JP6000187B2 - Method for designing improved soil and method for producing cement-based solidified material - Google Patents

Method for designing improved soil and method for producing cement-based solidified material Download PDF

Info

Publication number
JP6000187B2
JP6000187B2 JP2013099781A JP2013099781A JP6000187B2 JP 6000187 B2 JP6000187 B2 JP 6000187B2 JP 2013099781 A JP2013099781 A JP 2013099781A JP 2013099781 A JP2013099781 A JP 2013099781A JP 6000187 B2 JP6000187 B2 JP 6000187B2
Authority
JP
Japan
Prior art keywords
soil
target
improved soil
content
characteristic value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013099781A
Other languages
Japanese (ja)
Other versions
JP2014218856A (en
Inventor
昌平 柳谷
昌平 柳谷
松山 祐介
祐介 松山
克之 酒巻
克之 酒巻
彰徳 杉山
彰徳 杉山
秀幸 菅谷
秀幸 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2013099781A priority Critical patent/JP6000187B2/en
Publication of JP2014218856A publication Critical patent/JP2014218856A/en
Application granted granted Critical
Publication of JP6000187B2 publication Critical patent/JP6000187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、固化材を混合して改良した土(以下「改良土」という。)の固化を阻害する土壌中の物質(以下「固化阻害因子」という。)の含有率等に基づいて、改良土の配合を設計する方法等に関する。   The present invention is based on the content of a substance (hereinafter referred to as “solidification inhibitory factor”) in the soil that inhibits the solidification of soil improved by mixing a solidifying material (hereinafter referred to as “improved soil”). The present invention relates to a method for designing the composition of soil.

改良土の固化阻害因子は、おもに、水、アロフェン、および腐植酸等が知られている。これらの因子の固化阻害メカニズムは、単独では、それぞれ改良土中の空隙の形成、セメントの水和により生成したカルシウムイオンの土壌への吸着、およびセメントの水和阻害等が考えられている。しかし、実際の土壌改良の現場ではこれらの因子が単独で作用することはなく、常に複合して作用を及ぼしている。ところが、これらの固化阻害因子の複合作用は未解明な点が多く、改良土の配合設計が難しい理由の一つに挙げられる。そのため、改良土の配合設計において、一般に、固化処理の対象となる土壌(以下「対象土」という。)を用いて多種類の配合を、実際に試さなければならず、この試行錯誤の手間を減らすことが大きな課題になっている。   As the solidification inhibiting factors of the improved soil, water, allophane, humic acid and the like are mainly known. The solidification inhibition mechanisms of these factors are considered to be the formation of voids in the improved soil, the adsorption of calcium ions produced by cement hydration to the soil, and the inhibition of cement hydration, respectively. However, in actual soil improvement sites, these factors do not act alone but always act in combination. However, there are many unclear points about the combined action of these solidification inhibiting factors, which is one of the reasons why it is difficult to design the improved soil. For this reason, in the design of improved soil, in general, it is necessary to actually test various types of blends using the soil to be solidified (hereinafter referred to as “target soil”), and this effort of trial and error is reduced. Reduction is a big issue.

かかる課題に関連して、特許文献1では、経済的とされる改良土の配合設計方法が提案されている。すなわち、該方法は、改良土に対して少なくとも1種類の土質試験を行う工程と、前記土質試験から得られた結果に基づいて設定された分類基準により前記改良土を分類する工程と、前記改良土についてテスト配合を決定して改良土を得る工程と、前記改良土について所定の試験を行って判定値を取得する工程と、前記判定値に基づいて正配合の要不要を判定する工程とを具備する方法である。
しかし、前記方法は、少なくとも5つの工程を経なければならず、未だ手間のかかる方法であると考える。
In relation to this problem, Patent Document 1 proposes a method for designing improved soil that is economical. That is, the method includes a step of performing at least one kind of soil test on the improved soil, a step of classifying the improved soil according to a classification criterion set based on a result obtained from the soil test, and the improvement Determining a test composition for soil and obtaining improved soil; performing a predetermined test on the improved soil to obtain a determination value; and determining whether or not a positive composition is necessary based on the determination value. It is a method to comprise.
However, the method has to go through at least five steps and is still considered a time-consuming method.

特開2005−273387号公報JP 2005-273387 A

したがって、本発明の課題は、改良土の最適な配合を容易に設計できる方法を提供することである。   Accordingly, an object of the present invention is to provide a method by which an optimum composition of improved soil can be easily designed.

そこで、本発明者らは、前記課題の解決手段を種々検討した。具体的には、
(1)対象土中の固化阻害因子の含有率等と、改良土の強度に基づき、対象土を特徴づける特性値(パラメータ、指標)を検討した。また、
(2)改良土中の、強度発現性に関係するエーライト、石膏、および高炉スラグ粉末の配合量と、改良土の強度の関係を表す改良土の特性値を検討した。そして、
(3)前記対象土の特性値と改良土の特性値を変数として含む、改良土の強度推測式を求めた。その結果、
(4)後掲の図4に示すように、該予測式は、多種類にわたる改良土の強度を精度よく推測できること、したがって、
(5)該推測式を用いれば、対象土中の固化阻害因子の含有率等と、改良土の目標強度から、該目標強度を発現する改良土に含まれるべき前記固化成分の配合量等を求めて、固化材と対象土の配合割合を決定することにより、改良土の最適配合を容易に設計できること
等を見い出し、本発明を完成させた。
Therefore, the present inventors have studied various means for solving the above problems. In particular,
(1) Based on the content of the solidification inhibiting factor in the target soil and the strength of the improved soil, the characteristic values (parameters and indicators) that characterize the target soil were examined. Also,
(2) The characteristic values of the improved soil representing the relationship between the blending amount of alite, gypsum, and blast furnace slag powder related to strength development in the improved soil and the strength of the improved soil were examined. And
(3) The strength estimation formula of the improved soil including the characteristic value of the target soil and the characteristic value of the improved soil as variables was obtained. as a result,
(4) As shown in FIG. 4 to be described later, the prediction formula can accurately estimate the strength of various types of improved soil.
(5) If the estimation formula is used, the content of the solidification inhibiting factor in the target soil and the target strength of the improved soil, the blending amount of the solidification component to be included in the improved soil expressing the target strength, and the like. The present invention was completed by finding out that the optimum blending of the improved soil can be easily designed by determining the blending ratio of the solidifying material and the target soil.

