JP5995992B2 - Method for producing cement-based solidified material - Google Patents

Method for producing cement-based solidified material Download PDF

Info

Publication number
JP5995992B2
JP5995992B2 JP2014552059A JP2014552059A JP5995992B2 JP 5995992 B2 JP5995992 B2 JP 5995992B2 JP 2014552059 A JP2014552059 A JP 2014552059A JP 2014552059 A JP2014552059 A JP 2014552059A JP 5995992 B2 JP5995992 B2 JP 5995992B2
Authority
JP
Japan
Prior art keywords
gypsum
blast furnace
cement
amount
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014552059A
Other languages
Japanese (ja)
Other versions
JPWO2014092101A1 (en
Inventor
嘉史 扇
嘉史 扇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Application granted granted Critical
Publication of JP5995992B2 publication Critical patent/JP5995992B2/en
Publication of JPWO2014092101A1 publication Critical patent/JPWO2014092101A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/16Soil-conditioning materials or soil-stabilising materials containing organic compounds only applied in a physical form other than a solution or a grout, e.g. as platelets or granules
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Soil Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Paleontology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、強度発現性および6価クロムの溶出抑制効果に優れたセメント系固化材の製造方法と、その製造方法により製造されるセメント系固化材に関する。   The present invention relates to a method for producing a cement-based solidified material excellent in strength development and an effect of suppressing elution of hexavalent chromium, and a cement-based solidified material produced by the production method.

現在、市販されている固化材の種類、用途、および固化処理の対象となる土(以下「対象土」という。)は多岐にわたる。例えば、固化材の種類は、主成分としてセメント、石膏、マグネシアおよび石灰をそれぞれに含む、セメント系、石膏系、マグネシア系および石灰系等の各種固化材があり、これらの用途として、浅層改良、宅盤改良、ヘドロ固化、深層改良、発生土改良等があり、これらの対象土として、砂質土、シルト、粘土、火山灰質粘性土、有機質土、高有機質土等がある。また、同種類の対象土であっても、その産地や成因等により、有機物や水の含有量、粒度および化学組成等の物理的・化学的性質は大きく異なる。
したがって、対象土の特性に応じて固化材の配合を適切に選ぶためには、試行錯誤を伴う配合試験を実施しなければならず、固化材の配合設計は手間がかかっていた。
Currently, there are a wide variety of types of solidification materials that are commercially available, their applications, and the soils that are subject to solidification treatment (hereinafter referred to as “target soils”). For example, there are various types of solidifying materials such as cement, gypsum, magnesia and lime, which contain cement, gypsum, magnesia and lime as main components. There are soil improvement, sludge solidification, deep layer improvement, generation soil improvement, etc., and these target soils include sandy soil, silt, clay, volcanic ash clay, organic soil, highly organic soil and the like. Moreover, even in the same type of target soil, the physical and chemical properties such as the content, particle size, and chemical composition of organic matter and water vary greatly depending on the place of origin and origin.
Therefore, in order to appropriately select the blending of the solidifying material according to the characteristics of the target soil, a blending test involving trial and error has to be performed, and the blending design of the solidifying material has been troublesome.

さらに、セメント系固化材の配合設計では、該固化材を用いて処理した土(以下「改良土」という。)からの6価クロムの溶出への対応が必要となる。該溶出した6価クロムの起源は、セメント系固化材中のポルトランドセメントクリンカが含有していたものと、もともと改良土に含まれていてセメント系固化材の水和によるアルカリ環境下で溶出が促されたものに大別される。
そのため、最近では、高炉スラグ等の、6価クロムを還元する効果を有するセメント混合材を固化材に混合して使用することによって、固化材に含まれるポルトランドセメントクリンカを希釈し減量することと、溶出クロムを還元することの2つの効果により、溶出する6価クロム量を抑制する方法が多く用いられている。
しかしながら、一般に、高炉スラグ等の還元効果を有するセメント混合材は、使用量が増えるほど、改良土の強度は低下してしまう。
したがって、セメント系固化材の配合設計では、強度発現性と6価クロムの溶出抑制効果を両立させることが重要になる。
Furthermore, in the blended design of the cement-based solidifying material, it is necessary to cope with the elution of hexavalent chromium from the soil treated with the solidifying material (hereinafter referred to as “improved soil”). The source of the eluted hexavalent chromium is that contained in the Portland cement clinker in the cement-based solidified material, and was originally contained in the improved soil, and the dissolution was promoted in an alkaline environment due to the hydration of the cement-based solidified material. It is divided roughly into what was done.
Therefore, recently, by using a cement mixture having the effect of reducing hexavalent chromium, such as blast furnace slag, mixed with the solidified material, the Portland cement clinker contained in the solidified material is diluted and reduced. Many methods are used to suppress the amount of hexavalent chromium eluted due to the two effects of reducing the eluted chromium.
However, in general, the cement mixture having a reducing effect such as blast furnace slag decreases the strength of the improved soil as the amount of use increases.
Therefore, it is important for the blended design of the cement-based solidifying material to achieve both strength development and an effect of suppressing the elution of hexavalent chromium.

ところで、以前から、対象土に応じたセメント系固化材の配合方法が提案されている。
例えば、特許文献1には、対象土に応じて石膏量を求め、該石膏量を配合するセメント系固化材の配合方法(請求項1)が提案されている。また、対象土からアルカリ水溶液に溶出するアルミ量に基づき、特定の式を用いて前記石膏の配合量を算出する配合方法(請求項2)や、さらに、該アルミ量に基づき別の式を用いてセメントの配合量を算出する配合方法(請求項3)が提案されている。
しかし、前記配合方法が課題とする改良土の特性は、強度発現性のみのため、配合調整成分は石膏とセメントだけであって高炉スラグは対象外である。
また、非特許文献1には、セメント系固化材の強度発現性に影響する土壌成分が記載されている。該文献によれば、土壌(火山灰質粘性土)中のアロフェンはセメント系固化材の強度発現性を低下させるとされている。
しかし、アロフェンが固化材の強度発現性を低下させるといっても、後掲の表2のNo.2とNo.3の強度を比べて分かるように、アロフェンの含有率が低い対象土を用いた改良土(No.2において、Pは8.1kN/m、Pは7.9kN/m)の方が、該含有率が高い対象土を用いた改良土(No.3において、Pは954.5kN/m、Pは1875.4kN/m)よりも強度が低くなる場合がある。
また、表2において、前記Pは高炉スラグを含有するセメント(以下「高炉スラグ含有セメント」という。)を固化材に用いた改良土の強度であり、前記Pは普通ポルトランドセメント(基準セメント)を固化材に用いた改良土の強度であるが、高炉スラグの使用が強度に及ぼす影響は、PとPを比べて分かるように単純ではない。
このように、改良土の強度発現性の予測は困難なため、所定の強度発現性を確保し、かつ6価クロムの溶出量を抑制するために固化材への高炉スラグの使用量を最大化できる配合設計は、困難であった。
By the way, the mixing method of the cement-type solidification material according to object soil has been proposed from before.
For example, Patent Literature 1 proposes a cemented solidifying material blending method (claim 1) in which the amount of gypsum is determined according to the target soil and the amount of gypsum is blended. Further, based on the amount of aluminum eluted from the target soil into the alkaline aqueous solution, a blending method for calculating the blending amount of the gypsum using a specific formula (Claim 2), and further using another formula based on the aluminum amount Thus, a blending method (claim 3) for calculating the blending amount of cement has been proposed.
However, the property of the improved soil that is a problem of the blending method is only strength development, so that the blending adjustment components are only gypsum and cement, and blast furnace slag is not covered.
Non-Patent Document 1 describes soil components that affect the strength development of cement-based solidified materials. According to the literature, allophane in soil (volcanic ash clay) is said to reduce the strength development of cement-based solidified material.
However, even though allophane reduces the strength development of the solidified material, the No. in Table 2 below. 2 and No. As can be seen by comparing the strength of No. 3, the improved soil using the target soil having a low allophane content (in No. 2, P 1 is 8.1 kN / m 2 and P 2 is 7.9 kN / m 2 ). However, the strength may be lower than the improved soil using the target soil having a high content (No. 3, P 1 is 954.5 kN / m 2 , P 2 is 1875.4 kN / m 2 ). .
In Table 2, P 1 is the strength of the improved soil using cement containing blast furnace slag (hereinafter referred to as “blast furnace slag containing cement”) as a solidified material, and P 2 is ordinary Portland cement (reference cement). ) Is the strength of the improved soil using the solidified material, but the effect of the use of blast furnace slag on strength is not as simple as can be seen by comparing P 1 and P 2 .
As described above, since it is difficult to predict the strength development of the improved soil, the amount of blast furnace slag used in the solidification material is maximized in order to secure the predetermined strength development and suppress the elution amount of hexavalent chromium. The possible formulation design was difficult.

