JP6512472B2 - Method of predicting strength of improved soil and method of producing improved soil - Google Patents

Method of predicting strength of improved soil and method of producing improved soil Download PDF

Info

Publication number
JP6512472B2
JP6512472B2 JP2015069549A JP2015069549A JP6512472B2 JP 6512472 B2 JP6512472 B2 JP 6512472B2 JP 2015069549 A JP2015069549 A JP 2015069549A JP 2015069549 A JP2015069549 A JP 2015069549A JP 6512472 B2 JP6512472 B2 JP 6512472B2
Authority
JP
Japan
Prior art keywords
soil
clay
strength
volcanic
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015069549A
Other languages
Japanese (ja)
Other versions
JP2016188523A (en
Inventor
朋彦 茶円
朋彦 茶円
貴宣 佐藤
貴宣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2015069549A priority Critical patent/JP6512472B2/en
Publication of JP2016188523A publication Critical patent/JP2016188523A/en
Application granted granted Critical
Publication of JP6512472B2 publication Critical patent/JP6512472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、改良土の強度予測方法及び改良土の製造方法に関する。   The present invention relates to a method of predicting strength of improved soil and a method of producing the improved soil.

従来、地盤改良方法としては、掘り起こした土に、セメントなどの固化材を混合して硬化させることによって、地盤の強度を向上させた改良土を製造することが行われている(特許文献1)。   Heretofore, as a method of ground improvement, it has been practiced to manufacture an improved soil in which the strength of the ground is improved by mixing a hardened material such as cement with the excavated soil and hardening it (Patent Document 1). .

しかし、このような固化材を用いる方法だと、関東ロームのように、火山灰や軽石を多く含む火山灰質粘性土では、固化不良が生じ、強度が上がらない場合がある。   However, with such a method of using a solidifying material, as in Kanto Loam, in the case of a volcanic ash clay soil containing a large amount of volcanic ash and pumice, solidification failure may occur and the strength may not be improved.

かかる固化不良は、火山灰質粘性土に由来する非晶質無機成分の一種であるアロフェンに起因するものと考えられている。具体的には、火山灰質粘性土には、アロフェン(Al・(1〜2)SiO・nHO)が多量に含有されており、固化材中のセメントが水和する過程で生成される水酸化カルシウムをアロフェンが吸着することによって、セメントの水和反応が阻害され、その結果、固化が阻害されると考えられている。 Such poor solidification is considered to be caused by allophane, which is a kind of amorphous inorganic component derived from volcanic ash-like viscous soil. Specifically, the volcanic ash clay contains a large amount of allophane (Al 2 O 3 · (1-2) SiO 2 · nH 2 O), and in the process of hydration of cement in the solidified material It is thought that the hydration reaction of cement is inhibited by the adsorption of calcium by the allophane, and as a result, solidification is inhibited.

そこで、火山灰質粘性土に含有されているアロフェンの含有量が分かれば、その含有量に応じて上記固化材の混合量を設計することが可能になることから、アロフェンの含有量を測定し、得られたアロフェン含有量に基づいて上記固化材の混合量を決定することが行われている。アロフェンの測定としては、例えば北川法を用い、火山灰質粘性土中のアロフェンを、塩酸と水酸化ナトリウムとで交互に溶出させ、溶出による質量減少分を、アロフェン含有量として算出することが行われている。   Therefore, if the content of allophane contained in the volcanic ash clay soil is known, it becomes possible to design the mixing amount of the above-mentioned solidifying material according to the content, so the content of allophane is measured, It is performed to determine the mixing amount of the above-mentioned solidifying material based on the obtained allophane content. As the measurement of allophane, for example, using the Kitagawa method, allophane in the volcanic ash clay soil is alternately eluted with hydrochloric acid and sodium hydroxide, and the mass loss due to elution is calculated as the allophane content. ing.

特開2003−301451号公報Japanese Patent Application Laid-Open No. 2003-301451

しかし、このような測定法では、アロフェンを酸及び塩基で交互に溶解させる時間が必要となるため、作業性が良いとはいい難い。
また、アロフェン含有量を測定することによって固化材の混合量を設定しても、依然として固化不良が生じる場合がある。
However, such a measurement method requires time for dissolving allophane alternately with an acid and a base, and thus it is difficult to say that the workability is good.
In addition, even if the mixing amount of the solidifying material is set by measuring the allophane content, solidification failure may still occur.

上記事情に鑑み、本発明は、従来よりも適切に、且つ、作業性良く強度を予測することが可能な改良土の強度予測方法、及び、固化不良に起因する強度の低下を抑制可能な改良土の製造方法を提供することを課題とする。   In view of the above circumstances, the present invention is a method of predicting the strength of improved soil capable of predicting strength more appropriately and with higher workability than in the prior art, and improvement capable of suppressing reduction in strength due to poor solidification. It is an issue to provide a method of producing soil.

