JP5999273B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5999273B2
JP5999273B2 JP2015542459A JP2015542459A JP5999273B2 JP 5999273 B2 JP5999273 B2 JP 5999273B2 JP 2015542459 A JP2015542459 A JP 2015542459A JP 2015542459 A JP2015542459 A JP 2015542459A JP 5999273 B2 JP5999273 B2 JP 5999273B2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
temperature
water
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015542459A
Other languages
Japanese (ja)
Other versions
JPWO2015056333A1 (en
Inventor
啓輔 高山
啓輔 高山
森下 国博
国博 森下
徹 小出
徹 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5999273B2 publication Critical patent/JP5999273B2/en
Publication of JPWO2015056333A1 publication Critical patent/JPWO2015056333A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/196Automatically filling bathtubs or pools; Reheating the water in bathtubs or pools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/325Control of valves of by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/39Control of valves for distributing refrigerant to different evaporators or condensers in heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、凝縮器で熱媒体を加熱する冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus that heats a heat medium with a condenser.

下記特許文献1には、圧縮機、四方弁、水熱交換器(凝縮器)、減圧装置および空気熱交換器(蒸発器)を冷媒配管を介して接続した冷凍サイクル回路と、ポンプ、水熱交換器および貯湯タンクを水配管を介して接続した水回路とを具備し、冷凍サイクル回路の水熱交換器で加熱した湯を貯湯タンク内に貯めるヒートポンプ式給湯機において、冷凍サイクル回路の冷媒としてR410AまたはR407Cを用いるものが開示されている。   Patent Document 1 below discloses a refrigeration cycle circuit in which a compressor, a four-way valve, a water heat exchanger (condenser), a pressure reducing device, and an air heat exchanger (evaporator) are connected via a refrigerant pipe, a pump, and water heat In a heat pump type hot water supply apparatus having a water circuit in which an exchanger and a hot water storage tank are connected via a water pipe and storing hot water heated by a hydrothermal exchanger of the refrigeration cycle circuit in the hot water storage tank, as a refrigerant of the refrigeration cycle circuit The one using R410A or R407C is disclosed.

R410A冷媒を使用する空調機の場合、高圧側の設計圧力は例えば4.25MPaであり、飽和温度に換算すると約65℃である。なお、本明細書における圧力の記載はすべて絶対圧とする。給湯機の冷凍サイクルにR410A冷媒を用いる場合に、圧縮機および熱交換器などの部品を空調機と共通化するには、設計圧力を空調機と同じ4.25MPaにする必要がある。   In the case of an air conditioner using R410A refrigerant, the design pressure on the high pressure side is, for example, 4.25 MPa, and is approximately 65 ° C. when converted to the saturation temperature. In addition, all the pressure descriptions in this specification are absolute pressures. When the R410A refrigerant is used in the refrigeration cycle of the water heater, the design pressure needs to be 4.25 MPa, the same as that of the air conditioner, in order to share the components such as the compressor and the heat exchanger with the air conditioner.

特許文献1では、R410A冷媒を用いる場合に、凝縮圧力を4.75MPa、飽和温度を約70℃、入水温度を5℃とした場合に、出湯温度が約85℃になるとしている。一方、前述のように空調機の設計圧力である4.25MPaを上限とすると、飽和温度は約65℃、出湯温度は約80℃となる。このとき、凝縮器出口の冷媒温度を10℃としている。   In Patent Document 1, when the R410A refrigerant is used, when the condensing pressure is 4.75 MPa, the saturation temperature is about 70 ° C., and the incoming water temperature is 5 ° C., the tapping temperature is about 85 ° C. On the other hand, when the upper limit is 4.25 MPa, which is the design pressure of the air conditioner as described above, the saturation temperature is about 65 ° C. and the tapping temperature is about 80 ° C. At this time, the refrigerant temperature at the condenser outlet is set to 10 ° C.

日本特開2002−89958号公報Japanese Unexamined Patent Publication No. 2002-89958 日本特開2002−310498号公報Japanese Unexamined Patent Publication No. 2002-310498 日本特開2007−232285号公報Japanese Unexamined Patent Publication No. 2007-232285 日本特開2013−44441号公報Japanese Unexamined Patent Publication No. 2013-44441 日本特開2009−222246号公報Japanese Unexamined Patent Publication No. 2009-222246 日本特開2010−14374号公報Japanese Unexamined Patent Publication No. 2010-14374 日本特開2001−82818号公報Japanese Unexamined Patent Publication No. 2001-82818

ヒートポンプ式給湯機の凝縮器の入水温度は、通常は外気温度と同程度である。しかしながら、貯湯タンクで放熱して温度低下した湯を再加熱する場合、または、浴槽水を加熱する熱交換器に凝縮器で加熱された湯を循環させる場合などには、入水温度が50℃程度またはそれ以上に高くなる。凝縮器の冷媒飽和温度の上限が約65℃であるとすると、入水温度が高い場合には、凝縮器出口の冷媒が気液二相状態またはガス状態となる。凝縮器出口の冷媒が気液二相状態またはガス状態になると、凝縮器内の冷媒の平均流速が高くなり、冷媒の圧力損失が大きくなる。その圧力損失により冷媒の温度が降下することで、冷媒温度が入水温度より低くなる部分が凝縮器内に生じる場合がある。その場合、冷媒温度が水温より低い部分では水が冷媒に熱を奪われることになるため、凝縮器で水を加熱する効率が悪くなる。   The incoming water temperature of the condenser of the heat pump type hot water heater is usually the same as the outside air temperature. However, when reheating hot water whose temperature has dropped due to heat dissipation in a hot water storage tank, or when circulating hot water heated by a condenser in a heat exchanger that heats bath water, the incoming water temperature is about 50 ° C. Or higher than that. Assuming that the upper limit of the refrigerant saturation temperature of the condenser is about 65 ° C., the refrigerant at the outlet of the condenser is in a gas-liquid two-phase state or a gas state when the incoming water temperature is high. When the refrigerant at the outlet of the condenser is in a gas-liquid two-phase state or a gas state, the average flow velocity of the refrigerant in the condenser increases, and the pressure loss of the refrigerant increases. Due to the pressure drop due to the pressure loss, a portion where the refrigerant temperature is lower than the incoming water temperature may occur in the condenser. In that case, since the water is deprived of heat by the refrigerant at a portion where the refrigerant temperature is lower than the water temperature, the efficiency of heating the water with the condenser is deteriorated.

本発明は、上述のような課題を解決するためになされたもので、加熱前の熱媒体の温度が高い場合に、凝縮器で冷媒が熱媒体から加熱されることを抑制することのできる冷凍サイクル装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. When the temperature of the heat medium before heating is high, the refrigeration capable of suppressing the refrigerant from being heated from the heat medium by the condenser. An object is to provide a cycle device.

本発明の冷凍サイクル装置は、冷媒を圧縮する圧縮機と、冷媒流路および熱媒体流路を有し、圧縮機で圧縮された冷媒を凝縮させる第1凝縮器と、第1凝縮器の冷媒流路より断面積が小さい冷媒流路と、熱媒体流路とを有し、第1凝縮器を通過した冷媒を更に凝縮させる第2凝縮器と、冷媒を蒸発させる蒸発器と、冷媒と熱交換する液状の熱媒体を第2凝縮器と第1凝縮器とにこの順に通過させる熱媒体経路と、第2凝縮器の冷媒流路または熱媒体流路をバイパスする第2凝縮器バイパス通路と、第2凝縮器バイパス通路を通る冷媒または熱媒体の流量であるバイパス量を可変にする流路制御要素と、冷媒と熱交換する前の熱媒体の温度である入り熱媒体温度が基準温度に対して高い場合のバイパス量が、入り熱媒体温度が基準温度に対して低い場合のバイパス量に比べて大きくなるように、流路制御要素の動作を制御する制御手段と、を備え、冷媒または熱媒体の全流量のうち第2凝縮器バイパス通路を通る割合をバイパス率とし、制御手段は、入り熱媒体温度が第1基準温度に対して低い場合にはバイパス率を0%とし、入り熱媒体温度が第1基準温度より高い第2基準温度に対して高い場合にはバイパス率を100%とし、入り熱媒体温度が第1基準温度と第2基準温度との間にある場合には入り熱媒体温度が高くなるにつれてバイパス率が連続的または段階的に高くなるように、流路制御要素の動作を制御するものである。

The refrigeration cycle apparatus of the present invention includes a compressor that compresses a refrigerant, a refrigerant channel and a heat medium channel, a first condenser that condenses the refrigerant compressed by the compressor, and a refrigerant of the first condenser. A refrigerant flow path having a smaller cross-sectional area than the flow path and a heat medium flow path, a second condenser for further condensing the refrigerant that has passed through the first condenser, an evaporator for evaporating the refrigerant, a refrigerant and heat A heat medium path for allowing the liquid heat medium to be exchanged to pass through the second condenser and the first condenser in this order; a second condenser bypass path for bypassing the refrigerant flow path or the heat medium flow path of the second condenser; , A flow path control element that varies a bypass amount that is a flow rate of the refrigerant or the heat medium passing through the second condenser bypass passage, and an input heat medium temperature that is a temperature of the heat medium before heat exchange with the refrigerant is a reference temperature. When the amount of bypass is high, the heat transfer medium temperature is To be larger than the bypass quantity of If no, and a control means for controlling the operation of the channel control element, the bypass rate ratio through the second condenser bypass passage of the total flow rate of the coolant or heating medium The control means sets the bypass rate to 0% when the input heat medium temperature is lower than the first reference temperature, and sets the bypass heat rate to be higher than the second reference temperature higher than the first reference temperature. In the case where the bypass rate is 100% and the input heat medium temperature is between the first reference temperature and the second reference temperature, the bypass rate increases continuously or stepwise as the input heat medium temperature increases. in a shall control the operation of the channel control element.

本発明の冷凍サイクル装置によれば、凝縮器を第1凝縮器と第2凝縮器とに分け、第2凝縮器の冷媒流路または熱媒体流路をバイパスする第2凝縮器バイパス通路を設け、加熱前の熱媒体の温度が高い場合には、冷媒または熱媒体が第2凝縮器をバイパスする量を大きくすることにより、凝縮器で冷媒が熱媒体から加熱されることを抑制することが可能となる。   According to the refrigeration cycle apparatus of the present invention, the condenser is divided into the first condenser and the second condenser, and the second condenser bypass passage that bypasses the refrigerant flow path or the heat medium flow path of the second condenser is provided. When the temperature of the heat medium before heating is high, it is possible to prevent the refrigerant from being heated from the heat medium by the condenser by increasing the amount of the refrigerant or the heat medium that bypasses the second condenser. It becomes possible.

本発明の実施の形態1の冷凍サイクル装置の構成図である。It is a block diagram of the refrigerating cycle apparatus of Embodiment 1 of this invention. 第1凝縮器および第2凝縮器を構成する熱交換器の一部を示す斜視図である。It is a perspective view which shows a part of heat exchanger which comprises a 1st condenser and a 2nd condenser. 本発明の実施の形態1の冷凍サイクル装置とタンクユニットとを有する貯湯式給湯システムの構成図である。It is a block diagram of the hot water storage type hot-water supply system which has the refrigerating-cycle apparatus and tank unit of Embodiment 1 of this invention. 本発明の実施の形態1の冷凍サイクル装置における制御動作を示すフローチャートである。It is a flowchart which shows the control action in the refrigerating-cycle apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の冷凍サイクル装置の低温入水運転の動作を示す図である。It is a figure which shows operation | movement of the low temperature water-injection driving | operation of the refrigerating-cycle apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の冷凍サイクル装置の低温入水運転における第1凝縮器および第2凝縮器での冷媒および水の温度変化の一例を示す図である。It is a figure which shows an example of the temperature change of the refrigerant | coolant and water in a 1st condenser and a 2nd condenser in the low temperature water_inflow operation of the refrigerating-cycle apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の冷凍サイクル装置の低温入水運転のP−h線図である。It is a Ph diagram of the low temperature water intake operation of the refrigeration cycle apparatus of Embodiment 1 of the present invention. 低温入水運転での外気温度と入水温度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the outside air temperature and incoming water temperature in low temperature incoming water operation. 本発明の実施の形態1の冷凍サイクル装置の高温入水運転の動作を示す図である。It is a figure which shows the operation | movement of the high temperature water injection operation of the refrigeration cycle apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の冷凍サイクル装置の高温入水運転における第1凝縮器での冷媒および水の温度変化の一例を示す図である。It is a figure which shows an example of the temperature change of the refrigerant | coolant and water in a 1st condenser in the high temperature water_inflow operation of the refrigerating-cycle apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の冷凍サイクル装置の高温入水運転のP−h線図である。It is a Ph diagram of the high temperature incoming operation of the refrigerating cycle device of Embodiment 1 of the present invention. 本発明の実施の形態1の冷凍サイクル装置の第1凝縮器および第2凝縮器の内部における冷媒および水の位置と温度の関係の一例を示す図である。It is a figure which shows an example of the relationship between the position of the refrigerant | coolant and water in the inside of the 1st condenser of the refrigeration cycle apparatus of Embodiment 1 of this invention, and a 2nd condenser, and temperature. R410A冷媒およびR32冷媒の圧縮機吐出温度の比較を示す図である。It is a figure which shows the comparison of the compressor discharge temperature of R410A refrigerant | coolant and R32 refrigerant | coolant. 冷媒流路数比と第1凝縮器の冷媒圧力損失の大きさとの関係を示す図である。It is a figure which shows the relationship between a refrigerant | coolant flow path number ratio and the magnitude | size of the refrigerant | coolant pressure loss of a 1st condenser. 本発明の実施の形態2の冷凍サイクル装置の低温入水運転の動作を示す図である。It is a figure which shows operation | movement of the low temperature water-injection driving | operation of the refrigerating-cycle apparatus of Embodiment 2 of this invention. 本発明の実施の形態2の冷凍サイクル装置の高温入水運転の動作を示す図である。It is a figure which shows the operation | movement of the high temperature water injection operation of the refrigeration cycle apparatus of Embodiment 2 of this invention. 本発明の実施の形態3の冷凍サイクル装置の中温入水運転の動作を示す図である。It is a figure which shows the operation | movement of the middle temperature water-injection driving | operation of the refrigerating-cycle apparatus of Embodiment 3 of this invention. 本発明の実施の形態3の冷凍サイクル装置における制御動作を示すフローチャートである。It is a flowchart which shows the control action in the refrigerating-cycle apparatus of Embodiment 3 of this invention. 本発明の実施の形態3の冷凍サイクル装置の中温入水運転での入水温度とバイパス率との関係を示す図である。It is a figure which shows the relationship between the incoming water temperature and the bypass rate in the medium temperature incoming water driving | operation of the refrigerating cycle apparatus of Embodiment 3 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。なお、本発明は、以降に示す各実施の形態のあらゆる組み合わせを含むものとする。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted. Note that the present invention includes all combinations of the embodiments described below.

