面図である。(A) A cross-sectional view of the ultraviolet irradiation device, and a cross-sectional view taken along line III-III of (a). ホース支持浮体の斜視図である。It is a perspective view of a hose support floating body. 紫外線ランプ等の波長範を示した図である。It is the figure which showed the wavelength range, such as an ultraviolet lamp. 実験結果のグラフである。It is a graph of an experimental result. 実験結果のグラフである。It is a graph of an experimental result.

以下、急速ろ過方式を採用する浄水場への適用例に基づき、本発明の実施形態について詳説するが、本発明は、排水処理で排水処理物及びその上澄水の少なくとも一方を抜き出して、浄水処理に返送し、原水等の処理水に混合する浄水場であれば、浄水処理の方式は特に限定されず、緩速ろ過方式、急速ろ過方式、直接ろ過方式、膜ろ過方式、あるいはこれらに高度浄水処理を組み合わせたものにおいて使用できる。   Hereinafter, the embodiment of the present invention will be described in detail based on an application example to a water purification plant adopting a rapid filtration method, but the present invention extracts at least one of the wastewater treatment product and the supernatant water in the wastewater treatment, If it is a water purification plant that is returned to the factory and mixed with treated water such as raw water, the method of water purification treatment is not particularly limited, and a slow filtration method, a rapid filtration method, a direct filtration method, a membrane filtration method, or advanced water purification It can be used in a combination of treatments.

図1は、急速ろ過方式を採用する浄水場の処理フローの一例を示している。本例の浄水処理1は、取水場から導水路を経て着水井2(又は原水槽)に供給された河川水などの原水RWを、凝集剤等を添加混合するための混和池3、フロックを形成するためのフロック形成池4、フロックを沈澱させるための凝集沈澱池5、及び砂層等で水をろ過する急速ろ過池6、塩素剤を注入するための塩素混和池7を経て浄化し、浄水池8に供給するものとなっている。着水井2と塩素混和池7との間には、必要に応じてオゾン接触池や、活性炭ろ過池が介在される。   FIG. 1 shows an example of a treatment flow of a water purification plant that employs a rapid filtration method. The water purification treatment 1 of this example includes a mixing pond 3 and floc for adding and mixing raw water RW such as river water supplied from a water intake to a landing well 2 (or raw water tank) via a water conduit. Purified and purified water through a floc formation pond 4 for forming, a coagulation sedimentation pond 5 for precipitating flocs, a rapid filtration pond 6 for filtering water through a sand layer, and a chlorine mixing pond 7 for injecting a chlorine agent. It is to be supplied to the pond 8. Between the landing well 2 and the chlorine-mixing pond 7, an ozone contact pond or an activated carbon filtration pond is interposed as necessary.

一方、本例の排水処理10は、凝集沈澱池5の底部から引き抜かれる汚泥SLの処理、及びろ過池6等の洗浄排水の処理を含むものとなっている。このうち、凝集沈澱池5の底部から引き抜かれた汚泥は排泥池11に受け入れて一定時間滞留した後、濃縮槽12に供給して沈降分離により上澄水TWと濃縮汚泥とに分離し、濃縮汚泥は脱水機13等により脱水する一方で、上澄水TWは排泥池11を経由して着水井2に戻して原水RWに混合する。排泥池11で沈降分離を行う方式や、濃縮槽12の上澄水TWを直接着水井2に戻す方式も適用可能である。また、排泥池11における上澄水TWも着水井2に戻して原水RWに混合する。これら汚泥処理系の上澄水TWは、図示例では後述の排水池を経由することなく着水井2に戻しているが、後述の排水池14に送り、洗浄排水と合流させてから着水井2に戻すこともできる。ろ過池6等の洗浄排水は、排水池14に受け入れて一時的に貯留し、着水井2に戻して原水RWに混合する。   On the other hand, the wastewater treatment 10 of this example includes a treatment of sludge SL drawn from the bottom of the coagulation sedimentation basin 5 and a treatment of washing wastewater from the filtration basin 6 and the like. Among these, the sludge extracted from the bottom of the coagulating sedimentation basin 5 is received in the waste mud pond 11 and stays for a certain period of time, then supplied to the concentration tank 12 and separated into the supernatant water TW and the concentrated sludge by sedimentation separation, and concentrated. The sludge is dehydrated by the dehydrator 13 or the like, while the supernatant water TW is returned to the landing well 2 via the drainage pond 11 and mixed with the raw water RW. A method of performing sedimentation separation in the mud pond 11 and a method of directly returning the supernatant water TW of the concentration tank 12 to the landing well 2 can also be applied. Moreover, the supernatant water TW in the mud pond 11 is also returned to the landing well 2 and mixed with the raw water RW. In the illustrated example, the supernatant water TW of these sludge treatment systems is returned to the landing well 2 without going through a drainage basin described later, but is sent to the drainage basin 14 described later and merged with the washing wastewater before entering the landing well 2. It can also be returned. Washing wastewater from the filtration basin 6 and the like is received in the drainage basin 14 and temporarily stored, returned to the landing well 2 and mixed with the raw water RW.