本発明に係る改良土の強度予測方法は、
セメントを含有する固化材と火山灰質粘性土とを混合して固化させてなる改良土の強度を予測する改良土の強度予測方法であって、
火山灰質粘性土から溶出されるアルミニウム量と、火山灰質粘性土と固化材とを含んでなる改良土の強度と、の相関関係に基づいて、
火山灰質粘性土から溶出されるアルミニウム量から、改良土の強度を予測する。
The strength prediction method for improved soil according to the present invention is
A method for predicting the strength of an improved soil, which predicts the strength of an improved soil obtained by mixing and solidifying a cement-containing solidifying material and a volcanic ash clay soil, comprising:
Based on the correlation between the amount of aluminum eluted from the volcanic ash cohesive soil and the strength of the improved soil comprising the volcanic ash cohesive soil and the solidifying material,
The strength of the modified soil is predicted from the amount of aluminum eluted from the volcanic ash clay.

かかる構成によれば、火山灰質粘性土に含有されているアロフェン量(アロフェン含有量)と改良土の強度との間よりも、火山灰質粘性土から溶出されるアルミニウム量(アルミニウム溶出量)と改良土の強度との間の方が、良好な相関関係を示すため、従来よりも適切に、改良土の強度を予測することができる。
また、火山灰質粘性土中のアロフェン含有量の測定よりも、火山灰質粘性土からのアルミニウム溶出量の測定の方が簡易であるため、従来よりも作業性良く、改良土の強度を予測することができる。
従って、従来よりも適切に、且つ、作業性良く強度を予測することができる。
According to this configuration, the amount of aluminum eluted from the volcanic clay soil (the amount of dissolved aluminum) and the amount of the aluminum soil improved rather than the amount of allophane contained in the volcanic clay soil (the content of allophane) and the strength of the modified soil Since the relationship between the strength of the soil and the strength of the soil shows a better correlation, the strength of the improved soil can be predicted more appropriately than in the past.
In addition, since it is easier to measure the amount of aluminum released from volcanic clay soil than to measure allophane content in volcanic clay soil, predict the strength of the improved soil with better workability than before. Can.
Therefore, the strength can be predicted more appropriately and with better workability than before.

また、本発明に係る改良土の製造方法は、
セメントを含有する固化材と火山灰質粘性土とを混合して固化させてなる改良土を製造する改良土の製造方法であって、
火山灰質粘性土から溶出されるアルミニウム量と、火山灰質粘性土と固化材とを含んでなる改良土の強度と、の相関関係に基づいて、改良土の強度が所定値以上となるように、火山灰質粘性土と固化材との混合比を決めて、固化材と火山灰質粘性土とを混合する。
Moreover, the method for producing the improved soil according to the present invention is
A method for producing an improved soil, which comprises producing an improved soil by mixing and solidifying a cement-containing solidifying material and a volcanic ash-like sticky soil,
Based on the correlation between the amount of aluminum eluted from the volcanic ash cohesive soil and the strength of the improved soil comprising the volcanic ash cohesive soil and the solidifying material, the strength of the improved soil is equal to or greater than a predetermined value, Determine the mixing ratio of the volcanic ash clay soil and the solidification agent, and mix the solidification agent and the volcanic ash clay soil.

かかる構成によれば、上記改良土の強度予測方法に基づいて、改良土の強度が所定値以上となるように、火山灰質粘性土と固化材との混合比を決めることによって、アロフェン含有量に基づいて火山灰質粘性土と固化材との混合比を決める場合よりも、より適切に、且つ、作業性良く上記混合比を決めることができる。
従って、固化不良に起因する強度の低下を抑制することができる。
According to this configuration, the allophane content is determined by determining the mixing ratio of the volcanic ash-like viscous soil and the solidifying material so that the strength of the improved soil becomes equal to or greater than the predetermined value based on the method of predicting the strength of the improved soil. The mixing ratio can be determined more appropriately and with good workability than when the mixing ratio between the volcanic ash-like viscous soil and the solidifying material is determined based on that.
Therefore, it is possible to suppress a decrease in strength due to poor solidification.

以上のように、本発明によれば、従来よりも適切に、且つ、作業性良く強度を予測することが可能な改良土の強度予測方法、及び、固化不良に起因する強度の低下を抑制可能な改良土の製造方法が提供される。   As described above, according to the present invention, a method of predicting the strength of an improved soil capable of predicting strength with a higher degree of workability and workability than in the prior art, and suppressing a decrease in strength due to solidification failure can be suppressed. Method of producing the improved soil is provided.

本発明の実験例2で用いた土について、アルミニウム溶出量と強度との関係を示すグラフGraph showing the relationship between the amount of aluminum elution and the strength of the soil used in Experimental Example 2 of the present invention 本発明の実験例2で用いた土について、アルミニウム含有量と強度との関係を示すグラフGraph showing the relationship between aluminum content and strength for soil used in Experimental Example 2 of the present invention 本発明の実験例2で用いた土について、アルミニウム溶出量とアロフェン含有量との関係を示すグラフGraph showing the relationship between aluminum elution amount and allophane content for the soil used in Experimental Example 2 of the present invention 本発明の実験例2で用いた土について、アルミニウム含有量とアロフェン含有量との関係を示すグラフGraph showing the relationship between the aluminum content and the allophane content for the soil used in Experimental Example 2 of the present invention 本発明の実験例2で用いた土について、アルミニウム溶出量とアロフェン含有量との関係を示すグラフGraph showing the relationship between aluminum elution amount and allophane content for the soil used in Experimental Example 2 of the present invention 本発明の実験例2で用いた土について、アロフェン含有量と強度との関係を示すグラフGraph showing the relationship between the allophane content and the strength of the soil used in Experimental Example 2 of the present invention

以下、本発明の一実施形態の改良土の強度予測方法、及び、改良土の製造方法について説明する。   Hereinafter, the strength prediction method of the improvement soil of one embodiment of the present invention and the method of producing the improvement soil will be described.