実施の形態1.
図1は、本発明の実施の形態1の冷凍サイクル装置の構成図である。図1に示すように、本実施の形態1の冷凍サイクル装置1Aは、圧縮機2と、第1凝縮器3A,3Bと、第2凝縮器4と、膨張弁5と、蒸発器6と、アキュムレータ7とを冷媒配管により接続してなる冷媒回路を備える。冷凍サイクル装置1Aは、更に、熱媒体経路9と、第2凝縮器バイパス通路10と、流路切替弁11と、蒸発器6に送風する送風機12と、入り熱媒体温度センサ13と、冷凍サイクル装置1Aの運転を制御する制御装置50とを備える。本実施の形態1の冷凍サイクル装置1Aは、液状の熱媒体を加熱するヒートポンプとしての機能を有する。本実施の形態1での熱媒体は水であるが、本発明における熱媒体は、不凍液、ブラインなどでも良い。また、本実施の形態1の冷凍サイクル装置1Aは、給湯装置として用いられるが、本発明における冷凍サイクル装置は、給湯以外の用途(例えば暖房など)に用いる熱媒体を加熱するものにも適用可能である。なお、以下の説明では、記述を簡略化するため、比エンタルピ[kJ/kg]を単にエンタルピと称する。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigeration cycle apparatus 1A of the first embodiment includes a compressor 2, first condensers 3A and 3B, a second condenser 4, an expansion valve 5, an evaporator 6, A refrigerant circuit formed by connecting the accumulator 7 with a refrigerant pipe is provided. The refrigeration cycle apparatus 1 </ b> A further includes a heat medium path 9, a second condenser bypass path 10, a flow path switching valve 11, a blower 12 that blows air to the evaporator 6, an incoming heat medium temperature sensor 13, and a refrigeration cycle. And a control device 50 that controls the operation of the device 1A. The refrigeration cycle apparatus 1A of Embodiment 1 has a function as a heat pump that heats a liquid heat medium. Although the heat medium in the first embodiment is water, the heat medium in the present invention may be antifreeze, brine, or the like. Moreover, although the refrigeration cycle apparatus 1A of the first embodiment is used as a hot water supply apparatus, the refrigeration cycle apparatus in the present invention can also be applied to a heating medium used for purposes other than hot water supply (for example, heating). It is. In the following description, the specific enthalpy [kJ / kg] is simply referred to as enthalpy in order to simplify the description.

二つの第1凝縮器3A,3Bは、同様の構成であり、並列に接続されている。第1凝縮器3A,3Bは、冷媒流路31および熱媒体流路32を有する。第2凝縮器4は、冷媒流路41および熱媒体流路42を有する。圧縮機2は、低圧の冷媒ガスを圧縮し、高圧の冷媒ガスとする。圧縮機2で圧縮された高圧冷媒ガスは、第1凝縮器3Aの冷媒流路31と、第1凝縮器3Bの冷媒流路31とに分かれて流入する。第1凝縮器3A,3Bを通過した高圧冷媒は、合流して第2凝縮器4の冷媒流路41に流入する。第1凝縮器3A,3Bは、機能的には一つの凝縮器である。本発明では、第1凝縮器3A,3Bが一体化されていても良い。   The two first condensers 3A and 3B have the same configuration and are connected in parallel. The first condensers 3 </ b> A and 3 </ b> B have a refrigerant flow path 31 and a heat medium flow path 32. The second condenser 4 has a refrigerant channel 41 and a heat medium channel 42. The compressor 2 compresses the low-pressure refrigerant gas into a high-pressure refrigerant gas. The high-pressure refrigerant gas compressed by the compressor 2 flows into the refrigerant flow path 31 of the first condenser 3A and the refrigerant flow path 31 of the first condenser 3B. The high-pressure refrigerant that has passed through the first condensers 3 </ b> A and 3 </ b> B merges and flows into the refrigerant flow path 41 of the second condenser 4. The first condensers 3A and 3B are functionally one condenser. In the present invention, the first condensers 3A and 3B may be integrated.

膨張弁5は、高圧冷媒を減圧膨張させる減圧装置である。膨張弁5は、その開度が任意に変更可能なものが好ましい。第2凝縮器4の冷媒流路41を通過した高圧冷媒は、膨張弁5にて減圧膨張し、低圧冷媒となる。この低圧冷媒は、蒸発器6に流入する。   The expansion valve 5 is a decompression device that decompresses and expands the high-pressure refrigerant. The expansion valve 5 is preferably one whose opening degree can be arbitrarily changed. The high-pressure refrigerant that has passed through the refrigerant flow path 41 of the second condenser 4 is decompressed and expanded by the expansion valve 5 and becomes low-pressure refrigerant. This low-pressure refrigerant flows into the evaporator 6.

蒸発器6は、冷媒と空気とを熱交換させる熱交換器である。蒸発器6は、送風機12によって送風された外気の熱を冷媒に吸収させる。本実施の形態1における蒸発器6の熱源は外気であるが、本発明における蒸発器の熱源は、外気に限らず、例えば、廃熱、地中熱、地下水、太陽熱温水などでも良い。また、本発明では、蒸発器で冷却した流体を冷房などに利用しても良い。   The evaporator 6 is a heat exchanger that exchanges heat between the refrigerant and the air. The evaporator 6 causes the refrigerant to absorb the heat of the outside air blown by the blower 12. Although the heat source of the evaporator 6 in this Embodiment 1 is outside air, the heat source of the evaporator in this invention is not restricted to outside air, For example, waste heat, underground heat, ground water, solar hot water, etc. may be sufficient. In the present invention, the fluid cooled by the evaporator may be used for cooling or the like.

蒸発器6を通過した低圧冷媒は、アキュムレータ7に流入する。アキュムレータ7に流入した冷媒のうち、冷媒液はアキュムレータ7に貯留され、冷媒ガスはアキュムレータ7を出て圧縮機2に吸入される。なお、以上のような冷媒回路では、一般に、圧縮機2で圧縮された高圧冷媒が減圧装置に流入するまでの区間を「高圧側」と言い、減圧装置で減圧された低圧冷媒が圧縮機2に吸入されるまでの区間を「低圧側」と言う。   The low-pressure refrigerant that has passed through the evaporator 6 flows into the accumulator 7. Of the refrigerant flowing into the accumulator 7, the refrigerant liquid is stored in the accumulator 7, and the refrigerant gas exits the accumulator 7 and is sucked into the compressor 2. In the refrigerant circuit as described above, a section until the high-pressure refrigerant compressed by the compressor 2 flows into the decompression device is generally referred to as a “high-pressure side”, and the low-pressure refrigerant decompressed by the decompression device is the compressor 2. The section until it is inhaled is called “low pressure side”.

熱媒体経路9は、第2凝縮器4の熱媒体流路42と、第1凝縮器3A,3Bの熱媒体流路32とに、この順に水を通過させる。熱媒体経路9は、水入口91と第2凝縮器4の熱媒体流路42の入口とを接続し、第2凝縮器4の熱媒体流路42の出口と第1凝縮器3A,3Bの熱媒体流路32の入口とを接続し、第1凝縮器3A,3Bの熱媒体流路32の出口と、水出口92とを接続する。第1凝縮器3A,3B内では冷媒と水とが対向流となる。第2凝縮器4内では冷媒と水とが対向流となる。   The heat medium path 9 allows water to pass through the heat medium flow path 42 of the second condenser 4 and the heat medium flow path 32 of the first condensers 3A and 3B in this order. The heat medium path 9 connects the water inlet 91 and the inlet of the heat medium flow path 42 of the second condenser 4, and the outlet of the heat medium flow path 42 of the second condenser 4 and the first condensers 3A and 3B. The inlet of the heat medium flow path 32 is connected, and the outlet of the heat medium flow path 32 of the first condensers 3A and 3B and the water outlet 92 are connected. In the first condensers 3A and 3B, the refrigerant and water are opposed to each other. In the 2nd condenser 4, a refrigerant | coolant and water become a counterflow.

第2凝縮器バイパス通路10は、第2凝縮器4の熱媒体流路42をバイパスする。流路切替弁11は、三方弁である。流路切替弁11は、水入口91と第2凝縮器4の熱媒体流路42の入口との間の熱媒体経路9の途中に設置されている。第2凝縮器バイパス通路10の一端は流路切替弁11に接続され、第2凝縮器バイパス通路10の他端は第2凝縮器4の熱媒体流路42の出口と第1凝縮器3A,3Bの熱媒体流路32の入口との間の熱媒体経路9の途中に接続されている。   The second condenser bypass passage 10 bypasses the heat medium passage 42 of the second condenser 4. The flow path switching valve 11 is a three-way valve. The flow path switching valve 11 is installed in the middle of the heat medium path 9 between the water inlet 91 and the inlet of the heat medium flow path 42 of the second condenser 4. One end of the second condenser bypass passage 10 is connected to the flow path switching valve 11, and the other end of the second condenser bypass passage 10 is the outlet of the heat medium flow path 42 of the second condenser 4 and the first condenser 3A, It is connected in the middle of the heat medium path 9 between the inlet of the 3B heat medium flow path 32.

流路切替弁11は、水入口91から流入した水の全量を第2凝縮器4の熱媒体流路42へ流す状態と、水入口91から流入した水の全量を第2凝縮器バイパス通路10へ流す状態とに切り替え可能である。また、流路切替弁11は、水入口91から流入した水を、第2凝縮器4の熱媒体流路42と、第2凝縮器バイパス通路10とに配分する比率を変更可能でもよい。本実施の形態1では、水入口91から流入する水の全流量のうち、第2凝縮器4を通らずに第2凝縮器バイパス通路10を通る割合を「バイパス率」と称する。本実施の形態1では、流路切替弁11が、第2凝縮器バイパス通路10を通る水の流量であるバイパス量を可変にする流路制御要素に相当する。   The flow path switching valve 11 has a state in which the total amount of water flowing in from the water inlet 91 flows to the heat medium flow path 42 of the second condenser 4 and the total amount of water flowing in from the water inlet 91 in the second condenser bypass passage 10. It is possible to switch to the state of flowing. Further, the flow path switching valve 11 may be capable of changing the ratio of distributing the water flowing in from the water inlet 91 to the heat medium flow path 42 of the second condenser 4 and the second condenser bypass passage 10. In the first embodiment, of the total flow rate of water flowing from the water inlet 91, the ratio of passing through the second condenser bypass passage 10 without passing through the second condenser 4 is referred to as “bypass rate”. In the first embodiment, the flow path switching valve 11 corresponds to a flow path control element that varies a bypass amount that is a flow rate of water passing through the second condenser bypass passage 10.

入り熱媒体温度センサ13は、水入口91と流路切替弁11との間の熱媒体経路9の途中に設置されている。入り熱媒体温度センサ13は、冷媒と熱交換する前の熱媒体すなわち水の温度を検出する。以下、入り熱媒体温度センサ13の検出温度を「入水温度」と称する。   The incoming heat medium temperature sensor 13 is installed in the middle of the heat medium path 9 between the water inlet 91 and the flow path switching valve 11. The incoming heat medium temperature sensor 13 detects the temperature of the heat medium, that is, water before heat exchange with the refrigerant. Hereinafter, the detected temperature of the incoming heat medium temperature sensor 13 is referred to as “incoming water temperature”.

制御装置50は、冷凍サイクル装置1Aの運転を制御する制御手段である。制御装置50には、圧縮機2、膨張弁5、流路切替弁11、送風機12、および入り熱媒体温度センサ13が、それぞれ電気的に接続されている。それら以外のアクチュエータ、センサ、ユーザーインターフェース装置などが制御装置50に更に接続されていてもよい。制御装置50は、プロセッサ50aと、制御プログラム、データ等を記憶するメモリ50bとを有する。制御装置50は、各センサで検出される情報、ユーザーインターフェース装置からの指示情報などに基づき、圧縮機2、膨張弁5、流路切替弁11、および送風機12の動作をメモリ50bに記憶されたプログラムに従って制御することにより、冷凍サイクル装置1Aの運転を制御する。   The control device 50 is control means for controlling the operation of the refrigeration cycle apparatus 1A. The control device 50 is electrically connected to the compressor 2, the expansion valve 5, the flow path switching valve 11, the blower 12, and the incoming heat medium temperature sensor 13. Other actuators, sensors, user interface devices, and the like may be further connected to the control device 50. The control device 50 includes a processor 50a and a memory 50b that stores a control program, data, and the like. The control device 50 stores the operations of the compressor 2, the expansion valve 5, the flow path switching valve 11, and the blower 12 in the memory 50b based on information detected by each sensor, instruction information from the user interface device, and the like. By controlling according to the program, the operation of the refrigeration cycle apparatus 1A is controlled.

本実施の形態1では、冷媒としてR32を用いる。R32を冷媒として用いることの利点については後述する。   In the first embodiment, R32 is used as the refrigerant. The advantage of using R32 as a refrigerant will be described later.

図2は、第1凝縮器3A,3Bおよび第2凝縮器4を構成する熱交換器の一部を示す斜視図である。図2に示すように、熱交換器60は、1本のねじり管61と、3本の冷媒伝熱管62,63,64とを有する。ねじり管61の内部は、熱媒体流路を構成する。すなわち、ねじり管61の内部を水が流れる。冷媒伝熱管62,63,64の内部は、冷媒流路を構成する。冷媒は、3本の冷媒伝熱管62,63,64に分かれて、それらの内部を並行して流れる。図2では、冷媒伝熱管62,63,64の区別を容易にするため、便宜上、冷媒伝熱管62,64にそれぞれハッチングを付す。すなわち、図2中のハッチングは、断面を意味するものではない。ねじり管61は、その外周に、並行する3本の螺旋状の溝61a,61b,61cを有する。冷媒伝熱管62,63,64は、各溝61a,61b,61cにそれぞれ嵌め込まれ、各溝61a,61b,61cの形状に沿って、螺旋状に巻きつけられている。このような構成により、ねじり管61と、冷媒伝熱管62,63,64との接触伝熱面積を大きくすることができる。   FIG. 2 is a perspective view showing a part of the heat exchanger constituting the first condensers 3 </ b> A and 3 </ b> B and the second condenser 4. As shown in FIG. 2, the heat exchanger 60 has one torsion tube 61 and three refrigerant heat transfer tubes 62, 63, 64. The inside of the torsion pipe 61 constitutes a heat medium flow path. That is, water flows through the torsion pipe 61. The inside of the refrigerant heat transfer tubes 62, 63, 64 constitutes a refrigerant flow path. The refrigerant is divided into three refrigerant heat transfer tubes 62, 63, and 64, and flows in parallel inside them. In FIG. 2, the refrigerant heat transfer tubes 62 and 64 are hatched for the sake of convenience in order to easily distinguish the refrigerant heat transfer tubes 62, 63 and 64. That is, the hatching in FIG. 2 does not mean a cross section. The torsion tube 61 has three spiral grooves 61a, 61b, 61c in parallel on the outer periphery thereof. The refrigerant heat transfer tubes 62, 63, 64 are fitted into the grooves 61a, 61b, 61c, respectively, and are wound spirally along the shapes of the grooves 61a, 61b, 61c. With such a configuration, the contact heat transfer area between the torsion tube 61 and the refrigerant heat transfer tubes 62, 63, 64 can be increased.

