JP5752636B2 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP5752636B2
JP5752636B2 JP2012094144A JP2012094144A JP5752636B2 JP 5752636 B2 JP5752636 B2 JP 5752636B2 JP 2012094144 A JP2012094144 A JP 2012094144A JP 2012094144 A JP2012094144 A JP 2012094144A JP 5752636 B2 JP5752636 B2 JP 5752636B2
Authority
JP
Japan
Prior art keywords
water
ultraviolet irradiation
water purification
range
free chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012094144A
Other languages
Japanese (ja)
Other versions
JP2013220395A (en
Inventor
今川 洋介
洋介 今川
山根 陽一
陽一 山根
武雄 大島
武雄 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2012094144A priority Critical patent/JP5752636B2/en
Publication of JP2013220395A publication Critical patent/JP2013220395A/en
Application granted granted Critical
Publication of JP5752636B2 publication Critical patent/JP5752636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、浄水の処理方法に係り、特に、地表水や地下水等の原水から水道水および工業用水を生成する浄水処理において、原水中に含まれる溶解性有機物等を効果的に分解する方法に関するものである。   The present invention relates to a method for treating purified water, and in particular, to a method for effectively decomposing soluble organic substances contained in raw water in purified water treatment for producing tap water and industrial water from raw water such as surface water and groundwater. Is.

上水道はその原水を河川や湖沼等の地表水とする場合と、地下水とする場合とに大きく分けられる。特に地表水は外的因子の影響を受け易く、河川における工場排水に起因する微量有害物質汚染や、湖沼における藻類に起因する異臭味の発生など、近年水質汚濁が大きな問題となっている。汚染源である溶解性有機物は、従来プロセスである凝集沈殿、砂ろ過では充分な除去、分解が困難であることから、高度処理プロセスを追加して対策がなされる。代表的な高度処理には、オゾン処理、活性炭処理が挙げられ、既に多くの浄水場で導入されている。   Waterworks can be broadly divided into cases where the raw water is surface water such as rivers and lakes, and groundwater. In particular, surface water is easily affected by external factors, and water pollution has become a major problem in recent years, such as contamination of trace harmful substances caused by factory effluent in rivers and generation of off-flavours caused by algae in lakes. Since the soluble organic matter that is a contamination source is difficult to remove and decompose sufficiently by the conventional processes such as coagulation sedimentation and sand filtration, countermeasures are taken by adding an advanced treatment process. Typical advanced treatments include ozone treatment and activated carbon treatment, which have already been introduced in many water purification plants.

藻類に起因する異臭味物質の主なものに2−メチルイソボルネオール、ジェオスミンがあり、いずれも水質基準は10ng/Lである。水道統計より、90%以上の施設で原水中の異臭味物質最高値は10ng/L以下と報告されており、多くの施設でこの基準を下回っている。しかし、異臭味を感じる数値には個人差があり、5ng/Lの濃度でも感知される可能性があるため、多くの事業体では水質基準よりも厳しい自主基準を設け、極力ゼロに近づける対応を行っているのが現状である。   The main off-flavor substances derived from algae are 2-methylisoborneol and geosmin, both of which have a water quality standard of 10 ng / L. According to water statistics, the highest off-flavor substances in raw water are reported to be 10 ng / L or less in more than 90% of the facilities, which is below this standard in many facilities. However, there are individual differences in the numerical value that gives off-odour, and there is a possibility that it can be detected even at a concentration of 5 ng / L. This is the current situation.

異臭味対策として有効なプロセスは前述のオゾン処理、活性炭処理が挙げられる。オゾン処理は高い分解効果を示し、季節変動への対応性も高いプロセスであるが、設備費用が高い点がデメリットである。また、粒状活性炭処理は高い除去効果を示すが、定期的な交換作業、変動に対する追従性の低さがデメリットである。粉末活性炭は流入濃度の変動に応じて注入量の変更が容易なことから、利便性の高いプロセスであるが、ろ過水へのリーク、注入作業の繁雑さ、粉塵対策等の問題に留意する必要がある。   Processes effective as a countermeasure against off-flavors include the aforementioned ozone treatment and activated carbon treatment. Ozonation is a process that exhibits a high decomposition effect and is highly adaptable to seasonal fluctuations, but has the disadvantage of high equipment costs. Moreover, although the granular activated carbon treatment shows a high removal effect, it is disadvantageous in periodic replacement work and low followability to fluctuation. Powdered activated carbon is a highly convenient process because the injection volume can be easily changed according to fluctuations in the inflow concentration, but it is necessary to pay attention to problems such as leakage to filtered water, complexity of injection work, dust countermeasures, etc. There is.

また、異臭味物質を含む溶解性有機物の分解手法としては、促進酸化プロセスが知られている。促進酸化プロセスはオゾン、紫外線、酸化剤等を組み合わせ、酸化力の高い活性酸素を発生させることで分解を行う。多くの論文に報告がなされているが、高い分解率を達成するためには、長時間の反応、もしくは、オゾン、紫外線等の大量投与が必要となり、実用化されている分野は限定的であった。
以上のように、異臭味物質が水質基準である10ng/L未満で原水に含まれる浄水施設にとって、既存の高度処理では維持管理性、経済性の観点から非効率的であり、よりリーズナブルな処理手法が求められていた。
Further, an accelerated oxidation process is known as a method for decomposing soluble organic substances containing off-flavor substances. In the accelerated oxidation process, ozone, ultraviolet light, an oxidizing agent, and the like are combined to decompose by generating active oxygen having a high oxidizing power. Although many papers have been reported, in order to achieve a high degradation rate, a long reaction time or a large dose of ozone, ultraviolet light, etc. is required, and the fields that have been put to practical use are limited. It was.
As mentioned above, for the water purification facilities where the off-flavor substances are less than 10 ng / L, which is the water quality standard, and are contained in the raw water, the existing advanced treatment is inefficient from the viewpoint of maintenance and economy, and more reasonable treatment. A method was sought.