特開2002−129158号公報JP 2002-129158 A

「火山灰質粘土のセメント改良体における強度発現に関する検討」、セメント・コンクリート、セメント協会発行、3〜8頁、No.780、Feb.2012“Examination on strength development in improved cement of volcanic ash clay”, published by Cement and Concrete, Cement Association, pages 3-8, No. 780, Feb. 2012

したがって、本発明は、高炉スラグを含み、かつ強度発現性と6価クロムの溶出抑制効果が高いセメント系固化材(以下「固化材」という。)の、対象土に応じた製造方法を提供することを目的とする。
Therefore, the present invention provides a method for producing a cement-based solidified material (hereinafter referred to as “solidified material”) containing blast furnace slag and having high strength development and high hexavalent chromium elution suppression effect according to the target soil . For the purpose.

そこで、本発明者は、対象土の成分と、セメントを用いた改良土の強度との関係について検討したところ、以下の(i)〜(iii)の知見等に基づき、強度発現性と6価クロムの溶出抑制効果のいずれも高い固化材を容易に製造する方法を見い出し、本発明を完成させた。
(i)対象土中のアロフェンおよび非晶質無機成分(以下「アロフェン類」という。)の含有率と、固化材として高炉スラグ含有セメントを用いた改良土の強度(P)および改良土の強度に関する実績などから選定される基準セメントを用いた改良土の強度(P)の強度比(P/P)との間に、下記の直線関係式(1)が成立する(例えば、後掲の図2を参照)。そして、
(ii)該直線関係式(1)の両辺に、前記高炉スラグ含有セメント中の高炉スラグの含有率を乗じれば、対象土中のアロフェン類の含有率と、基準セメントを用いた場合と同じ改良土の強度が得られる(すなわち、P/P=1を満足する)石膏量決定用基材(下記(C)工程において用いる、セメントと高炉スラグからなる混合物)中の高炉スラグの含有率との関係を示す直線関係式(2)が得られる(例えば、後掲の図3を参照)。したがって、
(iii)直線関係式(2)を用いれば、対象土中のアロフェン類の含有率から、所定の改良土の強度(基準セメントによる改良土の強度)を得ることができる石膏量決定用基材中の高炉スラグの最大の含有率が求まり、さらに下記(D)工程と(E)工程を経て固化材中の石膏、高炉スラグ、およびセメントの配合量を求めることができる。
Therefore, the present inventor examined the relationship between the components of the target soil and the strength of the improved soil using cement. Based on the following findings (i) to (iii), etc. The present inventors have completed the present invention by finding a method for easily producing a solidified material having a high chromium elution suppressing effect.
(I) The content of allophane and amorphous inorganic components (hereinafter referred to as “allophanes”) in the target soil, the strength (P 1 ) of the improved soil using cement containing blast furnace slag as a solidifying material, and the improved soil The following linear relational expression (1) is established between the strength ratio (P 1 / P 2 ) of the strength (P 2 ) of the improved soil using the reference cement selected from the results regarding the strength (for example, (See FIG. 2 below). And
(Ii) If both sides of the linear relational expression (1) are multiplied by the content of the blast furnace slag in the blast furnace slag-containing cement, the content of allophanes in the target soil is the same as when using the reference cement Inclusion of blast furnace slag in a gypsum-determining base material (a mixture of cement and blast furnace slag used in the following step (C)) in which the strength of improved soil is obtained (that is, P 1 / P 2 = 1 is satisfied) A linear relational expression (2) indicating the relationship with the rate is obtained (for example, see FIG. 3 described later). Therefore,
(Iii) If the linear relational expression (2) is used, the gypsum amount determining base material capable of obtaining the strength of the predetermined improved soil (the strength of the improved soil with the reference cement) from the content of allophanes in the target soil The maximum content of blast furnace slag can be obtained, and the blending amounts of gypsum, blast furnace slag, and cement in the solidified material can be obtained through the following steps (D) and (E).

すなわち、本発明は下記の配合設計に特徴を有する固化材の製造方法である。
[1]下記(A)〜(E)工程を経て決定した配合量のセメント、高炉スラグおよび石膏を計量して混合する、固化材の製造方法。
(A)下記の強度PおよびPを測定して、土中のアロフェン類の含有率と強度比(P/P)との間の下記関係式(1)を求める、関係式(1)の誘導工程
/P=ax+b ……(1)
ただし、Pは高炉スラグ含有セメントを用いた改良土の強度、Pは基準セメントを用いた改良土の強度、xは対象土中のアロフェン類の含有率(質量%)、aおよびbは定数を表す。
(B)前記関係式(1)の両辺に、前記高炉スラグ含有セメント中の高炉スラグの含有率(s1)(質量%)を乗じて下記関係式(2)を求める、関係式(2)の誘導工程
=cx+d ……(2)
ただし、sは強度比が1となる石膏量決定用基材中の高炉スラグの含有率(質量%)、xは対象土中のアロフェン類の含有率(質量%)、cはa×s1、dはb×s1を表す。
(C)強度比が1以下となる対象土に対しては、該対象土中のアロフェン類の含有率に基づき、前記関係式(2)を用いて石膏量決定用基材中の高炉スラグの含有率(sと同じ)を決定し、一方、強度比が1を超える対象土に対しては、前記高炉スラグ含有セメント中の高炉スラグの含有率(s1)を石膏量決定用基材中の高炉スラグの含有率(s1と同じ)として決定するとともに、該高炉スラグの含有率と下記(3)式を用いて石膏量決定用基材中のセメントの含有率を決定する、石膏量決定用基材中の高炉スラグおよびセメントの含有率決定工程
石膏量決定用基材中のセメントの含有率(質量%)=100−石膏量決定用基材中の高炉スラグの含有率(質量%) ……(3)
(D)前記決定した含有率の高炉スラグおよびセメントを含む石膏量決定用基材と複数の水準の量の石膏を混合してなる石膏量決定用組成物と、対象土とを混合して作製した改良土の強度を測定して、目標強度を発現する改良土を選択し、該改良土に用いた石膏量決定用組成物中の石膏の含有率(質量%)を固化材中の石膏の配合量(質量%)として決定する、固化材中の石膏の配合量決定工程
(E)100質量%から、前記(D)工程において決定した固化材中の石膏の配合量(質量%)を差し引いた残りの値に対し、前記(C)工程において決定した石膏量決定用基材中の高炉スラグの含有率(質量%×0.01の値)およびセメントの含有率(質量%×0.01の値)をそれぞれ乗じて得た値を、それぞれ、固化材中の高炉スラグの配合量(質量%)およびセメントの配合量(質量%)として決定する、固化材中の高炉スラグおよびセメントの配合量決定工程
That is, the present invention is the preparation how the consolidated material characterized by a mix design below.
[1] A method for producing a solidified material, in which cement, blast furnace slag and gypsum of a blending amount determined through the following steps (A) to (E) are measured and mixed.
(A) Measure the following strengths P 1 and P 2 to obtain the following relational expression (1) between the content of allophanes in the soil and the strength ratio (P 1 / P 2 ): Induction step 1) P 1 / P 2 = ax + b (1)
Where P 1 is the strength of the improved soil using the blast furnace slag-containing cement, P 2 is the strength of the improved soil using the reference cement, x is the content (% by mass) of allophanes in the target soil, and a and b are Represents a constant.
(B) The following relational expression (2) is obtained by multiplying both sides of the relational expression (1) by the blast furnace slag content (s 1 ) (mass%) in the blast furnace slag-containing cement. S 2 = cx + d (2)
However, s 2 is the content (mass%) of blast furnace slag in the base material for determining the amount of gypsum whose strength ratio is 1, x is the content (mass%) of allophanes in the target soil, and c is a × s. 1 and d represent b × s 1 .
(C) For target soil having a strength ratio of 1 or less, based on the content of allophanes in the target soil, the relational expression (2) is used to determine the amount of blast furnace slag in the base material for gypsum amount determination. On the other hand, the content ratio (s 1 ) of the blast furnace slag in the cement containing the blast furnace slag is determined for the target soil having a strength ratio (same as s 2 ) and the strength ratio exceeds 1. Gypsum, which is determined as the content of blast furnace slag (same as s 1 ) and determines the content of cement in the base material for determining the amount of gypsum using the content of the blast furnace slag and the following equation (3) Step of determining the content of blast furnace slag and cement in the base material for determining the amount of cement (mass%) in the base material for determining the amount of gypsum = 100-Content of the blast furnace slag in the base material for determining the amount of gypsum (mass) %) ...... (3)
(D) Produced by mixing the target soil with a gypsum amount determining composition obtained by mixing a gypsum amount determining base material containing blast furnace slag and cement having the determined content and a plurality of levels of gypsum. Measure the strength of the improved soil, select the improved soil that exhibits the target strength, and determine the gypsum content (mass%) in the composition for determining the amount of gypsum used in the improved soil. The amount of gypsum in the solidified material determined in the step (D) is subtracted from the amount of gypsum in the solidified material (E) 100% by mass, which is determined as the amount of mass (% by mass). In addition, with respect to the remaining value, the content of blast furnace slag in the base material for determining the amount of gypsum determined in the step (C) (value of mass% × 0.01) and the content of cement (mass% × 0.01) Of the blast furnace slag in the solidified material. Step of determining the amount of blast furnace slag and cement in the solidified material determined as the amount (% by mass) and the amount of cement (% by mass)