第1凝縮器3A、第1凝縮器3B、および第2凝縮器4は、それぞれ、上述した熱交換器60とほぼ同じ構造の熱交換器で構成されている。すなわち、第1凝縮器3A、第1凝縮器3B、および第2凝縮器4は、それぞれ、1本の熱媒体流路および3本の冷媒流路を備える。ただし、図1では、簡略化のため、第1凝縮器3A、第1凝縮器3B、および第2凝縮器4の熱媒体流路をそれぞれ1本の線で表している。   The first condenser 3 </ b> A, the first condenser 3 </ b> B, and the second condenser 4 are each configured by a heat exchanger having substantially the same structure as the heat exchanger 60 described above. That is, the first condenser 3A, the first condenser 3B, and the second condenser 4 each include one heat medium flow path and three refrigerant flow paths. However, in FIG. 1, the heat medium flow paths of the first condenser 3 </ b> A, the first condenser 3 </ b> B, and the second condenser 4 are each represented by one line for simplification.

前述したように、第1凝縮器3A,3Bは、一つの凝縮器として機能する。第1凝縮器3A,3Bは、二つの熱交換器60を並列に接続して構成される。よって、第1凝縮器3A,3Bの全体としては、2本の熱媒体流路および6本の冷媒流路を有する。第2凝縮器4の冷媒流路の断面積は、第1凝縮器3A,3Bの冷媒流路の断面積より小さい。その理由については後述する。凝縮器の冷媒流路が複数に分かれている場合には、「凝縮器の冷媒流路の断面積」とは、複数の冷媒流路の断面積の合計とする。すなわち、第1凝縮器3A,3Bの冷媒流路の断面積とは、6本の冷媒流路の断面積の合計であり、第2凝縮器4の冷媒流路の断面積とは、3本の冷媒流路の断面積の合計である。第1凝縮器3A,3Bの1本の冷媒流路の断面積と、第2凝縮器4の1本の冷媒流路の断面積とが等しいとすると、本実施の形態1の場合、第2凝縮器4の冷媒流路の断面積は、第1凝縮器3A,3Bの冷媒流路の断面積の1/2となる。   As described above, the first condensers 3A and 3B function as one condenser. The first condensers 3A and 3B are configured by connecting two heat exchangers 60 in parallel. Therefore, the first condensers 3A and 3B as a whole have two heat medium passages and six refrigerant passages. The cross-sectional area of the refrigerant flow path of the second condenser 4 is smaller than the cross-sectional area of the refrigerant flow paths of the first condensers 3A and 3B. The reason will be described later. When the refrigerant flow path of the condenser is divided into a plurality of parts, the “cross-sectional area of the refrigerant flow path of the condenser” is the sum of the cross-sectional areas of the plurality of refrigerant flow paths. That is, the cross-sectional area of the refrigerant flow paths of the first condensers 3A and 3B is the sum of the cross-sectional areas of the six refrigerant flow paths, and the cross-sectional area of the refrigerant flow path of the second condenser 4 is three. This is the total cross-sectional area of the refrigerant flow path. If the cross-sectional area of one refrigerant flow path of the first condensers 3A and 3B and the cross-sectional area of one refrigerant flow path of the second condenser 4 are equal, in the case of the first embodiment, the second The cross-sectional area of the refrigerant flow path of the condenser 4 is ½ of the cross-sectional area of the refrigerant flow paths of the first condensers 3A and 3B.

なお、本発明における第1凝縮器および第2凝縮器は、上述したようなねじり管式熱交換器に限定されるものではなく、プレート式熱交換器などの他の方式のものでも良い。また、冷媒流路および熱媒体流路の本数も上記の例に限定されるものではない。   Note that the first condenser and the second condenser in the present invention are not limited to the twisted tube heat exchanger as described above, and may be other types such as a plate heat exchanger. Further, the number of refrigerant channels and heat medium channels is not limited to the above example.

図3は、本実施の形態1の冷凍サイクル装置1Aと、タンクユニット20とを有する貯湯式給湯システムの構成図である。図3に示すように、タンクユニット20内には、貯湯タンク21と、水ポンプ22とが設置されている。冷凍サイクル装置1Aと、貯湯タンク21とは、水路23,24を介して接続される。また、冷凍サイクル装置1Aと、タンクユニット20とは、図示しない電気配線を介して接続される。水路23の一端は、冷凍サイクル装置1Aの水入口91に接続されている。水路23の他端は、タンクユニット20内で貯湯タンク21の下部に接続されている。タンクユニット20内の水路23の途中に水ポンプ22が設置されている。水路24の一端は、冷凍サイクル装置1Aの水出口92に接続されている。水路24の他端は、タンクユニット20内で貯湯タンク21の上部に接続されている。図示の構成に代えて、水ポンプ22を冷凍サイクル装置1A内に配置してもよい。   FIG. 3 is a configuration diagram of a hot water storage type hot water supply system including the refrigeration cycle apparatus 1 </ b> A of the first embodiment and the tank unit 20. As shown in FIG. 3, a hot water storage tank 21 and a water pump 22 are installed in the tank unit 20. The refrigeration cycle apparatus 1 </ b> A and the hot water storage tank 21 are connected via water channels 23 and 24. In addition, the refrigeration cycle apparatus 1A and the tank unit 20 are connected via an electric wiring (not shown). One end of the water channel 23 is connected to the water inlet 91 of the refrigeration cycle apparatus 1A. The other end of the water channel 23 is connected to the lower part of the hot water storage tank 21 in the tank unit 20. A water pump 22 is installed in the middle of the water channel 23 in the tank unit 20. One end of the water channel 24 is connected to the water outlet 92 of the refrigeration cycle apparatus 1A. The other end of the water channel 24 is connected to the upper part of the hot water storage tank 21 in the tank unit 20. Instead of the illustrated configuration, the water pump 22 may be disposed in the refrigeration cycle apparatus 1A.

タンクユニット20の貯湯タンク21の下部には、給水管25が更に接続されている。水道等の外部の水源から供給される水が、給水管25を通って、貯湯タンク21内に流入し、貯留される。貯湯タンク21内は、給水管25から水が流入することにより、常に満水状態に維持される。タンクユニット20内には、更に、給湯用混合弁26が設けられている。給湯用混合弁26は、出湯管27を介して、貯湯タンク21の上部と接続されている。また、給湯用混合弁26には、給水管25から分岐した給水分岐管28が接続されている。給湯用混合弁26には、給湯管29の一端が更に接続されている。給湯管29の他端は、図示を省略するが、例えば蛇口、シャワー、浴槽等の給湯端末に接続される。   A water supply pipe 25 is further connected to the lower part of the hot water storage tank 21 of the tank unit 20. Water supplied from an external water source such as water supply flows into the hot water storage tank 21 through the water supply pipe 25 and is stored. The hot water storage tank 21 is always kept in a full water state when water flows from the water supply pipe 25. In the tank unit 20, a hot water supply mixing valve 26 is further provided. The hot water supply mixing valve 26 is connected to the upper part of the hot water storage tank 21 through a hot water outlet pipe 27. Further, a water supply branch pipe 28 branched from the water supply pipe 25 is connected to the hot water supply mixing valve 26. One end of a hot water supply pipe 29 is further connected to the hot water supply mixing valve 26. Although not shown, the other end of the hot water supply pipe 29 is connected to a hot water supply terminal such as a faucet, a shower, or a bathtub.

貯湯タンク21の蓄熱量を増加させる蓄熱運転では、貯湯タンク21内に貯留された水が、水ポンプ22により、水路23を通って冷凍サイクル装置1Aに送られ、冷凍サイクル装置1A内で加熱されて、高温の湯になる。冷凍サイクル装置1A内で生成した高温湯は、水路24を通ってタンクユニット20に戻り、上部から貯湯タンク21内に流入する。このような蓄熱運転により、貯湯タンク21内には、上側が高温、下側が低温となる温度成層を形成して、湯が貯えられる。   In the heat storage operation for increasing the heat storage amount of the hot water storage tank 21, the water stored in the hot water storage tank 21 is sent to the refrigeration cycle apparatus 1A through the water channel 23 by the water pump 22 and heated in the refrigeration cycle apparatus 1A. It becomes hot water. The hot water generated in the refrigeration cycle apparatus 1A returns to the tank unit 20 through the water channel 24 and flows into the hot water storage tank 21 from above. By such a heat storage operation, hot water is stored in the hot water storage tank 21 by forming a temperature stratification in which the upper side is high temperature and the lower side is low temperature.

給湯管29から給湯端末に給湯する際には、貯湯タンク21内の高温湯が出湯管27を通って給湯用混合弁26に供給されるとともに、低温水が給水分岐管28を通って給湯用混合弁26に供給される。この高温湯および低温水が給湯用混合弁26で混合された上で、給湯管29を通って給湯端末に供給される。給湯用混合弁26は、使用者により設定された給湯温度になるように、高温湯と低温水との混合比を調節する。   When hot water is supplied from the hot water supply pipe 29 to the hot water supply terminal, high temperature hot water in the hot water storage tank 21 is supplied to the hot water supply mixing valve 26 through the hot water supply pipe 27 and low temperature water is supplied to the hot water supply pipe through the water supply branch pipe 28. It is supplied to the mixing valve 26. The hot water and low temperature water are mixed by the hot water supply mixing valve 26 and then supplied to the hot water supply terminal through the hot water supply pipe 29. The hot water supply mixing valve 26 adjusts the mixing ratio of the high temperature hot water and the low temperature water so that the hot water supply temperature set by the user is obtained.

タンクユニット20内には、浴槽を追い焚きするための追い焚き熱交換器30が更に設けられている。また、図示を省略するが、タンクユニット20内には、浴槽の水を追い焚き熱交換器30へ循環させる配管と、水路23,24の接続先を貯湯タンク21から追い焚き熱交換器30へ切り替えるための配管とが設けられている。浴槽追い焚き運転では、それらの配管により、浴槽の水と、冷凍サイクル装置1A内で生成した高温湯とを追い焚き熱交換器30へ循環させ、両者を熱交換させることにより、浴槽の温度を上昇させることができる。   A reheating heat exchanger 30 for reheating the bathtub is further provided in the tank unit 20. Although not shown in the figure, in the tank unit 20, piping for circulating the water in the bathtub to the heat exchanger 30 and the connection destinations of the water channels 23 and 24 from the hot water storage tank 21 to the heat exchanger 30. Piping for switching is provided. In the bathtub reheating operation, the water in the bathtub and the hot water generated in the refrigeration cycle apparatus 1A are circulated to the heat exchanger 30 through these pipes, and the temperature of the bathtub is changed by exchanging heat between them. Can be raised.

図4は、本実施の形態1の冷凍サイクル装置1Aにおける制御動作を示すフローチャートである。図4のステップS1で、制御装置50は、入り熱媒体温度センサ13で検出される入水温度と、予め設定された基準温度αとを比較する。本実施の形態1では、基準温度α=50℃とする。ステップS1で入水温度が基準温度αより低い場合には、制御装置50は、ステップS2へ移行する。ステップS2で冷凍サイクル装置1Aは、低温入水運転を行う。これに対し、ステップS1で入水温度が基準温度α以上である場合には、制御装置50は、ステップS3へ移行する。ステップS3で冷凍サイクル装置1Aは、高温入水運転を行う。制御装置50は、高温入水運転のバイパス量が低温入水運転のバイパス量より大きくなるように流路切替弁11の動作を制御する。本実施の形態1では、低温入水運転のバイパス率を0%とする。すなわち、ステップS2で制御装置50は、水入口91から流入する水の全流量が第2凝縮器4を通るように流路切替弁11の動作を制御する。また、本実施の形態1では、高温入水運転のバイパス率を100%とする。すなわち、ステップS3で制御装置50は、水入口91から流入する水の全流量が第2凝縮器4を通らずに第2凝縮器バイパス通路10を通るように流路切替弁11の動作を制御する。   FIG. 4 is a flowchart showing a control operation in the refrigeration cycle apparatus 1A of the first embodiment. In step S1 of FIG. 4, the control device 50 compares the incoming water temperature detected by the incoming heat medium temperature sensor 13 with a preset reference temperature α. In the first embodiment, the reference temperature α = 50 ° C. When the incoming water temperature is lower than the reference temperature α in step S1, the control device 50 proceeds to step S2. In step S2, the refrigeration cycle apparatus 1A performs a low-temperature water entry operation. On the other hand, when the incoming water temperature is equal to or higher than the reference temperature α in step S1, the control device 50 proceeds to step S3. In step S3, the refrigeration cycle apparatus 1A performs a high-temperature water entry operation. The control device 50 controls the operation of the flow path switching valve 11 so that the bypass amount in the high-temperature incoming operation is larger than the bypass amount in the low-temperature incoming operation. In the first embodiment, the bypass rate of the low temperature water intake operation is set to 0%. That is, in step S <b> 2, the control device 50 controls the operation of the flow path switching valve 11 so that the total flow rate of water flowing from the water inlet 91 passes through the second condenser 4. Moreover, in this Embodiment 1, the bypass rate of high temperature water-intake operation is set to 100%. That is, in step S3, the control device 50 controls the operation of the flow path switching valve 11 so that the total flow rate of water flowing from the water inlet 91 passes through the second condenser bypass passage 10 without passing through the second condenser 4. To do.