この観点において、特許文献1には、殺藻や殺菌のための次亜塩素酸ナトリウムを注入する注入手段と、紫外線を照射する紫外線照射手段とを併用することが提案されている。また、非特許文献1には、次亜塩素酸を使用し低圧ランプ(254nm波長)を使用して紫外線照射することが開示されている。   From this point of view, Patent Document 1 proposes to use an injection means for injecting sodium hypochlorite for algae killing or sterilization and an ultraviolet irradiation means for irradiating ultraviolet rays. Non-Patent Document 1 discloses that hypochlorous acid is used and ultraviolet irradiation is performed using a low-pressure lamp (254 nm wavelength).

特許第4690976号公報Japanese Patent No. 4690976 ヤンガン フォン(Yangang Feng)らによる報告「254nm紫外線を使用した水溶性遊離塩素種の光分解」(Journal of Environmental Engineering and Science(2007)277頁〜284頁)Report by Yang Feng et al. “Photolysis of water-soluble free chlorine species using 254 nm ultraviolet light” (Journal of Environmental Engineering and Science (2007) pp. 277-284) J.Fuら「Comparative study of degradation of 4−chlorophenol by ultraviolet irradiation/sodium hypochlorite and ultraviolet irradiation/ozonation」ウォーターサイエンスアンドテクノロジー(Water Science & Technology)Water Supply−WSTWS Vol.9 No.5 pp601−609、 IWA 2009年J. et al. Fu et al., "Comparative study of degradation of 4-chlorophenol by ultraviolet irradiation / sodium hypochlorite and ultraviolet irradiation / ozonation" Water Science and Technology (Water Science & Technology) Water Supply-WSTWS Vol.9 No.5 pp601-609, IWA 2009 years

特許文献1(特許第4690976号公報)の方法では、主に消毒を目的として、副生成物の発生を抑制するために、前段、中段及び後段と3段階で次亜塩素酸ナトリウムの注入及び紫外線照射を行なっている。しかし、この方法において使用する紫外線ランプの仕様については示されていない。紫外線照射量に関する条件も記載されていない。
一方、特許文献1で引用されている特開2004−188273では、紫外線照射量は100mJ/cm2以下を想定していると思われる。また、特許文献1では紫外線照射量のほか、次亜塩素酸ナトリウム注入量、すなわち遊離塩素濃度も不明である。さらに、これらの発明が“副生成物抑制”をポイントの一つに挙げていることから、一般的な遊離塩素濃度と同等、ないしはそれ以下と想定される。以上のことからして、従来の発明においては異臭味物質に代表される溶解性有機物の分解について改良しようとする発想を見出すことができない。
In the method of Patent Document 1 (Japanese Patent No. 4690976), in order to suppress the generation of by-products mainly for the purpose of disinfection, injection of sodium hypochlorite and ultraviolet rays are performed in three stages, the first stage, the middle stage, and the second stage. Irradiation is performed. However, the specifications of the ultraviolet lamp used in this method are not shown. No conditions concerning the amount of ultraviolet irradiation are described.
On the other hand, in Japanese Patent Application Laid-Open No. 2004-188273 cited in Patent Document 1, it is considered that the ultraviolet irradiation amount is assumed to be 100 mJ / cm 2 or less. In addition, in Patent Document 1, in addition to the amount of ultraviolet irradiation, the amount of sodium hypochlorite injected, that is, the concentration of free chlorine is unknown. Furthermore, since these inventions point to “suppression of by-products” as one of the points, it is assumed to be equal to or less than a general free chlorine concentration. From the above, in the conventional invention, the idea to improve the decomposition of the soluble organic substance represented by the off-flavor substance cannot be found.

他方、非特許文献1によれば、紫外線と次亜塩素酸の組み合わせは公知であることが判る。しかし、従来の処理方法においては、処理能力はさほど高くない。   On the other hand, according to Non-Patent Document 1, it can be seen that the combination of ultraviolet rays and hypochlorous acid is known. However, in the conventional processing method, the processing capability is not so high.

本発明が解決しようとする主たる課題は、浄水処理設備に設備コストの上昇を極力抑制しながら、異臭味物質に代表される溶解性有機物の分解処理効果の高い浄水の処理方法を提供することにある。   The main problem to be solved by the present invention is to provide a water purification treatment method that has a high decomposition effect of soluble organic substances typified by off-flavor substances while suppressing an increase in equipment cost as much as possible to the water purification treatment facility. is there.

この課題を解決するための本発明は、次の通りである。
〔請求項1記載の発明〕
導入された原水を、複数の池に順次流通させて、これら各池を流通する過程で原水に溶解している異臭味物質を浄水として処理する浄水水処理方法において、
被処理水に次亜塩素酸塩を添加後、中圧紫外線ランプを使用して、紫外線照射量を100〜200mJ/cm 2 の範囲とした紫外線照射処理を行い、
前記異臭味物質をpH5.8〜8.6の範囲で分解することを特徴とする浄水処理方法。
The present invention for solving this problem is as follows.
[Invention of Claim 1]
In the purified water treatment method in which the introduced raw water is sequentially distributed to a plurality of ponds, and the off-flavor substances dissolved in the raw water in the process of distributing each pond are treated as purified water.
After addition of hypochlorite to the water to be treated, using a medium pressure UV lamp, have rows ultraviolet irradiation treatment for the range of 100~200mJ / cm 2 ultraviolet irradiation amount,
A water purification method comprising decomposing the off-flavor substance in a pH range of 5.8 to 8.6 .

(作用効果)
本発明によると、浄水処理設備に設備コストの上昇を極力抑制しながら、異臭味物質の分解処理効果の高い浄水の処理が可能となる。以下、その理由などについて詳説する。
(Function and effect)
ADVANTAGE OF THE INVENTION According to this invention, the process of the purified water with the high decomposition effect of an off-flavor substance is attained, suppressing the raise of equipment cost to a purified water treatment equipment as much as possible. The reason will be described in detail below.