すなわち、本発明は以下の構成からなるものである。
[1]対象土の含水比、対象土中のビチューメン、フミン酸、フルボ酸、アロフェン、およびアロフェンを除く非晶質相(以下「対象土成分」という。)の含有率に基づき算出した対象土の特性値と、改良土の目標強度に基づき、エーライト、石膏、および高炉スラグ(以下「固化成分」という。)の配合量を算出して改良土の配合設計を行う、改良土の配合設計方法。
なお、前記固化成分は、おもに固化材に由来する。
[2]以下の(A)〜(C)工程を経て算出した固化成分の配合量に基づいて、固化材と対象土の配合割合を決め、該配合割合に基づき改良土の配合設計を行う、前記[1]に記載の改良土の配合設計方法。
(A)前記対象土成分の含有率を変数として含む、対象土の特性値の算出式(a)を用いて、対象土成分の含有率から対象土の特性値を算出するための、対象土の特性値算出工程
(B)対象土の特性値と改良土の強度を変数として含む、改良土の特性値の算出式(b)を用いて、前記算出した対象土の特性値と改良土の目標強度から、改良土の特性値を算出するための、改良土の特性値算出工程
(C)固化成分の配合量を変数として含む、改良土の特性値の算出式(c)を用いて、前記算出した改良土の特性値から、固化成分の配合量を算出するための、固化成分の配合量算出工程
That is, the present invention has the following configuration.
[1] The target soil calculated based on the moisture content of the target soil, the bitumen, humic acid, fulvic acid, allophane, and the amorphous phase excluding allophane in the target soil (hereinafter referred to as “target soil component”) Based on the characteristic value of the soil and the target strength of the improved soil, the blended design of the improved soil is calculated by calculating the blending amount of alite, gypsum, and blast furnace slag (hereinafter referred to as “solidifying component”). Method.
The solidifying component is mainly derived from the solidifying material.
[2] Based on the blending amount of the solidification component calculated through the following steps (A) to (C), the blending ratio of the solidifying material and the target soil is determined, and the blending design of the improved soil is performed based on the blending ratio. The improved soil compounding design method according to [1].
(A) The target soil for calculating the characteristic value of the target soil from the content ratio of the target soil component using the calculation formula (a) of the target soil characteristic value including the content ratio of the target soil component as a variable Characteristic value calculation step (B) Using the calculation formula (b) of the characteristic value of the improved soil including the characteristic value of the target soil and the strength of the improved soil as variables, the calculated characteristic value of the target soil and the improved soil From the target strength, using the formula for calculating the characteristic value of the improved soil (C) including the blending amount of the solidified component as a variable, the characteristic value calculating step of the improved soil (C) for calculating the characteristic value of the improved soil, Solidification component blending amount calculation step for calculating the solidification component blending amount from the calculated characteristic value of the improved soil

[3]前記算出式(a)、(b)、および(c)が、それぞれ下記(a)、(b)、および(c)式で表される、前記[1]または[2]に記載の改良土の配合設計方法。
Po=W+30×B+10×H+10×F+2×A−10×Nc+200 …(a)
(式中、Poは対象土の特性値(kN/m)、Wは対象土の含水比(重量比を%で表示)、Bは対象土中のビチューメンの含有率(質量%)、Hは対象土中のフミン酸の含有率(質量%)、Fは対象土中のフルボ酸の含有率(質量%)、Aは対象土中のアロフェンの含有率(質量%)、Ncは対象土中のアロフェンを除く非晶質相の含有率(質量%)を表す。)
Pi={S−(0.032×Po−34.9×Po+3500)}/{155×exp(−0.002×Po)} …(b)
(式中、Piは改良土の特性値(kN/m)、Sは改良土の強度(kN/m)または改良土の目標強度(kN/m)、Poは対象土の特性値(kN/m)を表す。)
Pi=C+0.1×G+0.25×B …(c)
(式中、Piは改良土の特性値(kN/m)、Cは改良土1mあたりのエーライトの配合量(kg/m)、Gは改良土1mあたりの石膏の配合量(SO換算、kg/m)、Bは改良土1mあたりの高炉スラグ粉末の配合量(kg/m)を表す。)
ただし、エーライトおよび石膏は必須の成分であるが、高炉スラグ粉末は任意の成分である。
[4]前記固化成分に代えて、セメント系固化材(前記固化成分のプレミックス品)を用いる場合は、前記(c)式に代えて下記(d)式を用いる、前記[1]〜[3]に記載の改良土の配合設計方法。
Pi=(c+0.1×g+0.25×b)×α …(d)
(式中、Piは改良土の特性値(kN/m)、cはセメント系固化材中のエーライトの含有率(質量%)、gはセメント系固化材中の石膏の含有率(SO換算、質量%)、bはセメント系固化材中の高炉スラグ粉末の含有率(質量%)、αは改良土中のセメント系固化材の配合量(kg/m)を表す。)
[5]前記[2]または[3]に記載の改良土の配合設計方法により求めた固化成分の配合量に基づき、少なくとも、セメントクリンカー、および石膏を混合してセメント系固化材を製造する、セメント系固化材の製造方法
[3] The calculation formulas (a), (b), and (c) are represented by the following formulas (a), (b), and (c), respectively, according to the above [1] or [2]: Of improved soil formulation design.
Po = W + 30 * B + 10 * H + 10 * F + 2 * A-10 * Nc + 200 (a)
(In the formula, Po is the characteristic value (kN / m 2 ) of the target soil, W is the moisture content of the target soil (weight ratio is expressed in%), B is the content of bitumen in the target soil (mass%), H Is the content of humic acid in the target soil (% by mass), F is the content of fulvic acid in the target soil (% by mass), A is the content of allophane in the target soil (% by mass), and Nc is the target soil (It represents the content (mass%) of the amorphous phase excluding allophane in the inside.)
Pi = {S− (0.032 × Po 2 −34.9 × Po + 3500)} / {155 × exp (−0.002 × Po)} (b)
(In the formula, Pi is the characteristic value (kN / m 2 ) of the improved soil, S is the strength (kN / m 2 ) of the improved soil or the target strength (kN / m 2 ) of the improved soil, and Po is the characteristic value of the target soil. (Represents kN / m 2 )
Pi = C + 0.1 × G + 0.25 × B (c)
(In the formula, Pi is the characteristic value of improved soil (kN / m 2 ), C is the blending amount of alite per 1 m 3 of improved soil (kg / m 3 ), and G is the blending amount of gypsum per 1 m 3 of improved soil. (SO 3 conversion, kg / m 3 ), B represents the blending amount (kg / m 3 ) of blast furnace slag powder per 1 m 3 of the improved soil.
However, although alite and gypsum are essential components, blast furnace slag powder is an optional component.
[4] When a cement-based solidified material (premixed product of the solidified component) is used instead of the solidified component, the following formula (d) is used instead of the formula (c): [1] to [1] 3] The improved soil composition design method according to [3].
Pi = (c + 0.1 × g + 0.25 × b) × α (d)
(In the formula, Pi is the characteristic value of the improved soil (kN / m 2 ), c is the content of alite in the cement-based solidified material (mass%), g is the content of gypsum in the cement-based solidified material (SO (3 conversion, mass%), b represents the content (mass%) of the blast furnace slag powder in the cement-based solidified material, and α represents the blending amount (kg / m 3 ) of the cement-based solidified material in the improved soil.
[5] A cement-based solidified material is produced by mixing at least a cement clinker and gypsum based on the blended amount of the solidified component obtained by the blended design method for improved soil according to [2] or [3]. A method for producing a cement-based solidified material .

本発明の改良土の配合設計方法によれば、対象土の種類と改良土の目標強度に応じて、改良土の最適な配合を容易に設計できる。また、本発明のセメント系固化材の製造方法によれば、対象土に適したセメント系固化材を製造できる。さらに、本発明のセメント系固化材は、改良土の目標強度を確実に発現できる。   According to the improved soil composition design method of the present invention, the optimum composition of the improved soil can be easily designed according to the type of target soil and the target strength of the improved soil. Moreover, according to the manufacturing method of the cement-type solidification material of this invention, the cement-type solidification material suitable for object soil can be manufactured. Furthermore, the cement-based solidified material of the present invention can reliably express the target strength of the improved soil.