このような排水処理10において、排泥池11、濃縮槽12及び排水池14は、排水処理物がある程度の時間滞留し、日光も十分に供給される可能性のある工程であるため、ピコプランクトンの増殖が発生し易いことが分かっている。よって、本発明の紫外線照射処理は、このような排水処理物の滞留を伴う工程の一部又は全部で行うことが好ましい。より詳細に説明すると、排泥池11には緩衝目的と、沈降分離による濃縮目的の2パターンの運用方法があり、浄水場毎に異なっている。特に、後者の運用の場合、滞留時間が長く、ピコプランクトンの発生リスクが高い。排泥池11は、排水処理10の中では最も上流に位置することが一般的であり、そこでピコプランクトンの増殖抑制を図ると、排水処理10全体でのピコプランクトンの低減効果が高いものとなる。また、濃縮槽12は沈降分離による濃縮を目的としており、最も滞留時間が長いことから、ピコプランクトンが浄水施設内で最大になる場所である。濃縮槽12を起点に、排泥池11、排水池14でピコプランクトンが増殖するという流れも想定されるため、濃縮槽12でピコプランクトンの増殖抑制を図る意義は大きい。一方、排水池14は、濃縮槽12と比較すると滞留時間は短く、相対的にピコプランクトン増殖のリスクは低いが、排水処理10全体のピコプランクトン増殖のリスクを低減するためには、排水池14においてもピコプランクトンの増殖抑制を図ることが好ましい。これらピコプランクトン増殖のリスクの観点からは、濃縮槽12及び排泥池11の少なくとも一方ではピコプランクトンの増殖抑制を図ることが望ましく、濃縮槽12、排泥池11及び排水池14の全てでピコプランクトンの増殖抑制を図ると、より好ましい。 In such a wastewater treatment 10, sludge basin, sludge chamber 11, since the concentration tank 12 and the drainage basin 14, the waste water treated is staying some time, sunlight is also a process that may be sufficiently supplied, picoplankton It has been found that the growth of is likely to occur. Therefore, it is preferable that the ultraviolet irradiation treatment of the present invention is performed in a part or all of the process accompanied by the retention of such wastewater treatment products. Explaining in more detail, the mud basin 11 has two patterns of operation methods for buffering purposes and for concentration purposes by sedimentation separation, and is different for each water treatment plant. In particular, in the latter operation, the residence time is long and the risk of occurrence of picoplankton is high. Sludge basin, sludge chamber 11, the in wastewater treatment 10 is generally be located on the most upstream, where the achieved growth inhibition of picoplankton, becomes high effect of reducing picoplankton throughout wastewater treatment 10 . The concentration tank 12 is intended for concentration by sedimentation separation and has the longest residence time, so that the picoplankton is the largest in the water purification facility. Since a flow in which picoplankton grows in the drainage pond 11 and the drainage basin 14 is assumed starting from the concentration tank 12, it is significant to suppress the growth of picoplankton in the concentration tank 12. On the other hand, the drainage basin 14 has a shorter residence time than the concentration tank 12 and has a relatively low risk of multiplication of picoplankton. However, in order to reduce the risk of picoplankton multiplication of the entire wastewater treatment 10, the drainage basin 14 In this case, it is preferable to suppress the growth of picoplankton . From the viewpoint of the risk of multiplication of these picoplanktons, it is desirable to suppress the growth of picoplankton in at least one of the concentration tank 12 and the waste mud pond 11, and all of the concentration tank 12, the waste mud pond 11 and the drainage pond 14 are pico. It is more preferable to suppress the growth of plankton .

図2は、排泥池11の表層水SWを抜き出して紫外線照射した後に排泥池11に戻す紫外線照射処理設備の一例を示している。すなわち、排泥池11には、表層水SWを吸い出すためのホース31が設置され、このホース31を介してポンプPにより吸い出された表層水SWは、紫外線照射処理流路20を介して排泥池11の流入渠11iに供給され、凝集沈澱池5から供給される汚泥SLと同経路で排泥池11に戻されるようになっており、紫外線照射処理流路20には、流通する表層水SWに紫外線を照射する紫外線照射装置40が設置されている。よって、排泥池11から抜き出された表層水SWは、紫外線照射装置40で紫外線照射された後に排泥池11に戻される。このように、表層水SWを抜き出して紫外線照射すると、紫外線照射対象の瞬間流量が少なく、かつ濁度も低いものとなる。よって、紫外線を対象に対して効率良く照射できるため、ピコプランクトンの不活化を効率良く行うことができる。また、図示形態のような循環処理とすることにより、滞留する汚泥や洗浄排水全体におけるピコプランクトンの増殖抑制を効果的に図ることができ、また、既存設備のフローを変更する必要無く適用できる利点もある。なお、図2に示される設備は排泥池11以外にも適用できることはいうまでもない。 FIG. 2 shows an example of ultraviolet irradiation treatment equipment for extracting the surface water SW from the mud pond 11 and irradiating it with ultraviolet rays and then returning it to the mud pond 11. That is, the mud pond 11 is provided with a hose 31 for sucking out the surface water SW, and the surface water SW sucked out by the pump P through the hose 31 is discharged through the ultraviolet irradiation treatment channel 20. It is supplied to the inflow tank 11i of the mud pond 11 and returned to the waste mud basin 11 through the same path as the sludge SL supplied from the coagulation sedimentation basin 5. An ultraviolet irradiation device 40 that irradiates the water SW with ultraviolet rays is installed. Therefore, the surface water SW extracted from the mud pond 11 is returned to the mud pond 11 after being irradiated with ultraviolet rays by the ultraviolet irradiation device 40. Thus, when the surface layer water SW is extracted and irradiated with ultraviolet rays, the instantaneous flow rate of the ultraviolet irradiation target is small and the turbidity is low. Therefore, since ultraviolet rays can be efficiently irradiated to the target, inactivation of picoplankton can be performed efficiently. In addition, by adopting the circulation treatment as shown in the figure, it is possible to effectively suppress the growth of the picoplankton in the sludge that remains and the entire washing wastewater, and the advantage that it can be applied without changing the flow of the existing equipment There is also. In addition, it cannot be overemphasized that the installation shown by FIG.