本実施形態の改良土の強度予測方法は、セメントを含有する固化材と火山灰質粘性土とを混合して固化させてなる改良土の強度を予測する改良土の強度予測方法であって、火山灰質粘性土から溶出されるアルミニウム量と、火山灰質粘性土と固化材とを含んでなる改良土の強度と、の相関関係に基づいて、火山灰質粘性土から溶出されるアルミニウム量から、改良土の強度を予測する。   The method of predicting the strength of the improved soil according to the present embodiment is a method of predicting the strength of the improved soil, which predicts the strength of the improved soil obtained by mixing and solidifying a cement-containing solidifying material and the volcanic ash cohesion soil. Based on the correlation between the amount of aluminum eluted from the clayey soil and the strength of the improved soil comprising the volcanic clayy soil and the solidifying material, the amount of aluminum eluted from the clayey clay is improved from the amount of aluminum eluted from the clay. Predict the strength of

まず、本実施形態で改良される火山灰質粘性土としては、例えば、関東ローム、八戸ローム、赤ボク等が挙げられる。
この火山灰質粘性土は、アロフェン(Al・(1〜2)SiO・nHO)を含有している。
なお、火山灰質粘性土は、アロフェンを10質量%以上、好ましくは20質量%以上含んでいる。また、火山灰質粘性土は、アロフェンを100質量%以下、好ましくは90質量%以下含んでいる。
First, as the volcanic ash clay soil to be improved in the present embodiment, for example, Kanto Loam, Hachinohe Loam, Akaboku etc. may be mentioned.
This volcanic ash cohesion soil contains allophane (Al 2 O 3 · (1-2) SiO 2 · nH 2 O).
In addition, the volcanic ash clay soil contains allophane at 10% by mass or more, preferably 20% by mass or more. In addition, the volcanic ash clay soil contains allophane at 100% by mass or less, preferably 90% by mass or less.

本実施形態では、具体的には、まず、火山灰質粘性土から溶出されるアルミニウム量を測定する。
具体的には、火山灰質粘性土と水を混合し、懸濁液を作製する。一方、20質量%となるように水酸化ナトリウム水溶液を作製する。得られた懸濁液に水酸化ナトリウム水溶液を添加して、懸濁液のpHを12に調整した後、質量比で火山灰質粘性土(乾燥質量):水=1:5となるように懸濁液に水を添加して調整し、30分間攪拌することによって、水溶液中にアルミニウムを溶出させ、溶出させたアルミニウムの量を、誘導結合プラズマ発光分光分析装置(ICP−AES)を用いて測定する。このICP−AESを用いた測定では、イットリウム溶液を内部標準物質として添加する。
なお、乾燥質量とは、火山灰質粘性土を105℃で乾燥し、水分量(乾燥残分の質量)が平衡状態にあるときの質量を意味する。
In the present embodiment, specifically, first, the amount of aluminum eluted from the volcanic ash clay is measured.
Specifically, the volcanic ash clay is mixed with water to prepare a suspension. On the other hand, an aqueous solution of sodium hydroxide is prepared to be 20% by mass. An aqueous solution of sodium hydroxide is added to the obtained suspension to adjust the pH of the suspension to 12, and then the suspension is adjusted so that the mass ratio of the volcanic ash clay soil (dry mass): water = 1: 5. Water is added to the suspension to adjust, and aluminum is eluted in the aqueous solution by stirring for 30 minutes, and the amount of eluted aluminum is measured using inductively coupled plasma emission spectrometry (ICP-AES) Do. In the measurement using ICP-AES, a yttrium solution is added as an internal standard substance.
In addition, dry mass means a mass when drying volcanic ash clay soil at 105 ° C. and the water content (the mass of the dry residue) is in an equilibrium state.

一方、火山灰質粘性土と、固化材と、水とを混合し、内径(直径)5cm、高さ10cmの円筒状の型枠に投入し、表面をならして改良土を作製して20℃で封緘養生した後、得られた改良土の一軸圧縮強度(kN/m)を測定する。本実施形態では、材齢28日での一軸強圧縮強度を測定する。 On the other hand, mixed with volcanic ash-like sticky soil, solidifying material and water, put into a cylindrical form with an inner diameter (diameter) of 5 cm and a height of 10 cm, flatten the surface, and make a modified soil at 20 ° C. After curing and sealing in, the uniaxial compressive strength (kN / m 2 ) of the obtained modified soil is measured. In this embodiment, uniaxial strong compressive strength at 28 days of material age is measured.