本発明の固化材の製造方法によれば、対象土に応じてセメント、高炉スラグおよび石膏の最適な配合量を容易に決定することができる。また、本発明の固化材の製造方法を用いて製造した固化材は、強度発現性および6価クロムの溶出抑制効果がいずれも高い。
According to the manufacturing method of the solidification material of this invention, the optimal compounding quantity of cement, blast furnace slag, and gypsum can be determined easily according to object soil. Moreover, the solidification material manufactured using the manufacturing method of the solidification material of this invention has high intensity | strength expression property and the elution inhibitory effect of hexavalent chromium.

固化材中の高炉スラグの配合量と改良土の一軸圧縮強度の直線関係を示す図である。It is a figure which shows the linear relationship of the compounding quantity of the blast furnace slag in a solidification material, and the uniaxial compressive strength of improved soil. 土中のアロフェン類の含有率と、改良土の強度比の関係を示す図である。It is a figure which shows the relationship between the content rate of allophanes in soil, and the strength ratio of improved soil. 土中のアロフェン類の含有率と、改良土の強度比が1になる石膏量決定用基材中の高炉スラグの含有率との関係を示す図である。It is a figure which shows the relationship between the content rate of the allophanes in soil, and the content rate of the blast furnace slag in the base material for gypsum amount determination whose strength ratio of improved soil is 1.

以下、本発明の固化材の製造方法および固化材について説明する。
1.固化材の製造方法
該方法は、前記のとおり、(A)関係式(1)の誘導工程、(B)関係式(2)の誘導工程、(C)石膏量決定用基材中の高炉スラグとセメントの含有率決定工程、(D)固化材中の石膏の配合量決定工程、および(E)固化材中の高炉スラグとセメントの配合量決定工程を経て決定した配合量のセメント、高炉スラグおよび石膏を計量して混合する、固化材の製造方法である。以下、各工程に分けて説明する。
Hereinafter, the method for producing a solidified material and the solidified material of the present invention will be described.
1. Method for producing solidified material As described above, the method includes (A) the induction step of relational expression (1), (B) the induction step of relational expression (2), and (C) blast furnace slag in the base material for determining the amount of gypsum. And cement content rate determining step, (D) cement amount of gypsum in solidified material determining step, and (E) cement amount of blast furnace slag and solid content of cement determined in the solidified material, blast furnace slag And a method for producing a solidified material in which gypsum is weighed and mixed. In the following, each process will be described separately.

(A)関係式(1)の誘導工程
該工程は、下記の強度PおよびPを測定して、土中のアロフェン類の含有率と下記の強度比(P/P)との間の前記関係式(1)を求める工程である。ただし、Pは高炉スラグ含有セメントを用いた改良土の強度であり、Pは改良土の強度に関する実績などから選定される基準セメントを用いた改良土の強度である。
ここで、アロフェン類とは、アロフェンおよび非晶質無機成分の総称であり、非晶質無機成分とは、下記文献(i)の3頁の右欄6〜12行に記載のとおり、アロフェン類似のアルミニウムや鉄などのケイ酸塩鉱物、土壌中に存在するX線に対して非晶質であるケイ酸、アルミナ、酸化鉄などの風化した無機ゲル、さらに厳密には非晶質とは言い難いが低結晶のゲータイトなどの鉄鉱物をも含めた鉱物をいう。
(A) Induction step of relational expression (1) This step measures the following strengths P 1 and P 2, and determines the content of allophanes in the soil and the following strength ratio (P 1 / P 2 ). It is the process of calculating | requiring the said relational expression (1) between. However, P 1 is the intensity of the modified soil with blast furnace slag containing cement, P 2 is the intensity of the modified soil with a reference cement selected from such results regarding strength of modified soil.
Here, the allophanes are a general term for allophane and amorphous inorganic components, and the amorphous inorganic components are allophane-like as described in the right column on lines 6 to 12 of page 3 of the following document (i). Silicate minerals such as aluminum and iron, weathered inorganic gels such as silicic acid, alumina and iron oxide that are amorphous to X-rays present in the soil, and more strictly, amorphous. Difficult but refers to minerals including iron minerals such as low crystalline goethite.

また、前記アロフェン類の定量方法は、例えば、下記文献(i)に記載の「酸−アルカリ交互溶解法」、下記文献(ii)に記載の「200℃加熱溶解減量法」、下記文献(iii)に記載の「簡易型200℃加熱溶解減量法」、および下記文献(iv)に記載の「XRD−リートベルト法」等が挙げられる。
また、土中のアロフェン類の含有率と強度比(P/P)との間の関係式は、最小二乗法を用いて回帰分析により求めることができる。
[文献一覧]
(i)北川靖夫「土壌中のアロフェンおよび非晶質無機成分の定量に関する研究」、農業技術研究所報告 B 第29号、1〜48頁(1977)
(ii)北川靖夫、「土壌中のアロフェンおよび非晶質無機成分の迅速定量法」、日本土壌肥料科学雑誌、第48巻、第4号、124〜129頁(1977)
(iii)奥村良介ほか、「セメントによる関東ロームの改良(その1:土中のアロフェンおよび非晶質無機成分の簡易定量法)」、第41回 地盤工学研究発表会、767〜768頁(2006年7月)
(iv)星野清一ほか、「非晶質混和材を含むセメント鉱物の定量におけるX線回折/リートベルト法の適用」、セメント・コンクリート論文集、No.59、14〜21頁(2005)
The allophanes can be quantified by, for example, an “acid-alkaline alternating dissolution method” described in the following document (i), a “200 ° C. heating dissolution loss method” described in the following document (ii), or the following document (iii) And “XRD-Rietbelt method” described in the following document (iv) and the like.
Also, relationship between the content of soil allophane compound and an intensity ratio (P 1 / P 2) can be determined by regression analysis using a least squares method.
[List of documents]
(I) Ikuo Kitagawa “Study on Quantification of Allophane and Amorphous Inorganic Components in Soil”, Agricultural Technology Research Institute Report No. 29, pp. 1-48 (1977)
(Ii) Kitagawa Ikuo, “Rapid Determination Method of Allophane and Amorphous Inorganic Components in Soil”, Japan Soil Fertilizer Science Journal, Vol. 48, No. 4, pp. 124-129 (1977)
(Iii) Ryosuke Okumura et al., “Improvement of Kanto loam with cement (Part 1: Simple determination of allophane and amorphous inorganic components in soil)”, 41st Geotechnical Research Conference, pp. 767-768 (2006) July)
(Iv) Seiichi Hoshino et al., “Application of X-ray diffraction / Rietbelt method in the determination of cement minerals containing amorphous admixtures”, Cement and concrete papers, No. 59, pp. 14-21 (2005)

前記基準セメントは、任意のセメントを用いることができ、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、および耐硫酸塩ポルトランドセメント等のポルトランドセメント、高炉スラグ含有セメント(高炉セメントを含む。)およびシリカセメント等の混合セメント、並びに、エコセメント等から選ばれる1種以上が挙げられる。   Any cement can be used as the reference cement, for example, Portland cement such as ordinary Portland cement, early-strength Portland cement, ultra-early strength Portland cement, medium heat Portland cement, low heat Portland cement, and sulfate-resistant Portland cement. , Blast furnace slag-containing cement (including blast furnace cement) and mixed cement such as silica cement, and one or more selected from eco-cement and the like.