固化阻害因子の含有率と、改良土の一軸圧縮強さの間の関係を示す図である。ただし、セメント系固化材1の配合量が(A)は200kg/m、(B)は300kg/mである。It is a figure which shows the relationship between the content rate of a solidification inhibiting factor, and the uniaxial compressive strength of improved soil. However, the amount of cement solidifying material 1 (A) is 200kg / m 3, (B) is 300 kg / m 3. 改良土の特性値と改良土の一軸圧縮強さの間の直線関係の一例を示す図である。It is a figure which shows an example of the linear relationship between the characteristic value of improved soil, and the uniaxial compressive strength of improved soil. (A)は前記近似直線の傾きと、対象土の特性値との間の指数関数関係を示す図であり、(B)は前記近似直線の切片と、対象土の特性値との間の2次関数関係を示す図である。(A) is a figure which shows the exponential function relationship between the inclination of the said approximate line, and the characteristic value of object soil, (B) is 2 between the intercept of the said approximate line, and the characteristic value of object soil. It is a figure which shows next function relationship. 改良土の一軸圧縮強さの実測値と、改良土の強度の推測式を用いて求めた推測値の適合度合を示す図である。It is a figure which shows the fitting degree of the estimated value calculated | required using the estimated value of the measured value of uniaxial compressive strength of improved soil, and the intensity | strength of improved soil.

本発明は、前記のとおり、対象土成分の含有率に基づき算出した対象土の特性値と、改良土の目標強度に基づき、固化成分の配合量を算出して改良土の配合設計を行う方法等である。
以下、本発明を、(1)対象土の特性値、(2)改良土の特性値、(3)改良土の強度推測式、(4)改良土の配合設計手順、および(5)セメント系固化材の製造方法とセメント系固化材の各項目に分けて説明する。
As described above, the present invention is a method for calculating the blending design of the improved soil by calculating the blending amount of the solidified component based on the target soil characteristic value calculated based on the content of the target soil component and the target strength of the improved soil. Etc.
Hereinafter, the present invention includes (1) characteristic value of target soil, (2) characteristic value of improved soil, (3) strength estimation formula of improved soil, (4) blending design procedure of improved soil, and (5) cement system The method for producing the solidified material and the cement-type solidified material will be described separately.

(1)対象土の特性値
前記対象土の特性値は、該対象土を含む改良土の強度発現性の観点から、対象土成分の含有率等を用いて対象土を特徴づけるパラメータであり、該対象土を含む改良土の強度で表される。
ここで、前記対象土成分の含有率等とは、対象土の含水比、対象土中のビチューメンの含有率、フミン酸の含有率、フルボ酸の含有率、アロフェンの含有率、および、アロフェンを除く非晶質相の含有率である。
前記含水比は、含水量/対象土の質量比を%で表したもので、例えば、地盤工学会のJGS0121−2009「土の含水比試験方法」に準拠して測定できる。ビチューメン、フミン酸、およびフラボ酸の含有率は、いずれも、例えば、小野田研究報告No.20、11〜24頁(1980年)に準拠して測定できる。また、アロフェンは、火山灰質粘性土に多く含まれる非晶質の珪酸アルミニウム粘土鉱物の一種であり、アロフェンの含有率は、例えば、「酸性シュウ酸塩抽出法」、酪農学園大学紀要、28(1)、7〜45頁(2003年)に準拠して測定できる。また、アロフェンを除く非晶質相(非晶質無機成分)とは、アロフェン類似のアルミニウムや鉄などのケイ酸塩鉱物、土壌中に存在するX線に対して非晶質であるケイ酸、アルミナ、酸化鉄などの風化無機ゲル、さらに厳密には非晶質とは言い難いが低結晶のゲータイトなどの鉄鉱物をも含めた鉱物である。アロフェンを除く非晶質相の含有率は、例えば、「土壌中のアロフェンおよび非晶質無機成分の定量に関する研究」、農業技術研究所報告 B 第29号、1〜48頁(1977)に準拠して測定できる。
後掲の図1に示すように、前記対象土成分の中でも、含水、ビチューメン、フミン酸、フラボ酸、およびアロフェンは、改良土の強度発現性を阻害する因子である。一方、アロフェンを除く非晶質相は、改良土の強度発現を促進させる因子である。このように、土壌中に共存する固化阻害因子と固化促進因子の複合作用により、改良土の強度発現性は複雑である。
(1) Characteristic value of the target soil The characteristic value of the target soil is a parameter that characterizes the target soil using the content rate of the target soil component and the like from the viewpoint of strength development of the improved soil including the target soil. It is expressed by the strength of the improved soil including the target soil.
Here, the content ratio of the target soil component is the water content ratio of the target soil, the content ratio of bitumen in the target soil, the content ratio of humic acid, the content ratio of fulvic acid, the content ratio of allophane, and allophane. The content of the amorphous phase is excluded.
The water content ratio is a water content / mass ratio of the target soil expressed in%, and can be measured in accordance with, for example, JGS0121-2009 “Soil Water Content Test Method” of the Geotechnical Society. As for the content rates of bitumen, humic acid, and flavic acid, for example, Onoda Research Report No. 20, page 11-24 (1980). In addition, allophane is a kind of amorphous aluminum silicate clay mineral that is abundant in volcanic ash clay, and the content of allophane is, for example, “acid oxalate extraction method”, Bulletin of Rakuno Gakuen University, 28 ( 1), and can be measured according to pages 7 to 45 (2003). Moreover, the amorphous phase (amorphous inorganic component) excluding allophane is silicate minerals such as allophane-like aluminum and iron, silicic acid that is amorphous with respect to X-rays present in soil, Weathered inorganic gels such as alumina and iron oxide, and more strictly speaking, minerals including iron minerals such as low crystalline goethite, although not necessarily amorphous. The content of the amorphous phase excluding allophane is based on, for example, “Study on Quantification of Allophane and Amorphous Inorganic Components in Soil”, Agricultural Technology Research Institute Report No. 29, pages 1 to 48 (1977) Can be measured.
As shown in FIG. 1 to be described later, among the target soil components, water content, bitumen, humic acid, flavic acid, and allophane are factors that inhibit the strength development of the improved soil. On the other hand, the amorphous phase excluding allophane is a factor that promotes the strength development of the improved soil. As described above, the strength of the improved soil is complicated by the combined action of the solidification inhibiting factor and the solidification promoting factor coexisting in the soil.