次いで、得られた強度と、アルミニウム溶出量との相関関係を求める。
そして、例えば改良土の製造時に、使用する火山灰質粘性土のアルミニウム量を測定すれば、例えば材齢28日での上記相関関係から、この火山灰質粘性土を用いて作製した改良土の強度を予測することができる。
Next, the correlation between the obtained strength and the amount of eluted aluminum is determined.
And, for example, when the amount of aluminum of the volcanic clay clay soil used is measured at the time of manufacture of the modified soil, for example, the strength of the modified soil produced using this volcanic clay clay soil is calculated from the above correlation at 28 days of age. It can be predicted.

また、本実施形態の改良土の製造方法は、セメントを含有する固化材と火山灰質粘性土とを混合して固化させてなる改良土を製造する改良土の製造方法であって、火山灰質粘性土から溶出されるアルミニウム量と、火山灰質粘性土と固化材とを含んでなる改良土の強度と、の相関関係に基づいて、改良土の強度が所定値以上となるように、火山灰質粘性土と固化材との混合比を決めて、固化材と火山灰質粘性土とを混合する   Further, the method for producing the improved soil according to the present embodiment is a method for producing the improved soil, which produces the improved soil obtained by mixing and solidifying a cement-containing solidifying material and the volcanic ash clay soil, which comprises the volcanic ash viscosity Based on the correlation between the amount of aluminum eluted from the soil and the strength of the improved soil comprising the volcanic ash viscous soil and the solidifying material, the volcanic ash viscosity is adjusted so that the strength of the improved soil becomes a predetermined value or more. Determine the mixing ratio between soil and solidifying material, and mix the solidifying material with volcanic ash clay soil

具体的には、上記のようにして得られた相関関係から、上記水溶液中で上記のようにして溶出させたアルミニウムの溶出量が、目標とする強度に対応するような、火山灰質粘性土と固化材の混合比を算出する。
より具体的には、例えば、火山灰質粘性土と固化材の混合比を変えて改良土を作製し、各改良土の上記材齢28日での強度と、用いた火山灰質粘性土から溶出したアルミニウム量との相関関係をそれぞれ求める。そして、得られた相関関係から、所定値以上の強度となるような火山灰質粘性土と固化材の混合比を決定する。
Specifically, from the correlation obtained as described above, it is preferable that the amount of leached aluminum eluted in the above aqueous solution corresponds to the target strength, such as volcanic ash-like viscous soil Calculate the mixing ratio of the solidifying material.
More specifically, for example, the mixing ratio of the volcanic ash clay soil and the solidifying material was changed to prepare an improved soil, and the strength of each modified soil at the age of 28 days and the leached from the volcanic ash clay soil used The correlation with the amount of aluminum is determined respectively. Then, from the obtained correlation, the mixing ratio of the volcanic ash-like viscous soil and the solidifying material is determined so that the strength becomes a predetermined value or more.

そして、このように決定された混合比となるように、火山灰質粘性土と固化材と混合して硬化させることにより、改良土を作製する。
より具体的には、火山灰質粘性土及び固化材に、さらに水を加えて混合して固化させることにより、改良土を作製する。
Then, an improved soil is produced by mixing and curing the volcanic ash-like viscous soil and the solidifying material so as to obtain the mixing ratio thus determined.
More specifically, water is further added to the volcanic ash-like viscous soil and the solidifying material, and the mixture is mixed and solidified to produce an improved soil.

本実施形態で用いられる固化材は、通常の地盤改良に用いるセメント系の固化材の中から適宜選択して使用することが可能であるが、例えば、普通、早強、超早強等の各種ポルトランドセメント、該ポルトランドセメントに高炉スラグ、シリカ、フライアッシュを混合してなる各種混合セメント、白色セメント、超速硬セメント、アルミナセメントなど、一般的なセメントを使用することができる。   The solidifying material used in the present embodiment can be appropriately selected and used from cement-based solidifying materials used for ordinary ground improvement, but various types such as normal, early strong, ultra early strong, etc. Common cements such as portland cement, various mixed cements obtained by mixing blast furnace slag, silica, and fly ash with the portland cement, white cement, super rapid-hardening cement, alumina cement, etc. can be used.

固化材の混合(配合)量は、特に限定されるものではないが、火山灰質粘性土(乾燥質量)100質量部に対して、30〜160質量部が好ましく、45〜70質量部がより好ましい。
また、混練する際の水の量(土に含有されている水を含む。)は、火山灰質粘性土(乾燥質量)100質量部に対して120〜280質量部が好ましく、160〜180質量部がより好ましい。
The mixing (blending) amount of the solidifying material is not particularly limited, but is preferably 30 to 160 parts by mass, and more preferably 45 to 70 parts by mass with respect to 100 parts by mass of the volcanic ash clay soil (dry mass) .
In addition, the amount of water (including water contained in the soil) at the time of kneading is preferably 120 to 280 parts by mass, and 160 to 180 parts by mass with respect to 100 parts by mass of the volcanic ash clay soil (dry mass). Is more preferred.