表層水SWの抜き出し深さは特に限定されず、例えば既設の表層水引抜装置により表層水SWを抜き出してから紫外線照射処理流路20に供給してもよいし、またある程度深い位置から抜き出してもよいが、ピコプランクトンが増殖する時には水面から水深1mまでの表層に大量に分布し、かつ、増殖活性が高いことが確認されているため、この深さ範囲から表層水SWの抜き出しを行うことが好ましい。また、このような理由から、排泥池11のように水位変動のある貯留池や貯留槽から表層水SWを抜き出す場合であっても、抜き出し水深を維持することが好ましい。このために、図2及び図4に示すように、ホース31の先端開口を排水処理物の所定水深に支持するホース支持浮体30を排水処理物に浮かべ、このホース31を介して表層水SWを吸い出し、紫外線照射処理流路20に対して供給する方式についても提案する。このようなホース支持浮体30によりホース31を所定水深にすることにより、簡素な方法で、水量変動がある場合でも表層水SWの抜き出し水深を安定化することができる。より詳細には、図4に示すホース支持浮体30は、矩形に形成された支持フレーム32の中央部に、断面コ字状のアングル33を架設し、ホース31の先端開口をなす吸引ノズル34をアングル33に揺動自在に取り付け、吸引ノズル34をアングル33内に開口させるとともに、支持フレーム32の四隅に支柱等の連結材35を立設し、この支柱35にフロート36を取り付けたものであり、フロート36と吸引ノズル34との高低差に応じて吸引ノズル34の水深が定まるものである。 The extraction depth of the surface water SW is not particularly limited. For example, the surface water SW may be extracted by an existing surface water extraction device and then supplied to the ultraviolet irradiation treatment channel 20 or may be extracted from a certain depth. It is good, but when picoplankton grows, it is distributed in large quantities on the surface layer from the water surface to a depth of 1 m, and it is confirmed that the growth activity is high, so the surface water SW can be extracted from this depth range preferable. For this reason, it is preferable to maintain the extraction water depth even when the surface water SW is extracted from a reservoir or storage tank having a water level change like the mud pond 11. For this purpose, as shown in FIGS. 2 and 4, a hose support floating body 30 that supports the tip opening of the hose 31 at a predetermined depth of the wastewater treatment product is floated on the wastewater treatment material, and the surface water SW is passed through the hose 31. A method of sucking out and supplying the ultraviolet irradiation process channel 20 is also proposed. By setting the hose 31 to a predetermined water depth by such a hose support floating body 30, it is possible to stabilize the extraction water depth of the surface water SW by a simple method even when there is a fluctuation in the amount of water. More specifically, the hose support floating body 30 shown in FIG. 4 has an angle 33 having a U-shaped cross section installed at the center of a rectangular support frame 32, and a suction nozzle 34 that forms the tip opening of the hose 31. Attached to the angle 33 so as to be swingable, the suction nozzle 34 is opened in the angle 33, and connecting members 35 such as columns are erected at the four corners of the support frame 32, and a float 36 is attached to the column 35. The water depth of the suction nozzle 34 is determined according to the height difference between the float 36 and the suction nozzle 34.

もちろん、表層水SWの抜き出し手法は、図示形態に限定されるものではなく、(a)フロート付吸水口とスイベルジョイントを組み合わせ、常に水面から表層水を抜き出し可能な表層水引抜装置や、(b)池や槽の壁面の開口部、埋込管、堰よりオーバーフローさせて、一定の水位に達した水を池や槽外に抜き出す手法、(c)フロートで水面付近を取水可能にした水中ポンプ、又は一定水位に固定した水中ポンプを用いて抜き出す手法、(d)手動で取水口の高さを変更し、表層水を抜き出す蛇腹式集水装置、等を用いることができる。   Of course, the method for extracting the surface water SW is not limited to the illustrated form. (A) A surface water extraction device that can always extract surface water from the water surface by combining a water inlet with a float and a swivel joint; ) Overflow from the pond and tank wall openings, buried pipes and weirs, and water that reaches a certain water level is extracted outside the pond and tank. (C) A submersible pump that allows water to be taken near the water surface with a float. Alternatively, a method of drawing out using a submersible pump fixed at a constant water level, (d) a bellows type water collecting device that manually changes the height of the water intake port and draws out surface layer water, and the like can be used.

紫外線照射装置40の構成は、特に限定されないが、例えば図3に示すような装置とするのが好ましい。すなわち、この紫外線照射装置40は、紫外線照射処理流路20を構成する表層水流通管路41と、この表層水流通管路を横断するように配置された石英製の保護管42と、この保護管内に配置される紫外線ランプ43とを備えたものである。   Although the structure of the ultraviolet irradiation device 40 is not particularly limited, for example, a device as shown in FIG. 3 is preferable. That is, the ultraviolet irradiation device 40 includes a surface water circulation pipe 41 constituting the ultraviolet irradiation treatment flow path 20, a quartz protective pipe 42 arranged so as to cross the surface water circulation pipe, and the protection. And an ultraviolet lamp 43 disposed in the tube.

紫外線ランプ43としては低圧紫外線ランプ、中圧紫外線ランプ、低圧アマルガムランプ、エキシマランプ、キセノンランプ、無電極ランプ、紫外線LEDが知られており、いずれを用いても良いが、同じ紫外線照射量でピコプランクトンの不活化処理を行った場合、波長253.7nm付近にシャープなピークを有する低圧紫外線ランプよりも、広範囲の出力波長を有する中圧紫外線ランプの方が不活化効果が高いことが判明しているため、本発明では中圧紫外線ランプを用いることが好ましい。図5は中圧紫外線ランプ(中圧UVランプ)及び低圧紫外線ランプ(低圧UVランプ)の波長範囲を示したものである。 Low-pressure ultraviolet lamp as an ultraviolet lamp 43, medium pressure ultraviolet lamp, pico low pressure amalgam lamp, excimer lamp, a xenon lamp, an electrodeless lamp, an ultraviolet LED is known, may be either, but the same amount of UV irradiation When plankton inactivation treatment was performed, it was found that the inactivation effect of the medium pressure ultraviolet lamp having a wide range of output wavelengths is higher than that of the low pressure ultraviolet lamp having a sharp peak near the wavelength of 253.7 nm. Therefore, it is preferable to use a medium pressure ultraviolet lamp in the present invention. FIG. 5 shows the wavelength ranges of a medium pressure ultraviolet lamp (medium pressure UV lamp) and a low pressure ultraviolet lamp (low pressure UV lamp).