(B)関係式(2)の誘導工程
該工程は、前記関係式(1)の両辺に、前記高炉スラグ含有セメント中の高炉スラグの含有率(質量%)を乗じて前記関係式(2)を求める工程である。
図1(特開2006−219312号公報に記載の表4中の比較例4、6、7、および実施例11のデータを基にして作成した図)に示すように、経験的に高炉スラグの配合量と改良土の強度の間に直線関係があるとして差し支えないため、関係式(2)の変数sは、強度比が1になる石膏量決定用基材中の高炉スラグの含有率を表す。これを後掲の図2と図3を用いて説明すると、図2の関係式(1)の両辺に、使用した高炉スラグ含有セメント中の高炉スラグの含有率である40(質量%)を乗じると、関係式(1)の変数P/P(強度比)は変数変換されて変数s(強度比が1になる石膏量決定用基材中の高炉スラグの含有率)になる。
(B) Induction step of relational expression (2) This step is performed by multiplying both sides of relational expression (1) by the content (% by mass) of blast furnace slag in the blast furnace slag-containing cement. It is the process of calculating | requiring.
As shown in FIG. 1 (drawing based on data of Comparative Examples 4, 6, and 7 and Example 11 in Table 4 described in Japanese Patent Laid-Open No. 2006-219312), empirically the blast furnace slag Since there is no problem that there is a linear relationship between the blending amount and the strength of the improved soil, the variable s 2 in the relational expression (2) indicates the content of the blast furnace slag in the base material for determining the amount of gypsum whose strength ratio is 1. Represent. 2 and FIG. 3 described later, both sides of the relational expression (1) in FIG. 2 are multiplied by 40 (mass%) which is the content of blast furnace slag in the used blast furnace slag-containing cement. Then, the variable P 1 / P 2 (strength ratio) in the relational expression (1) is converted into a variable s 2 (content ratio of blast furnace slag in the gypsum amount determining base material in which the strength ratio becomes 1).

(C)石膏量決定用基材中の高炉スラグおよびセメントの含有率決定工程
該工程は、
(i)強度比が1以下となる対象土に対しては、該対象土中のアロフェン類の含有率に基づき、前記関係式(2)を用いて石膏量決定用基材中の高炉スラグの含有率(sと同じ)を決定し、
(ii)強度比が1を超える対象土に対しては、前記高炉スラグ含有セメント中の高炉スラグの含有率(s1)を石膏量決定用基材中の高炉スラグの含有率(s1と同じ)として決定するとともに、
(iii)該高炉スラグの含有率と前記(3)式を用いて石膏量決定用基材中のセメントの含有率を決定する工程である。
ここで、前記石膏量決定用基材とは、セメントと高炉スラグからなる混合物であって、下記(D)に記載の石膏量決定用組成物において、石膏を混合する前の状態の組成物である。
(C) Step of determining the content of blast furnace slag and cement in the base material for determining the amount of gypsum
(i) For the target soil having a strength ratio of 1 or less, based on the content of allophanes in the target soil, the relational expression (2) is used to determine the amount of blast furnace slag in the base material for gypsum amount determination. Determine the content (same as s 2 ),
(ii) For the target soil having a strength ratio exceeding 1, the content of blast furnace slag in the blast furnace slag-containing cement (s 1 ) is set to the content of blast furnace slag in the base material for determining the amount of plaster (s 1 and The same),
(iii) A step of determining the cement content in the base material for determining the amount of gypsum using the content of the blast furnace slag and the formula (3).
Here, the base material for determining the amount of gypsum is a mixture composed of cement and blast furnace slag, and in the composition for determining the amount of gypsum described in (D) below, the composition in a state before mixing the gypsum. is there.

(D)固化材中の石膏の配合量決定工程
該工程は、前記石膏量決定用基材および複数の水準の量の石膏を混合してなる石膏量決定用組成物と、対象土とを、混合して作製した改良土の強度を測定して、目標強度を発現する改良土を選択し、該改良土に用いた石膏量決定用組成物中の石膏の含有率(質量%)を固化材中の石膏の配合量(質量%)として決定する工程である。
前記改良土の強度測定方法は、例えば、JIS A 1216「土の一軸圧縮試験方法」等が挙げられる。
(D) Step of determining the amount of gypsum in the solidified material The step includes a gypsum amount determining composition formed by mixing the gypsum amount determining base material and a plurality of levels of gypsum, and the target soil. The strength of the improved soil prepared by mixing is measured, the improved soil that exhibits the target strength is selected, and the content (mass%) of gypsum in the composition for determining the amount of gypsum used in the improved soil is solidified. This is a step of determining the amount (mass%) of the gypsum inside.
Examples of the strength measurement method of the improved soil include JIS A 1216 “Soil uniaxial compression test method”.

(E)固化材中の高炉スラグおよびセメントの配合量決定工程
該工程は、100質量%から、前記(D)工程において決定した固化材中の石膏の配合量(質量%)を差し引いた残りの値に対し、前記(C)工程において決定した石膏量決定用基材中の高炉スラグの含有率(質量%×0.01の値)およびセメントの含有率(質量%×0.01の値)をそれぞれ乗じて得た値を、それぞれ、固化材中の高炉スラグの配合量(質量%)およびセメントの配合量(質量%)として決定する工程である。
すなわち、該工程は、高炉スラグとセメントの2成分の合計量を100質量%として表示された、石膏量決定用基材中の高炉スラグの含有率(質量%)とセメントの含有率(質量%)を、高炉スラグ、セメント、および石膏の3成分の合計量を100質量%として表示される、固化材中の高炉スラグの配合量(質量%)とセメントの配合量(質量%)に換算するための工程である。
なお、固化材中の高炉スラグの配合量は、少なくとも6価クロムの溶出を抑制するに足る量以上が必要であり、この量は経験上15質量%以上と見積もられる。
以上の工程を経て決定した配合量の石膏、セメント、および高炉スラグを計量して混合することにより、固化材を製造することができる。なお、前記計量および混合は、通常の計量装置および混合装置を用いて行なうことができる。
(E) Blending amount determination step of blast furnace slag and cement in the solidified material The step is a remaining amount obtained by subtracting the blending amount (mass%) of gypsum in the solidified material determined in the step (D) from 100% by mass. The content of blast furnace slag in the gypsum-determining base material determined in the step (C) with respect to the value (mass% × 0.01 value) and cement content (mass% × 0.01 value) Are values determined by multiplying each of them as a blending amount (mass%) of blast furnace slag and a blending quantity (mass%) of cement in the solidified material, respectively.
That is, in the process, the content of blast furnace slag in the base material for determining the amount of gypsum (mass%) and the content of cement (mass%) displayed as the total amount of the two components of blast furnace slag and cement being 100 mass%. ) Is converted to the blending amount (mass%) of blast furnace slag in the solidified material and the blending amount (mass%) of cement, expressed as the total amount of three components of blast furnace slag, cement, and gypsum. Process.
In addition, the compounding quantity of the blast furnace slag in the solidified material needs to be at least an amount sufficient to suppress elution of hexavalent chromium, and this amount is empirically estimated to be 15% by mass or more.
By mixing, weighing more than the amount of gypsum as determined through the process, cement, and blast furnace slag, it is possible to produce a solid reduction material. The metering and mixing can be performed using a normal metering device and a mixing device.

2.固化材
本発明の製造方法を用いて製造した固化材は、前記のとおり、前記製造方法により決定した配合量のセメント、高炉スラグおよび石膏を必須の構成成分として含むものである。以下、前記構成成分等に分けて説明する。
2. Solidified material The solidified material produced by using the production method of the present invention contains cement, blast furnace slag and gypsum in the blending amounts determined by the production method as essential components as described above. Hereinafter, the components will be described separately.

(1)セメント
前記セメントは特に制限されず、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、および耐硫酸塩ポルトランドセメント等のポルトランドセメント、高炉セメントおよびシリカセメント等の混合セメント、並びに、エコセメント等から選ばれる1種以上が挙げられる。
(1) Cement The cement is not particularly limited. For example, normal Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, moderately hot Portland cement, low-heat Portland cement, and sulfate-resistant Portland cement such as Portland cement, blast furnace One or more types selected from mixed cements such as cement and silica cement, eco-cement and the like can be mentioned.