次亜塩素酸塩は水溶液中において、次亜塩素酸〔化学式:HClO〕、及び、次亜塩素酸イオン〔化学式:ClO-〕の形態で存在し、その比率は水溶液のpHに依存している。本発明では、下式に示すように紫外線と次亜塩素酸の組み合わせによる促進酸化プロセスを意図しているため、次亜塩素酸塩である限り、塩の種類が分解効率に基本的に影響を与えることはなく、したがって、次亜塩素酸ナトリウムのほかに次亜塩素酸カリウム、次亜塩素酸カルシウムなどを用いてもよい。以下において、次亜塩素酸ナトリウムの例について説明し、他の塩についての説明は省略する。
HClO + hν(紫外線) → ・OH + ・Cl
・OH + HClO → H2O + ・ClO
Hypochlorite is present in the form of hypochlorous acid [chemical formula: HClO] and hypochlorite ion [chemical formula: ClO ] in an aqueous solution, and the ratio depends on the pH of the aqueous solution. . In the present invention, as shown in the following formula, an accelerated oxidation process by a combination of ultraviolet rays and hypochlorous acid is intended, so as long as it is hypochlorite, the type of salt basically affects the decomposition efficiency. Therefore, potassium hypochlorite, calcium hypochlorite and the like may be used in addition to sodium hypochlorite. Hereinafter, examples of sodium hypochlorite will be described, and descriptions of other salts will be omitted.
HClO + hν (ultraviolet light) → ・ OH + ・ Cl
・ OH + HClO → H 2 O + ・ ClO

藻類に起因する異臭味物質の主なものに2−メチルイソボルネオール(以下2−MIBと略記する。)がある。
実験により、低圧紫外線ランプと中圧紫外線ランプの両方で次亜塩素酸ナトリウムと組み合わせた促進酸化プロセスの検討を行った。結果を図1に示す。紫外線照射量、遊離塩素濃度が同一であるにもかかわらず、低圧紫外線ランプを使用した系では2−MIB分解率が著しく低い値を示した。
2-Methylisoborneol (hereinafter abbreviated as 2-MIB) is a major off-flavor substance derived from algae.
Experiments have investigated an accelerated oxidation process combined with sodium hypochlorite in both low-pressure and medium-pressure ultraviolet lamps. The results are shown in FIG. In spite of the same UV irradiation amount and free chlorine concentration, the system using a low-pressure UV lamp showed a significantly low 2-MIB decomposition rate.

この結果は図2に示す波長分布の差に起因すると考えられ、この点からも低圧紫外線ランプに対して中圧紫外線ランプを使用するのが望ましい。すなわち、図2によれば、低圧紫外線ランプの場合においては、約254nmの単色紫外線を発生するのに対し、中圧紫外線ランプの場合には、少なくとも200nm〜300nmの広い範囲において、特に約240nm〜300nmの範囲において種々の波長の紫外線を出力するが故に、2−MIB分解率が高まるものと考えられる。   This result is considered to be caused by the difference in wavelength distribution shown in FIG. 2. From this point of view, it is desirable to use a medium pressure ultraviolet lamp for a low pressure ultraviolet lamp. That is, according to FIG. 2, in the case of a low-pressure ultraviolet lamp, a monochromatic ultraviolet ray of about 254 nm is generated, whereas in the case of a medium-pressure ultraviolet lamp, at least in a wide range of 200 nm to 300 nm, particularly about 240 nm to It is considered that the 2-MIB decomposition rate is increased because ultraviolet rays having various wavelengths are output in the range of 300 nm.

さらに、非特許文献2におけるFig3をそのまま引用する。添付の図6において次亜塩素酸を示すHOClと付記された各波長の紫外線吸収割合を示す波形線(実線グラフ)にみられるように、低圧紫外線ランプが発光する254nmにおいても紫外線吸収があるものの、240nm辺りが吸収のピークであり、また260nm以上でもある程度吸収がみられることから、広い波長で発光する中圧紫外線ランプの方がより効率的にヒドロキシラジカルを生成していると考えられる。特に本発明が好ましく適用できる低い遊離塩素濃度とする場合、紫外線ランプ種による効率の差が2−MIB分解率に対し大きな影響を示していると考えられる。
しかも、図6に示された、HOClの波長毎の紫外線吸収特性と、低圧、中圧紫外線ランプのスペクトル形状データのみから、当業者が、本発明が明らかにする低圧、中圧紫外線ランプ種の差が、結果として2−MIB分解率について数十ポイントの著しい差をもたらすことを予見することはできないと思われる。
Further, FIG. 3 in Non-Patent Document 2 is cited as it is. As shown in the waveform line (solid line graph) indicating the ultraviolet absorption ratio of each wavelength labeled as HOCl indicating hypochlorous acid in FIG. 6 attached, although there is ultraviolet absorption even at 254 nm where the low-pressure ultraviolet lamp emits light. Since the absorption peak is around 240 nm, and absorption is observed to some extent even at 260 nm or more, it is considered that the medium-pressure ultraviolet lamp that emits light at a wide wavelength more efficiently generates hydroxy radicals. In particular, in the case of a low free chlorine concentration to which the present invention can be preferably applied, it is considered that the difference in efficiency depending on the ultraviolet lamp species has a great influence on the 2-MIB decomposition rate.
Moreover, those skilled in the art can understand the low-pressure and medium-pressure ultraviolet lamp types disclosed by the present invention only from the ultraviolet absorption characteristics for each wavelength of HOCl shown in FIG. It cannot be predicted that the difference will result in a significant difference of tens of points for the 2-MIB degradation rate.