紫外線照射量は適宜定めれば良く、一年を通じて一定としたり、ピコプランクトンの活性が高い時期や、増殖傾向がみられる時期は高照射量とし、通常時は低照射量若しくは非照射とする、或いは一日の設定時間だけ高照射量とし、それ以外は低照射量若しくは非照射とする等の季節制御又はタイマー制御を行ったり、これとともに又はこれに代えて、表層水の瞬間流量や濁度を計測し、その計測結果の増減に応じて紫外線照射処理における紫外線照射量を増減する等の制御を行うこともできる。 The amount of UV irradiation may be determined as appropriate, and is constant throughout the year, or when the activity of picoplankton is high or when there is a tendency to proliferate, the irradiation amount is high, and in normal times it is low or non-irradiation. Alternatively, seasonal control or timer control such as high irradiation amount for the set time of the day and low irradiation amount or non-irradiation other than that, or in addition to or instead of this, instantaneous flow rate or turbidity of surface water It is also possible to perform control such as increasing or decreasing the amount of ultraviolet irradiation in the ultraviolet irradiation processing according to the increase or decrease of the measurement result.

特に排泥池11、濃縮槽12、及び排水池14は流入が間欠的であり、また流入量及び濁度の日内変動、日間変動が一定していない。例えば、凝集沈澱池5から排泥池11に引き抜いた汚泥SLを排泥池に送る際には、流入直後に排泥池11では急激に濁度が上昇し、一定時間経過して流入汚泥SLが沈降すると表層水の濁度が低下する。このような場合、紫外線照射にとって最も厳しい状態を想定して紫外線照射量を設定しても良いが、濁度が低い時には紫外線の過剰照射により、エネルギーが無駄になってしまう。これに対して、紫外線照射処理流路20への流入水量及び濁度の少なくとも一方の計測結果の増減に応じて、紫外線照射処理における紫外線照射量を増減すると、省エネルギーで且つ効果的な紫外線照射処理を行うことができるようになる。   In particular, the drainage pond 11, the concentration tank 12, and the drainage basin 14 are intermittently inflow, and the daily fluctuation and daily fluctuation of the inflow amount and turbidity are not constant. For example, when the sludge SL extracted from the coagulation sedimentation basin 5 to the sludge pond 11 is sent to the sludge pond, the turbidity suddenly increases in the sludge basin 11 immediately after the inflow, and the inflow sludge SL passes after a certain time. When the water settles, the turbidity of the surface water decreases. In such a case, the amount of ultraviolet irradiation may be set assuming the most severe state for ultraviolet irradiation, but when turbidity is low, energy is wasted due to excessive irradiation of ultraviolet rays. On the other hand, when the amount of ultraviolet irradiation in the ultraviolet irradiation treatment is increased or decreased in accordance with the increase or decrease in the measurement result of at least one of the amount of water flowing into the ultraviolet irradiation processing channel 20 and the turbidity, the energy-saving and effective ultraviolet irradiation processing is achieved. Will be able to do.

紫外線照射量は、図3に示すように紫外線ランプ43を複数設けてその点灯数の増減により調節する他、ランプ出力の増減により調節することができる。   As shown in FIG. 3, the ultraviolet irradiation amount can be adjusted by increasing / decreasing the lamp output in addition to adjusting the number of the lamps 43 by providing a plurality of ultraviolet lamps 43.

紫外線ランプ43として中圧紫外線ランプを用いる場合、紫外線照射量が低すぎるとピコプランクトンの不活化効果が不十分となるおそれがあり、高すぎるとピコプランクトンを捕食する大型プランクトンが死滅し、小型プランクトンの増殖が促進されるおそれがあるため、本発明では20〜200mJ/cm2の照射量で紫外線照射を行うことが好ましい。なお、併せてクリプトスポリジウム等の耐塩素性原虫類不活化効果を期待する場合には40mJ/cm2以上とすることが好ましい。 When using a medium pressure ultraviolet lamp as an ultraviolet lamp 43, there is a possibility that the amount of ultraviolet irradiation becomes insufficient inactivation effect of too low picoplankton, large plankton die to too high prey picoplankton, small plankton In the present invention, it is preferable to perform ultraviolet irradiation at an irradiation dose of 20 to 200 mJ / cm 2 . In addition, when it is expected to inactivate chlorine-resistant protozoa such as Cryptosporidium, it is preferably 40 mJ / cm 2 or more.

紫外線照射処理流路20を介した循環通水は、紫外線照射を行うか否かに関係なく連続的に行っても、また紫外線照射を行うのに合わせて通水するようにしても良い。   Circulating water flow through the ultraviolet irradiation treatment channel 20 may be performed continuously regardless of whether ultraviolet irradiation is performed or may be performed in accordance with the ultraviolet irradiation.