なお、入水温度が基準温度αに近い場合に低温入水運転と高温入水運転とが頻繁に切り替わることを防止するために、二つの基準温度を設け、低温入水運転と高温入水運転との切り替えにヒステリシスを持たせるようにしても良い。   In order to prevent frequent switching between the low-temperature incoming operation and the high-temperature incoming operation when the incoming water temperature is close to the reference temperature α, two reference temperatures are provided, and hysteresis is provided for switching between the low-temperature incoming operation and the high-temperature incoming operation. You may make it have.

給水管25から供給された低温水が貯湯タンク21内の下側に存在している場合には、蓄熱運転の入水温度は、外気温度とほぼ同程度になる。基準温度αは、外気温度より高い。このため、給水管25から供給された低温水が貯湯タンク21内の下側に存在している場合の蓄熱運転では、入水温度が基準温度αより低くなるので、冷凍サイクル装置1Aは低温入水運転を行う。   When the low-temperature water supplied from the water supply pipe 25 exists below the hot water storage tank 21, the incoming water temperature in the heat storage operation is approximately the same as the outside air temperature. The reference temperature α is higher than the outside air temperature. For this reason, in the heat storage operation when the low-temperature water supplied from the water supply pipe 25 is present in the lower side of the hot water storage tank 21, the incoming water temperature is lower than the reference temperature α. I do.

これに対し、放熱などにより温度低下した貯湯タンク21内の湯を再加熱するための蓄熱運転においては、入水温度が基準温度αより高くなる場合がある。また、浴槽追い焚き運転においても、入水温度が基準温度αより高くなる場合がある。これらの場合には、冷凍サイクル装置1Aは高温入水運転を行う。   On the other hand, in the heat storage operation for reheating the hot water in the hot water storage tank 21 whose temperature has decreased due to heat dissipation or the like, the incoming water temperature may become higher than the reference temperature α. In addition, the incoming water temperature may be higher than the reference temperature α in the bathtub chasing operation. In these cases, the refrigeration cycle apparatus 1A performs a high-temperature water entry operation.

図5は、本実施の形態1の冷凍サイクル装置1Aの低温入水運転の動作を示す図である。低温入水運転では、水入口91から流入した水は、第2凝縮器4で加熱された後に二つに分岐して第1凝縮器3A,3Bへ並列に流れ、更に加熱される。   FIG. 5 is a diagram showing the operation of the low-temperature water entry operation of the refrigeration cycle apparatus 1A of the first embodiment. In the low temperature water intake operation, the water flowing in from the water inlet 91 is heated by the second condenser 4 and then branched into two to flow in parallel to the first condensers 3A and 3B and further heated.

冷媒は、圧縮機2を出た後に二つに分岐して、第1凝縮器3A,3Bへ並列に流れる。第1凝縮器3Aの伝熱部の入口直前で冷媒は3本の冷媒流路に更に分岐する。同様に、第1凝縮器3Bの伝熱部の入口直前で冷媒は3本の冷媒流路に更に分岐する。第1凝縮器3A,3B内で冷媒は一部凝縮し、気液二相状態となる。第1凝縮器3A,3Bを通過した冷媒は、合流した後、第2凝縮器4へ流れる。第2凝縮器4の伝熱部の入口直前で冷媒は3本の冷媒流路に分岐する。冷媒は、第2凝縮器4内で更に凝縮する。   The refrigerant branches into two after leaving the compressor 2 and flows in parallel to the first condensers 3A and 3B. The refrigerant further branches into three refrigerant flow paths just before the entrance of the heat transfer section of the first condenser 3A. Similarly, the refrigerant further branches into three refrigerant flow paths just before the entrance of the heat transfer section of the first condenser 3B. The refrigerant partially condenses in the first condensers 3A and 3B and enters a gas-liquid two-phase state. The refrigerant that has passed through the first condensers 3 </ b> A and 3 </ b> B flows to the second condenser 4 after joining. Immediately before the entrance of the heat transfer section of the second condenser 4, the refrigerant branches into three refrigerant flow paths. The refrigerant is further condensed in the second condenser 4.

図6は、本実施の形態1の冷凍サイクル装置1Aの低温入水運転における第1凝縮器3A,3Bおよび第2凝縮器4での冷媒および水の温度変化の一例を示す図である。図6では、横軸が冷媒のエンタルピを表し、縦軸が温度を表す。この例では、冷媒と水の温度差が最小となるピンチポイントの温度差をおよそ3Kとする。また、入水温度を9℃、冷媒の凝縮温度を62℃(飽和圧力で4.11MPa)、第1凝縮器3A,3Bの入口の冷媒ガスの温度を126℃とすると、第1凝縮器3A,3Bの出口の水温は80℃、第2凝縮器4の出口の冷媒液の温度は12℃となる。このように、本実施の形態1の冷凍サイクル装置1Aによれば、高圧側の圧力を、一般的な空調機の設計圧力である4.25MPa以下にして、80℃の出湯が可能である。このため、圧縮機2の仕様を空調機と共通にすることができるので、コストを低減できる。以下の説明では、第1凝縮器3A,3Bの出口の水温を「出湯温度」と称する。   FIG. 6 is a diagram illustrating an example of temperature changes of the refrigerant and water in the first condensers 3A and 3B and the second condenser 4 in the low-temperature water entry operation of the refrigeration cycle apparatus 1A of the first embodiment. In FIG. 6, the horizontal axis represents the enthalpy of the refrigerant, and the vertical axis represents the temperature. In this example, the temperature difference at the pinch point at which the temperature difference between the refrigerant and water is minimized is about 3K. Further, assuming that the incoming water temperature is 9 ° C., the refrigerant condensing temperature is 62 ° C. (4.11 MPa in saturation pressure), and the refrigerant gas temperature at the inlet of the first condenser 3A, 3B is 126 ° C., the first condenser 3A, The water temperature at the outlet of 3B is 80 ° C., and the temperature of the refrigerant liquid at the outlet of the second condenser 4 is 12 ° C. Thus, according to the refrigeration cycle apparatus 1A of the first embodiment, the high-pressure side pressure can be set to 4.25 MPa or less, which is a design pressure of a general air conditioner, and 80 ° C. hot water can be discharged. For this reason, since the specification of the compressor 2 can be made common with an air conditioner, cost can be reduced. In the following description, the water temperature at the outlets of the first condensers 3A and 3B will be referred to as “hot water temperature”.

図7は、本実施の形態1の冷凍サイクル装置1Aの低温入水運転のP−h線図すなわちモリエル線図を示す。図7に示すように、低温入水運転では、低圧冷媒ガスが圧縮機2で点E1から点A1まで圧縮されて高圧冷媒ガスとなる。この高圧冷媒ガスは、第1凝縮器3A,3Bで点A1から点B1まで冷却され、その間に凝縮を開始する。点B1は、気液二相状態となる。この気液二相状態の高圧冷媒は、第2凝縮器4で更に凝縮して過冷却液となる。すなわち、高圧冷媒は第2凝縮器4で点B1から点C1へ変化する。点C1の過冷却液の冷媒は、膨張弁5で点D1まで膨張して減圧され、気液二相状態の低圧冷媒となる。この気液二相状態の低圧冷媒は、蒸発器6で点D1から点E1まで吸熱し、蒸発する。   FIG. 7 shows a Ph diagram, that is, a Mollier diagram, of the low-temperature water entry operation of the refrigeration cycle apparatus 1A of the first embodiment. As shown in FIG. 7, in the low-temperature water entry operation, the low-pressure refrigerant gas is compressed from the point E1 to the point A1 by the compressor 2 and becomes high-pressure refrigerant gas. The high-pressure refrigerant gas is cooled from the point A1 to the point B1 by the first condensers 3A and 3B, and starts condensing during that time. Point B1 is in a gas-liquid two-phase state. This high-pressure refrigerant in the gas-liquid two-phase state is further condensed by the second condenser 4 to become a supercooled liquid. That is, the high-pressure refrigerant changes from the point B1 to the point C1 in the second condenser 4. The refrigerant of the supercooled liquid at the point C1 is expanded to the point D1 by the expansion valve 5 and depressurized, and becomes a low-pressure refrigerant in a gas-liquid two-phase state. This gas-liquid two-phase low-pressure refrigerant absorbs heat from the point D1 to the point E1 in the evaporator 6 and evaporates.

低温入水運転では、冷媒が入水温度に近い温度まで過冷却されるため、冷媒のエンタルピ差が大きくなる結果、冷凍サイクル装置1AのCOPを高くすることができる。図8に、低温入水運転での外気温度と入水温度との関係の一例を示す。図5に示す入水温度が9℃の例は、外気温度が7℃の場合に相当する。外気温度の上昇に対して、入水温度も上昇する。   In the low-temperature water entry operation, the refrigerant is supercooled to a temperature close to the water temperature, so that the enthalpy difference of the refrigerant increases, and as a result, the COP of the refrigeration cycle apparatus 1A can be increased. FIG. 8 shows an example of the relationship between the outside air temperature and the incoming water temperature in the low temperature incoming operation. The example in which the incoming water temperature is 9 ° C. shown in FIG. 5 corresponds to the case where the outside air temperature is 7 ° C. As the outside air temperature rises, the incoming water temperature also rises.

図9は、本実施の形態1の冷凍サイクル装置1Aの高温入水運転の動作を示す図である。高温入水運転では、水入口91から流入した水は、第2凝縮器4を通らずに、第2凝縮器バイパス通路10を通った後、二つに分岐して第1凝縮器3A,3Bを並列に流れ、加熱される。高温入水運転で冷媒が流れる経路は、低温入水運転と同じである。ただし、第2凝縮器4で水との熱交換がないため、第2凝縮器4では冷媒は凝縮しない。   FIG. 9 is a diagram showing the operation of the high-temperature water entry operation of the refrigeration cycle apparatus 1A of the first embodiment. In the high temperature water inlet operation, the water flowing in from the water inlet 91 does not pass through the second condenser 4, passes through the second condenser bypass passage 10, and then branches into two to pass through the first condensers 3 </ b> A and 3 </ b> B. It flows in parallel and is heated. The route through which the refrigerant flows in the high-temperature incoming operation is the same as that in the low-temperature incoming operation. However, since there is no heat exchange with water in the second condenser 4, the refrigerant is not condensed in the second condenser 4.

図10は、本実施の形態1の冷凍サイクル装置1Aの高温入水運転における第1凝縮器3A,3Bでの冷媒および水の温度変化の一例を示す図である。図10では、横軸が冷媒のエンタルピを表し、縦軸が温度を表す。この例では、冷媒と水の温度差が最小となるピンチポイントの温度差をおよそ3Kとする。また、入水温度を50℃、冷媒の凝縮温度を62℃(飽和圧力で4.11MPa)、第1凝縮器3A,3Bの入口の冷媒ガスの温度を126℃とすると、第1凝縮器3A,3Bの出口の水温すなわち出湯温度は80℃となる。   FIG. 10 is a diagram illustrating an example of temperature changes of the refrigerant and water in the first condensers 3A and 3B in the high-temperature water entry operation of the refrigeration cycle apparatus 1A of the first embodiment. In FIG. 10, the horizontal axis represents the enthalpy of the refrigerant, and the vertical axis represents the temperature. In this example, the temperature difference at the pinch point at which the temperature difference between the refrigerant and water is minimized is about 3K. Further, assuming that the incoming water temperature is 50 ° C., the refrigerant condensing temperature is 62 ° C. (4.11 MPa in saturation pressure), and the refrigerant gas temperature at the inlet of the first condenser 3A, 3B is 126 ° C., the first condenser 3A, The water temperature at the outlet of 3B, that is, the tapping temperature is 80 ° C.

図11は、本実施の形態1の冷凍サイクル装置1Aの高温入水運転のP−h線図を示す。図11に示すように、高温入水運転では、低圧冷媒ガスが圧縮機2で点E2から点A2まで圧縮されて高圧冷媒ガスとなる。この高圧冷媒ガスは、第1凝縮器3A,3Bにて、点A2から点B2まで冷却され、その間に凝縮を開始する。点B2は、気液二相状態となる。第2凝縮器4では、水が流れず、熱交換がなされない。このため、第2凝縮器4内で冷媒は、エンタルピが低下しないが、圧力損失により圧力が降下する。すなわち、第2凝縮器4内で冷媒は点B2から点C2へ変化する。点C2の気液二相状態の冷媒は、膨張弁5で点D2まで膨張して減圧され、気液二相状態の低圧冷媒となる。この気液二相状態の低圧冷媒は、蒸発器6で点D2から点E2まで吸熱し、蒸発する。   FIG. 11 shows a Ph diagram of the high-temperature water entry operation of the refrigeration cycle apparatus 1A of the first embodiment. As shown in FIG. 11, in the high-temperature water entry operation, the low-pressure refrigerant gas is compressed from the point E2 to the point A2 by the compressor 2 to become high-pressure refrigerant gas. The high-pressure refrigerant gas is cooled from the point A2 to the point B2 in the first condensers 3A and 3B, and starts condensing during that time. Point B2 is in a gas-liquid two-phase state. In the second condenser 4, water does not flow and heat exchange is not performed. For this reason, the enthalpy of the refrigerant in the second condenser 4 does not decrease, but the pressure decreases due to pressure loss. That is, the refrigerant changes from the point B2 to the point C2 in the second condenser 4. The refrigerant in the gas-liquid two-phase state at point C2 is expanded and decompressed to the point D2 by the expansion valve 5, and becomes a low-pressure refrigerant in the gas-liquid two-phase state. This gas-liquid two-phase low-pressure refrigerant absorbs heat from the point D2 to the point E2 in the evaporator 6 and evaporates.