中圧紫外線ランプは低圧紫外線ランプと比べ、高出力かつコンパクトである。よって、必要紫外線照射量が低い耐塩素性原虫類対策を目的とする場合においても、中圧紫外線ランプを備えた装置は低圧紫外線ランプを備えた装置の1/3以下の設置面積となる。促進酸化プロセスに適用する場合、必要照射量が数倍となることから、この差はさらに大きくなる。例として、日量15万m3程度の浄水施設に適用した場合、低圧紫外線ランプを備えた装置では200本程度のランプが必要であるのに対し、中圧紫外線ランプを備えた装置では10本程度で対応が可能である。この結果、中圧紫外線ランプを備えた装置は1/10程度の設置面積となり、ランプ交換等、維持管理性の点でも圧倒的に優位となる。 Medium pressure UV lamps are more powerful and compact than low pressure UV lamps. Therefore, even when aiming at countermeasures against chlorine-resistant protozoa with a low necessary UV irradiation amount, the apparatus equipped with the medium-pressure ultraviolet lamp has an installation area of 1/3 or less of the apparatus equipped with the low-pressure ultraviolet lamp. When applied to the accelerated oxidation process, this difference is even greater because the required dose is several times higher. As an example, when applied to a water purification facility with a daily volume of about 150,000 m 3 , an apparatus with a low-pressure ultraviolet lamp requires about 200 lamps, whereas an apparatus with an intermediate-pressure ultraviolet lamp has 10 lamps. It is possible to respond to the degree. As a result, the apparatus equipped with the medium-pressure ultraviolet lamp has an installation area of about 1/10, which is overwhelmingly superior in terms of maintenance and management such as lamp replacement.

他方で、図4に、紫外線単独照射(次亜塩素酸ナトリウム等の薬剤を添加しない条件)における紫外線照射量と2−MIB分解率の相関を示す。500mJ/cm2を超える照射でも2−MIBは全く分解されておらず、紫外線単独での分解能は極めて低いことが確認された。したがって、わずかな濃度であっても、次亜塩素酸ナトリウム併用が重要であることが判る。
また、本発明者らによる図3に示す結果によれば、紫外線照射量と2−MIB分解効果に正の相関関係がある。紫外線照射量が50mJ/cm 2 以下の条件では2−MIB分解効果が不十分であることから、少なくとも紫外線照射量は100mJ/cm 2 以上が望ましいことが判る。一方、対象水質によっては、紫外線照射量とある種の副生成物生成量とは、正の相関があるため、紫外線照射量を適正な値に設定する必要がある。図5に遊離塩素1.0mg/Lの条件における、紫外線照射量と臭素酸生成濃度の関係を示す。臭化物イオン濃度が0.01mg/L未満の条件では、紫外線照射量に関わらず、臭素酸生成は見られなかった。これに対し、臭化物イオンを0.5mg/Lに調整した系では、紫外線照射量500mJ/cm 2 において、臭素酸生成が確認された。ただし、この臭化物イオン0.5mg/Lという値は一般的な浄水施設で見られる値ではなく、また、生成した臭素酸も水質基準(0.01mg/L)以下である。以上のように、2−MIB分解能力と、副生成物抑制の両方を満足するためには、図3、図5の結果からして、紫外線照射量の設定範囲は100〜200mJ/cm 2 とすることが適当である。
さらに、被処理水に次亜塩素酸塩を添加後、中圧紫外線ランプを使用して、紫外線照射量を100〜200mJ/cm 2 の範囲とすることにより、一般的な浄水処理において想定される中性域においては、異臭味物質の分解率を40%以上とすることができ、pHが5.8〜8.6の広い範囲においても、異臭味物質の高い分解率を維持することができる。
On the other hand, FIG. 4 shows the correlation between the ultraviolet irradiation amount and the 2-MIB decomposition rate in ultraviolet irradiation alone (conditions in which a chemical such as sodium hypochlorite is not added). Even with irradiation exceeding 500 mJ / cm 2 , 2-MIB was not decomposed at all, and it was confirmed that the resolution of ultraviolet rays alone was extremely low. Therefore, it can be seen that sodium hypochlorite is important even at a slight concentration.
Further, according to the results shown in FIG. 3 by the present inventors, there is a positive correlation between the ultraviolet irradiation amount and the 2-MIB decomposition effect. Since the 2-MIB decomposition effect is insufficient under the condition that the ultraviolet irradiation amount is 50 mJ / cm 2 or less, it can be seen that at least the ultraviolet irradiation amount is preferably 100 mJ / cm 2 or more. On the other hand, depending on the target water quality, there is a positive correlation between the amount of ultraviolet irradiation and the amount of certain by-products produced, so it is necessary to set the amount of ultraviolet irradiation to an appropriate value. FIG. 5 shows the relationship between the ultraviolet irradiation amount and the bromic acid production concentration under the condition of 1.0 mg / L of free chlorine. Under conditions where the bromide ion concentration was less than 0.01 mg / L, no bromic acid was produced regardless of the amount of UV irradiation. On the other hand, in a system in which bromide ions were adjusted to 0.5 mg / L , bromic acid production was confirmed at an ultraviolet irradiation amount of 500 mJ / cm 2 . However, this bromide ion value of 0.5 mg / L is not a value found in general water purification facilities, and the brominated acid produced is below the water quality standard (0.01 mg / L). As described above, in order to satisfy both the 2-MIB decomposition ability and the by-product suppression, the setting range of the ultraviolet irradiation amount is 100 to 200 mJ / cm 2 based on the results of FIGS. It is appropriate to do.
Furthermore, after adding hypochlorite to the water to be treated, it is assumed in general water purification treatment by using a medium-pressure ultraviolet lamp and setting the ultraviolet irradiation amount to a range of 100 to 200 mJ / cm 2. In the neutral range, the decomposition rate of off-flavor substances can be made 40% or higher, and the high decomposition rate of off-flavor substances can be maintained even in a wide pH range of 5.8 to 8.6. .

〔請求項2記載の発明〕
前記異臭味物質が、2−メチルイソボルネオールまたはジェオスミンである請求項1に記載の浄水処理方法。
[Invention of Claim 2]
The water purification method according to claim 1, wherein the off-flavor substance is 2-methylisoborneol or geosmin.