(2)高炉スラグ
前記高炉スラグは、高炉で銑鉄を製造する際に副生する溶融状態のスラグを、水で急冷し破砕して得られる水砕スラグの粉砕物や、徐冷し破砕して得られる徐冷スラグの粉砕物が挙げられる。これらの中でも、潜在水硬性に優れることから、好ましくは水砕スラグの粉砕物であり、より好ましくはJIS A 6206に規定する高炉水砕スラグである。
前記高炉スラグのブレーン比表面積は、好ましくは3000cm/g以上、より好ましく3500cm/g以上、さらに好ましくは4000cm/g以上である。該値が3000cm/g未満では、固化材の初期の強度発現性が低い。また、該値の上限は、粉砕コストの観点から、好ましくは15000cm/gである。
また、該高炉スラグ粉末の塩基度は、好ましくは1.7以上、より好ましくは1.8以上、さらに好ましくは1.9以上である。該値が1.7未満では、固化材の強度発現性が低下する場合がある。また、該値の上限は入手の容易性から3.0である。なお、塩基度は下記(4)式を用いて算出する。
塩基度=〔(CaO+MgO+Al)/SiO〕 ……(4)
ただし、式中の化学式は、高炉スラグ粉末中の該化学式が表す化合物の含有率(質量%)を表す。
(2) Blast Furnace Slag The blast furnace slag is obtained by pulverizing granulated slag obtained by quenching and crushing molten slag produced as a by-product when producing pig iron in a blast furnace with water, or by slowly cooling and crushing. An example of the pulverized product of the slowly cooled slag obtained. Among these, since it is excellent in latent hydraulic property, it is preferably a pulverized product of granulated slag, and more preferably blast furnace granulated slag as defined in JIS A 6206.
Blaine specific surface area of the blast furnace slag is preferably 3000 cm 2 / g or more, more preferably 3500 cm 2 / g or more, more preferably 4000 cm 2 / g or more. When the value is less than 3000 cm 2 / g, the initial strength development of the solidified material is low. The upper limit of the value is preferably 15000 cm 2 / g from the viewpoint of grinding cost.
The basicity of the blast furnace slag powder is preferably 1.7 or more, more preferably 1.8 or more, and still more preferably 1.9 or more. If the value is less than 1.7, the strength development property of the solidified material may be lowered. Moreover, the upper limit of this value is 3.0 from the ease of acquisition. The basicity is calculated using the following formula (4).
Basicity = [(CaO + MgO + Al 2 O 3 ) / SiO 2 ] (4)
However, the chemical formula in the formula represents the content (% by mass) of the compound represented by the chemical formula in the blast furnace slag powder.

(3)石膏
前記石膏は特に制限されず、例えば、二水石膏、排煙脱硫石膏、リン酸石膏、チタン石膏、フッ酸石膏、精錬石膏、半水石膏、および無水石膏等から選ばれる1種以上が挙げられる。これらの中でも、強度発現性が高い点で好ましくは無水石膏であり、石膏廃材から回収した二水石膏を加熱して得られる無水石膏も使用できる。
また、前記石膏のブレーン比表面積は、好ましくは2000〜12000cm/g、より好ましくは3000〜8000cm/g、さらに好ましくは4000〜6000cm/g、特に好ましくは4500〜5500cm/gである。該値が2000〜12000cm/gの範囲を外れると、固化材の強度発現性が低下するおそれがある。
(3) Gypsum The gypsum is not particularly limited. For example, one type selected from dihydrate gypsum, flue gas desulfurization gypsum, phosphate gypsum, titanium gypsum, hydrofluoric gypsum, refined gypsum, hemihydrate gypsum, and anhydrous gypsum. The above is mentioned. Among these, anhydrous gypsum is preferable in terms of high strength development, and anhydrous gypsum obtained by heating dihydrate gypsum recovered from gypsum waste material can also be used.
Moreover, the specific surface area of the plaster of the gypsum is preferably 2000 to 12000 cm 2 / g, more preferably 3000 to 8000 cm 2 / g, further preferably 4000 to 6000 cm 2 / g, and particularly preferably 4500 to 5500 cm 2 / g. . When the value is out of the range of 2000 to 12000 cm 2 / g, the strength development property of the solidified material may be lowered.

(4)その他の任意の構成成分等
本発明の製造方法を用いて製造した固化材は、任意の構成成分として、シリカフューム、シリカ粉末、製鋼スラグ粉末、クリンカダスト等を、固化材の強度発現性や6価クロムの溶出抑制効果が損なわれない範囲で含んでもよい。ここでクリンカダストとは、セメントキルンのキルン尻からボトムサイクロンに至るまでのキルン排ガス流路から、燃焼ガスの一部を抽気し、この抽気した燃焼ガスを冷却して生成したダストであり、該ダストには、セメントキルンに付設した塩素バイパス装置により前記燃焼ガス中から回収された塩素バイパスダストも含まれる。クリンカダストは固化材の早期強度発現性を向上させる効果を有する。
本発明の製造方法を用いて製造した固化材の粉末度はブレーン比表面積で、好ましくは2000〜10000cm/g、より好ましくは2500〜8000cm/g、さらに好ましくは3000〜6000cm/gである。該値が2000〜10000cm/gの範囲にあれば、固化材は強度発現性と作業性に優れる。
(4) Other optional constituents, etc. The solidified material produced by using the production method of the present invention includes silica fume, silica powder, steelmaking slag powder, clinker dust, etc. as optional constituents, and the strength development of the solidified material. Or the hexavalent chromium elution inhibitory effect may be included within a range that is not impaired. Here, the clinker dust is dust generated by extracting a part of the combustion gas from the kiln exhaust gas flow path from the bottom of the kiln of the cement kiln to the bottom cyclone, and cooling the extracted combustion gas. The dust includes chlorine bypass dust recovered from the combustion gas by a chlorine bypass device attached to the cement kiln. Clinker dust has the effect of improving the early strength development of the solidified material.
The fineness of the solidified material produced using the production method of the present invention is a Blaine specific surface area, preferably 2000 to 10000 cm 2 / g, more preferably 2500 to 8000 cm 2 / g, and even more preferably 3000 to 6000 cm 2 / g. is there. If this value is in the range of 2000 to 10000 cm 2 / g, the solidified material is excellent in strength development and workability.

以下、本発明の製造方法における固化材の配合設計の一例を説明するが、本発明はこの例に限定されない。
1.使用材料
(1)セメント
表1に示す普通ポルトランドセメント(基準セメント)、および高炉スラグを40質量%含む高炉セメントB種(高炉スラグ含有セメント)を使用した。なお、いずれのセメントも太平洋セメント社製である。
Hereinafter, although an example of the compounding design of the solidifying material in the production method of the present invention will be described, the present invention is not limited to this example.
1. Materials used (1) Cement Normal Portland cement (reference cement) shown in Table 1 and blast furnace cement type B (cement containing blast furnace slag) containing 40% by mass of blast furnace slag were used. All the cements are manufactured by Taiheiyo Cement.

Figure 0005995992
Figure 0005995992

(2)石膏
密度2.85g/cmの無水石膏(天然品)を使用した。
(3)高炉スラグ微粉末、
密度2.89g/cm、ブレーン比表面積4380cm/gの高炉スラグ微粉末(エスメント関東社製)を使用した。
(4)対象土
表2に示すNo.1〜5の対象土を使用した。これらの中で、No.1〜4の対象土は、対象土中のアロフェン類の含有率と改良土の強度比(P/P)との直線関係を求めるために使用した。また、No.5の対象土は、固化処理の現場において3つの異なる地点から採取した土を混合したものであり、該現場の土壌の固化処理に用いる固化材の配合を、本発明で用いる配合設計により決定するために使用した。
なお、表2中の対象土の含水率はJIS A 1203「土の含水比試験方法」に準拠し、強熱減量はJIS A 1226「土の強熱減量試験方法」に準拠し、また、湿潤密度はJIS A 1210「突固めによる土の締固め試験方法」に準拠して測定した。
(2) Gypsum Anhydrous gypsum (natural product) having a density of 2.85 g / cm 3 was used.
(3) ground granulated blast furnace slag,
Blast furnace slag fine powder (manufactured by Sment Kanto Co., Ltd.) having a density of 2.89 g / cm 3 and a brain specific surface area of 4380 cm 2 / g was used.
(4) Target soil No. shown in Table 2 1-5 target soils were used. Among these, No. The target soils 1 to 4 were used to obtain a linear relationship between the allophane content in the target soil and the strength ratio (P 1 / P 2 ) of the improved soil. No. The target soil 5 is a mixture of soils collected from three different points at the site of solidification treatment, and the composition of the solidification material used for the solidification treatment of the soil at the site is determined by the formulation design used in the present invention. Used for.
The moisture content of the target soil in Table 2 conforms to JIS A 1203 “Test method for moisture content of soil”, and the loss on ignition conforms to JIS A 1226 “Test method for loss on ignition of soil”. The density was measured in accordance with JIS A 1210 “Soil compaction test method by tamping”.