前記固化阻害因子と固化促進因子の複合作用に鑑み、対象土の特性値は、対象土成分の含有率を説明変数にし、該対象土とセメント系固化材を含む改良土の強度を目的変数にした重回帰式により算出する。下記(a)式は該算出式の一例である。
Po=W+30×B+10×H+10×F+2×A−10×Nc+200 …(a)
ただし、式中、Poは対象土の特性値(kN/m)、Wは対象土の含水比(重量比を%で表示)、Bは対象土中のビチューメンの含有率(質量%)、Hは対象土中のフミン酸の含有率(質量%)、Fは対象土中のフルボ酸の含有率(質量%)、Aは対象土中のアロフェンの含有率(質量%)、Ncは対象土中のアロフェンを除く非晶質相の含有率(質量%)を表す。
In view of the combined action of the solidification inhibiting factor and the solidification promoting factor, the characteristic value of the target soil has the content of the target soil component as an explanatory variable, and the strength of the improved soil containing the target soil and the cement-based solidifying material as a target variable. Calculated by the multiple regression equation. The following formula (a) is an example of the calculation formula.
Po = W + 30 * B + 10 * H + 10 * F + 2 * A-10 * Nc + 200 (a)
However, in the formula, Po is a characteristic value (kN / m 2 ) of the target soil, W is a water content ratio of the target soil (weight ratio is expressed in%), B is a bitumen content (% by mass) in the target soil, H is the content of humic acid in the target soil (% by mass), F is the content of fulvic acid in the target soil (% by mass), A is the content of allophane in the target soil (% by mass), and Nc is the target It represents the content (mass%) of the amorphous phase excluding allophane in the soil.

(2)改良土の特性値
前記改良土の特性値は、改良土の強度発現性の観点から、改良土中の固化成分の配合量を用いて改良土を特徴づけるパラメータであり、改良土の強度で表される。
ここで、前記固化成分の配合量とは、改良土の単位量(1m)あたりのエーライトの配合量(kg/m)、石膏の配合量(kg/m)、および高炉スラグの配合量(kg/m)である。該固化成分は、おもにセメント系固化材に由来するものである。また、改良土の強度は、例えば、JIS A 1216−2009「土の一軸圧縮試験方法」に準拠して測定できる。
(2) Characteristic value of the improved soil The characteristic value of the improved soil is a parameter that characterizes the improved soil by using the blending amount of the solidifying component in the improved soil from the viewpoint of strength development of the improved soil. Expressed in intensity.
Here, the blending amount of the solidifying component is the blending amount of alite per unit amount (1 m 3 ) of the improved soil (kg / m 3 ), the blending amount of gypsum (kg / m 3 ), and the blast furnace slag It is a blending amount (kg / m 3 ). The solidifying component is mainly derived from a cement-based solidifying material. The strength of the improved soil can be measured in accordance with, for example, JIS A 1216-2009 “Soil Uniaxial Compression Test Method”.

配合設計上の必要性から固化成分の配合量と改良土の強度との関係式を得るため、前記固化成分の配合量を説明変数にし、該固化成分を含む改良土の強度を目的変数にして重回帰分析を行うことにより、改良土の特性値を算出するための算出式が得られる。下記(c)式は該算出式の一例である。
Pi=C+0.1×G+0.25×B …(c)
ただし、式中、Piは対象土の特性値(kN/m)、Cは改良土1mあたりのエーライトの配合量(kg/m)、Gは改良土1mあたりの石膏の配合量(SO換算、kg/m)、Bは改良土1mあたりの高炉スラグ粉末の配合量(kg/m)を表す。また、前記エーライトの含有率は、リートベルト法で測定して得た値を用いる。
前記固化成分に代えて、前記固化成分を一定量含むセメント系固化材(プレミックス品)を用いる場合は、前記(c)式に代えて下記(d)式を用いる。
Pi=(c+0.1×g+0.25×b)×α …(d)
ただし、式中、Piは対象土の特性値(kN/m)、cはセメント系固化材中のエーライトの含有率(質量%)、gはセメント系固化材中の石膏の含有率(SO換算、質量%)、bはセメント系固化材中の高炉スラグ粉末の含有率(質量%)、αは改良土1mあたりのセメント系固化材の配合量(kg/m)を表す。また、前記エーライトの含有率は、リートベルト法で測定して得た値を用いる。
In order to obtain the relational expression between the blending amount of the solidified component and the strength of the improved soil from the necessity in blending design, the blending amount of the solidified component is used as an explanatory variable, and the strength of the improved soil containing the solidified component is used as a target variable. By performing multiple regression analysis, a calculation formula for calculating the characteristic value of the improved soil is obtained. The following formula (c) is an example of the calculation formula.
Pi = C + 0.1 × G + 0.25 × B (c)
However, in the formula, Pi is the characteristic value of the target soil (kN / m 2 ), C is the blending amount of alite per 1 m 3 of the improved soil (kg / m 3 ), G is the blending of gypsum per 1 m 3 of the improved soil Amount (SO 3 conversion, kg / m 3 ), B represents the blending amount (kg / m 3 ) of blast furnace slag powder per 1 m 3 of the improved soil. Moreover, the value obtained by measuring by the Rietveld method is used for the alite content.
When a cement-based solidified material (premix product) containing a certain amount of the solidified component is used instead of the solidified component, the following formula (d) is used instead of the formula (c).
Pi = (c + 0.1 × g + 0.25 × b) × α (d)
However, in the formula, Pi is the characteristic value (kN / m 2 ) of the target soil, c is the content of alite in the cement-based solidified material (% by mass), and g is the content of gypsum in the cement-based solidified material ( SO 3 conversion, mass%), b represents the content (mass%) of the blast furnace slag powder in the cement-based solidified material, and α represents the blending amount of the cement-based solidified material per 1 m 3 of improved soil (kg / m 3 ). . Moreover, the value obtained by measuring by the Rietveld method is used for the alite content.

(3)改良土の強度推定式
本発明者らは、前記対象土の特性値、前記改良土の特性値、および改良土の強度との関係を検討したところ、以下の知見を得た。すなわち、
図2に示すように、任意の改良土の強度(一軸圧縮強さ)は、改良土の特性値の1次関数(直線)を用いて近似できる。また、図3に示すように、該直線の傾きは、前記改良土に含まれる対象土の特性値の指数関数を用いて近似でき(A)、該直線の切片は、前記改良土に含まれる対象土の特性値の2次関数を用いて近似できる(B)。
したがって、前記1次関数の傾きを対象土の特性値の前記指数関数で置き換え、前記1次関数の切片を対象土の特性値の前記2次関数で置き換えれば、改良土の強度を対象土の特性値で表した改良土の強度推測式が得られる。下記(b)式は該推測式の一例である。
S={155×exp(−0.002×Po)}×Pi+(0.032×Po−34.9×Po+3500) …(b
ただし、式中、Sは改良土の強度(kN/m)または改良土の目標強度、Piは改良土の特性値(kN/m)、Poは対象土の特性値(kN/m)を表す。
後掲の図4に示すように、(b)式を用いて求めた改良土の強度の予測値は、改良土の材齢に依らず、実測値とよく一致している。
そして、前記(b)式をPiについて変形すると、下記(b)式が得られる。
Pi={S−(0.032×Po−34.9×Po+3500)}/{155×exp(−0.002×Po)} …(b)
(3) Strength Estimation Formula of Improved Soil The present inventors have studied the relationship between the characteristic value of the target soil, the characteristic value of the improved soil, and the strength of the improved soil, and obtained the following knowledge. That is,
As shown in FIG. 2, the strength (uniaxial compressive strength) of any improved soil can be approximated using a linear function (straight line) of the characteristic value of the improved soil. In addition, as shown in FIG. 3, the slope of the straight line can be approximated using an exponential function of the characteristic value of the target soil included in the improved soil (A), and the intercept of the straight line is included in the improved soil. It can be approximated using a quadratic function of the characteristic value of the target soil (B).
Therefore, if the slope of the linear function is replaced with the exponential function of the characteristic value of the target soil and the intercept of the linear function is replaced with the quadratic function of the characteristic value of the target soil, the strength of the improved soil is The formula for estimating the strength of the improved soil expressed in terms of characteristic values is obtained. The following formula (b 0 ) is an example of the estimation formula.
S = {155 × exp (−0.002 × Po)} × Pi + (0.032 × Po 2 −34.9 × Po + 3500) (b 0 )
However, where, S is the target intensity of strength (kN / m 2) or improved soil improvement soil, Pi is the characteristic value of the modified soil (kN / m 2), the characteristic value of Po is the target soil (kN / m 2 ).
As shown in FIG. 4 to be described later, the predicted value of the strength of the improved soil obtained by using the equation (b 0 ) is in good agreement with the actually measured value regardless of the age of the improved soil.
Then, when the formula (b 0 ) is transformed with respect to Pi, the following formula (b) is obtained.
Pi = {S− (0.032 × Po 2 −34.9 × Po + 3500)} / {155 × exp (−0.002 × Po)} (b)