排泥池11の汚泥SL等の排水処理物は濁質を含むとともに、硬度成分(マグネシウムやカルシウム)や金属成分(鉄、アルミニウム、マンガン等)を含んでおり、これらが保護管42に徐々に付着し、経時的に紫外線照射効果が低下するおそれがある。よって、図3に示すようにステンレス製ブラシ45等の掻き取り手段を用いて表面付着物を掻き取る構造とすることが好ましい。図示形態では、保護管42の外周全体に接触するよう配置された環状のステンレス製ブラシ45と、このステンレス製ブラシ45を支持する支持体46と、この支持体46に設けられた雌ネジ部47と、この雌ネジ部47に螺合された雄ネジ軸48と、この雄ネジ軸48を回転駆動するためのモータ49とを備えており、モータ49により雄ネジ軸48を回転させると、雌ネジ部47を介して支持体46が雄ネジ軸48に沿って移動し、これに伴い支持体46のステンレス製ブラシ45が保護管42表面を擦るようになっている。モータ49を正逆駆動してステンレス製ブラシ45を移動(例えば、必要数往復)させることにより、保護管42の清掃を行うことができる。保護管42の清掃は定期的に行う他、保護管42の汚れを検出するためのセンサーを設け、その検出結果に応じて行うこともできる。本発明者らの実験によれば、排水処理に適用する場合、1時間1往復程度の洗浄頻度で保護管42の外表面を清浄に維持できることが判明している。   Wastewater treatment products such as sludge SL in the sludge pond 11 contain turbidity and also contain hardness components (magnesium and calcium) and metal components (iron, aluminum, manganese, etc.), and these are gradually added to the protective tube 42. There is a risk that the ultraviolet irradiation effect may deteriorate with time. Therefore, as shown in FIG. 3, it is preferable to have a structure in which surface deposits are scraped using scraping means such as a stainless steel brush 45. In the illustrated embodiment, an annular stainless steel brush 45 disposed so as to be in contact with the entire outer periphery of the protective tube 42, a support body 46 that supports the stainless steel brush 45, and a female screw portion 47 provided on the support body 46. A male screw shaft 48 screwed into the female screw portion 47, and a motor 49 for rotationally driving the male screw shaft 48. When the male screw shaft 48 is rotated by the motor 49, the female screw shaft 48 is rotated. The support body 46 moves along the male screw shaft 48 through the screw portion 47, and the stainless steel brush 45 of the support body 46 rubs the surface of the protective tube 42 along with this. The protective tube 42 can be cleaned by driving the motor 49 forward and backward to move the stainless steel brush 45 (for example, the required number of reciprocations). The protective tube 42 can be cleaned periodically, or a sensor for detecting contamination of the protective tube 42 can be provided and can be performed according to the detection result. According to experiments by the present inventors, it has been found that when applied to wastewater treatment, the outer surface of the protective tube 42 can be kept clean with a cleaning frequency of about 1 reciprocation per hour.

(その他)
(a) 本発明の紫外線照射処理は、上述したように排泥池11や、濃縮槽12、排水池14に適用するものである。
(b) 本発明は、抜き出した表層水SWを紫外線照射処理後に抜き出し元に戻す(循環照射)ものである。
(c) 紫外線照射処理流路20は、図示例のような管路とする他、一部又は全部を上部が開放された溝としても良い。
(d) 上記例は、流通する表層水に照射する連続処理となっているが、槽等に一時的に貯留した状態で紫外線照射するバッチ処理とすることも可能である。
(e) 上記例は水中から紫外線照射を行うものであるが、水中から行うのに代えて、又はこれとともに、水上から行ってもよい。
(f) 上記例は、排水処理で排水処理物及びその上澄水の少なくとも一方を抜き出して、浄水処理における原水に混合するものであるが、浄水処理の処理水であれば、着水井以外のポイントで混合することも可能である。
(Other)
(A) The ultraviolet irradiation treatment of the present invention is applied to the drainage pond 11, the concentration tank 12, and the drainage pond 14 as described above.
(B) In the present invention, the extracted surface water SW is returned to the extraction source after the ultraviolet irradiation treatment (circulation irradiation).
(C) The ultraviolet irradiation treatment flow path 20 may be a pipe line as shown in the illustrated example, or a part or the whole of the groove may be opened at the top.
(D) Although the above example is a continuous process for irradiating the surface water that circulates, it can also be a batch process for irradiating with ultraviolet rays in a state of being temporarily stored in a tank or the like.
(E) Although the said example performs ultraviolet irradiation from water, it may replace with it from underwater, or you may carry out from the water.
(F) In the above example, at least one of the wastewater treatment product and its supernatant water is extracted in the wastewater treatment and mixed with the raw water in the water purification treatment. It is also possible to mix with.

<実験1>
ダム、河川から取水した水を原水とする実際の浄水場において、図3に示すものと同様の紫外線照射装置40及び図4に示すものと同様のホース支持浮体30を図2に示すように排泥池11に設置し、フィールド実験を行った。なお、当該浄水場は、春期から秋期にかけて排泥池、濃縮槽で小型藻類が増殖した事があり、浄水処理上の課題の一つと位置付けている施設である。実験においては、紫外線照射装置40における表層水の流量を60m3/分に固定して実験期間中24時間連続通水するとともに、紫外線照射/非照射を表1に示すように任意の期間で切り替え、定期的に実排泥池中の小型藻類数、5μm以上藻類数、及びクロロフィルa濃度を測定した。紫外線照射量はランプ出力、点灯本数の変更により、20〜120mJ/cm2の範囲内で表1に示すように変化させた。
<Experiment 1>
In an actual water purification plant using water taken from dams and rivers as raw water, an ultraviolet irradiation device 40 similar to that shown in FIG. 3 and a hose support floating body 30 similar to that shown in FIG. 4 are discharged as shown in FIG. Installed in mud pond 11 and conducted field experiments. The water purification plant is a facility that is positioned as one of the problems in water purification treatment because small algae have grown in the drainage ponds and concentration tanks from spring to autumn. In the experiment, the flow rate of surface water in the ultraviolet irradiation device 40 is fixed at 60 m 3 / min, and the water is continuously passed for 24 hours during the experiment period, and the ultraviolet irradiation / non-irradiation is switched at an arbitrary period as shown in Table 1. The number of small algae in the actual waste mud pond, the number of algae of 5 μm or more, and the concentration of chlorophyll a were periodically measured. The amount of ultraviolet irradiation was changed as shown in Table 1 within the range of 20 to 120 mJ / cm 2 by changing the lamp output and the number of lighting.