2.固化材の配合設計例
下記(1)〜(5)の手順に従い、普通ポルトランドセメントと同程度の強度発現性を有し、かつ6価クロムの溶出抑制効果が高い固化材の配合設計を行った。
(1)対象土中のアロフェン類の含有率の測定
前記文献(i)に記載の「酸−アルカリ交互溶解法」に準拠して、表2に示す5種類の対象土中のアロフェン類の含有率を測定した。その結果を表2に示す。
2. Example of solidification material blending design In accordance with the procedures of (1) to (5) below, a solidification material blending design having the same strength development as ordinary Portland cement and having a high hexavalent chromium elution suppression effect was performed. .
(1) Measurement of the content of allophanes in the target soil According to the “acid-alkaline alternating dissolution method” described in the literature (i), the inclusion of allophanes in the five types of target soil shown in Table 2 The rate was measured. The results are shown in Table 2.

(2)改良土の強度の測定
表1に示す普通ポルトランドセメント(基準セメント)および高炉セメントB種(高炉スラグ含有セメント)をそれぞれ、No.1〜4の対象土1mに対し100kg粉体で混合し改良土を作製した。次に、JIS A 1216「土の一軸圧縮試験方法」に準拠して、前記改良土の一軸圧縮強さ(以下「強度」という。)を測定し、普通ポルトランドセメントを用いた改良土の強度(P)に対する高炉セメントB種を用いた改良土の強度(P)の強度比(P/P)を求めた。材齢7日における改良土の強度の測定結果を表2に示す。
(2) Measurement of strength of improved soil Normal Portland cement (reference cement) and blast furnace cement type B (cement containing blast furnace slag) shown in Table 1 were respectively No. 1 to 3 target soils 1 to 4 were mixed with 100 kg powder to prepare improved soil. Next, in accordance with JIS A 1216 “Soil uniaxial compression test method”, the uniaxial compressive strength (hereinafter referred to as “strength”) of the improved soil was measured, and the strength of the improved soil using ordinary Portland cement ( calculated intensity ratio of the intensity of the modified soil with blast furnace cement B type (P 1) with respect to P 2) and (P 1 / P 2). Table 2 shows the measurement results of the strength of the improved soil at the age of 7 days.

Figure 0005995992
Figure 0005995992

(3)関係式(1)の誘導
表2に示すNo.1〜4の対象土中のアロフェン類の含有率(質量%)を説明変数(x)、表2に示すNo.1〜4の材齢7日の強度比(P/P)を目的変数として回帰分析により、図1に示す関係式(1)を得た。
/P=−0.05x+1.85 …(1)
図1に示すように、アロフェン類の含有率と強度比との間に高い相関(決定係数Rが0.9669)の直線関係が成立している。
また、図1に示すように、材齢7日(白丸)と同様に材齢28日(黒丸)においても直線関係が成立することから、本発明における直線関係は材齢に依らず成立することが分かる。
(3) Derivation of relational expression (1) No. 2 shown in Table 2 The content (mass%) of allophanes in the target soils 1 to 4 is the explanatory variable (x), No. 1 shown in Table 2. Relational expression (1) shown in FIG. 1 was obtained by regression analysis using the strength ratio (P 1 / P 2 ) of 1 to 4 days of age 7 (P 1 / P 2 ) as an objective variable.
P 1 / P 2 = -0.05x + 1.85 ... (1)
As shown in FIG. 1, a high linear relationship correlation (coefficient of determination R 2 is 0.9669) between the content and the intensity ratio of allophane such is established.
Further, as shown in FIG. 1, since the linear relationship is established at the age of 28 days (black circle) as well as the age of 7 days (white circle), the linear relationship in the present invention is established regardless of the age of the material. I understand.

(4)関係式(2)の誘導
改良土の強度と高炉スラグの含有率の間に直線関係が成立するため、前記関係式(1)の両辺に、使用した高炉セメントB種中の高炉スラグの含有率である40(質量%)を乗じて得た値が、強度比が1になる固化材中の高炉スラグの配合量になる。下記式は、前記関係式(1)の左辺に40を乗じて得た関係式(2)である。
=−2.0x+74 …(2)
(4) Induction of relational expression (2) Since a linear relationship is established between the strength of the improved soil and the content of blast furnace slag, blast furnace slag in the used blast furnace cement type B is shown on both sides of relational expression (1). The value obtained by multiplying the content ratio of 40 (mass%) is the blend amount of the blast furnace slag in the solidified material having a strength ratio of 1. The following formula is a relational expression (2) obtained by multiplying the left side of the relational expression (1) by 40.
s 2 = −2.0x + 74 (2)

(5)石膏量決定用基材中の高炉スラグおよびセメントの含有率の決定
さらに、固化処理の現場において3つの異なる地点から採取した土を混合した対象土(No.5)中のアロフェン類の含有率(28.0質量%)を、関係式(1)中のxに代入すると強度比(P/P)は0.45となり1以下であるから、該含有率(28.0質量%)を関係式(2)中のxに代入して石膏量決定用基材中の高炉スラグの含有率は18質量%に決定した。したがって、石膏量決定用基材中のセメントの含有率は、100から18を引いて、82質量%に決定した。
(5) Determination of the content of blast furnace slag and cement in the base material for determining the amount of gypsum In addition, allophanes in the target soil (No. 5) mixed with soil collected from three different points at the site of solidification treatment When the content ratio (28.0 mass%) is substituted for x in the relational expression (1), the strength ratio (P 1 / P 2 ) is 0.45, which is 1 or less. Therefore, the content ratio (28.0 mass%) %) Was substituted for x in the relational expression (2), and the content of blast furnace slag in the base material for determining the amount of gypsum was determined to be 18% by mass. Accordingly, the cement content in the base material for determining the amount of gypsum was determined to be 82% by mass by subtracting 18 from 100.

(6)固化材中の石膏の配合量の決定
前記決定に従い、高炉スラグを18質量%、普通ポルトランドセメント(石膏の含有率はSO換算で2質量%)を82質量%含む石膏量決定用基材を調製した。次に、該石膏量決定用基材と石膏の混合物である石膏量決定用組成物中のSOの含有率が、該組成物の合計を100質量%として、それぞれ4質量%、6質量%、8質量%、および10質量%になるように混合して該組成物を製造した。なお、該組成物中のSOの配合量とは、普通ポルトランドセメントに元々含まれている石膏、および固化材を製造するために混合する石膏から由来するSOの合計量である。
次に、該組成物を、No.5の対象土1mに対し100kg粉体で混合して改良土を作製した後、JIS A 1216「土の一軸圧縮試験方法」に準拠して、該改良土の材齢7日の強度を測定した。その結果を表3に示す。
そして、表3に示す強度の値および材料コストを勘案して、固化材中の石膏の配合量はSO換算で6質量%(この6質量%から普通ポルトランドセメントに由来する石膏(SO換算)の2質量%を差し引くと、無水石膏はSO換算で4質量%であるから、無水石膏自体としては7質量%)に決定した。次に、固化材中の石膏量決定用基材の配合量は、前記無水石膏の配合量(7質量%)を、100質量%から引いて93質量%となる。
そして、石膏量決定用基材の配合量(93質量%)に、前記普通ポルトランドセメントの含有率82質量%(0.82)、前記高炉スラグの含有率18質量%(0.18)を乗じて、固化材中のセメントの配合量を76質量%、高炉スラグの含有量を17質量%に決定した。
(6) Determination of the amount of gypsum in the solidified material In accordance with the above determination, for determining the amount of gypsum containing 18% by mass of blast furnace slag and 82% by mass of ordinary Portland cement (the content of gypsum is 2% by mass in terms of SO 3 ). A substrate was prepared. Next, the content of SO 3 in the gypsum amount determining composition, which is a mixture of the gypsum amount determining base material and gypsum, is 4% by mass and 6% by mass, respectively, where the total of the composition is 100% by mass. , 8% by mass, and 10% by mass to prepare the composition. Note that the amount of SO 3 in the composition, the total amount of SO 3 derived from gypsum to be mixed to produce gypsum is originally contained in the ordinary Portland cement, and a solidifying material.
Next, the composition was prepared as After preparing improved soil by mixing 100 kg powder with 1 m 3 of 5 target soil, measure the strength of the improved soil 7 days in accordance with JIS A 1216 “Soil uniaxial compression test method” did. The results are shown in Table 3.
And considering the strength values and material costs shown in Table 3, the blending amount of gypsum in the solidified material is 6% by mass in terms of SO 3 (from 6% by mass gypsum derived from ordinary Portland cement (in terms of SO 3) ) Was subtracted from 2% by mass, the amount of anhydrous gypsum was 4% by mass in terms of SO 3 , so the anhydrous gypsum itself was determined to be 7% by mass). Next, the compounding amount of the base material for determining the amount of gypsum in the solidified material is 93% by mass, by subtracting the compounding amount (7% by mass) of the anhydrous gypsum from 100% by mass.
Then, the blending amount (93% by mass) of the base material for determining the amount of gypsum is multiplied by 82% by mass (0.82) of the normal Portland cement content and 18% by mass (0.18) of the blast furnace slag content. Thus, the blending amount of cement in the solidified material was determined to be 76% by mass, and the content of blast furnace slag was determined to be 17% by mass.