(作用効果)
異臭味物質が、2−メチルイソボルネオールまたはジェオスミンであるので、中性域及びpHが5.8〜8.6の広い範囲において、異臭味物質のより高い分解率を維持することができる。
(Function and effect)
Since the off-flavor substance is 2-methylisoborneol or geosmin, a higher decomposition rate of the off-flavor substance can be maintained in a neutral range and a wide range of pH from 5.8 to 8.6.

〔請求項3記載の発明〕
次亜塩素酸塩の添加により、遊離塩素濃度0.5〜1.0mg/Lの範囲とする請求項1または2に記載の浄水処理方法。
[Invention of Claim 3]
The water purification method according to claim 1 or 2, wherein a free chlorine concentration is in a range of 0.5 to 1.0 mg / L by addition of hypochlorite.

(作用効果)
前述のように、図3により、遊離塩素濃度と2−MIB分解効果に正の相関関係がある。しかし、遊離塩素濃度と一部の副生成物生成量にも正の相関があるため、複合的に検討し、遊離塩素濃度を設定する必要がある。図3などの実験結果より、紫外線照射量を適正な値に保つことで、遊離塩素濃度が2.0mg/L以下の条件では副生成物の生成は無視できる水準である。一方で、遊離塩素濃度は給水栓末端で0.1mg/L以上を確保することが水質基準で示されており、上限値の制約はないが、おいしい水の要件として0.4mg/Lという数値が定められており、この数値に近づけることが望ましい。以上より、後塩素での残留塩素濃度制御を安定的に行うために、遊離塩素濃度は0.1〜1.0mg/Lの範囲であることが望ましい。
(Function and effect)
As described above, according to FIG. 3, there is a positive correlation between the free chlorine concentration and the 2-MIB decomposition effect. However, since there is a positive correlation between the free chlorine concentration and the amount of some by-products produced, it is necessary to consider the compound and set the free chlorine concentration. From the experimental results shown in FIG. 3 and the like, the production of by-products is negligible under the condition that the free chlorine concentration is 2.0 mg / L or less by keeping the UV irradiation amount at an appropriate value. On the other hand, the free chlorine concentration has been shown by water quality standards to ensure 0.1 mg / L or more at the end of the faucet, and there is no upper limit restriction, but the value of 0.4 mg / L as a requirement for delicious water It is desirable to approximate this value. From the above, in order to stably control the residual chlorine concentration in the post-chlorine, it is desirable that the free chlorine concentration is in the range of 0.1 to 1.0 mg / L.

〔請求項4記載の発明〕
前記紫外線の照射装置を沈殿槽とろ過池の間に設置することを請求項1〜3のいずれか1項に記載の浄水処理方法。
[Invention of Claim 4]
The water purification method according to any one of claims 1 to 3, wherein the ultraviolet irradiation device is installed between a precipitation tank and a filtration basin.

(作用効果)
紫外線処理は被処理水の紫外線透過率が高い程、高い効果を発揮することから、ろ過池後段に設置することが一般的である。一方で、ろ過池の次には通常塩素混和池があり、残留塩素濃度を厳密に管理し、配水している。当該プロセスでは次亜塩素酸ナトリウムを添加する操作を含むことから、ろ過池後段に設置した場合、塩素混和池における残留塩素濃度制御を複雑にすることが懸念される。これより、ろ過池後段を除き、最も紫外線透過率が高いことが期待できる沈殿槽とろ過池の中間に設置することが、分解効率と残留塩素濃度管理の両方を満足させるプロセスとして適当である。
(Function and effect)
Since the higher the UV transmittance of the water to be treated, the higher the UV treatment, the higher the effect, the more generally it is installed downstream of the filter basin. On the other hand, next to the filtration basin, there is usually a chlorine-mixing basin where the residual chlorine concentration is strictly controlled and distributed. Since the process includes an operation of adding sodium hypochlorite, there is a concern that the residual chlorine concentration control in the chlorine-mixing basin may be complicated when installed in the latter stage of the filtration basin. Therefore, except for the latter stage of the filtration basin, it is appropriate to install it between the sedimentation tank and the filtration basin, which can be expected to have the highest ultraviolet transmittance, as a process that satisfies both decomposition efficiency and residual chlorine concentration control.

〔請求項5記載の発明〕
紫外線照射装置の直前において、遊離塩素濃度0.5〜1.0mg/Lの範囲に調整する請求項4に記載の浄水処理方法。
[Invention of Claim 5]
The water purification method according to claim 4, wherein the concentration of free chlorine is adjusted to a range of 0.5 to 1.0 mg / L immediately before the ultraviolet irradiation device.

〔請求項6記載の発明〕
紫外線照射装置前段に連続式遊離塩素濃度測定機器を設ける請求項5に記載の浄水処理方法。
[Invention of Claim 6]
The water purification method according to claim 5, wherein a continuous free chlorine concentration measuring device is provided upstream of the ultraviolet irradiation device.

(作用効果)
有機物等の共存下で遊離塩素を添加した場合、トリハロメタンが生成する虞れがある。遊離塩素濃度が高いほど、また、有機物と遊離塩素との接触時間が長いほど、トリハロメタンの生成リスクが高まることから、当該プロセス用の遊離塩素濃度調整は極力紫外線照射装置の直前とすることが適当である。また、遊離塩素濃度の調整を適切に行うために、連続式の遊離塩素濃度計を紫外線照射装置前段に設置することが望ましい。
(Function and effect)
When free chlorine is added in the presence of organic substances, trihalomethane may be generated. The higher the free chlorine concentration and the longer the contact time between organic substances and free chlorine, the higher the risk of trihalomethane formation. Therefore, it is appropriate to adjust the free chlorine concentration for the process immediately before the UV irradiation equipment. It is. In order to appropriately adjust the free chlorine concentration, it is desirable to install a continuous free chlorine concentration meter in front of the ultraviolet irradiation device.