上記の通り、本実施形態の改良土の強度予測方法によれば、火山灰質粘性土に含有されているアロフェン量と改良土の強度との間よりも、火山灰質粘性土から溶出されるアルミニウム量と改良土の強度との間の方が、良好な相関関係を示すため、従来よりも適切に、改良土の強度を予測することができる。
また、火山灰質粘性土中のアロフェン含有量の測定よりも、火山灰質粘性土からのアルミニウム溶出量の測定の方が簡易であるため、従来よりも作業性良く、改良土の強度を予測することができる。
従って、従来よりも適切に、且つ、作業性良く強度を予測することができる。
As described above, according to the method for predicting the strength of the improved soil of the present embodiment, the amount of aluminum eluted from the volcanic cohesion soil rather than the amount of allophane contained in the volcanic cohesion soil and the strength of the improved soil Since the direction between the strength of the improved soil and the strength of the improved soil shows a better correlation, the strength of the improved soil can be predicted more appropriately than before.
In addition, since it is easier to measure the amount of aluminum released from volcanic clay soil than to measure allophane content in volcanic clay soil, predict the strength of the improved soil with better workability than before. Can.
Therefore, the strength can be predicted more appropriately and with better workability than before.

また、本実施形態の改良土の製造方法によれば、上記改良土の強度予測方法に基づいて、改良土の強度が所定値以上となるように、火山灰質粘性土と固化材との混合比を決めることによって、アロフェン含有量に基づいて火山灰質粘性土と固化材との混合比を決める場合よりも、より適切に、且つ、作業性良く上記混合比を決めることができる。
従って、固化不良に起因する強度の低下を抑制することができる。
Moreover, according to the method for producing improved soil of the present embodiment, the mixing ratio of the volcanic ash-based cohesive soil and the solidifying material so that the strength of the improved soil becomes a predetermined value or more based on the method of predicting the strength of the improved soil. By determining the mixing ratio, the mixing ratio can be determined more appropriately and with good workability than in the case of determining the mixing ratio between the volcanic ash-like viscous soil and the solidifying material based on the allophane content.
Therefore, it is possible to suppress a decrease in strength due to poor solidification.

本実施形態の改良土の強度予測方法、及び、改良土の製造方法は以上の通りであるが、本発明は、上記実施形態に特に限定されるものではない。
例えば、上記実施形態では、改良土の強度として、材齢28日の強度を採用したが、本発明においては、他の材齢の強度を採用してもよい。
The method of predicting the strength of the improved soil of the present embodiment and the method of producing the improved soil are as described above, but the present invention is not particularly limited to the above embodiment.
For example, in the above embodiment, a strength of 28 days of material age is adopted as the strength of the improved soil, but in the present invention, strengths of other material ages may be adopted.

次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

(実験例1)土の物性の測定 (Experimental example 1) Measurement of physical properties of soil

・土中のアルミニウム溶出量の測定
火山灰質粘性土として、5箇所から採取した関東ローム1〜5を用いた。
比較対象として、砂質粘土を用いた。
これら火山灰質粘性土及び砂質粘土と、水とを混合し、さらに20%水酸化ナトリウムを添加し、pHが12、土(乾燥質量):水(土に含有されている水を含む)=1:5となるように混合して懸濁液を調製した。
この懸濁液を30分間撹拌し、アルミニウムを溶出させ、水に溶出したアルミニウムの量を、イットリウム溶液を内部標準物質として添加し、誘導結合プラズマ発光分光分析装置(ICP−AES、CIROS−120 EOP、SPECTRO社製)を用いて、土1kg当たりのアルミニウム溶出量を測定した。
結果を表1に示す。
-Measurement of aluminum elution amount in soil Kanto loam 1 to 5 collected from five places was used as the volcanic ash clay.
Sandy clay was used for comparison.
These volcanic ash clay soil and sandy clay are mixed with water, 20% sodium hydroxide is further added, pH is 12, soil (dry mass): water (including water contained in soil) = The suspension was prepared by mixing to 1: 5.
The suspension is stirred for 30 minutes, the aluminum is eluted, the amount of aluminum eluted in water is added as an internal standard substance of yttrium solution, inductively coupled plasma emission spectrometry (ICP-AES, CIROS-120 EOP) The amount of eluted aluminum per 1 kg of soil was measured using SPECTRO, Inc.).
The results are shown in Table 1.

・土中のアロフェン含有量の測定
比較対象として、各土に含まれるアロフェンの含有量について、北川法に基づいて測定した。具体的には、各土の乾燥質量を測定した後、各土に対し、8Nの塩酸水溶液と0.5Nの水酸化ナトリウム水溶液とを交互に添加してアロフェンを溶出させた後の各土の乾燥質量を測定し、溶出前の各土の乾燥質量から溶出後の各土の乾燥質量を差し引くことによって処理減量(アロフェン量)を算出し、溶出前の各土の乾燥質量に対する処理減量の割合(%)を算出した。
結果を表1に示す。
-Measurement of allophane content in soil As a comparison object, the content of allophane contained in each soil was measured based on the Kitagawa method. Specifically, after measuring the dry mass of each soil, 8N aqueous solution of hydrochloric acid and 0.5N aqueous solution of sodium hydroxide are alternately added to each soil to elute allophane. The dry mass is measured, and the treatment loss (amount of allophane) is calculated by subtracting the dry mass of each soil after elution from the dry mass of each soil before elution, and the ratio of the treatment loss to the dry mass of each soil before elution (%) Was calculated.
The results are shown in Table 1.