Figure 0005995992
Figure 0005995992

(7)固化材の添加量の決定
前記決定した前記配合量に基づき、普通ポルトランドセメント、高炉スラグおよび無水石膏を計量して混合し固化材を製造した。
次に、固化処理の現場の土であるNo.5の対象土1mに対し、該固化材をそれぞれ50kg、100kg、150kgおよび200kg粉体で混合して改良土を作製し、JIS A 1216の規定に準拠して材齢7日の該改良土の強度を測定した。その結果を表4に示す。
(7) Determination of solidification material addition amount Based on the determined blending amount, ordinary Portland cement, blast furnace slag and anhydrous gypsum were weighed and mixed to produce a solidification material.
Next, no. 5 to 1 m 3 of the target soil, the solidified material is mixed with 50 kg, 100 kg, 150 kg and 200 kg powders respectively to prepare improved soil, and the improved soil of 7 days of age in accordance with the provisions of JIS A 1216 The strength of was measured. The results are shown in Table 4.

Figure 0005995992
Figure 0005995992

さらに、表4に基づき固化材の添加量(kg/m)を説明変数(h)、改良土の強度(kN/m)を目的変数(s)として回帰分析により下記(5)式を求めた。
s=9.18h−267.6 …(5)
そして、No.5の対象土を採取した現場において、必要とされた改良土の強度は1000kN/mであったから、該値を前記(5)式中のsに代入して固化材の添加量は140kg/mに決定した。
Further, based on Table 4, the following expression (5) is obtained by regression analysis using the solidified material addition amount (kg / m 3 ) as the explanatory variable (h) and the strength (kN / m 2 ) of the improved soil as the objective variable (s). Asked.
s = 9.18h-267.6 (5)
And No. Since the required strength of the improved soil was 1000 kN / m 2 at the site where 5 target soils were collected, the value was substituted for s in the equation (5), and the amount of solidification material added was 140 kg / m 3 was determined.

(8)現場の対象土を用いた改良土の材齢28日の強度と6価クロムの溶出量
以上の決定に基づき、普通ポルトランドセメントを76質量%、高炉スラグを17質量%、および無水石膏を7質量%含む固化材(実施例1)を製造して、該固化材をNo.5の対象土1mに対し140kg粉体で混合して改良土を作製し、前記JISの規定に準拠して材齢28日の該改良土の強度を測定した。また、該材齢の改良土からの6価クロムの溶出量を、環境庁告示第46号に準拠して測定した。
また、比較のために、普通ポルトランドセメントに無水石膏を添加して、石膏の含有率がSO換算で実施例1と同じ6質量%にしたセメント組成物(比較例1)、および高炉スラグの含有率が40質量%の高炉セメントB種に無水石膏を添加して、石膏の含有率がSO換算で実施例1と同じ6質量%にした高炉スラグ含有セメント(比較例2)を用いて、前記と同様にして改良土を作製し、該改良土の強度と該改良土からの6価クロムの溶出量を測定した。その結果を表5に示す。
(8) Strength of the modified soil using the target soil at the age of 28 days and elution amount of hexavalent chromium Based on the above determination, ordinary Portland cement is 76 mass%, blast furnace slag is 17 mass%, and anhydrous gypsum A solidified material containing 7% by mass (Example 1) was produced. An improved soil was prepared by mixing with 1 kg 3 of 5 target soil with 140 kg powder, and the strength of the improved soil at the age of 28 days was measured in accordance with the JIS regulations. Moreover, the elution amount of hexavalent chromium from the improved soil of the age was measured in accordance with Environment Agency Notification No. 46.
For comparison, a cement composition (comparative example 1) in which anhydrous gypsum was added to ordinary Portland cement so that the gypsum content was 6% by mass in the same manner as in Example 1 in terms of SO 3 , and blast furnace slag Using blast furnace slag-containing cement (Comparative Example 2) in which anhydrous gypsum was added to blast furnace cement type B having a content of 40% by mass, and the gypsum content was 6% by mass in the same manner as Example 1 in terms of SO 3 The improved soil was prepared in the same manner as described above, and the strength of the improved soil and the elution amount of hexavalent chromium from the improved soil were measured. The results are shown in Table 5.

Figure 0005995992
Figure 0005995992

表5に示すように、比較例1は強度が高いが6価クロムの溶出がみられ、比較例2は6価クロムの溶出はないが強度が低く前記目標強度(1000kN/m)を下回っている。これに対し、実施例1では強度が高く前記目標強度を上回り、6価クロムの溶出はない。
なお、以上の良好な結果に基づけば、前記関係式(2)の誘導方法は妥当であると結論付けることができる。
As shown in Table 5, although Comparative Example 1 has high strength, elution of hexavalent chromium was observed, and Comparative Example 2 had no elution of hexavalent chromium, but the strength was low and below the target strength (1000 kN / m 2 ). ing. On the other hand, in Example 1, the strength is high and exceeds the target strength, and there is no elution of hexavalent chromium.
In addition, based on the above favorable results, it can be concluded that the induction method of the relational expression (2) is appropriate.

したがって、本発明の固化材の製造方法によれば、現場の対象土に適した固化材を容易に製造できる。また、本発明の製造方法により製造した本固化材は、強度発現性および6価クロムの溶出抑制効果のいずれも高い。   Therefore, according to the method for producing a solidified material of the present invention, a solidified material suitable for the target soil in the field can be easily produced. In addition, the solidified material produced by the production method of the present invention has both high strength development and hexavalent chromium elution suppression effect.