(4)改良土の配合設計手順
該手順を以下の(i)〜(vi)に示す。
(i)対象土の含水比と、対象土成分の含有率を前記試験方法等に準拠して測定する。
(ii)該測定値に基づき前記(a)式を用いて対象土の特性値(Po)を求める。
(iii)該Po値と改良土の目標強度(S)から、前記(b)式を用いて改良土の特性値(Pi)を求める。
(iv)該Pi値から前記(c)式を用いて、固化成分の配合量を求める。または、前記固化成分に代えて、前記固化成分を一定量含むセメント系固化材(前記固化成分のプレミックス品)を用いる場合は、前記(c)式に代えて前記(d)式を用いてセメント系固化材の配合量を求める。
(vi)前記固化成分の配合量に従い、固化成分と対象土を混合する。または、前記セメント系固化材の配合量に従い、セメント系固化材と対象土を混合する。
(4) Formulation procedure of improved soil The procedure is shown in the following (i) to (vi).
(I) The water content ratio of the target soil and the content ratio of the target soil component are measured according to the test method and the like.
(Ii) Based on the measured value, the characteristic value (Po) of the target soil is obtained using the equation (a).
(Iii) From the Po value and the target strength (S) of the improved soil, the characteristic value (Pi) of the improved soil is obtained using the equation (b).
(Iv) The blending amount of the solidifying component is determined from the Pi value using the formula (c). Alternatively, when a cement-based solidified material (premixed product of the solidified component) containing a certain amount of the solidified component is used instead of the solidified component, the formula (d) is used instead of the formula (c). Obtain the amount of cementitious solidifying material.
(Vi) The solidified component and the target soil are mixed according to the blending amount of the solidified component. Or according to the compounding quantity of the said cement-type solidification material, a cement-type solidification material and object soil are mixed.

(5)セメント系固化材の製造方法とセメント系固化材
本発明のセメント系固化材の製造方法は、前記改良土の配合設計方法により求めた固化成分の配合量に基づき、少なくとも、セメントクリンカー、および石膏を混合してセメント系固化材を製造する方法である。なお、固化成分のうち、高炉スラグ粉末は任意の成分である。
また、本発明のセメント系固化材は、前記固化材の製造方法を用いて製造してなるセメント系固化材である。次に、セメント系固化材中の固化成分について説明する。
(5) Manufacturing method of cement-based solidified material and cement-based solidified material The manufacturing method of the cement-based solidified material of the present invention includes at least a cement clinker based on the blending amount of the solidified component obtained by the blended design method of the improved soil. And a method of producing a cement-based solidified material by mixing gypsum. Of the solidified components, blast furnace slag powder is an optional component.
Moreover, the cement-based solidified material of the present invention is a cement-based solidified material produced by using the above-described method for producing a solidified material. Next, the solidified component in the cement-based solidified material will be described.

前記セメントクリンカーは特に制限されず、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、および耐硫酸塩ポルトランドセメント等のポルトランドセメントクリンカー、並びに、ポルトランドセメント、高炉セメント、シリカセメント、およびエコセメント等のセメントから選ばれる1種以上が挙げられる。   The cement clinker is not particularly limited, and examples thereof include ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, medium heat Portland cement, low heat Portland cement, and Portland cement clinker such as sulfate-resistant Portland cement, and Portland cement. And one or more selected from cements such as cement, blast furnace cement, silica cement, and ecocement.

前記石膏は特に制限されず、例えば、二水石膏、排煙脱硫石膏、リン酸石膏、チタン石膏、フッ酸石膏、精錬石膏、半水石膏、および無水石膏等から選ばれる1種以上が挙げられる。これらの中でも、強度発現性が高い点で、好ましくは無水石膏であり、石膏廃材から回収した二水石膏を加熱装置で加熱して得られる無水石膏も使用できる。
また、前記石膏のブレーン比表面積は、好ましくは2000〜12000cm/g、より好ましくは3000〜8000cm/g、さらに好ましくは4000〜6000cm/g、特に好ましくは4500〜5500cm/gである。該値が2000〜12000cm/gの範囲を外れると、固化材の強度発現性が低下するおそれがある。
The gypsum is not particularly limited, and examples thereof include one or more selected from dihydrate gypsum, flue gas desulfurization gypsum, phosphate gypsum, titanium gypsum, hydrofluoric gypsum, smelted gypsum, hemihydrate gypsum, anhydrous gypsum, and the like. . Among these, anhydrous gypsum is preferable in terms of high strength development, and anhydrous gypsum obtained by heating dihydrate gypsum recovered from gypsum waste with a heating device can also be used.
Moreover, the specific surface area of the plaster of the gypsum is preferably 2000 to 12000 cm 2 / g, more preferably 3000 to 8000 cm 2 / g, further preferably 4000 to 6000 cm 2 / g, and particularly preferably 4500 to 5500 cm 2 / g. . When the value is out of the range of 2000 to 12000 cm 2 / g, the strength development property of the solidified material may be lowered.