本発明によると、浄水処理設備に設備コストの上昇を極力抑制しながら、異臭味物質の分解処理効果の高い浄水の処理方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the processing method of the purified water with the high decomposition effect of an off-flavor substance can be provided, suppressing the raise of an installation cost as much as possible to a purified water treatment facility.

実験結果を示す説明図である。It is explanatory drawing which shows an experimental result. ランプが発生する波長スペクトル線である。It is a wavelength spectrum line generated by the lamp. 実験結果を示す説明図である。It is explanatory drawing which shows an experimental result. 実験結果を示す説明図である。It is explanatory drawing which shows an experimental result. 実験結果を示す説明図である。It is explanatory drawing which shows an experimental result. 吸収特性のグラフである。It is a graph of an absorption characteristic. 他の物質の分解効率を示す説明図である。It is explanatory drawing which shows the decomposition | disassembly efficiency of another substance. 従来の処理フロー例の概要図である。It is a schematic diagram of the example of the conventional processing flow. 本発明の処理フロー例の概要図である。It is a schematic diagram of the example of a processing flow of the present invention. 実験結果を示す説明図である。It is explanatory drawing which shows an experimental result.

次に、本発明の実施の形態を説明する。   Next, an embodiment of the present invention will be described.

浄水方法としては、原水水質、浄水水質の管理目標、浄水施設の規模、運転制御及び維持管理技術の管理水準などにより、消毒のみの方式、緩速濾過方式、急速濾過方式、膜濾過方式、あるいはこれらに高度浄水処理を組み合わせたものを使用できる。特に、緩速濾過方式又は急速濾過方式に対し、本発明の次亜塩素酸ナトリウム添加、中圧紫外線ランプを使用した紫外線照射を好適に適用できる。   Water purification methods include raw water quality, purified water quality management goals, water purification facility scale, operational control and maintenance technology management level, etc., disinfection only method, slow filtration method, rapid filtration method, membrane filtration method, or What combined these with advanced water treatment can be used. In particular, ultraviolet irradiation using a sodium hypochlorite-added, medium-pressure ultraviolet lamp according to the present invention can be suitably applied to a slow filtration system or a rapid filtration system.

急速濾過方式に本発明法を適用した例について説明する。図8は急速濾過方式の代表例を示したものであり、原水10を着水井11に取込み、その後、凝集沈殿池12に移行させ、適宜の薬品を加えて凝集沈殿処理する。さらに、急速濾過池13において濾過処理し、後塩素33を添加し浄水池14に貯留し、送水施設15に送り、最終的にエンドユーザーに配水するものである。前塩素31、及び中間塩素32は流入水質等の条件に応じ、添加の有無、及び添加量が判断される。   An example in which the method of the present invention is applied to a rapid filtration method will be described. FIG. 8 shows a typical example of the rapid filtration method. The raw water 10 is taken into the landing well 11 and then transferred to the coagulation sedimentation basin 12, and an appropriate chemical is added to perform coagulation sedimentation treatment. Furthermore, it filters in the rapid filtration basin 13, adds the post-chlorine 33, stores it in the clean water reservoir 14, sends it to the water supply facility 15, and finally distributes it to the end user. Pre-chlorine 31 and intermediate chlorine 32 are determined whether or not they are added and the amount of addition according to conditions such as influent water quality.

本発明においては、図9に示すように、たとえば凝集沈殿池12と(急速)濾過池13との間に、次亜塩素酸塩添加手段21、及び中圧紫外線ランプを使用した紫外線照射手段22を設ける。   In the present invention, as shown in FIG. 9, for example, a hypochlorite addition means 21 and an ultraviolet irradiation means 22 using a medium pressure ultraviolet lamp between the coagulation sedimentation basin 12 and the (rapid) filtration basin 13. Is provided.

そして、被処理水に次亜塩素酸塩添加手段21により次亜塩素酸ナトリウムを添加した後、点灯時の水銀蒸気圧が40〜400kPaの中圧紫外線ランプを使用した紫外線照射手段22により紫外線照射処理する。
この場合において、紫外線照射量としては100〜200mJ/cm2の範囲とするのが望ましい。
Then, sodium hypochlorite is added to the water to be treated by means of hypochlorite addition means 21, and then ultraviolet irradiation is performed by means of ultraviolet irradiation means 22 using a medium-pressure ultraviolet lamp having a mercury vapor pressure of 40 to 400 kPa during lighting. To process.
In this case, the amount of ultraviolet irradiation is preferably in the range of 100 to 200 mJ / cm 2 .

また、次亜塩素酸ナトリウムの添加により、好適には紫外線照射手段22の直前において遊離塩素濃度を、0.5〜1.0mg/Lの範囲とするのが好ましい。この場合において、主に遊離塩素濃度の調整には、被処理水量に対する次亜塩素酸ナトリウムの添加量を調整することにより行なうことができる。さらに、紫外線照射手段22の直前に連続式遊離塩素濃度測定器23を設け、その測定信号に基づき次亜塩素酸塩添加手段21による次亜塩素酸ナトリウム添加量を調節することができる。   Further, by adding sodium hypochlorite, the free chlorine concentration is preferably in the range of 0.5 to 1.0 mg / L immediately before the ultraviolet irradiation means 22. In this case, the free chlorine concentration can be mainly adjusted by adjusting the amount of sodium hypochlorite added to the amount of water to be treated. Further, a continuous free chlorine concentration measuring device 23 is provided immediately before the ultraviolet irradiation means 22, and the amount of sodium hypochlorite added by the hypochlorite adding means 21 can be adjusted based on the measurement signal.

本発明によれば、図1〜図5に示した結果からも処理効果の高い浄水の処理方法であることが明らかであろう。   According to the present invention, it will be apparent from the results shown in FIGS. 1 to 5 that the water treatment method has a high treatment effect.