・土の湿密度の測定
各土の湿潤密度を、JCAS L−01−2006に準拠して供試体を作製し、供試体の質量から求めた単位体積質量によって測定した。
結果を、表2に示す。
-Measurement of the wet density of soil The wet density of each soil was prepared in accordance with JCAS L-01-2006, and was measured by unit volume mass determined from the mass of the specimen.
The results are shown in Table 2.

・土の自然含水比の測定
各土の自然含水比を、JIS A 1203:2009に準拠して測定した。
結果を、表2に示す。
Measurement of Natural Water Content of Soil The natural water content of each soil was measured in accordance with JIS A 1203: 2009.
The results are shown in Table 2.

・アルミニウム含有量
各土のアルミニウム含有量を、四ホウ酸リチウムを用いたアルカリ融解法によって測定した。
結果を表2に示す。なお、表2には、表1に記載したアロフェン含有量及びアルミニウム溶出量の結果についても、併せて示す。
Aluminum Content The aluminum content of each soil was measured by the alkaline melting method using lithium tetraborate.
The results are shown in Table 2. In addition, in Table 2, it shows collectively about the result of allophane content described in Table 1, and the amount of aluminum elution.

Figure 0006512472
Figure 0006512472

Figure 0006512472
Figure 0006512472

(実験例2)アルミニウム量と強度との関係
火山灰質粘性土として、上記関東ローム1〜4を用いた。
また、固化材として、セメント系固化材タフロック3E(住友大阪セメント社製)を用い、各土と、固化材と、水とを混合し、混合物を、内径(直径)5cm、高さ10cmの円柱状の型枠に打設し、表面をならして改良土を作製して20℃で封緘養生して、改良土を作製した。
各成分の混合比については、各土を乾燥質量で100質量部、固化材を50質量部、水(各土に含まれている水の量も含む。)を165質量部とする場合と、各土を100質量部、固化材を67質量部、水(各土に含まれている水の量も含む。)を173質量部とする場合とに設定した。
上記混合比で混合して打設した後、材齢28日後の一軸圧縮強度を、JIS A 1216:2009に準拠して測定した。結果を表3に示す。
併せて、表2、表3より、アルミニウム溶出量と強度との関係を示すグラフを作成し、その相関関係を示す回帰直線と共に、図1に示す。
また、アルミニウム含有量と強度との関係を示すグラフを、その相関関係を示す回帰直線と共に、図2に示す。
(Experimental example 2) The relationship between the amount of aluminum and the strength The above-mentioned Kanto loams 1 to 4 were used as the volcanic ash clay.
In addition, cement-based solidifying material Tough Lock 3E (manufactured by Sumitomo Osaka Cement Co., Ltd.) is used as the solidifying material, and each soil, the solidifying material and water are mixed, and the mixture is a circle having an inner diameter (diameter) of 5 cm and a height of 10 cm. The soil was placed in a columnar mold, the surface was smoothed to prepare an improved soil, and sealed and cured at 20 ° C. to prepare an improved soil.
Regarding the mixing ratio of each component, 100 parts by mass of each soil, 50 parts by mass of the solidifying material, and 165 parts by mass of water (including the amount of water contained in each soil), 100 parts by mass of each soil, 67 parts by mass of solidifying material, and 173 parts by mass of water (including the amount of water contained in each soil) were set.
After mixing and placing at the above mixing ratio, the uniaxial compressive strength after 28 days of material age was measured according to JIS A 1216: 2009. The results are shown in Table 3.
In addition, from Table 2 and Table 3, a graph showing the relationship between the amount of aluminum elution and the strength is created, and is shown in FIG. 1 together with a regression line showing the correlation.
Further, a graph showing the relationship between the aluminum content and the strength is shown in FIG. 2 together with a regression line showing the correlation.

Figure 0006512472
Figure 0006512472

図1に示すように、火山灰質粘性土では、固化材との混合比によらず、アルミニウム溶出量が増加すると、強度が低下する傾向が得られた。この結果、火山灰質粘性土では、アルミニウム溶出量と強度との相関関係を求めておけば、火山灰質粘性土のアルミニウム溶出量を測定することによって、上記相関関係に基づいて、改良土の強度を予測できることがわかった。
また、火山灰粘性土と固化材との配合比が変わると、アルミニウム溶出量と強度との相関関係が変わる傾向が得られた。この結果、火山灰質粘性土と固化材との混合比を変えて、混合比ごとにアルミニウム溶出量と強度との相関関係を求めておけば、所定値以上の強度が得られるような混合比を求められることがわかった。
また、図1の結果より、改良土の強度が1000kN/m以上となるように、火山灰質粘性土と固化材との混合比を、火山灰質粘性土(乾燥質量):固化材=100質量部:40〜70質量部とすることによって、固化不良が抑制され、強度に優れた改良土を製造することができることがわかった。
As shown in FIG. 1, in the case of the volcanic ash-like viscous soil, the strength tends to decrease as the amount of elution of aluminum increases regardless of the mixing ratio with the solidifying material. As a result, in the case of the volcanic ash clay soil, if the correlation between the amount of aluminum elution and the strength is determined, the strength of the improved soil is determined based on the above correlation by measuring the amount of aluminum elution of the clay volcanic soil. It turned out that it was predictable.
Moreover, when the compounding ratio of the volcanic ash viscous soil and the solidifying material changed, the correlation between the amount of dissolved aluminum and the strength tended to change. As a result, by changing the mixing ratio between the volcanic ash-like viscous soil and the solidifying material, and determining the correlation between the amount of dissolved aluminum and the strength for each mixing ratio, the mixing ratio which can obtain the strength of a predetermined value or more It turned out that it was asked.
In addition, according to the result of FIG. 1, the mixing ratio of the volcanic ash clay soil and the solidifying material is set so that the strength of the improved soil is 1000 kN / m 2 or more, the volcanic clay viscous soil (dry mass): solidifying material = 100 mass It has been found that, by setting the amount to 40 to 70 parts by mass, poor solidification is suppressed, and it is possible to produce an improved soil excellent in strength.