また、前記高炉スラグ粉末は、高炉で銑鉄を製造する際に副生する溶融状態のスラグを、水で急冷し破砕して得られる水砕スラグの粉砕物や、徐冷し破砕して得られる徐冷スラグの粉砕物が挙げられる。これらの中でも、潜在水硬性に優れることから、好ましくは水砕スラグの粉砕物であり、より好ましくはJIS A 6206に規定する高炉水砕スラグである。
前記高炉スラグ粉末のブレーン比表面積は、好ましくは3000cm/g以上、より好ましく6000cm/g以上、さらに好ましくは8000cm/g以上である。該値が3000cm/g未満では、固化材の初期の強度発現性が低い場合がある。また、該値の上限は粉砕コストの点から20000cm/gである。なお、前記高炉スラグは、ボールミルやジェットミルなどの粉砕機で粉砕して得ることができる。
また、該高炉スラグ粉末の塩基度は、好ましくは1.7以上、より好ましくは1.8以上、さらに好ましくは1.9以上である。該値が1.7未満では、固化材の強度発現性が低下する場合がある。また、該値の上限は入手の容易性から3.0である。なお、塩基度は下記式を用いて算出する。
塩基度=(CaO+MgO+Al)/SiO
ただし、式中の化学式は、高炉スラグ粉末中の該化学式が表す化合物の含有率(質量%)を表す。
なお、本発明のセメント系固化材は、前記エーライト、石膏および高炉スラグ粉末のほか、強度発現性が低下しない範囲で、石炭灰、フライアッシュ、および石灰石粉末等の混和材を含むこともできる。
Further, the blast furnace slag powder is obtained by pulverized granulated slag obtained by quenching and crushing molten slag produced as a by-product when producing pig iron in the blast furnace, or by gradual cooling and crushing. An example is a pulverized product of slowly cooled slag. Among these, since it is excellent in latent hydraulic property, it is preferably a pulverized product of granulated slag, and more preferably blast furnace granulated slag as defined in JIS A 6206.
Blaine specific surface area of the blast furnace slag powder is preferably 3000 cm 2 / g or more, more preferably 6000 cm 2 / g or more, more preferably 8000 cm 2 / g or more. When the value is less than 3000 cm 2 / g, the initial strength development of the solidified material may be low. Moreover, the upper limit of this value is 20000 cm < 2 > / g from the point of a grinding | pulverization cost. The blast furnace slag can be obtained by pulverization with a pulverizer such as a ball mill or a jet mill.
The basicity of the blast furnace slag powder is preferably 1.7 or more, more preferably 1.8 or more, and still more preferably 1.9 or more. If the value is less than 1.7, the strength development property of the solidified material may be lowered. Moreover, the upper limit of this value is 3.0 from the ease of acquisition. The basicity is calculated using the following formula.
Basicity = (CaO + MgO + Al 2 O 3 ) / SiO 2
However, the chemical formula in the formula represents the content (% by mass) of the compound represented by the chemical formula in the blast furnace slag powder.
The cement-based solidified material of the present invention can also contain admixtures such as coal ash, fly ash, and limestone powder in addition to the alite, gypsum and blast furnace slag powder as long as strength development does not decrease. .

以下、本発明を実施例により詳細に説明するが、本発明は該実施例に限定されない。
1.改良土の強度試験
表1に一部を示す対象土1mに対し、表2に示す配合組成(ただし、石膏はSO換算)のセメント系固化材(1と2の2種類)を200kgおよび300kg粉末添加し、ソイルミキサで3分間混合して改良土を作製した。次に、該改良土を内径3.5cm、高さ7cmの型枠に投入した後、20℃で封緘養生し、JGS0821−2008「安定処理土の締固めをしない供試体作製方法」に準拠して供試体を作製した。なお、使用した各粉末のブレーン比表面積は、二水石膏で3450cm/g、無水石膏で4710cm/g、高炉スラグ粉末で4670cm/gであった。
該供試体を用いて、JIS A 1216−2009「土の一軸圧縮試験方法」に準拠し、一軸圧縮強さを測定した。その結果の一部を、表3(セメント系固化材を200kg/m添加)と表4(セメント系固化材を300kg/m添加)に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this Example.
1. Strength test of improved soil 200 kg of cement-based solidified material (two types of 1 and 2) of the composition shown in Table 2 (however, gypsum is converted to SO 3 ) for 1 m 3 of the target soil partially shown in Table 1 and 300 kg powder was added and mixed with a soil mixer for 3 minutes to prepare improved soil. Next, after the improved soil was put into a mold having an inner diameter of 3.5 cm and a height of 7 cm, it was sealed and cured at 20 ° C., in accordance with JGS0821-2008 “Method for preparing specimen without compaction of stabilized soil”. A specimen was prepared. Incidentally, the Blaine specific surface area of the powder used was 3450cm 3 / g, 4670cm 3 / g anhydrous gypsum 4710cm 3 / g, in the blast furnace slag powder with gypsum.
Using this specimen, uniaxial compressive strength was measured in accordance with JIS A 1216-2009 “Soil Uniaxial Compression Test Method”. Some of the results are shown in Table 3 (addition of cement-based solidification material at 200 kg / m 3 ) and Table 4 (addition of cement-based solidification material at 300 kg / m 3 ).

Figure 0006000187
Figure 0006000187

Figure 0006000187
Figure 0006000187

Figure 0006000187
Figure 0006000187

Figure 0006000187
Figure 0006000187

2.前記(a)〜(c)式の誘導
表1〜4を含めた対象土全35種類の数値を用いて、重回帰分析を行い、前記(a)〜(c)式を求めた。
2. Derivation of the above formulas (a) to (c) Using the numerical values of all 35 types of target soil including Tables 1 to 4, multiple regression analysis was performed to obtain the above formulas (a) to (c).

3.改良土の配合設計例
シルト質粘土をベースに、表5に記載の各固化阻害因子を含む試薬を添加して、含水比65.0%、ビチューメン0.25質量%、フミン酸6.4質量%、フルボ酸6.7質量%、およびアロフェン13.9質量%を含む対象土(模擬土壌、ただし、アロフェンを除く非晶質相は含まない。)を作製した。該対象土の特性値は前記(a)式を用いて417.4kN/mと算出した。
なお、前記アロフェンは品川化成社製P−1、前記フミン酸はテルナイト社製フミン酸ナトリウム、前記ビチューメンは富士化学工業社製タンニン酸を使用した。また、含水比は、地盤工学会のJGS0121−2009「土の含水比試験方法」に準拠して、ビチューメン、フミン酸、およびフラボ酸の含有率は、いずれも、小野田研究報告No.20、11〜24頁(1980年)に準拠して、アロフェンの含有率は、「酸性シュウ酸塩抽出法」、酪農学園大学紀要、28(1)、7〜45頁(2033年)に準拠して測定した。
また、用いたセメント系固化材は、エーライト、石膏(SO換算)、および高炉スラグ粉末の含有率(質量%)の比が、それぞれ55.0:5.0:30.0であり、ブレーン比表面積は3850cm/gである。
3. Example of Formulation of Improved Soil Based on the silty clay, a reagent containing each solidification inhibiting factor shown in Table 5 was added, the water content was 65.0%, the bitumen was 0.25% by mass, and the humic acid was 6.4% by mass. %, 6.7% by mass of fulvic acid, and 13.9% by mass of allophane (simulated soil, but not including the amorphous phase excluding allophane). The characteristic value of the target soil was calculated to be 417.4 kN / m 2 using the equation (a).
The allophane used was P-1 manufactured by Shinagawa Kasei, the humic acid used was sodium humate manufactured by Ternite, and the bitumen used tannic acid manufactured by Fuji Chemical Industry. The water content was determined according to JGS0121-2009 “Test method for soil water content ratio” by the Geotechnical Society. 20, based on pages 11-24 (1980), allophane content is based on "acid oxalate extraction method", Rakuno Gakuen University Bulletin, 28 (1), pages 7-45 (2033) And measured.
Further, cement-based solidifying material used was alite, the ratio of gypsum (SO 3 equivalents), and the content of the blast furnace slag powder (mass%), respectively 55.0: 5.0: 30.0, The specific surface area of Blaine is 3850 cm 2 / g.