本発明方法は、日本における浄水施設に好適に適用できる。すなわち、日本においては、浄水処理での水道水のpH範囲は5.8〜8.6であり、90%以上が6.7以上の範囲にある。
図10は、紫外線と次亜塩素酸ナトリウムを組み合わせた促進酸化プロセスの pH5、7、9における2−MIBの分解率を示した実験結果である。図10の結果からして、一般的な浄水処理において想定される中性域、すなわちpH7においても分解率は40%を示しており、紫外線照射量等の条件を最適化することにより、pHが5.8〜8.6の範囲において、十分実用に足る異臭味物質等の分解効率の水準であることが確認された。
なお、実験は浄水場の沈殿池流出部から採取した水を用いて行なったものである。採取した水のpHは7.2〜7.5の範囲であったため、実験においては硫酸及び水酸化ナトリウムを用い、該当のpHに調整した後、促進酸化に供したものである。
The method of the present invention can be suitably applied to water purification facilities in Japan. That is, in Japan, the pH range of tap water in water purification treatment is 5.8 to 8.6, and 90% or more is in the range of 6.7 or more.
FIG. 10 shows the experimental results showing the degradation rate of 2-MIB at pH 5, 7, and 9 in the accelerated oxidation process combining ultraviolet rays and sodium hypochlorite. From the results shown in FIG. 10, the degradation rate is 40% even in the neutral range assumed in general water purification treatment, that is, pH 7, and by optimizing the conditions such as the amount of ultraviolet irradiation, the pH is reduced. In the range of 5.8 to 8.6, it was confirmed that the decomposition efficiency level of the off-flavor substances and the like that are sufficiently practical was sufficient.
The experiment was conducted using water collected from the settling basin outflow part of the water treatment plant. Since the pH of the collected water was in the range of 7.2 to 7.5, in the experiment, sulfuric acid and sodium hydroxide were used to adjust to the corresponding pH, and then subjected to accelerated oxidation.

前述の非特許文献1及び2では、酸性域のpHでないと、促進酸化効果が低いことなどを開示している。図10が示すpHが低いほど、分解能が高いという結果は、非特許文献1、2の開示内容と一致した。他方、図10の結果は、中性域において、十分実用に足る異臭味物質等の分解効率の水準であることも併せて示している。   Non-Patent Documents 1 and 2 described above disclose that the accelerated oxidation effect is low unless the pH is in the acidic range. The result that the resolution is higher as the pH shown in FIG. 10 is lower is consistent with the disclosure content of Non-Patent Documents 1 and 2. On the other hand, the result of FIG. 10 also shows that the level of decomposition efficiency of off-flavor substances and the like that are sufficiently practical in the neutral range.

かくして、本発明は、非特許文献1、2が示す実験室レベルの装置下での特性や傾向の探知を超えて、現実の浄水施設において異臭味物質等の分解を主たる目的とし、多くの浄水施設で用いられている次亜塩素酸塩を酸化剤として採用しつつ、中圧紫外線ランプを使用した紫外線照射処理を行なえば、中性域において実用上十分な異臭味物質等の分解能力を示すものであることが判った、ことに依拠しているのである。   Thus, the present invention goes beyond the detection of characteristics and trends under laboratory-level devices shown in Non-Patent Documents 1 and 2, mainly for the decomposition of off-flavor substances, etc. in actual water purification facilities. If the hypochlorite used in the facility is used as an oxidant and UV irradiation treatment using a medium-pressure UV lamp is performed, it will have a practically sufficient ability to decompose off-flavor substances in the neutral range. It depends on what has proved to be.

上記例は、2−MIBの分解例であるが、本発明は、図7に示すように、ジェオスミン、1,4ジオキンサン、総THMあるいは農薬類(代表例としてシマジンを示している)についても、高い分解効率を示すものである。   The above example is an example of decomposition of 2-MIB. However, as shown in FIG. 7, the present invention is also about geosmin, 1,4diokinsan, total THM or agricultural chemicals (simazine is shown as a representative example). It shows high decomposition efficiency.

10…原水、11…着水井、12…凝集沈殿池、13…(急速)濾過池、14…浄水池、15…送水施設、21…次亜塩素酸塩添加手段、22…紫外線照射手段、23…連続式遊離塩素濃度測定器、31,32,33…塩素 DESCRIPTION OF SYMBOLS 10 ... Raw water, 11 ... Landing well, 12 ... Coagulation sedimentation basin, 13 ... (rapid) filtration basin, 14 ... Purification pond, 15 ... Water supply facility, 21 ... Hypochlorite addition means, 22 ... Ultraviolet irradiation means, 23 ... Continuous free chlorine concentration measuring device, 31, 32, 33 ... Chlorine

Claims (6)

導入された原水を、複数の池に順次流通させて、これら各池を流通する過程で原水に溶解している異臭味物質を浄水として処理する浄水水処理方法において、
被処理水に次亜塩素酸塩を添加後、中圧紫外線ランプを使用して、紫外線照射量を100〜200mJ/cm 2 の範囲とした紫外線照射処理を行い、
前記異臭味物質をpH5.8〜8.6の範囲で分解することを特徴とする浄水処理方法。
In the purified water treatment method in which the introduced raw water is sequentially distributed to a plurality of ponds, and the off-flavor substances dissolved in the raw water in the process of distributing each pond are treated as purified water.
After addition of hypochlorite to the water to be treated, using a medium pressure UV lamp, have rows ultraviolet irradiation treatment for the range of 100~200mJ / cm 2 ultraviolet irradiation amount,
A water purification method comprising decomposing the off-flavor substance in a pH range of 5.8 to 8.6 .
前記異臭味物質が、2−メチルイソボルネオールまたはジェオスミンである請求項1に記載の浄水処理方法。The water purification method according to claim 1, wherein the off-flavor substance is 2-methylisoborneol or geosmin. 次亜塩素酸塩の添加により、遊離塩素濃度0.5〜1.0mg/Lの範囲とする請求項1または2に記載の浄水処理方法。   The water purification method according to claim 1 or 2, wherein a free chlorine concentration is in a range of 0.5 to 1.0 mg / L by addition of hypochlorite. 前記紫外線の照射装置を沈殿槽とろ過池の間に設置することを請求項1〜3のいずれか1項に記載の浄水処理方法。   The water purification method according to any one of claims 1 to 3, wherein the ultraviolet irradiation device is installed between a precipitation tank and a filtration basin. 紫外線照射装置の直前において、遊離塩素濃度0.5〜1.0mg/Lの範囲に調整する請求項4に記載の浄水処理方法。   The water purification method according to claim 4, wherein the concentration of free chlorine is adjusted to a range of 0.5 to 1.0 mg / L immediately before the ultraviolet irradiation device. 紫外線照射装置前段に連続式遊離塩素濃度測定機器を設ける請求項5に記載の浄水処理方法。   The water purification method according to claim 5, wherein a continuous free chlorine concentration measuring device is provided upstream of the ultraviolet irradiation device.
JP2012094144A 2012-04-17 2012-04-17 Water treatment method Active JP5752636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094144A JP5752636B2 (en) 2012-04-17 2012-04-17 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012094144A JP5752636B2 (en) 2012-04-17 2012-04-17 Water treatment method