Claims (1)

下記(A)〜(E)工程を経て決定した配合量のセメント、高炉スラグおよび石膏を計量して混合する、固化材の製造方法。
(A)下記の強度PおよびPを測定して、土中のアロフェン類の含有率と強度比(P/P)との間の下記関係式(1)を求める、関係式(1)の誘導工程
/P=ax+b ……(1)
(ただし、Pは高炉スラグ含有セメントを用いた改良土の強度、Pは基準セメントを用いた改良土の強度、xは対象土中のアロフェン類の含有率(質量%)、aおよびbは定数を表す。)
(B)前記関係式(1)の両辺に、前記高炉スラグ含有セメント中の高炉スラグの含有率(s1)(質量%)を乗じて下記関係式(2)を求める、関係式(2)の誘導工程
=cx+d ……(2)
(ただし、sは強度比が1となる石膏量決定用基材中の高炉スラグの含有率(質量%)、xは対象土中のアロフェン類の含有率(質量%)、cはa×s1、dはb×s1を表す。)
(C)強度比が1以下となる対象土に対しては、該対象土中のアロフェン類の含有率に基づき、前記関係式(2)を用いて石膏量決定用基材中の高炉スラグの含有率(sと同じ)を決定し、一方、強度比が1を超える対象土に対しては、前記高炉スラグ含有セメント中の高炉スラグの含有率(s1)を石膏量決定用基材中の高炉スラグの含有率(s1と同じ)として決定するとともに、該高炉スラグの含有率と下記(3)式を用いて石膏量決定用基材中のセメントの含有率を決定する、石膏量決定用基材中の高炉スラグおよびセメントの含有率決定工程
石膏量決定用基材中のセメントの含有率(質量%)=100−石膏量決定用基材中の高炉スラグの含有率(質量%) ……(3)
(D)前記石膏量決定用基材および複数の水準の量の石膏を混合してなる石膏量決定用組成物と、対象土とを、混合して作製した改良土の強度を測定して、目標強度を発現する改良土を選択し、該改良土に用いた石膏量決定用組成物中の石膏の含有率(質量%)を固化材中の石膏の配合量(質量%)として決定する、固化材中の石膏の配合量決定工程
(E)100質量%から、前記(D)工程において決定した固化材中の石膏の配合量(質量%)を差し引いた残りの値に対し、前記(C)工程において決定した石膏量決定用基材中の高炉スラグの含有率(質量%×0.01の値)およびセメントの含有率(質量%×0.01の値)をそれぞれ乗じて得た値を、それぞれ、固化材中の高炉スラグの配合量(質量%)およびセメントの配合量(質量%)として決定する、固化材中の高炉スラグおよびセメントの配合量決定工
The manufacturing method of the solidification material which measures and mixes the cement, blast furnace slag, and gypsum of the compounding quantity determined through the following (A)-(E) process.
(A) Measure the following strengths P 1 and P 2 to obtain the following relational expression (1) between the content of allophanes in the soil and the strength ratio (P 1 / P 2 ): Induction step 1) P 1 / P 2 = ax + b (1)
(Where P 1 is the strength of the improved soil using the blast furnace slag-containing cement, P 2 is the strength of the improved soil using the reference cement, x is the content (% by mass) of allophanes in the target soil, a and b Represents a constant.)
(B) The following relational expression (2) is obtained by multiplying both sides of the relational expression (1) by the blast furnace slag content (s 1 ) (mass%) in the blast furnace slag-containing cement. S 2 = cx + d (2)
(Where s 2 is the content (mass%) of blast furnace slag in the base material for determining the amount of gypsum whose strength ratio is 1, x is the content (mass%) of allophanes in the target soil, and c is a × s 1 and d represent b × s 1. )
(C) For target soil having a strength ratio of 1 or less, based on the content of allophanes in the target soil, the relational expression (2) is used to determine the amount of blast furnace slag in the base material for gypsum amount determination. On the other hand, the content ratio (s 1 ) of the blast furnace slag in the cement containing the blast furnace slag is determined for the target soil having a strength ratio (same as s 2 ) and the strength ratio exceeds 1. Gypsum, which is determined as the content of blast furnace slag (same as s 1 ) and determines the content of cement in the base material for determining the amount of gypsum using the content of the blast furnace slag and the following equation (3) Step of determining the content of blast furnace slag and cement in the base material for determining the amount of cement (mass%) in the base material for determining the amount of gypsum = 100-Content of the blast furnace slag in the base material for determining the amount of gypsum (mass) %) ...... (3)
(D) Measure the strength of the improved soil prepared by mixing the gypsum amount determining composition formed by mixing the gypsum amount determining base material and a plurality of levels of gypsum, and the target soil, Select the improved soil that expresses the target strength, and determine the content (mass%) of gypsum in the gypsum content determining composition used in the improved soil as the amount of gypsum (mass%) in the solidified material. Step (E) for determining the amount of gypsum in the solidified material (E) From the remaining value obtained by subtracting the amount (% by mass) of gypsum in the solidified material determined in the step (D), (C ) Value obtained by multiplying the content of blast furnace slag (mass% × 0.01) and the content of cement (mass% × 0.01) in the base material for determining the amount of gypsum determined in the process Respectively, blending amount of blast furnace slag in the solidified material (mass%) and blending amount of cement (mass) %) Is determined as, higher amount determining Engineering of blast furnace slag and cement in the solidifying material
JP2014552059A 2012-12-11 2013-12-10 Method for producing cement-based solidified material Active JP5995992B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012270196 2012-12-11
JP2012270196 2012-12-11
PCT/JP2013/083142 WO2014092101A1 (en) 2012-12-11 2013-12-10 Method for producing cement-based solidified material and cement-based solidified material

Publications (2)

Publication Number Publication Date
JP5995992B2 true JP5995992B2 (en) 2016-09-21
JPWO2014092101A1 JPWO2014092101A1 (en) 2017-01-12

Family

ID=50934389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014552059A Active JP5995992B2 (en) 2012-12-11 2013-12-10 Method for producing cement-based solidified material

Country Status (2)

Country Link
JP (1) JP5995992B2 (en)
WO (1) WO2014092101A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6452043B2 (en) * 2015-03-30 2019-01-16 住友大阪セメント株式会社 Method for producing improved soil, method for producing cement composition, and method for blending and designing improved soil
JP7084111B2 (en) * 2017-05-22 2022-06-14 株式会社デイ・シイ Solidifying material for highly organic soil or humus soil
JP7185994B2 (en) * 2018-11-27 2022-12-08 Ube三菱セメント株式会社 Cement-based solidifying material and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097057A (en) * 2000-09-20 2002-04-02 Denki Kagaku Kogyo Kk Injection material for lowering hexavalent chromium
JP2010195975A (en) * 2009-02-26 2010-09-09 Ube Ind Ltd Cement-based solidifying material, method for producing the same and method for solidifying soil
JP2011207952A (en) * 2010-03-29 2011-10-20 Ube Industries Ltd Method for producing cement-based solidifying material, method for solidifying soil, and method for reducing elusion amount of hexavalent chromium from solidified soil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097057A (en) * 2000-09-20 2002-04-02 Denki Kagaku Kogyo Kk Injection material for lowering hexavalent chromium
JP2010195975A (en) * 2009-02-26 2010-09-09 Ube Ind Ltd Cement-based solidifying material, method for producing the same and method for solidifying soil
JP2011207952A (en) * 2010-03-29 2011-10-20 Ube Industries Ltd Method for producing cement-based solidifying material, method for solidifying soil, and method for reducing elusion amount of hexavalent chromium from solidified soil

Also Published As

Publication number Publication date
JPWO2014092101A1 (en) 2017-01-12
WO2014092101A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
JP5946107B2 (en) Method for producing cement composition
JP5636718B2 (en) CEMENT COMPOSITION, METHOD FOR PRODUCING THE SAME, AND METHOD FOR TREATING ARS Arsenic-Containing Waste
Alwaeli et al. Recycle option for metallurgical sludge waste as a partial replacement for natural sand in mortars containing CSA cement to save the environment and natural resources
JP5800387B2 (en) Soil improvement material
JP6547455B2 (en) Ground improvement material and ground improvement method
JP5500828B2 (en) Soil hardening material
JP6000187B2 (en) Method for designing improved soil and method for producing cement-based solidified material
JP5995992B2 (en) Method for producing cement-based solidified material
JP2003171162A (en) Cement based grout composition
JP2012254909A (en) Cement composition
Zhang et al. Preparation and hydration process of copper slag-granulated blast furnace slag-cement composites
JP6855691B2 (en) Cement composition and its manufacturing method
JP3963622B2 (en) Grout cement admixture and cement composition
JP6353264B2 (en) Cement clinker with improved fluidity
JP5515329B2 (en) Cement clinker, cement-based solidified material, method for solidifying soil, and method for producing cement clinker
JP6953787B2 (en) Environmental load reduction clinker, cement composition and its manufacturing method, and ground improvement method
JP6536215B2 (en) Ground improvement material and ground improvement method
JP4164229B2 (en) Cement composition
JP6823487B2 (en) Manufacturing method of cement composition and quality evaluation method of cement composition
JP7061415B2 (en) Cement composition, its manufacturing method, and ground improvement method
JP2014162696A (en) Cement-based solidifying material
JP6756150B2 (en) Environmental load reduction clinker, cement composition and its manufacturing method, and ground improvement method
JP2006176669A (en) Solidifying material for soil and mixed solidifying material for soil
JP2020164344A (en) Cement-based solidification material
JP6055367B2 (en) Fluidity improved clinker

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R150 Certificate of patent or registration of utility model

Ref document number: 5995992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250