Figure 0006000187
Figure 0006000187

次に、前記対象土の特性値と改良土の目標強度(材齢28日で3500kN/m)から、前記(b)式を用いて改良土の特性値を133.6kN/mと算出した。そして、該改良土の特性値と前記(d)式を用いて、改良土中の当該セメント系固化材の配合量を230kg/mと決定した。
次に、前記前記模擬土壌1m当たり、該固化材を250kg粉体添加してソイルミキサで3分間混合し改良土を作製した。該改良土は内径5cm、高さ10cmの型枠に投入し、JGS 0821−2008に準じて供試体を作製した。該供試体は20℃で封緘養生を行い、JIS A 1216:2009に準拠して一軸圧縮試験を行った。その結果、材齢28日の一軸圧縮強さは3640kN/mで、目標強度と同程度であった。
このように、本発明の改良土の配合設計方法は、試行錯誤を行うことなく、対象土の種類と改良土の目標強度に応じて、改良土の最適な配合を容易に設計することができる。

Next, from the characteristic value of the target soil and the target strength of the improved soil (3500 kN / m 2 at the age of 28 days), the characteristic value of the improved soil is calculated to be 133.6 kN / m 2 using the equation (b). did. And the compounding quantity of the said cement-type solidification material in improved soil was determined to be 230 kg / m < 3 > using the characteristic value of this improved soil, and said (d) Formula.
Next, 250 kg of the solidified material per 1 m 3 of the simulated soil was added and mixed with a soil mixer for 3 minutes to prepare improved soil. The improved soil was put into a mold having an inner diameter of 5 cm and a height of 10 cm, and a specimen was prepared in accordance with JGS 0821-2008. The specimen was sealed and cured at 20 ° C., and a uniaxial compression test was conducted according to JIS A 1216: 2009. As a result, the uniaxial compressive strength at the age of 28 days was 3640 kN / m 2 , which was similar to the target strength.
As described above, the improved soil composition design method of the present invention can easily design the optimum soil composition according to the type of target soil and the target strength of the improved soil without trial and error. .

Claims (5)

対象土の含水比、対象土中のビチューメン、フミン酸、フルボ酸、アロフェン、およびアロフェンを除く非晶質相の含有率に基づき算出した対象土の特性値と、改良土の目標強度に基づき、エーライト、石膏、および高炉スラグの配合量を算出して改良土の配合設計を行う、改良土の配合設計方法。   Based on the moisture content of the target soil, the characteristic value of the target soil calculated based on the content of amorphous phase excluding bitumen, humic acid, fulvic acid, allophane, and allophane in the target soil, and the target strength of the improved soil, An improved soil blending design method that calculates the blending amount of alite, gypsum, and blast furnace slag and blends the improved soil. 以下の(A)〜(C)工程を経て算出した、エーライト、石膏、および高炉スラグの配合量に基づいて、固化材と対象土の配合割合を決め、該配合割合に基づき改良土の配合設計を行う、請求項1に記載の改良土の配合設計方法。
(A)前記対象土の含水比、対象土中のビチューメン、フミン酸、フルボ酸、アロフェン、およびアロフェンを除く非晶質相の含有率を変数として含む、対象土の特性値の算出式(a)を用いて、対象土中のビチューメン、フミン酸、フルボ酸、アロフェン、およびアロフェンを除く非晶質相の含有率から対象土の特性値を算出するための、対象土の特性値算出工程
(B)対象土の特性値と改良土の強度を変数として含む、改良土の特性値の算出式(b)を用いて、前記算出した対象土の特性値と改良土の目標強度から、改良土の特性値を算出するための、改良土の特性値算出工程
(C)エーライト、石膏、および高炉スラグの配合量を変数として含む、改良土の特性値の算出式(c)を用いて、前記算出した改良土の特性値から、エーライト、石膏、および高炉スラグの配合量を算出するための、固化成分の配合量算出工程
Based on the blending amounts of alite, gypsum, and blast furnace slag calculated through the following steps (A) to (C), the blending ratio of the solidified material and the target soil is determined, and the blending of the improved soil is based on the blending ratio. The method for designing improved soil according to claim 1, wherein the design is performed.
(A) Formula for calculating characteristic values of target soil including water content ratio of said target soil, bitumen, humic acid, fulvic acid, allophane, and amorphous phase content excluding allophane in target soil as variables (a) ) To calculate the characteristic value of the target soil from the content of the amorphous phase excluding bitumen, humic acid, fulvic acid, allophane, and allophane in the target soil ( B) Using the formula (b) for calculating the characteristic value of the improved soil including the characteristic value of the target soil and the strength of the improved soil as variables, the improved soil is calculated from the calculated characteristic value of the target soil and the target strength of the improved soil. Using the calculation formula (c) for the characteristic value of the improved soil, including the blending amounts of alite, gypsum, and blast furnace slag as variables, From the calculated characteristic value of the improved soil, , Gypsum, and for calculating the amount of blast furnace slag, blending of the solidified component amount calculating step
前記算出式(a)、(b)、および(c)が、それぞれ下記(a)、(b)、および(c)式で表される、請求項1または2に記載の改良土の配合設計方法。
Po=W+30×B+10×H+10×F+2×A−10×Nc+200 …(a)
(式中、Poは対象土の特性値(kN/m)、Wは対象土の含水比(重量比を%で表示)、Bは対象土中のビチューメンの含有率(質量%)、Hは対象土中のフミン酸の含有率(質量%)、Fは対象土中のフルボ酸の含有率(質量%)、Aは対象土中のアロフェンの含有率(質量%)、Ncは対象土中のアロフェンを除く非晶質相の含有率(質量%)を表す。)
Pi={S−(0.032×Po−34.9×Po+3500)}/{155×exp(−0.002×Po)} …(b)
(式中、Piは改良土の特性値(kN/m)、Sは改良土の強度(kN/m)または改良土の目標強度(kN/m)、Poは対象土の特性値(kN/m)を表す。)
Pi=C+0.1×G+0.25×B …(c)
(式中、Piは改良土の特性値(kN/m)、Cは改良土1mあたりのエーライトの配合量(kg/m)、Gは改良土1mあたりの石膏の配合量(SO換算、kg/m)、Bは改良土1mあたりの高炉スラグ粉末の配合量(kg/m)を表す。)
The blending design of improved soil according to claim 1 or 2, wherein the calculation formulas (a), (b), and (c) are represented by the following formulas (a), (b), and (c), respectively. Method.
Po = W + 30 * B + 10 * H + 10 * F + 2 * A-10 * Nc + 200 (a)
(In the formula, Po is the characteristic value (kN / m 2 ) of the target soil, W is the moisture content of the target soil (weight ratio is expressed in%), B is the content of bitumen in the target soil (mass%), H Is the content of humic acid in the target soil (% by mass), F is the content of fulvic acid in the target soil (% by mass), A is the content of allophane in the target soil (% by mass), and Nc is the target soil (It represents the content (mass%) of the amorphous phase excluding allophane in the inside.)
Pi = {S− (0.032 × Po 2 −34.9 × Po + 3500)} / {155 × exp (−0.002 × Po)} (b)
(In the formula, Pi is the characteristic value (kN / m 2 ) of the improved soil, S is the strength (kN / m 2 ) of the improved soil or the target strength (kN / m 2 ) of the improved soil, and Po is the characteristic value of the target soil. (Represents kN / m 2 )
Pi = C + 0.1 × G + 0.25 × B (c)
(In the formula, Pi is the characteristic value of improved soil (kN / m 2 ), C is the blending amount of alite per 1 m 3 of improved soil (kg / m 3 ), and G is the blending amount of gypsum per 1 m 3 of improved soil. (SO 3 conversion, kg / m 3 ), B represents the blending amount (kg / m 3 ) of blast furnace slag powder per 1 m 3 of the improved soil.
前記エーライト、石膏、および高炉スラグ粉末に代えて、セメント系固化材(エーライト、石膏、および高炉スラグ粉末のプレミックス品)を用いる場合は、前記(c)式に代えて下記(d)式を用いる、請求項1〜3に記載の改良土の配合設計方法。
Pi=(c+0.1×g+0.25×b)×α …(d)
(式中、Piは改良土の特性値(kN/m)、cはセメント系固化材中のエーライトの含有率(質量%)、gはセメント系固化材中の石膏の含有率(SO換算、質量%)、bはセメント系固化材中の高炉スラグ粉末の含有率(質量%)、αは改良土中のセメント系固化材の配合量(kg/m)を表す。)
In place of the alite, gypsum, and blast furnace slag powder, when using a cement-based solidified material (a premixed product of alite, gypsum, and blast furnace slag powder), the following (d) is used instead of the formula (c). The method for blending and designing improved soil according to claims 1 to 3, wherein a formula is used.
Pi = (c + 0.1 × g + 0.25 × b) × α (d)
(In the formula, Pi is the characteristic value of the improved soil (kN / m 2 ), c is the content of alite in the cement-based solidified material (mass%), g is the content of gypsum in the cement-based solidified material (SO (3 conversion, mass%), b represents the content (mass%) of the blast furnace slag powder in the cement-based solidified material, and α represents the blending amount (kg / m 3 ) of the cement-based solidified material in the improved soil.
請求項2または3に記載の改良土の配合設計方法により求めたエーライト、石膏、および高炉スラグ粉末の配合量に基づき、少なくとも、セメントクリンカー、および石膏を混合してセメント系固化材を製造する、セメント系固化材の製造方法
A cement-based solidified material is produced by mixing at least cement clinker and gypsum based on the blending amounts of alite, gypsum, and blast furnace slag powder obtained by the improved soil blending design method according to claim 2 or 3. A method for producing cement-based solidified material .
JP2013099781A 2013-05-10 2013-05-10 Method for designing improved soil and method for producing cement-based solidified material Active JP6000187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013099781A JP6000187B2 (en) 2013-05-10 2013-05-10 Method for designing improved soil and method for producing cement-based solidified material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099781A JP6000187B2 (en) 2013-05-10 2013-05-10 Method for designing improved soil and method for producing cement-based solidified material