小型藻類数及び5μm以上藻類の計数は、ニコン社製の蛍光顕微鏡ECLIPSE E1000を用いた検鏡により行った。   The number of small algae and the count of algae of 5 μm or more were measured with a microscope using a fluorescence microscope ECLIPSE E1000 manufactured by Nikon.

クロロフィルa濃度の測定は笠原理化工業社製のクロロフィルセンサCHL−30(測定方式:蛍光測定方式、測定範囲:0.0〜200.0μg/L)を使用した。   The chlorophyll a concentration was measured using a chlorophyll sensor CHL-30 (measurement method: fluorescence measurement method, measurement range: 0.0 to 200.0 μg / L) manufactured by Kasahara Kagaku Kogyo.

測定結果を図6に示した。なお、グラフ中の網掛け部分は、紫外線照射を停止した非照射期間(UV停止)を示している。この結果、小型藻類の増殖が6月から12月にかけて確認されたが、紫外線照射を実施した期間は、非照射期間と比較して、概ね低水準で推移していた。また、実験期間中の表層水の平均濁度が6.3度、平均紫外線透過率が89%を示し、紫外線処理は概ね安定していた。加えて、定期的な分析の結果、臭素酸、塩素酸、総トリハロメタン濃度は、水道水質基準を大幅に下回っており、本処理が水質に与える影響は少ないことが確認された。   The measurement results are shown in FIG. The shaded portion in the graph indicates a non-irradiation period (UV stop) in which the ultraviolet irradiation is stopped. As a result, the growth of small algae was confirmed from June to December, but the period during which the ultraviolet irradiation was performed was generally at a low level compared to the non-irradiation period. Further, the average turbidity of the surface water during the experiment period was 6.3 degrees, the average ultraviolet transmittance was 89%, and the ultraviolet treatment was almost stable. In addition, as a result of regular analysis, it was confirmed that the concentration of bromic acid, chloric acid, and total trihalomethane was significantly below the tap water quality standard, and that this treatment had little effect on water quality.

<実験2>
最大容量40Lの円筒状槽内に、1kWの中圧紫外線ランプを1本設置した実験室規模のバッチ式紫外線照射装置、及び容量1Lのビーカー上部に、20Wの低圧紫外線ランプを3本配置した実験室規模のバッチ式紫外線照射装置を用い、1月に排泥池よりサンプリングした表層水を、太陽光類似波長の光源(スドー製蛍光ランプ、オセアニアンホワイトS−3820)の下、水温25℃一定条件で7日間事前培養してから、表2に示す各種条件で紫外線処理を行ったサンプル、比較対照のブランクサンプルを、太陽光類似波長の光源(スドー製蛍光ランプ、オセアニアンホワイトS−3820)の下、水温25℃一定条件で7日間培養し、実験1で述べた方法により、小型藻類数を測定した。
<Experiment 2>
A laboratory-scale batch-type UV irradiation device with one 1kW medium-pressure UV lamp installed in a cylindrical tank with a maximum capacity of 40L, and three 20W low-pressure UV lamps placed above the beaker with a capacity of 1L. Using a room-scale batch-type ultraviolet irradiation device, the surface water sampled from the mud pond in January was kept at a constant water temperature of 25 ° C. under a sunlight-like light source (Sudo fluorescent lamp, Oceanian White S-3820). Samples that had been pre-cultured for 7 days under the conditions and then subjected to UV treatment under the various conditions shown in Table 2 and a blank sample for comparison were used as a light source having a sunlight-similar wavelength (Sudo fluorescent lamp, Oceanian White S-3820). Then, the cells were cultured for 7 days at a constant water temperature of 25 ° C., and the number of small algae was measured by the method described in Experiment 1.

測定結果を図7に示した。この結果、ブランクと比較すると、紫外線照射によりいずれのランプ種も小型藻類数は少なく、紫外線による増殖抑制効果が確認された。低圧紫外線ランプ、中圧紫外線ランプとで比較すると、同一照射量においては、常に中圧紫外線ランプ照射後の小型藻類数の方が少なかった。以上より、紫外線照射量が同等の条件では、低圧紫外線ランプと比較して、中圧紫外線ランプの方がより高い小型藻類増殖抑制効果を有する可能性がある。   The measurement results are shown in FIG. As a result, as compared with the blank, the number of small algae was small in any lamp species by ultraviolet irradiation, and the effect of inhibiting the growth by ultraviolet rays was confirmed. Compared with low-pressure ultraviolet lamp and medium-pressure ultraviolet lamp, the number of small algae after irradiation with medium-pressure ultraviolet lamp was always smaller at the same irradiation dose. From the above, under conditions where the amount of ultraviolet irradiation is the same, the medium-pressure ultraviolet lamp may have a higher effect of suppressing the growth of small algae than the low-pressure ultraviolet lamp.

<実験3>
実験1と同じ浄水場において、排泥池の深さ方向の藻類分布調査を実施した。この分布調査ではハイロート採水瓶を用いて、水面(水深0m)、水深1m、水深2mの3点から採水し、実験1と同様にクロロフィルa濃度を測定した。この分布調査は11月上旬に実施した。
<Experiment 3>
In the same water treatment plant as in Experiment 1, an algal distribution survey in the depth direction of the mud pond was conducted. In this distribution survey, water was collected from three points of water surface (water depth 0 m), water depth 1 m, and water depth 2 m using a high funnel, and the chlorophyll a concentration was measured in the same manner as in Experiment 1. This distribution survey was conducted in early November.