高温入水運転の第2凝縮器4の点B2から点C2の平均冷媒乾き度は、低温入水運転の第2凝縮器4の点B1から点C1の平均冷媒乾き度より高い。このため、高温入水運転の第2凝縮器4内の平均冷媒密度は、低温入水運転の第2凝縮器4内の平均冷媒密度より小さい。また、高温入水運転の蒸発器6の点D2から点E2の平均冷媒乾き度は、低温入水運転の蒸発器6の点D1から点E1の平均冷媒乾き度より高い。このため、高温入水運転の蒸発器6内の平均冷媒密度は、低温入水運転の蒸発器6内の平均冷媒密度より小さい。このようなことから、高温入水運転は、低温入水運転に比べて、第2凝縮器4および蒸発器6に必要な冷媒量が少なくなるため、冷媒回路内に余剰の冷媒が発生する。高温入水運転では、その余剰の冷媒がアキュムレータ7に冷媒液として貯留される。このように、本実施の形態1では、アキュムレータ7が、余剰の冷媒を貯留する貯留部に相当する。ただし、本発明では、第2凝縮器4と膨張弁5との間に設けた受液器(図示省略)を貯留部としても良いし、蒸発器6を貯留部として兼用しても良いし、アキュムレータ7、受液器および蒸発器6のうちの二つ以上に余剰の冷媒を貯留しても良い。   The average refrigerant dryness from the point B2 to the point C2 of the second condenser 4 in the high temperature water inlet operation is higher than the average refrigerant dryness from the point B1 to the point C1 in the second condenser 4 in the low temperature water inlet operation. For this reason, the average refrigerant density in the second condenser 4 in the high temperature water inlet operation is smaller than the average refrigerant density in the second condenser 4 in the low temperature water inlet operation. Further, the average refrigerant dryness from the point D2 to the point E2 of the evaporator 6 in the high temperature water inlet operation is higher than the average refrigerant dryness from the point D1 to the point E1 in the evaporator 6 in the low temperature water inlet operation. For this reason, the average refrigerant density in the evaporator 6 in the high temperature water inlet operation is smaller than the average refrigerant density in the evaporator 6 in the low temperature water inlet operation. For this reason, the high-temperature water input operation requires a smaller amount of refrigerant for the second condenser 4 and the evaporator 6 than the low-temperature water input operation, so that excess refrigerant is generated in the refrigerant circuit. In the high temperature water entry operation, the surplus refrigerant is stored in the accumulator 7 as a refrigerant liquid. Thus, in this Embodiment 1, the accumulator 7 is corresponded to the storage part which stores an excess refrigerant | coolant. However, in the present invention, a liquid receiver (not shown) provided between the second condenser 4 and the expansion valve 5 may be used as a storage unit, or the evaporator 6 may be used as a storage unit. Excess refrigerant may be stored in two or more of the accumulator 7, the liquid receiver and the evaporator 6.

図12は、本実施の形態1の冷凍サイクル装置1Aの第1凝縮器3A,3Bおよび第2凝縮器4の内部における冷媒および水の位置と温度の関係の一例を示す図である。図12の縦軸は温度を表す。図12の横軸は、第1凝縮器3A,3Bの一つの熱媒体流路長および第2凝縮器4の一つの熱媒体流路長の合計を1としたときの第2凝縮器4の水の入口からの距離の比を表す。ここで、熱媒体流路長とは、熱媒体流路の流れ方向に対する中心軸の長さとする。図12に示す例の運転条件は、前述した図6または図10の運転条件と同じとする。   FIG. 12 is a diagram showing an example of the relationship between the position and temperature of the refrigerant and water in the first condensers 3A and 3B and the second condenser 4 of the refrigeration cycle apparatus 1A of the first embodiment. The vertical axis in FIG. 12 represents temperature. The horizontal axis of FIG. 12 shows the second condenser 4 when the total of one heat medium flow path length of the first condensers 3A and 3B and one heat medium flow path length of the second condenser 4 is 1. Represents the ratio of the distance from the water inlet. Here, the heat medium flow path length is the length of the central axis with respect to the flow direction of the heat medium flow path. The operating conditions of the example shown in FIG. 12 are the same as the operating conditions of FIG. 6 or 10 described above.

第1凝縮器3A,3Bの一つの熱媒体流路長をLp1とし、第2凝縮器4の一つの熱媒体流路長をLp2とすると、図12に示す例では、Lp1:Lp2=0.55:0.45としている。本実施の形態1では、第1凝縮器3A,3Bの熱媒体流路は二つあり、第2凝縮器4の熱媒体流路は一つであるため、第1凝縮器3A,3Bの熱媒体流路の全長をL1とし、第2凝縮器4の熱媒体流路の全長をL2とすると、L1:L2=1.10:0.45≒2.4:1.0となる。   In the example shown in FIG. 12, Lp1: Lp2 = 0..., Assuming that one heat medium flow path length of the first condensers 3A and 3B is Lp1 and one heat medium flow path length of the second condenser 4 is Lp2. 55: 0.45. In the first embodiment, the first condensers 3A and 3B have two heat medium flow paths, and the second condenser 4 has one heat medium flow path, and therefore the heat of the first condensers 3A and 3B. When the total length of the medium flow path is L1, and the total length of the heat medium flow path of the second condenser 4 is L2, L1: L2 = 1.10: 0.45≈2.4: 1.0.

第1凝縮器3A,3Bの熱媒体流路長と第2凝縮器4の熱媒体流路長との比を上記のようにした場合、入水温度が例えば9℃の低温入水運転では、図12に示されるとおり、第2凝縮器4で水を9℃から50℃まで加熱した後、第1凝縮器3A,3Bで水を50℃から80℃まで加熱することができる。また、入水温度が例えば50℃の高温入水運転では、第1凝縮器3A,3Bで水を50℃から80℃まで加熱することができる。   When the ratio of the heat medium flow path length of the first condensers 3A and 3B and the heat medium flow path length of the second condenser 4 is set as described above, in the low temperature water intake operation where the incoming water temperature is 9 ° C., for example, FIG. As shown in FIG. 3, after the water is heated from 9 ° C. to 50 ° C. by the second condenser 4, the water can be heated from 50 ° C. to 80 ° C. by the first condensers 3A and 3B. Further, in the high temperature water inlet operation where the incoming water temperature is 50 ° C., for example, the water can be heated from 50 ° C. to 80 ° C. with the first condensers 3A and 3B.

本実施の形態1の冷凍サイクル装置1Aによれば、以下のような効果が得られる。
(効果1)低温入水運転では、第2凝縮器4で冷媒を過冷却させ、第2凝縮器4の出口の冷媒温度を低くしてエンタルピ差を大きくすることで、COPを高くすることができる。冷媒は、その性質上、過冷却液になると流速が低くなり、熱伝達率が気液二相部に比べて低くなる。これに対し、本実施の形態1では、第2凝縮器4の冷媒流路の断面積を、第1凝縮器3A,3Bの冷媒流路の断面積より小さくしたことで、第2凝縮器4内の過冷却液の冷媒の流速の低下を抑制でき、それにより熱伝達率の低下を抑制できる。このため、低温入水運転において、第2凝縮器4での熱交換の効率を向上し、COPを更に高くすることができる。特に、本実施の形態1では、第2凝縮器4の冷媒流路の数を、第1凝縮器3A,3Bの冷媒流路の数より少なくしたことにより、第2凝縮器4での冷媒の熱伝達率の低下をより確実に抑制できる。
According to the refrigeration cycle apparatus 1A of the first embodiment, the following effects can be obtained.
(Effect 1) In the low-temperature water entry operation, the COP can be increased by supercooling the refrigerant with the second condenser 4 and lowering the refrigerant temperature at the outlet of the second condenser 4 to increase the enthalpy difference. . Due to the nature of the refrigerant, when it becomes a supercooled liquid, the flow rate becomes low and the heat transfer coefficient becomes lower than that of the gas-liquid two-phase part. On the other hand, in the first embodiment, the second condenser 4 is configured such that the cross-sectional area of the refrigerant flow path of the second condenser 4 is smaller than the cross-sectional area of the refrigerant flow paths of the first condensers 3A and 3B. It is possible to suppress a decrease in the flow rate of the refrigerant in the supercooled liquid, thereby suppressing a decrease in heat transfer coefficient. For this reason, in the low temperature water intake operation, the efficiency of heat exchange in the second condenser 4 can be improved, and the COP can be further increased. In particular, in the first embodiment, the number of refrigerant channels in the second condenser 4 is smaller than the number of refrigerant channels in the first condensers 3A and 3B, so that the refrigerant in the second condenser 4 is reduced. A decrease in heat transfer rate can be more reliably suppressed.

(効果2)高温入水運転では、第2凝縮器4内の冷媒が気液二相状態またはガスとなるため、過冷却液に比べて流速が高くなる。このため、高温入水運転の第2凝縮器4内の冷媒圧力損失は、低温入水運転の第2凝縮器4内の冷媒圧力損失より大きくなる。このとき、第2凝縮器4は、第1凝縮器3A,3Bに比べて、冷媒流路の断面積が小さく、冷媒流路の数が少ないため、冷媒圧力損失が大きくなり易い。そのため、高温入水運転では、第2凝縮器4内の冷媒が圧力損失により温度降下を生じる。その結果、冷媒と水の温度差が小さくなるため、圧力を一定とすれば、熱交換量が低下する。第2凝縮器4内で、冷媒圧力損失が更に大きくなると、冷媒温度が入水温度より低くなる部分が発生する。冷媒温度が水温より低い部分では、水が冷媒に熱を奪われることになり、熱をロスする。その結果、冷凍サイクル装置1Aが水を加熱する効率が低下する。これに対し、本実施の形態1では、高温入水運転では第2凝縮器4に水を通さないので、冷媒温度が入水温度より低くなる部分が第2凝縮器4内に発生しても、水が冷媒に熱を奪われることを確実に抑制できるので、熱のロスを抑制できる。それゆえ、冷凍サイクル装置1Aが水を加熱する効率が低下することを確実に抑制できる。また、第1凝縮器3A,3Bは、第2凝縮器4に比べて、冷媒流路の断面積が大きく、冷媒流路の数が多いため、冷媒圧力損失が小さい。このため、第1凝縮器3A,3Bでは、入水温度が高い高温入水運転においても、凝縮圧力を上昇させることなく、十分な熱交換量を確保できる。   (Effect 2) In the high-temperature water entry operation, since the refrigerant in the second condenser 4 is in a gas-liquid two-phase state or gas, the flow velocity is higher than that of the supercooled liquid. For this reason, the refrigerant pressure loss in the second condenser 4 in the high temperature water inlet operation is larger than the refrigerant pressure loss in the second condenser 4 in the low temperature water inlet operation. At this time, since the second condenser 4 has a smaller sectional area of the refrigerant flow path and a smaller number of refrigerant flow paths than the first condensers 3A and 3B, the refrigerant pressure loss is likely to increase. For this reason, in the high-temperature incoming operation, the refrigerant in the second condenser 4 undergoes a temperature drop due to pressure loss. As a result, the temperature difference between the refrigerant and water becomes small, and the amount of heat exchange decreases if the pressure is kept constant. When the refrigerant pressure loss further increases in the second condenser 4, a portion where the refrigerant temperature becomes lower than the incoming water temperature is generated. In a portion where the refrigerant temperature is lower than the water temperature, water is deprived of heat by the refrigerant, and heat is lost. As a result, the efficiency with which the refrigeration cycle apparatus 1A heats water decreases. On the other hand, in the first embodiment, since water is not passed through the second condenser 4 in the high-temperature water-filling operation, even if a portion where the refrigerant temperature is lower than the water-filling temperature occurs in the second condenser 4, Can be reliably suppressed from taking heat away by the refrigerant, so that heat loss can be suppressed. Therefore, it can be reliably suppressed that the efficiency of heating the water by the refrigeration cycle apparatus 1A is reduced. In addition, the first condensers 3A and 3B have a larger cross-sectional area of the refrigerant flow path and a larger number of refrigerant flow paths than the second condenser 4, so that the refrigerant pressure loss is small. For this reason, in the first condensers 3A and 3B, a sufficient heat exchange amount can be ensured without increasing the condensation pressure even in a high-temperature incoming operation with a high incoming water temperature.