Publications (2)

Publication Number Publication Date
JP2014218856A JP2014218856A (en) 2014-11-20
JP6000187B2 true JP6000187B2 (en) 2016-09-28

Family

ID=51937568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099781A Active JP6000187B2 (en) 2013-05-10 2013-05-10 Method for designing improved soil and method for producing cement-based solidified material

Country Status (1)

Country Link
JP (1) JP6000187B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6512472B2 (en) * 2015-03-30 2019-05-15 住友大阪セメント株式会社 Method of predicting strength of improved soil and method of producing improved soil
JP6452043B2 (en) * 2015-03-30 2019-01-16 住友大阪セメント株式会社 Method for producing improved soil, method for producing cement composition, and method for blending and designing improved soil
CN106010543A (en) * 2016-06-23 2016-10-12 西南大学 Method for improving acid soil by using montmorillonite
JP7090978B2 (en) * 2018-01-05 2022-06-27 株式会社デイ・シイ Hydraulic composition
WO2022196727A1 (en) * 2021-03-19 2022-09-22 花王株式会社 Method for improving ground

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443260A (en) * 1982-06-14 1984-04-17 Chiyoda Chemical Engineering & Constr., Co., Ltd. Method for strengthening soft soil
JP3469368B2 (en) * 1995-07-31 2003-11-25 太平洋セメント株式会社 Soil improvement material and soil improvement method using the same
JPH10159077A (en) * 1996-12-03 1998-06-16 Ube Ind Ltd Strength estimation method of soil to be improved
JP2002129158A (en) * 2000-10-24 2002-05-09 Sumitomo Osaka Cement Co Ltd Method for formulating cement-based hardening material
JP3886980B2 (en) * 2004-03-26 2007-02-28 鹿島建設株式会社 Improved soil formulation design method
JP2008303685A (en) * 2007-06-11 2008-12-18 Dream Tekku:Kk Soil improvement method

Also Published As

Publication number Publication date
JP2014218856A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
Sezer Compressive strength and sulfate resistance of limestone and/or silica fume mortars
Beushausen et al. Early-age properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios
Brough et al. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure
JP6000187B2 (en) Method for designing improved soil and method for producing cement-based solidified material
Tikkanen et al. Effects of mineral powders on hydration process and hydration products in normal strength concrete
Chalee et al. Utilization of rice husk–bark ash to improve the corrosion resistance of concrete under 5-year exposure in a marine environment
JP6543912B2 (en) Cement composition and method for producing the same
Xu et al. Calorimetric study on the influence of calcium sulfate on the hydration of Portland cement–calcium aluminate cement mixtures
JP5191378B2 (en) Fast-curing cement
JP6547455B2 (en) Ground improvement material and ground improvement method
JPWO2015182170A1 (en) Quick setting admixture
Alqassim et al. A thermoanalytical, X-ray diffraction and petrographic approach to the forensic assessment of fire affected concrete in the United Arab Emirates
TWI554615B (en) Granulated blast furnace slag for cement raw material and sorting method thereof
JP5995992B2 (en) Method for producing cement-based solidified material
JP6626353B2 (en) Quality control method for clinker containing Irwin and Belite
JP2018083719A (en) Quick hardening material and quick hardening cement composition using the same
JP6953787B2 (en) Environmental load reduction clinker, cement composition and its manufacturing method, and ground improvement method
JP2014162696A (en) Cement-based solidifying material
Hamzah et al. Fresh properties of self-compacting concrete integrating coal bottom ash as a replacement of fine aggregates
JP6536215B2 (en) Ground improvement material and ground improvement method
JP6823487B2 (en) Manufacturing method of cement composition and quality evaluation method of cement composition
JP7061415B2 (en) Cement composition, its manufacturing method, and ground improvement method
Ma et al. Effect of alkali sulfates in clinker on hydration and hardening properties of cement incorporating SCMs
JP4484311B2 (en) Cement admixture and cement composition
JP5935916B1 (en) Cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160830

R150 Certificate of patent or registration of utility model

Ref document number: 6000187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250