Publications (2)

Publication Number Publication Date
JP2013220395A JP2013220395A (en) 2013-10-28
JP5752636B2 true JP5752636B2 (en) 2015-07-22

Family

ID=49591768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094144A Active JP5752636B2 (en) 2012-04-17 2012-04-17 Water treatment method

Country Status (1)

Country Link
JP (1) JP5752636B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999782B2 (en) * 2014-09-17 2016-09-28 月島機械株式会社 Treatment method and facilities in water treatment plant
CN107244729B (en) * 2017-05-23 2021-01-26 清华大学 Method for controlling generation of halogen-containing by-products in drinking water treatment
CN107840499B (en) * 2017-10-31 2023-11-10 上海市政工程设计研究总院(集团)有限公司 Combined treatment device for reuse water of water works and water treatment process of combined treatment device
CN115849583B (en) * 2022-12-21 2023-05-26 同济大学 System for removing algae and inhibiting odor of raw water by coupling mixed chlorine, micro-nano aeration and ultraviolet LED

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154486A (en) * 1991-12-03 1993-06-22 Japan Carlit Co Ltd:The Equipment for measuring chlorine demand
US6565803B1 (en) * 1998-05-13 2003-05-20 Calgon Carbon Corporation Method for the inactivation of cryptosporidium parvum using ultraviolet light
JP4598643B2 (en) * 2005-10-05 2010-12-15 オルガノ株式会社 Water purification system and water purification method
JP2007319816A (en) * 2006-06-02 2007-12-13 Japan Organo Co Ltd Water treatment apparatus and water treatment method
JP4690976B2 (en) * 2006-09-08 2011-06-01 株式会社東芝 Water treatment system and water treatment method
JP4815426B2 (en) * 2007-12-19 2011-11-16 株式会社日立製作所 UV water treatment equipment
TWI478875B (en) * 2008-01-31 2015-04-01 Solvay Process for degrading organic substances in an aqueous composition

Also Published As

Publication number Publication date
JP2013220395A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
Sgroi et al. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation
Zhang et al. Degradation of cyclophosphamide and 5-fluorouracil in water using UV and UV/H2O2: Kinetics investigation, pathways and energetic analysis
Wang et al. Degradation of nitrilotris-methylenephosphonic acid (NTMP) antiscalant via persulfate photolysis: Implications on desalination concentrate treatment
Zhang et al. UV/chlorine process for ammonia removal and disinfection by-product reduction: comparison with chlorination
Wang et al. Photodegradation of humic acids in the presence of hydrogen peroxide
Xu et al. 2-Phosphonobutane-1, 2, 4-tricarboxylic acid (PBTCA) degradation by ozonation: Kinetics, phosphorus transformation, anti-precipitation property changes and phosphorus removal
Sgroi et al. N-nitrosodimethylamine (NDMA) formation at an indirect potable reuse facility
Umar et al. Recent advancements in the treatment of municipal wastewater reverse osmosis concentrate—an overview
Huang et al. UV/chlorine oxidation of the phosphonate antiscalant 1-Hydroxyethane-1, 1-diphosphonic acid (HEDP) used for reverse osmosis processes: Organic phosphorus removal and scale inhibition properties changes
Xiao et al. Pilot study on bromate reduction from drinking water by UV/sulfite systems: economic cost comparisons, effects of environmental parameters and mechanisms
US8877067B2 (en) Method and arrangement for a water treatment
De Laat et al. UV/Chlorine process
Ye et al. The fate and transformation of iodine species in UV irradiation and UV-based advanced oxidation processes
Alayande et al. Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination
Wang et al. Ultrafast oxidation of emerging contaminants by novel VUV/Fe2+/PS process at wide pH range: performance and mechanism
JP5752636B2 (en) Water treatment method
WO2013102512A1 (en) Method and arrangement for a water treatment
Tawabini et al. Bromate control in phenol-contaminated water treated by UV and ozone processes
Zhao et al. Making waves: Opportunities and challenges of applying far-UVC radiation in controlling micropollutants in water
Bustos-Terrones et al. Degradation of organic matter from wastewater using advanced primary treatment by O3 and O3/UV in a pilot plant
JP5609174B2 (en) Water treatment system
Pan et al. Degradation of 2, 6-dichloro-1, 4-benzoquinone by UV/H2O2/O3 treatment: effectiveness, water matrix effects, and degradation mechanism
Saha et al. Advanced oxidation processes for removal of organics from cooling tower blowdown: efficiencies and evaluation of chlorinated species
Huang et al. Comparison of UV and UV/chlorine system on degradation of 2, 4-diaminobutyric acid and formation of disinfection byproducts in subsequent chlorination
Hu et al. Enhanced degradation of emerging contaminants by Far-UVC photolysis of peracetic acid: Synergistic effect and mechanisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5752636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350