また、本実施の形態1では、冷媒としてR32を用いることにより、次のような効果が得られる。
(効果3)図13に、R410A冷媒およびR32冷媒の圧縮機吐出温度の比較を示す。図13に示す例では、圧縮機吸入圧力を0℃でのR32の飽和蒸気圧である0.81MPaとし、圧縮機吐出圧力を空調機の設計圧力と同等の4.25MPaとし、圧縮機2に吸入される冷媒の過熱度を0Kとし、圧縮機効率を100%と仮定している。このような条件において、R410Aの圧縮機吐出温度が91℃であるのに対し、R32の圧縮機吐出温度は110℃となる。過熱度とは、蒸発温度すなわち飽和温度からの温度上昇幅である。高温入水運転では、前述のようにアキュムレータ7に余剰の冷媒液を貯留する運転となるため、圧縮機2に吸入される冷媒の過熱度が0K(もしくは0K以下)となる。圧縮機2に吸入される冷媒の過熱度が0Kになると、上記のようにR410A冷媒は圧縮機吐出温度が91℃と低くなる。このため、R410Aを冷媒に用いた場合、高温入水運転での出湯温度を高くすることが困難となる。これに対し、R32冷媒は、圧縮機2に吸入される冷媒の過熱度が0Kになっても、圧縮機吐出温度を110℃と高くすることができる。このため、冷媒にR32を用いることで、高温入水運転での出湯温度をR410A冷媒より高くすることができる。その結果、貯湯タンク21の容量が同一の場合、蓄熱量をより多くできる。本実施の形態1の冷凍サイクル装置1Aは、R32を冷媒に用い、設計圧力を空調機と同程度にした場合、出湯温度は最高で約80℃となる。したがって、貯湯タンク21の貯湯温度も最高で約80℃となる。これに対し、COを冷媒に用いたヒートポンプ給湯機の出湯温度は最高で約90℃であり、貯湯温度も最高で約90℃となる。このため、貯湯タンク21の容量を同一とした場合に、蓄熱量はCO冷媒を用いたヒートポンプ給湯機の方が大きくなる。しかしながら、給湯管29から給湯端末へ供給する湯の温度は、約40〜60℃であるので、貯湯温度が80℃でも問題は無い。また、本実施の形態1の冷凍サイクル装置1Aでは、入水温度が約50℃以上の高温入水運転を行う場合にも、出湯温度を80℃以上とし、且つ効率の良い運転が行える。このため、貯湯タンク21からの放熱などにより貯湯温度および蓄熱量が低下した場合には、冷凍サイクル装置1Aの高温入水運転による蓄熱運転を行うことにより、貯湯タンク21内の温度低下した湯を効率良く再加熱することができる。また、COの臨界温度が約31℃であるのに対して、R32の臨界温度は約78℃と高い。このため、本実施の形態1の冷凍サイクル装置1Aによれば、高温入水運転でも冷媒の凝縮潜熱を利用できるので、COPの高い運転ができる。また、貯湯温度が高すぎると、貯湯タンク21から外気への放熱が増加するため、90℃で貯湯するよりも、80℃で貯湯し、蓄熱量が低下した場合に再び蓄熱運転を行う方が熱ロスが小さくなる。なお、本発明では、R32が100%の冷媒を用いた場合だけでなく、R32を主成分とする冷媒を用いた場合にも、上述した効果と同様の効果が得られる。R32を主成分とする冷媒を用いる場合、R32の割合が70mass%以上、より好ましくは90mass%以上の冷媒を用いれば良い。
Moreover, in this Embodiment 1, the following effects are acquired by using R32 as a refrigerant | coolant.
(Effect 3) FIG. 13 shows a comparison of compressor discharge temperatures of R410A refrigerant and R32 refrigerant. In the example shown in FIG. 13, the compressor suction pressure is 0.81 MPa which is the saturated vapor pressure of R32 at 0 ° C., the compressor discharge pressure is 4.25 MPa which is equivalent to the design pressure of the air conditioner, and the compressor 2 It is assumed that the superheat degree of the sucked refrigerant is 0K and the compressor efficiency is 100%. Under such conditions, the compressor discharge temperature of R410A is 91 ° C., whereas the compressor discharge temperature of R32 is 110 ° C. The degree of superheat is the temperature rise from the evaporation temperature, that is, the saturation temperature. In the high-temperature water entry operation, as described above, an excess refrigerant liquid is stored in the accumulator 7, so that the superheat degree of the refrigerant sucked into the compressor 2 becomes 0K (or 0K or less). When the superheat degree of the refrigerant sucked into the compressor 2 becomes 0K, the compressor discharge temperature of the R410A refrigerant is lowered to 91 ° C. as described above. For this reason, when R410A is used for the refrigerant, it is difficult to increase the temperature of the hot water in the high-temperature water entry operation. On the other hand, the R32 refrigerant can increase the compressor discharge temperature to 110 ° C. even when the superheat degree of the refrigerant sucked into the compressor 2 becomes 0K. For this reason, by using R32 as the refrigerant, the temperature of the hot water in the high temperature water intake operation can be made higher than that of the R410A refrigerant. As a result, when the capacity of the hot water storage tank 21 is the same, the amount of stored heat can be increased. In the refrigeration cycle apparatus 1A according to the first embodiment, when R32 is used as a refrigerant and the design pressure is set to the same level as that of an air conditioner, the hot water temperature is about 80 ° C. at maximum. Accordingly, the hot water storage temperature of the hot water storage tank 21 is about 80 ° C. at the maximum. On the other hand, the hot water temperature of the heat pump water heater using CO 2 as a refrigerant is about 90 ° C. at the maximum, and the hot water storage temperature is about 90 ° C. at the maximum. For this reason, when the capacity | capacitance of the hot water storage tank 21 is made the same, the heat storage amount becomes larger in the heat pump water heater using the CO 2 refrigerant. However, since the temperature of hot water supplied from the hot water supply pipe 29 to the hot water supply terminal is about 40 to 60 ° C., there is no problem even if the hot water storage temperature is 80 ° C. Further, in the refrigeration cycle apparatus 1A according to the first embodiment, even when performing a high temperature water inlet operation where the water inlet temperature is about 50 ° C. or higher, the hot water temperature is set to 80 ° C. or higher and an efficient operation can be performed. For this reason, when the hot water storage temperature and the heat storage amount are reduced due to heat radiation from the hot water storage tank 21, etc., the hot water having a reduced temperature in the hot water storage tank 21 is made efficient by performing the heat storage operation by the high temperature water input operation of the refrigeration cycle apparatus 1A. Can be reheated well. Further, the critical temperature of CO 2 is about 31 ° C., whereas the critical temperature of R 32 is as high as about 78 ° C. For this reason, according to the refrigeration cycle apparatus 1A of the first embodiment, the condensation latent heat of the refrigerant can be used even in the high-temperature water entry operation, so that the operation with a high COP can be performed. In addition, if the hot water storage temperature is too high, heat radiation from the hot water storage tank 21 to the outside air increases, so it is better to store hot water at 80 ° C. and perform heat storage operation again when the heat storage amount decreases than to store hot water at 90 ° C. Heat loss is reduced. In the present invention, the same effect as described above can be obtained not only when a refrigerant whose R32 is 100% is used but also when a refrigerant whose main component is R32 is used. When a refrigerant mainly composed of R32 is used, a refrigerant having a ratio of R32 of 70 mass% or more, more preferably 90 mass% or more may be used.

ここで、第1凝縮器の冷媒流路の数の、第2凝縮器の冷媒流路の数に対する比を冷媒流路数比と定義する。前述したように、本実施の形態1では、第1凝縮器3A,3Bの冷媒流路は6本であり、第2凝縮器4の冷媒流路は3本であるため、冷媒流路数比は2である。図14は、冷媒流路数比と第1凝縮器の冷媒圧力損失の大きさとの関係を示す図である。図14の縦軸は、冷媒流路数比が1のときを100%とした第1凝縮器の冷媒圧力損失の大きさを表す。図14に示すように、冷媒流路数比が大きいほど、第1凝縮器の冷媒圧力損失は減少する。しかしながら、冷媒流路数比が2.5を超えると、冷媒圧力損失をそれ以上に低減する効果は小さくなる。一方、冷媒流路数比が大き過ぎると、冷媒流速の低下により、熱伝達率が低下するため、熱交換量が低下する場合がある。以上のようなことから、冷媒流路数比は1.5から2.5程度が望ましく、本実施の形態1のように冷媒流路数比が2であることが特に望ましい。また、本実施の形態1では、第1凝縮器3A,3Bおよび第2凝縮器4をほぼ同じ構造の熱交換器で構成している。すなわち、第2凝縮器4とほぼ同じ構造の熱交換器を二つ並列に接続することで第1凝縮器3A,3Bを構成している。これにより、容易な設計で上記効果を達成することができる。   Here, a ratio of the number of refrigerant channels of the first condenser to the number of refrigerant channels of the second condenser is defined as a refrigerant channel number ratio. As described above, in the first embodiment, the first condensers 3A and 3B have six refrigerant channels, and the second condenser 4 has three refrigerant channels. Is 2. FIG. 14 is a diagram illustrating a relationship between the ratio of the number of refrigerant channels and the magnitude of refrigerant pressure loss in the first condenser. The vertical axis of FIG. 14 represents the magnitude of the refrigerant pressure loss of the first condenser with 100% when the refrigerant flow rate ratio is 1. As shown in FIG. 14, the refrigerant pressure loss of the first condenser decreases as the refrigerant flow path number ratio increases. However, when the refrigerant flow rate ratio exceeds 2.5, the effect of further reducing the refrigerant pressure loss is reduced. On the other hand, if the ratio of the number of refrigerant channels is too large, the heat transfer rate may decrease due to a decrease in the refrigerant flow rate, which may reduce the amount of heat exchange. As described above, the refrigerant flow rate ratio is preferably about 1.5 to 2.5, and the refrigerant flow rate ratio is particularly preferably 2 as in the first embodiment. In the first embodiment, the first condensers 3A and 3B and the second condenser 4 are constituted by heat exchangers having substantially the same structure. That is, the first condensers 3A and 3B are configured by connecting two heat exchangers having substantially the same structure as the second condenser 4 in parallel. Thereby, the said effect can be achieved by an easy design.

本実施の形態1における低温入水運転では、水のバイパス率を0%とし、水の全量を第2凝縮器4で加熱するので、出湯温度を高くすることができる。ただし、本発明では、低温入水運転で、水のバイパス率を必ずしも0%にしなくても良く、少量の水を第2凝縮器バイパス通路10に通しても良い。また、本実施の形態1における高温入水運転では、水のバイパス率を100%とし、水の全量を第2凝縮器バイパス通路10に通すので、第2凝縮器4で冷媒が水に熱を奪われることを確実に防止することができる。ただし、本発明では、高温入水運転で、水のバイパス率を必ずしも100%にしなくても良く、少量の水を第2凝縮器4に通しても良い。   In the low-temperature water entry operation in the first embodiment, the water bypass rate is set to 0%, and the entire amount of water is heated by the second condenser 4, so that the temperature of the hot water can be increased. However, in the present invention, it is not always necessary to set the water bypass rate to 0% in the low temperature water intake operation, and a small amount of water may be passed through the second condenser bypass passage 10. In the high-temperature water entry operation in the first embodiment, the water bypass rate is 100% and the entire amount of water is passed through the second condenser bypass passage 10, so that the refrigerant takes heat away from the water in the second condenser 4. Can be surely prevented. However, in the present invention, it is not always necessary to set the water bypass rate to 100% in the high-temperature incoming operation, and a small amount of water may be passed through the second condenser 4.

また、本発明では、第1基準温度と、それより高い第2基準温度とを設け、入水温度が第1基準温度に対して低い場合にはバイパス率を0%とし、入水温度が第2基準温度に対して高い場合にはバイパス率を100%とし、入水温度が第1基準温度と第2基準温度との間にある場合には入水温度が高くなるにつれてバイパス率が連続的または段階的に高くなるように、制御装置50が流路切替弁11の動作を制御しても良い。これにより、低温入水運転と高温入水運転との遷移を円滑に行うことができる。   In the present invention, a first reference temperature and a second reference temperature higher than the first reference temperature are provided. When the incoming water temperature is lower than the first reference temperature, the bypass rate is set to 0%, and the incoming water temperature is the second reference temperature. When the temperature is higher than the temperature, the bypass rate is set to 100%. When the incoming water temperature is between the first reference temperature and the second reference temperature, the bypass rate increases continuously or stepwise as the incoming water temperature increases. The control device 50 may control the operation of the flow path switching valve 11 so as to be higher. Thereby, the transition between the low-temperature incoming operation and the high-temperature incoming operation can be performed smoothly.

実施の形態2.
次に、図15および図16を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。
Embodiment 2. FIG.
Next, the second embodiment of the present invention will be described with reference to FIG. 15 and FIG. 16. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. The description is omitted.

図15は、本発明の実施の形態2の冷凍サイクル装置の構成図である。図15に示す本実施の形態2の冷凍サイクル装置1Bは、実施の形態1の冷凍サイクル装置1Aと比べて、第2凝縮器バイパス通路10および流路切替弁11を備えない代わりに、第2凝縮器バイパス通路16およびバイパス弁17を備える。第2凝縮器バイパス通路16は、第2凝縮器4の冷媒流路41をバイパスする。第2凝縮器バイパス通路16の一端は、第1凝縮器3A,3Bの冷媒流路31と第2凝縮器4の冷媒流路41との間の冷媒配管に接続されている。第2凝縮器バイパス通路16の他端は、膨張弁5と蒸発器6との間の冷媒配管に接続されている。バイパス弁17は、第2凝縮器バイパス通路16の途中に設けられており、第2凝縮器バイパス通路16を開閉する。バイパス弁17は、高圧冷媒を減圧膨張させる減圧装置の機能も持つ。バイパス弁17は、その開度が任意に変更可能なものが好ましい。入り熱媒体温度センサ13は、水入口91と第2凝縮器4との間の熱媒体経路9の途中に設置されている。   FIG. 15 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention. A refrigeration cycle apparatus 1B according to the second embodiment shown in FIG. 15 is different from the refrigeration cycle apparatus 1A according to the first embodiment in that the second condenser bypass passage 10 and the flow path switching valve 11 are not provided. A condenser bypass passage 16 and a bypass valve 17 are provided. The second condenser bypass passage 16 bypasses the refrigerant flow path 41 of the second condenser 4. One end of the second condenser bypass passage 16 is connected to a refrigerant pipe between the refrigerant flow path 31 of the first condensers 3 </ b> A and 3 </ b> B and the refrigerant flow path 41 of the second condenser 4. The other end of the second condenser bypass passage 16 is connected to a refrigerant pipe between the expansion valve 5 and the evaporator 6. The bypass valve 17 is provided in the middle of the second condenser bypass passage 16 and opens and closes the second condenser bypass passage 16. The bypass valve 17 also has a function of a decompression device that decompresses and expands the high-pressure refrigerant. The bypass valve 17 is preferably one whose opening can be arbitrarily changed. The incoming heat medium temperature sensor 13 is installed in the middle of the heat medium path 9 between the water inlet 91 and the second condenser 4.

本実施の形態2では、第1凝縮器3A,3Bを通過した冷媒の全流量のうち、第2凝縮器4を通らずに第2凝縮器バイパス通路16を通る割合を「バイパス率」と称する。本実施の形態2では、膨張弁5およびバイパス弁17が、第2凝縮器バイパス通路16を通る冷媒の流量であるバイパス量を可変にする流路制御要素に相当する。また、本実施の形態2では、低温入水運転および高温入水運転のいずれにおいても、水入口91から流入した水の全量が第2凝縮器4を通る。   In the second embodiment, of the total flow rate of the refrigerant that has passed through the first condensers 3A and 3B, the ratio that passes through the second condenser bypass passage 16 without passing through the second condenser 4 is referred to as “bypass rate”. . In the second embodiment, the expansion valve 5 and the bypass valve 17 correspond to a flow path control element that varies a bypass amount that is a flow rate of the refrigerant passing through the second condenser bypass passage 16. Further, in the second embodiment, the entire amount of water that flows in from the water inlet 91 passes through the second condenser 4 in both the low-temperature incoming operation and the high-temperature incoming operation.

冷凍サイクル装置1Bは、入水温度が基準温度αより低い場合には低温入水運転を行い、入水温度が基準温度α以上である場合には高温入水運転を行う。基準温度αは、実施の形態1と同じく50℃とする。制御装置50は、高温入水運転のバイパス量が低温入水運転のバイパス量より大きくなるように膨張弁5およびバイパス弁17の動作を制御する。本実施の形態2では、低温入水運転のバイパス率を0%とし、高温入水運転のバイパス率を100%として説明する。   The refrigeration cycle apparatus 1B performs a low temperature water inlet operation when the incoming water temperature is lower than the reference temperature α, and performs a high temperature water inlet operation when the incoming water temperature is equal to or higher than the reference temperature α. The reference temperature α is set to 50 ° C. as in the first embodiment. The control device 50 controls the operations of the expansion valve 5 and the bypass valve 17 so that the bypass amount in the high-temperature incoming operation is larger than the bypass amount in the low-temperature incoming operation. In the second embodiment, a description will be given assuming that the bypass rate of the low temperature incoming operation is 0% and the bypass rate of the high temperature incoming operation is 100%.