深さ方向のクロロフィルa濃度分布は、水面で5.4μg/Lを示し、水深1mで18.8μg/Lと増大し、水深2mで3.0μg/Lと減少した。調査を実施した11月上旬の計数において、5μm以上藻類数はほとんど見られておらず、クロロフィルa濃度が概ね小型藻類の傾向を表していると考えられる。これより、小型藻類は水面〜水深1m付近に数多く分布していることが推測される。   The chlorophyll a concentration distribution in the depth direction showed 5.4 μg / L at the water surface, increased to 18.8 μg / L at a depth of 1 m, and decreased to 3.0 μg / L at a depth of 2 m. In the counts in early November when the survey was conducted, the number of algae of 5 μm or more was hardly observed, and the chlorophyll a concentration is considered to represent the tendency of small algae. From this, it is estimated that many small algae are distributed from the surface of the water to a depth of 1 m.

本発明は浄水場における排水処理に適用できるものである。   The present invention can be applied to wastewater treatment at a water purification plant.

RW…原水、2…着水井、3…混和池、4…フロック形成池、5…凝集沈澱池、6…ろ過池、7…塩素混和池、8…浄水池、1…浄水処理、10…排水処理、TW…上澄水、11…排泥池、11i…流入渠、12…濃縮槽、13…脱水機、14…排水池、SL…汚泥、SW…表層水、20…紫外線照射処理流路、31…ホース、P…ポンプ、40…紫外線照射装置、30…ホース支持浮体、32…支持フレーム、33…アングル、34…吸引ノズル、35…連結材、36…フロート、41…表層水流通管路、42…保護管、43…紫外線ランプ、45…ステンレス製ブラシ、46…支持体、47…雌ネジ部、48…雄ネジ軸、49…モータ。   RW ... Raw water, 2 ... Water well, 3 ... Mixing pond, 4 ... Flock formation pond, 5 ... Coagulation sedimentation pond, 6 ... Filtration pond, 7 ... Chlorine mixing pond, 8 ... Purification pond, 1 ... Purification treatment, 10 ... Drainage Treatment, TW ... supernatant water, 11 ... drainage pond, 11i ... inflow trough, 12 ... concentration tank, 13 ... dehydrator, 14 ... drainage, SL ... sludge, SW ... surface water, 20 ... ultraviolet irradiation treatment flow path, DESCRIPTION OF SYMBOLS 31 ... Hose, P ... Pump, 40 ... Ultraviolet irradiation apparatus, 30 ... Hose support floating body, 32 ... Support frame, 33 ... Angle, 34 ... Suction nozzle, 35 ... Connecting material, 36 ... Float, 41 ... Surface water distribution pipe , 42 ... protective tube, 43 ... ultraviolet lamp, 45 ... stainless steel brush, 46 ... support, 47 ... female screw part, 48 ... male screw shaft, 49 ... motor.

Claims (6)

浄水場における排水処理で、排泥池、濃縮槽、及び排水池の少なくとも一つにおける排水処理物及びその上澄水の少なくとも一方を抜き出して、浄水処理における処理水に混合する、浄水場における処理方法であって、
前記排水処理物の表層水を抜き出して抜き出し元の排水処理物に戻す紫外線照射処理流路を介して連続的又は断続的な循環を継続しつつ、その紫外線照射処理流路を流通する前記表層水に紫外線を照射し、前記排水処理物中のピコプランクトンの増殖を防止する、紫外線照射処理を行う、
ことを特徴とする浄水場における処理方法。
In the water treatment at the water purification plant, at least one of the wastewater treatment product and its supernatant water in at least one of the drainage pond, concentration tank, and drainage basin is extracted and mixed with the treated water in the water purification treatment. Because
The surface layer water that circulates through the ultraviolet irradiation treatment flow path while continuing the continuous or intermittent circulation through the ultraviolet irradiation treatment flow path that extracts the surface water of the wastewater treatment product and returns it to the original wastewater treatment product. Irradiating with ultraviolet rays, preventing the proliferation of picoplankton in the wastewater treatment product, performing ultraviolet irradiation treatment,
The processing method in the water purification plant characterized by this.
前記紫外線照射処理流路への流入水量及び濁度の少なくとも一方を計測し、その計測結果の増減に応じて前記紫外線照射処理における紫外線照射量を増減する、請求項1記載の浄水場における処理方法。   The treatment method in a water purification plant according to claim 1, wherein at least one of the amount of inflow water and turbidity into the ultraviolet irradiation treatment flow path is measured, and the ultraviolet irradiation amount in the ultraviolet irradiation treatment is increased or decreased according to an increase or decrease in the measurement result. . 前記紫外線照射処理における表層水の抜き出しを、前記排水処理物の水深1mまでの表層から行う、請求項1又は2記載の浄水場における処理方法。   The processing method in the water purification plant of Claim 1 or 2 which extracts the surface layer water in the said ultraviolet irradiation process from the surface layer to the water depth of 1 m of the said wastewater treatment thing. 前記紫外線照射処理で、中圧紫外線ランプを備えた紫外線処理装置を用いて前記紫外線照射を行う、請求項1〜3のいずれか1項に記載の浄水場における処理方法。   The processing method in the water purification plant of any one of Claims 1-3 which performs the said ultraviolet irradiation using the ultraviolet-ray processing apparatus provided with the medium pressure ultraviolet lamp by the said ultraviolet irradiation process. 前記紫外線照射処理で、20〜200mJ/cm2の照射量で前記紫外線照射を行う、請求項4記載の浄水場における処理方法。 The processing method in the water purification plant of Claim 4 which performs the said ultraviolet irradiation with the irradiation amount of 20-200 mJ / cm < 2 > by the said ultraviolet irradiation treatment. 浄水場における排水処理で、排泥池、濃縮槽、及び排水池の少なくとも一つにおける排水処理物及びその上澄水の少なくとも一方を抜き出して、浄水処理における処理水に混合する、浄水場における処理設備であって、
前記排水処理物の表層水を抜き出して抜き出し元の排水処理物に戻す循環を連続的又は断続的に行う紫外線照射処理流路と、この紫外線照射処理流路を流通する前記表層水に紫外線を照射し、前記排水処理物中のピコプランクトンの増殖を防止する紫外線照射装置と、を備えた、
ことを特徴とする浄水場における処理設備。
A treatment facility in the water treatment plant that extracts at least one of the wastewater treatment product and its supernatant water in at least one of the drainage pond, the concentration tank, and the drainage basin, and mixes it with the treated water in the water purification treatment. Because
An ultraviolet irradiation treatment channel that continuously or intermittently circulates the surface water of the wastewater treatment product and returns it to the original wastewater treatment product, and the surface water that circulates through the ultraviolet irradiation treatment channel is irradiated with ultraviolet rays. And an ultraviolet irradiation device for preventing the growth of picoplankton in the wastewater treatment product,
The treatment facility in the water purification plant characterized by that.
JP2014189290A 2014-09-17 2014-09-17 Treatment method and facilities in water treatment plant Active JP5999782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189290A JP5999782B2 (en) 2014-09-17 2014-09-17 Treatment method and facilities in water treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189290A JP5999782B2 (en) 2014-09-17 2014-09-17 Treatment method and facilities in water treatment plant