これに対し、図2に示すように、アルミニウム含有量が大きく異ならなくても、改良土の強度が大きく異なる傾向が得られた。すなわち、同じようなアルミニウム含有量でも、大きく異なる強度が得られることがわかった。また、火山灰質粘性土と固化材との混合比が異なっても、同様の傾向にあった。この結果、関東ロームに含まれているアルミニウム含有量を測定しても、強度を予測することは困難であることがわかった。   On the other hand, as shown in FIG. 2, even if the aluminum content was not largely different, the strength of the modified soil tended to be largely different. That is, it was found that even with the same aluminum content, significantly different strengths could be obtained. In addition, the same tendency was observed even if the mixing ratio of the volcanic ash clay soil and the solidifying material was different. As a result, it was found that it is difficult to predict the strength even if the aluminum content contained in Kanto loam is measured.

また、図1、2に示すように、砂質粘土では、火山灰質粘土と比較してアロフェン含有量が著しく少ないため、アルミニウムの溶出量と強度との関係が、火山灰質粘性土とは全く異なっていることがわかった。   In addition, as shown in FIGS. 1 and 2, in sandy clay, the content of allophane is significantly lower than that of volcanic clay, so the relationship between the amount of aluminum elution and the strength is completely different from that of volcanic clay clay soil. I found that.

前述した図1と、図2との傾向の違いを示すべく、以下の関係を図3〜6に示す。
すなわち、アルミニウム溶出量とアロフェン含有量との関係を図3に示し、アルミニウム含有量とアロフェン含有量との関係を図4に示し、アルミニウム溶出量とアルミニウム含有量との関係を図5に示す。
また、アロフェン含有量と強度との関係を図6に示す。
In order to show the difference in tendency between FIG. 1 and FIG. 2 described above, the following relationships are shown in FIGS.
That is, the relationship between the aluminum elution amount and the allophane content is shown in FIG. 3, the relationship between the aluminum content and the allophane content is shown in FIG. 4, and the relationship between the aluminum elution amount and the aluminum content is shown in FIG.
Further, the relationship between the allophane content and the strength is shown in FIG.

図4に示すように、アルミニウム含有量とアロフェン含有量との間には、相関関係が認められた。しかし、図3に示すように、アルミニウム溶出量とアロフェン含有量との間には、相関関係が認められなかった。また、図5に示すように、アルミニウム溶出量が変わってもアルミニウム含有量は変わらず、アルミニウム溶出量は、アルミニウム含有量の変化ではわからないような情報を提供し得ることがわかった。   As shown in FIG. 4, a correlation was observed between the aluminum content and the allophane content. However, as shown in FIG. 3, no correlation was found between the aluminum elution amount and the allophane content. Further, as shown in FIG. 5, it was found that the aluminum content does not change even if the aluminum elution amount changes, and the aluminum elution amount can provide information that can not be understood by the change in the aluminum content.

一方、図6に示すように、アロフェン含有量と強度との間では、アルミニウム溶出量と強度との間(図1〜4)よりも、相関関係が認められず、強度を十分に予測し得ないことがわかった。   On the other hand, as shown in FIG. 6, no correlation was found between the allophane content and the strength than between the aluminum elution amount and the strength (FIGS. 1 to 4), and the strength can be sufficiently predicted. I found it not.

Claims (2)