図15は、本実施の形態2の冷凍サイクル装置1Bの低温入水運転の動作を示している。低温入水運転を行う場合には制御装置50は、バイパス弁17を冷媒が流れないような開度に閉じる。これにより、第1凝縮器3A,3Bを通過した冷媒の全流量が第2凝縮器4および膨張弁5を通り、蒸発器6へ向かう。冷凍サイクル装置1Bの低温入水運転は、実施の形態1の冷凍サイクル装置1Aの低温入水運転と実質的に同様の状態になる。   FIG. 15 shows the operation of the low-temperature water entry operation of the refrigeration cycle apparatus 1B of the second embodiment. When performing the low-temperature water entry operation, the control device 50 closes the bypass valve 17 at an opening degree at which the refrigerant does not flow. Thereby, the total flow rate of the refrigerant that has passed through the first condensers 3 </ b> A and 3 </ b> B passes through the second condenser 4 and the expansion valve 5, and goes to the evaporator 6. The low temperature water inlet operation of the refrigeration cycle apparatus 1B is substantially in the same state as the low temperature water inlet operation of the refrigeration cycle apparatus 1A of the first embodiment.

図16は、本実施の形態2の冷凍サイクル装置1Bの高温入水運転の動作を示す図である。図16に示すように、高温入水運転を行う場合には制御装置50は、バイパス弁17を開くとともに、膨張弁5を冷媒が流れないような開度に閉じる。これにより、第1凝縮器3A,3Bを通過した冷媒の全流量が、第2凝縮器4を通らずに、第2凝縮器バイパス通路16を通る。第1凝縮器3A,3Bを通過して第2凝縮器バイパス通路16に流入した高圧冷媒は、バイパス弁17で膨張して減圧され、蒸発器6へ向かう。この高温入水運転では、水は第2凝縮器4を通るが、冷媒が第2凝縮器4を通らないので、第2凝縮器4で水は温度変化しない。   FIG. 16 is a diagram illustrating the operation of the high-temperature water entry operation of the refrigeration cycle apparatus 1B according to the second embodiment. As shown in FIG. 16, when performing the high-temperature water entry operation, the control device 50 opens the bypass valve 17 and closes the expansion valve 5 to an opening degree at which the refrigerant does not flow. Thereby, the total flow rate of the refrigerant that has passed through the first condensers 3 </ b> A and 3 </ b> B passes through the second condenser bypass passage 16 without passing through the second condenser 4. The high-pressure refrigerant that has passed through the first condensers 3 </ b> A and 3 </ b> B and has flowed into the second condenser bypass passage 16 is expanded and depressurized by the bypass valve 17, and travels toward the evaporator 6. In this high-temperature water entry operation, water passes through the second condenser 4, but since the refrigerant does not pass through the second condenser 4, the temperature of the water does not change in the second condenser 4.

本実施の形態2の冷凍サイクル装置1Bによれば、実施の形態1と同様の効果が得られる。特に、本実施の形態2によれば、高温入水運転で冷媒が第2凝縮器4を通らないので、冷媒温度が入水温度より低くなる部分が第2凝縮器4内に発生することを確実に抑制できる。それゆえ、水が冷媒に熱を奪われることを確実に抑制できるので、冷凍サイクル装置1Bが水を加熱する効率が低下することを確実に抑制できる。また、高温入水運転では、第1凝縮器3A,3Bを通過した気液二相状態またはガスの冷媒が、冷媒流路の断面積が小さい第2凝縮器4を通らないで済むため、第2凝縮器4内で冷媒が圧力損失により温度降下することを回避できる。   According to the refrigeration cycle apparatus 1B of the second embodiment, the same effects as those of the first embodiment can be obtained. In particular, according to the second embodiment, since the refrigerant does not pass through the second condenser 4 in the high-temperature water entry operation, it is ensured that a portion where the refrigerant temperature is lower than the water inlet temperature is generated in the second condenser 4. Can be suppressed. Therefore, since it is possible to reliably suppress the water from taking heat away by the refrigerant, it is possible to reliably suppress the efficiency of the refrigeration cycle apparatus 1B from heating water. Further, in the high-temperature water-filling operation, the gas-liquid two-phase state or gas refrigerant that has passed through the first condensers 3A and 3B does not have to pass through the second condenser 4 having a small cross-sectional area of the refrigerant flow path. It is possible to avoid the temperature of the refrigerant from dropping due to pressure loss in the condenser 4.

また、高温入水運転で冷媒が第2凝縮器4を通らないので、冷媒圧力損失を実施の形態1よりも更に低減できる。このため、高温入水運転においても、第1凝縮器3A,3Bで、凝縮圧力の上昇をより確実に抑制し、十分な熱交換量をより確実に確保できる。   In addition, since the refrigerant does not pass through the second condenser 4 in the high-temperature water entry operation, the refrigerant pressure loss can be further reduced as compared with the first embodiment. For this reason, also in the high temperature water entry operation, the first condensers 3A and 3B can more reliably suppress the increase in the condensation pressure, and can ensure a sufficient amount of heat exchange.

本実施の形態2における低温入水運転では、冷媒のバイパス率を0%とし、冷媒の全流量を第2凝縮器4に通すので、出湯温度を高くすることができる。ただし、本発明では、低温入水運転で、冷媒のバイパス率を必ずしも0%にしなくても良く、冷媒の全流量のうちの少量を第2凝縮器バイパス通路16に通しても良い。また、本実施の形態2における高温入水運転では、冷媒のバイパス率を100%とし、冷媒の全流量を第2凝縮器バイパス通路16に通すので、冷媒の圧力損失をより確実に低減できる。ただし、本発明では、高温入水運転で、冷媒のバイパス率を必ずしも100%にしなくても良く、冷媒の全流量のうちの少量を第2凝縮器4に通しても良い。   In the low-temperature water entry operation according to the second embodiment, the refrigerant bypass rate is set to 0%, and the entire flow rate of the refrigerant is passed through the second condenser 4, so that the temperature of the hot water can be increased. However, in the present invention, the refrigerant bypass rate does not necessarily have to be 0% in the low-temperature water entry operation, and a small amount of the total refrigerant flow rate may be passed through the second condenser bypass passage 16. In the high-temperature water entry operation according to the second embodiment, the refrigerant bypass rate is set to 100%, and the entire flow rate of the refrigerant is passed through the second condenser bypass passage 16, so that the pressure loss of the refrigerant can be more reliably reduced. However, in the present invention, the bypass rate of the refrigerant does not necessarily need to be 100% in the high-temperature water entry operation, and a small amount of the total refrigerant flow rate may be passed through the second condenser 4.

実施の形態3.
次に、図17から図19を参照して、本発明の実施の形態3について説明するが、上述した実施の形態2との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。
Embodiment 3 FIG.
Next, the third embodiment of the present invention will be described with reference to FIG. 17 to FIG. 19. The description will focus on the differences from the second embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. The description is omitted.

図17は、本発明の実施の形態3の冷凍サイクル装置の構成図である。図17に示すように、本実施の形態3の冷凍サイクル装置1Cの機器構成は、実施の形態2と同様であるので、説明を省略する。   FIG. 17 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. As shown in FIG. 17, the equipment configuration of the refrigeration cycle apparatus 1C of the third embodiment is the same as that of the second embodiment, and thus the description thereof is omitted.

図18は、本実施の形態3の冷凍サイクル装置1Cにおける制御動作を示すフローチャートである。図18のステップS11で、制御装置50は、入り熱媒体温度センサ13で検出される入水温度と、予め設定された第1基準温度βとを比較する。本実施の形態3では、第1基準温度β=30℃とする。ステップS11で入水温度が第1基準温度β以下である場合には、制御装置50は、ステップS12へ移行する。ステップS12で冷凍サイクル装置1Cは、低温入水運転を行う。この低温入水運転は、実施の形態2の低温入水運転(図15)と同様である。すなわち、ステップS12で制御装置50は、膨張弁5を開くとともに、バイパス弁17を冷媒が流れないような開度に閉じる。   FIG. 18 is a flowchart showing a control operation in the refrigeration cycle apparatus 1C of the third embodiment. In step S11 in FIG. 18, the control device 50 compares the incoming water temperature detected by the incoming heat medium temperature sensor 13 with a preset first reference temperature β. In the third embodiment, the first reference temperature β = 30 ° C. When the incoming water temperature is equal to or lower than the first reference temperature β in step S11, the control device 50 proceeds to step S12. In step S12, the refrigeration cycle apparatus 1C performs a low-temperature water entry operation. This low temperature incoming operation is the same as the low temperature incoming operation of the second embodiment (FIG. 15). That is, in step S12, the control device 50 opens the expansion valve 5 and closes the bypass valve 17 to an opening degree at which the refrigerant does not flow.

ステップS11で入水温度が第1基準温度βより高い場合には、制御装置50は、ステップS13へ移行する。ステップS13で制御装置50は、入水温度と、予め設定された第2基準温度γとを比較する。本実施の形態3では、第2基準温度γ=50℃とする。ステップS13で入水温度が第2基準温度γ以上である場合には、制御装置50は、ステップS14へ移行する。ステップS14で冷凍サイクル装置1Cは、高温入水運転を行う。この高温入水運転は、実施の形態2の高温入水運転(図16)と同様である。すなわち、ステップS14で制御装置50は、バイパス弁17を開くとともに、膨張弁5を冷媒が流れないような開度に閉じる。   If the incoming water temperature is higher than the first reference temperature β in step S11, the control device 50 proceeds to step S13. In step S13, the control device 50 compares the incoming water temperature with a preset second reference temperature γ. In the third embodiment, the second reference temperature γ = 50 ° C. If the incoming water temperature is equal to or higher than the second reference temperature γ in step S13, the control device 50 proceeds to step S14. In step S14, the refrigeration cycle apparatus 1C performs a high-temperature water entry operation. This high temperature water input operation is the same as the high temperature water input operation (FIG. 16) of the second embodiment. That is, in step S14, the control device 50 opens the bypass valve 17 and closes the expansion valve 5 to an opening degree at which the refrigerant does not flow.

ステップS13で入水温度が第2基準温度γより低い場合、すなわち入水温度が第1基準温度βと第2基準温度γとの間にある場合には、制御装置50は、ステップS15へ移行する。ステップS15で冷凍サイクル装置1Cは、中温入水運転を行う。   If the incoming water temperature is lower than the second reference temperature γ in step S13, that is, if the incoming water temperature is between the first reference temperature β and the second reference temperature γ, the control device 50 proceeds to step S15. In step S15, the refrigeration cycle apparatus 1C performs a medium temperature water injection operation.

図17は、本実施の形態3の冷凍サイクル装置1Cの中温入水運転の動作を示している。中温入水運転で制御装置50は、第1凝縮器3A,3Bを通過した冷媒が、第2凝縮器4と第2凝縮器バイパス通路16とに分かれて流れるように、膨張弁5およびバイパス弁17の開度を制御する。   FIG. 17 shows the operation of the medium temperature water injection operation of the refrigeration cycle apparatus 1C of the third embodiment. The control device 50 in the medium-temperature water-filling operation causes the expansion valve 5 and the bypass valve 17 so that the refrigerant that has passed through the first condensers 3A and 3B flows separately into the second condenser 4 and the second condenser bypass passage 16. To control the opening degree.

図19は、本実施の形態3の冷凍サイクル装置1Cの中温入水運転での入水温度とバイパス率との関係を示す図である。図19に示すように、中温入水運転で制御装置50は、入水温度が高くなるにつれてバイパス率が連続的に高くなるように、膨張弁5およびバイパス弁17の開度を制御する。   FIG. 19 is a diagram showing the relationship between the incoming water temperature and the bypass rate in the medium temperature incoming water operation of the refrigeration cycle apparatus 1C of the third embodiment. As shown in FIG. 19, the control device 50 controls the opening degree of the expansion valve 5 and the bypass valve 17 so that the bypass rate continuously increases as the incoming water temperature increases in the intermediate temperature incoming water operation.

ここで、バイパス率をRb[%]とし、第2凝縮器4を通る冷媒流量をGrcとし、第2凝縮器バイパス通路16を通る冷媒流量をGrbとすると、次式が成り立つ。
Rb=Grb/(Grc+Grb)×100
Here, when the bypass rate is Rb [%], the refrigerant flow rate passing through the second condenser 4 is Grc, and the refrigerant flow rate passing through the second condenser bypass passage 16 is Grb, the following equation holds.
Rb = Grb / (Grc + Grb) × 100

第1基準温度βは、図12において、第2凝縮器4内の冷媒の乾き度が0になる位置の水温、すなわち冷媒が気液二相域と過冷却域との境目になる位置の水温を目安にすることが望ましい。図12に示す例では、冷媒の乾き度が0になる位置の水温が約30℃である。このため、本実施の形態3では、第1基準温度β=30℃としている。   In FIG. 12, the first reference temperature β is the water temperature at the position where the dryness of the refrigerant in the second condenser 4 becomes 0, that is, the water temperature at the position where the refrigerant becomes the boundary between the gas-liquid two-phase region and the supercooling region. It is desirable to use as a guide. In the example shown in FIG. 12, the water temperature at the position where the dryness of the refrigerant becomes 0 is about 30 ° C. For this reason, in this Embodiment 3, it is set as 1st reference temperature (beta) = 30 degreeC.

冷媒の全流量を第2凝縮器4に通す場合に、圧力を一定とすると、入水温度が高いほど、第2凝縮器4の冷媒平均流速が高くなり、第2凝縮器4の冷媒圧力損失が大きくなる。本実施の形態3では、入水温度が第1基準温度β(30℃)と第2基準温度γ(50℃)との間にある場合には、冷媒流量の一部を第2凝縮器バイパス通路16に通す中温入水運転を行うことで、第2凝縮器4の冷媒流量を減少させて圧力損失を低減できる。このため、本実施の形態3によれば、入水温度が30℃から50℃の間にある場合に、実施の形態2よりも冷媒圧力損失を低減できるという利点がある。   If the pressure is constant when the entire flow rate of the refrigerant is passed through the second condenser 4, the higher the incoming water temperature, the higher the average refrigerant flow velocity of the second condenser 4, and the lower the refrigerant pressure loss of the second condenser 4. growing. In the third embodiment, when the incoming water temperature is between the first reference temperature β (30 ° C.) and the second reference temperature γ (50 ° C.), a part of the refrigerant flow rate is transferred to the second condenser bypass passage. By performing the medium-temperature water-filling operation that is passed through 16, the refrigerant flow rate of the second condenser 4 can be reduced and the pressure loss can be reduced. For this reason, according to the third embodiment, there is an advantage that the refrigerant pressure loss can be reduced as compared with the second embodiment when the incoming water temperature is between 30 ° C. and 50 ° C.