Publications (2)

Publication Number Publication Date
JP2016059867A JP2016059867A (en) 2016-04-25
JP5999782B2 true JP5999782B2 (en) 2016-09-28

Family

ID=55795484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189290A Active JP5999782B2 (en) 2014-09-17 2014-09-17 Treatment method and facilities in water treatment plant

Country Status (1)

Country Link
JP (1) JP5999782B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947221B2 (en) * 2017-09-19 2021-10-13 株式会社Ihi Incubator
CN107840499B (en) * 2017-10-31 2023-11-10 上海市政工程设计研究总院(集团)有限公司 Combined treatment device for reuse water of water works and water treatment process of combined treatment device
CN115884935A (en) 2020-09-25 2023-03-31 株式会社日立制作所 Passenger conveying equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209100A (en) * 1985-03-13 1986-09-17 Kawasaki Steel Corp Dehydration pretreatment of sludge
JPH07308678A (en) * 1994-05-18 1995-11-28 Watanabe Kazumasa Inner-water-tank sterilization and deodorization cleaning system
JP3801720B2 (en) * 1996-03-14 2006-07-26 株式会社日本フォトサイエンス Ultraviolet irradiation device with scraper ring on light transmission tube
DE19801937A1 (en) * 1998-01-20 1999-07-22 Alwin Dipl Ing Eppler Method and device for the treatment of highly loaded algae surface water
JP2000246263A (en) * 1999-02-26 2000-09-12 Hitachi Ltd Method and apparatus for purifying water
JP2001137841A (en) * 1999-11-10 2001-05-22 Hitachi Plant Eng & Constr Co Ltd Ultraviolet oxidation device
JP3923710B2 (en) * 2000-06-27 2007-06-06 三菱電機株式会社 Water sampling equipment
JP2004141770A (en) * 2002-10-24 2004-05-20 Kobelco Eco-Solutions Co Ltd Method for inactivating cryptosporidium
JP2006122745A (en) * 2004-10-26 2006-05-18 Taiko Kinzoku Kk Water purification device and water purification method
JP4746414B2 (en) * 2005-11-30 2011-08-10 株式会社東芝 Water treatment system
JP4468223B2 (en) * 2005-03-30 2010-05-26 株式会社東芝 Water treatment system using ultraviolet irradiation
JP5752636B2 (en) * 2012-04-17 2015-07-22 月島機械株式会社 Water treatment method
CN103723789B (en) * 2013-12-17 2015-07-08 河海大学 Method for removing cyclop type zooplanktons during treatment of drinking water

Also Published As

Publication number Publication date
JP2016059867A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
DK2675759T3 (en) Sustainable method and system, at low cost, for treating water mass contaminated with bacteria and microalgae
EA030884B1 (en) System for treatment of water to be used for industrial purposes
US9951509B2 (en) Water treatment system
JP5999782B2 (en) Treatment method and facilities in water treatment plant
CN105129969B (en) Perimeter filter water outlet biochemical sedimentation basin
CN102701531A (en) Slaughter sewage treatment method
CN107628733A (en) A kind of integrated rural domestic sewage processing method
CN103896436A (en) Water depth treatment technology using filter material synergistically modified with ultraviolet (UV) and ozone and equipment thereof
RU2464239C1 (en) Gray waste water biological treatment plant
KR100850770B1 (en) Irrigation water purifying apparatus and method for converting the agricultural water reuse using the same
KR20090111188A (en) Discharged Water Treatment System and Method for Treating Discharged Water Using the Same
CN211570344U (en) High-efficiency drinking water treatment device
JP2006142283A (en) Water purification system
CN108164038A (en) A kind of Water feeding treatment device and processing method
CN211310900U (en) Biological pond scrubbing device
CN103253760A (en) Upward-flowing fluidization biofilter coupled with negative pressure membrane
CN203558954U (en) Multi-stage filtration membrane recycled water recycling system
CN101643281A (en) Method for treating high-turbidity water
EP3464191B1 (en) System and method for treating and recycling process water
CN214593642U (en) Circulating fish culture device
CN210394087U (en) Novel washing sewage treatment system
JP2010207743A (en) Method and apparatus for removing cryptosporidium
KR100674018B1 (en) Water purification device operable without power for small water supply
Omar et al. Performance evaluation and improvement of Ifraz-2 water treatment plant
CN214495954U (en) Sewage treatment equipment with pump spraying structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160825

R150 Certificate of patent or registration of utility model

Ref document number: 5999782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350