セメントを含有する固化材と火山灰質粘性土とを混合して固化させてなる改良土の強度を予測する改良土の強度予測方法であって、
火山灰質粘性土を含む懸濁液がpH12となるように水酸化ナトリウム水溶液を該火山灰質粘性土に加えて懸濁液を得ることにより該火山灰質粘性土から溶出されるアルミニウム量と、火山灰質粘性土と固化材とを含んでなる改良土の強度と、の相関関係に基づいて、
火山灰質粘性土を含む懸濁液がpH12となるように水酸化ナトリウム水溶液を該火山灰質粘性土に加えて懸濁液を得ることにより該火山灰質粘性土から溶出されるアルミニウム量から、改良土の強度を予測する、改良土の強度予測方法。
A method for predicting the strength of an improved soil, which predicts the strength of an improved soil obtained by mixing and solidifying a cement-containing solidifying material and a volcanic ash clay soil, comprising:
The amount of aluminum eluted from the volcanic clay clay soil by adding a sodium hydroxide aqueous solution to the volcanic clay clay soil so that the suspension containing the volcanic clay clay soil has a pH of 12, and the amount of volcanic ash clay On the basis of the correlation between the strength of the improved soil comprising the cohesive soil and the solidifying material,
An aqueous solution of sodium hydroxide is added to the volcanic clay clay soil so that the suspension containing the volcanic clay clay soil has a pH of 12 to obtain a suspension, thereby improving the amount of aluminum eluted from the volcanic clay clay soil Method of predicting the strength of improved soil to predict the strength of
セメントを含有する固化材と火山灰質粘性土とを混合して固化させてなる改良土を製造する改良土の製造方法であって、
火山灰質粘性土を含む懸濁液がpH12となるように水酸化ナトリウム水溶液を該火山灰質粘性土に加えて懸濁液を得ることにより該火山灰質粘性土から溶出されるアルミニウム量と、火山灰質粘性土と固化材とを含んでなる改良土の強度と、の相関関係に基づいて、改良土の強度が所定値以上となるように、火山灰質粘性土と固化材との混合比を決めて、固化材と火山灰質粘性土とを混合する、改良土の製造方法。
A method for producing an improved soil, which comprises producing an improved soil by mixing and solidifying a cement-containing solidifying material and a volcanic ash-like sticky soil,
The amount of aluminum eluted from the volcanic clay clay soil by adding a sodium hydroxide aqueous solution to the volcanic clay clay soil so that the suspension containing the volcanic clay clay soil has a pH of 12, and the amount of volcanic ash clay Based on the correlation between the strength of the improved soil including the cohesive soil and the solidifying material, the mixing ratio of the volcanic ash cohesive soil to the solidifying material is determined so that the strength of the improved soil is equal to or greater than a predetermined value. , A method of producing improved soil, mixing solidifying material and volcanic clay soil.
JP2015069549A 2015-03-30 2015-03-30 Method of predicting strength of improved soil and method of producing improved soil Active JP6512472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069549A JP6512472B2 (en) 2015-03-30 2015-03-30 Method of predicting strength of improved soil and method of producing improved soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069549A JP6512472B2 (en) 2015-03-30 2015-03-30 Method of predicting strength of improved soil and method of producing improved soil

Publications (2)

Publication Number Publication Date
JP2016188523A JP2016188523A (en) 2016-11-04
JP6512472B2 true JP6512472B2 (en) 2019-05-15

Family

ID=57240068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069549A Active JP6512472B2 (en) 2015-03-30 2015-03-30 Method of predicting strength of improved soil and method of producing improved soil

Country Status (1)

Country Link
JP (1) JP6512472B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273509A (en) * 1975-12-13 1977-06-20 Denki Kagaku Kogyo Kk Solidifying material for sludge or poor subsoil
JPH10159077A (en) * 1996-12-03 1998-06-16 Ube Ind Ltd Strength estimation method of soil to be improved
JP2002129158A (en) * 2000-10-24 2002-05-09 Sumitomo Osaka Cement Co Ltd Method for formulating cement-based hardening material
KR100689061B1 (en) * 2005-01-12 2007-03-09 고성룡 Method of construction for stabilization of ground
JP6000187B2 (en) * 2013-05-10 2016-09-28 太平洋セメント株式会社 Method for designing improved soil and method for producing cement-based solidified material

Also Published As

Publication number Publication date
JP2016188523A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
Ma et al. Properties of magnesium phosphate cement containing redispersible polymer powder
KR101000258B1 (en) High performance composite material for shotcrete
Fu et al. Preparation and characteristics of magnesium phosphate cement based porous materials
JP6763335B2 (en) Semi-flexible pavement cement milk and its manufacturing method and semi-flexible pavement construction method
JP2007137745A (en) Quick hardening material and high-penetrating grout
JP5053572B2 (en) Cement-based solidification material and solidification treatment method
JP2007177077A (en) Grouting material
JP6147194B2 (en) Rapid hardening cement
JP2013095624A (en) Quick-hardening agent and quick-hardening cement composition
JP6512472B2 (en) Method of predicting strength of improved soil and method of producing improved soil
JP2007137744A (en) Quick hardening material and grout
JP2008031305A (en) Grouting material for stabilizing soil
JP4535793B2 (en) Ground injection material
JP4157546B2 (en) Quick hardening cement concrete and quick setting cement concrete
JP2004284873A (en) Hydraulic complex material
JP6955703B2 (en) Ultrafast hard cement composition, mortar composition and concrete composition
JP6320878B2 (en) Cement composition for low temperature environment
KR20220158896A (en) Composition for manufacturing carbon reduced composites and carbon reduced composites manufactured therefrom
JP6887272B2 (en) Fast-curing polymer cement composition and fast-curing polymer cement mortar
JP6889858B2 (en) How to make plastic filler
JP2016074559A (en) Cement slurry and ground improvement method
JP2015024957A (en) High-strength concrete production method
KR101680804B1 (en) Crack Protector and Manufacturing Method
JP2014152223A (en) Ground improvement material, assistant for ground improvement and ground improvement method
JP5054054B2 (en) Ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6512472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150