中温入水運転において、第1凝縮器3A,3Bの冷媒エンタルピ差をΔh1とし、第2凝縮器4の冷媒エンタルピ差をΔh2とし、第1凝縮器3A,3Bおよび第2凝縮器4の全体の冷媒エンタルピ差をΔhとすると、次式が成り立つ。
Δh=Δh1+Grc/(Grc+Grb)・Δh2
In the medium-temperature water injection operation, the refrigerant enthalpy difference between the first condensers 3A and 3B is Δh1, the refrigerant enthalpy difference between the second condensers 4 is Δh2, and the refrigerant of the first condensers 3A and 3B and the second condenser 4 as a whole. When the enthalpy difference is Δh, the following equation is established.
Δh = Δh1 + Grc / (Grc + Grb) · Δh2

本実施の形態3では、入水温度が第1基準温度βと第2基準温度γとの間にある場合、第1凝縮器3A,3Bおよび第2凝縮器4の全体の冷媒エンタルピ差は、上記式で計算されるΔhとなる。一方、入水温度が第1基準温度β以上の場合に冷媒の全流量を第2凝縮器バイパス通路16に通すとした場合には、第1凝縮器3A,3Bおよび第2凝縮器4の全体の冷媒エンタルピ差はΔh1になる。このように、本実施の形態3によれば、入水温度が第1基準温度β以上の場合に冷媒の全流量を第2凝縮器バイパス通路16に通す場合に比べて、冷媒エンタルピ差を大きくできるため、COPをより高くできる。   In the third embodiment, when the incoming water temperature is between the first reference temperature β and the second reference temperature γ, the refrigerant enthalpy difference of the entire first condenser 3A, 3B and second condenser 4 is as described above. Δh calculated by the equation. On the other hand, when the incoming water temperature is equal to or higher than the first reference temperature β and the total flow rate of the refrigerant is passed through the second condenser bypass passage 16, the entire first condensers 3 </ b> A, 3 </ b> B and the second condenser 4 are The refrigerant enthalpy difference is Δh1. As described above, according to the third embodiment, the refrigerant enthalpy difference can be increased as compared with the case where the total flow rate of the refrigerant is passed through the second condenser bypass passage 16 when the incoming water temperature is equal to or higher than the first reference temperature β. Therefore, COP can be made higher.

更に、本実施の形態3によれば、低温入水運転と高温入水運転との間で中温入水運転を行うので、それらの運転間の遷移を円滑に行うことができる。なお、本実施の形態3では、中温入水運転で入水温度が高くなるにつれてバイパス率が連続的に高くなるように膨張弁5およびバイパス弁17の開度を制御するが、本発明では、中温入水運転で入水温度が高くなるにつれてバイパス率が段階的に高くなるように膨張弁5およびバイパス弁17の開度を制御しても良い。   Furthermore, according to the third embodiment, since the intermediate temperature water injection operation is performed between the low temperature water input operation and the high temperature water input operation, transition between these operations can be performed smoothly. In the third embodiment, the opening degree of the expansion valve 5 and the bypass valve 17 is controlled so that the bypass rate continuously increases as the incoming water temperature increases in the intermediate temperature incoming water operation. The opening degree of the expansion valve 5 and the bypass valve 17 may be controlled so that the bypass rate increases stepwise as the incoming water temperature increases during operation.

1A,1B,1C 冷凍サイクル装置、2 圧縮機、3A,3B 第1凝縮器、4 第2凝縮器、5 膨張弁、6 蒸発器、7 アキュムレータ、9 熱媒体経路、10 凝縮器バイパス通路、11 流路切替弁、12 送風機、13 入り熱媒体温度センサ、16 凝縮器バイパス通路、17 バイパス弁、20 タンクユニット、21 貯湯タンク、22 水ポンプ、23,24 水路、25 給水管、26 給湯用混合弁、27 出湯管、28 給水分岐管、29 給湯管、30 追い焚き熱交換器、31 冷媒流路、32 熱媒体流路、41 冷媒流路、42 熱媒体流路、50 制御装置、50a プロセッサ、50b メモリ、60 熱交換器、61 ねじり管、61a,61b,61c 溝、62,63,64 冷媒伝熱管、91 水入口、92 水出口 1A, 1B, 1C Refrigeration cycle apparatus, 2 compressor, 3A, 3B first condenser, 4 second condenser, 5 expansion valve, 6 evaporator, 7 accumulator, 9 heat medium path, 10 condenser bypass path, 11 Flow path switching valve, 12 blower, 13 heat medium temperature sensor, 16 condenser bypass passage, 17 bypass valve, 20 tank unit, 21 hot water storage tank, 22 water pump, 23, 24 water channel, 25 water supply pipe, 26 mixing for hot water supply Valve, 27 Hot water supply pipe, 28 Water supply branch pipe, 29 Hot water supply pipe, 30 Reheating heat exchanger, 31 Refrigerant flow path, 32 Heat medium flow path, 41 Refrigerant flow path, 42 Heat medium flow path, 50 Control device, 50a Processor 50b memory, 60 heat exchanger, 61 twisted tube, 61a, 61b, 61c groove, 62, 63, 64 refrigerant heat transfer tube, 91 water inlet, 92 water outlet

Claims (6)

冷媒を圧縮する圧縮機と、
冷媒流路および熱媒体流路を有し、前記圧縮機で圧縮された冷媒を凝縮させる第1凝縮器と、
前記第1凝縮器の前記冷媒流路より断面積が小さい冷媒流路と、熱媒体流路とを有し、前記第1凝縮器を通過した冷媒を更に凝縮させる第2凝縮器と、
冷媒を蒸発させる蒸発器と、
冷媒と熱交換する液状の熱媒体を前記第2凝縮器と前記第1凝縮器とにこの順に通過させる熱媒体経路と、
前記第2凝縮器の前記冷媒流路または前記熱媒体流路をバイパスする第2凝縮器バイパス通路と、
前記第2凝縮器バイパス通路を通る冷媒または前記熱媒体の流量であるバイパス量を可変にする流路制御要素と、
冷媒と熱交換する前の前記熱媒体の温度である入り熱媒体温度が基準温度に対して高い場合の前記バイパス量が、前記入り熱媒体温度が前記基準温度に対して低い場合の前記バイパス量に比べて大きくなるように、前記流路制御要素の動作を制御する制御手段と、
を備え
冷媒または前記熱媒体の全流量のうち前記第2凝縮器バイパス通路を通る割合をバイパス率とし、
前記制御手段は、前記入り熱媒体温度が第1基準温度に対して低い場合には前記バイパス率を0%とし、前記入り熱媒体温度が前記第1基準温度より高い第2基準温度に対して高い場合には前記バイパス率を100%とし、前記入り熱媒体温度が前記第1基準温度と前記第2基準温度との間にある場合には前記入り熱媒体温度が高くなるにつれて前記バイパス率が連続的または段階的に高くなるように、前記流路制御要素の動作を制御する冷凍サイクル装置。
A compressor for compressing the refrigerant;
A first condenser having a refrigerant flow path and a heat medium flow path for condensing the refrigerant compressed by the compressor;
A second condenser having a refrigerant passage having a smaller cross-sectional area than the refrigerant passage of the first condenser and a heat medium passage, and further condensing the refrigerant that has passed through the first condenser;
An evaporator for evaporating the refrigerant;
A heat medium path through which a liquid heat medium that exchanges heat with the refrigerant passes through the second condenser and the first condenser in this order;
A second condenser bypass passage that bypasses the refrigerant flow path or the heat medium flow path of the second condenser;
A flow path control element that varies a bypass amount that is a flow rate of the refrigerant or the heat medium passing through the second condenser bypass passage;
The bypass amount when the incoming heat medium temperature, which is the temperature of the heat medium before heat exchange with the refrigerant, is higher than the reference temperature, is the bypass amount when the incoming heat medium temperature is lower than the reference temperature. Control means for controlling the operation of the flow path control element so as to be larger than
Equipped with a,
The ratio of passing through the second condenser bypass passage out of the total flow rate of the refrigerant or the heat medium is a bypass rate,
The control means sets the bypass rate to 0% when the input heat medium temperature is lower than the first reference temperature, and sets the bypass heat medium temperature to a second reference temperature higher than the first reference temperature. When the input heat medium temperature is between the first reference temperature and the second reference temperature when the input heat medium temperature is high, the bypass ratio is set to 100%. continuously or to be stepwise increased, the refrigeration cycle device that controls the operation of the channel control element.
前記第2凝縮器バイパス通路は、前記第2凝縮器の前記熱媒体流路をバイパスする請求項1に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein the second condenser bypass passage bypasses the heat medium flow path of the second condenser. 前記第2凝縮器バイパス通路は、前記第2凝縮器の前記冷媒流路をバイパスする請求項1に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein the second condenser bypass passage bypasses the refrigerant flow path of the second condenser. 前記第1凝縮器の前記冷媒流路は、複数に分かれており、
前記第1凝縮器の前記冷媒流路の数の前記第2凝縮器の前記冷媒流路の数に対する比が1.5〜2.5である請求項1から請求項のいずれか一項に記載の冷凍サイクル装置。
The refrigerant flow path of the first condenser is divided into a plurality of parts,
In any one of claims 1 to 3 ratio to the number of the refrigerant flow path of the second condenser in the number of the refrigerant flow path of the first condenser is 1.5 to 2.5 The refrigeration cycle apparatus described.
前記冷媒がR32、または前記冷媒の主成分がR32である請求項1から請求項のいずれか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4 , wherein the refrigerant is R32, or a main component of the refrigerant is R32. 前記入り熱媒体温度が前記基準温度に対して高い場合に冷媒回路内の冷媒が余剰になり、
前記冷媒回路内の余剰の冷媒を貯留する貯留部を備える請求項1から請求項のいずれか一項に記載の冷凍サイクル装置。
When the incoming heat medium temperature is higher than the reference temperature, the refrigerant in the refrigerant circuit becomes redundant,
The refrigeration cycle apparatus according to any one of claims 1 to 5 , further comprising a storage unit that stores excess refrigerant in the refrigerant circuit.
JP2015542459A 2013-10-17 2013-10-17 Refrigeration cycle equipment Active JP5999273B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078216 WO2015056333A1 (en) 2013-10-17 2013-10-17 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP5999273B2 true JP5999273B2 (en) 2016-09-28
JPWO2015056333A1 JPWO2015056333A1 (en) 2017-03-09

Family

ID=52827805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015542459A Active JP5999273B2 (en) 2013-10-17 2013-10-17 Refrigeration cycle equipment

Country Status (3)

Country Link
EP (1) EP3059520B1 (en)
JP (1) JP5999273B2 (en)
WO (1) WO2015056333A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3059519B1 (en) * 2013-10-17 2021-03-03 Mitsubishi Electric Corporation Refrigeration cycle device
CN105627630A (en) * 2016-03-01 2016-06-01 田幼华 Heat pump system
DE102019126983A1 (en) * 2019-10-08 2021-04-08 Wolf Gmbh Heat pump with temperature control and method for using ambient heat by a heat pump
EP4332466A4 (en) * 2021-04-27 2024-05-29 Mitsubishi Electric Corp Air conditioning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262397A (en) * 2002-03-08 2003-09-19 Osaka Gas Co Ltd Hot water supply system
JP2006078048A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Heat pump heater
JP2009222246A (en) * 2008-03-13 2009-10-01 Mitsubishi Electric Corp Heat pump type water heater
JP2011137617A (en) * 2009-12-29 2011-07-14 Hitachi Appliances Inc Heat pump water heater
WO2015056334A1 (en) * 2013-10-17 2015-04-23 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3702724B2 (en) 1999-09-08 2005-10-05 三菱電機株式会社 Heat pump system and heat pump system installation method
JP2002089958A (en) 2000-09-20 2002-03-27 Toshiba Kyaria Kk Heat pump type hot water supply system
DE10062764A1 (en) * 2000-12-15 2002-06-20 Buderus Heiztechnik Gmbh Heat pump, for hot water systems, has additional heat exchanger after useful circuit heat exchangers that provides further super-cooling of coolant condensate by passing heat to hot water system
JP3475293B2 (en) 2001-04-11 2003-12-08 西淀空調機株式会社 Heat pump water heater
JP4455518B2 (en) 2006-03-01 2010-04-21 シャープ株式会社 Heat pump water heater
JP2010014374A (en) 2008-07-07 2010-01-21 Kansai Electric Power Co Inc:The Heat pump type heating device
JP5470374B2 (en) * 2009-04-13 2014-04-16 パナソニック株式会社 Heat pump heating system
JP5857197B2 (en) 2011-08-22 2016-02-10 パナソニックIpマネジメント株式会社 Double-pipe heat exchanger and heat pump hot water generator equipped with the same
ITTO20111133A1 (en) * 2011-12-12 2013-06-13 Innovation Factory Scarl HIGH PERFORMANCE HEAT PUMP UNIT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262397A (en) * 2002-03-08 2003-09-19 Osaka Gas Co Ltd Hot water supply system
JP2006078048A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Heat pump heater
JP2009222246A (en) * 2008-03-13 2009-10-01 Mitsubishi Electric Corp Heat pump type water heater
JP2011137617A (en) * 2009-12-29 2011-07-14 Hitachi Appliances Inc Heat pump water heater
WO2015056334A1 (en) * 2013-10-17 2015-04-23 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2015056333A1 (en) 2017-03-09
EP3059520B1 (en) 2020-09-16
EP3059520A4 (en) 2017-06-28
WO2015056333A1 (en) 2015-04-23
EP3059520A1 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
KR101366986B1 (en) Heat pump system
JP5791807B2 (en) Air conditioner
JP5042262B2 (en) Air conditioning and hot water supply complex system
JP5999274B2 (en) Refrigeration cycle equipment
WO2014083867A1 (en) Air-conditioning device
JP5602243B2 (en) Air conditioner
JP3998024B2 (en) Heat pump floor heating air conditioner
JP3702724B2 (en) Heat pump system and heat pump system installation method
JP5999273B2 (en) Refrigeration cycle equipment
WO2010143373A1 (en) Heat pump system
JP7303413B2 (en) heat pump equipment
JP2017161182A (en) Heat pump device
JP6065213B2 (en) Water heating system
WO2017010007A1 (en) Air conditioner
JP6433422B2 (en) Refrigeration cycle equipment
JP6164565B2 (en) Water heating system
JP5678098B2 (en) Water heater
JP2015124909A (en) Hot water supply air-conditioning system
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
KR101280442B1 (en) Duality cold cycle heat pump system of control method
JP2017161164A (en) Air-conditioning hot water supply system
KR101054369B1 (en) Water-Refrigerant Heat Exchanger for Heat Pump Systems
JP6695034B2 (en) Heat pump device
KR101627659B1 (en) Hybrid heat pump boiler system
JP7390605B2 (en) heat pump system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5999273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250