JP5990830B2 - Polishing pad and manufacturing method thereof - Google Patents

Polishing pad and manufacturing method thereof Download PDF

Info

Publication number
JP5990830B2
JP5990830B2 JP2012044489A JP2012044489A JP5990830B2 JP 5990830 B2 JP5990830 B2 JP 5990830B2 JP 2012044489 A JP2012044489 A JP 2012044489A JP 2012044489 A JP2012044489 A JP 2012044489A JP 5990830 B2 JP5990830 B2 JP 5990830B2
Authority
JP
Japan
Prior art keywords
resin
polishing pad
impregnating
polishing
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012044489A
Other languages
Japanese (ja)
Other versions
JP2013182952A (en
Inventor
川村 佳秀
佳秀 川村
堅一 小池
小池  堅一
伸 徳重
伸 徳重
高田 直樹
直樹 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujibo Holdins Inc
Original Assignee
Fujibo Holdins Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujibo Holdins Inc filed Critical Fujibo Holdins Inc
Priority to JP2012044489A priority Critical patent/JP5990830B2/en
Publication of JP2013182952A publication Critical patent/JP2013182952A/en
Application granted granted Critical
Publication of JP5990830B2 publication Critical patent/JP5990830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、研磨パッド及びその製造方法に関する。特に、SiC、GaN、LT、LN等の化合物よりなるウェハー用化合物半導体を研磨するための研磨パッド及びその製造方法に関する。   The present invention relates to a polishing pad and a method for manufacturing the same. In particular, the present invention relates to a polishing pad for polishing a compound semiconductor for a wafer made of a compound such as SiC, GaN, LT, and LN, and a method for manufacturing the same.

現在、パワーデバイスとして、シリコン基板を採用したものが用いられている。しかし、シリコンの有する材料特性により、シリコンへ微細な加工を施すことによるパワーデバイスのさらなる高性能化には限界がある。シリコンに代わる材料として、SiC(炭化珪素)がある。SiCの禁制帯幅はシリコンの3倍、絶縁破壊電界についてはシリコンの約10倍、熱伝導度についてはシリコンの約3倍であり、SiCはシリコンよりも放熱性に優れ、冷却されやすいという利点も有している。このため、SiC基板はシリコン基板に変わるパワーデバイス用半導体基板として注目されている。しかし、SiCは化学的に安定で非反応性物質であり、ダイヤモンドに次ぐ硬質材料であり、最終的に研磨面のスクラッチを無くす仕上げ研磨に要する時間が極めて長くなるという問題があった。このため、SiC基板に関する研磨方法について多くの出願がなされていて、研磨パッドについては不織布タイプの研磨パッドが使用されていた。しかしながら、従来報告されているSiC基板に関する研磨方法は、SiC基板研磨用スラリーの改良に関するものがほとんどで、不織布タイプの研磨パッドを使用することは記載されているものの、研磨パッドと研磨特性の関係について言及しているものはなかった(特許文献1,2参照)。
一方、不織布タイプの研磨パッドは従来から様々なタイプのものが数多く出願されている。例えば目付の高い不織布を使用しかつ含浸樹脂として硬い樹脂を使用した研磨パッドにより、被研磨物の平坦性が向上し、スクラッチの発生を防止する例が報告されている(特許文献4参照)。また、不織布に樹脂を含浸し樹脂内部に界面活性剤を含む空孔を設けた研磨パッドにより、被研磨物の平坦性が向上し、スクラッチの発生が減少することも報告されている(特許文献3参照)。
Currently, a power device using a silicon substrate is used. However, due to the material properties of silicon, there is a limit to further improving the performance of power devices by applying fine processing to silicon. There is SiC (silicon carbide) as a material replacing silicon. The forbidden band width of SiC is 3 times that of silicon, the dielectric breakdown electric field is about 10 times that of silicon, and the thermal conductivity is about 3 times that of silicon. SiC has the advantage of being superior in heat dissipation and being easily cooled. Also have. For this reason, the SiC substrate is attracting attention as a semiconductor substrate for power devices that replaces the silicon substrate. However, SiC is a chemically stable and non-reactive substance, and is a hard material next to diamond, and there is a problem that the time required for final polishing that finally eliminates scratches on the polishing surface becomes extremely long. For this reason, many applications have been filed for polishing methods relating to SiC substrates, and non-woven polishing pads have been used for the polishing pads. However, most of the conventionally reported polishing methods for SiC substrates are related to improvement of the slurry for polishing SiC substrates, and although it is described that a non-woven type polishing pad is used, the relationship between the polishing pad and the polishing characteristics There was no mention of (see Patent Documents 1 and 2).
On the other hand, many types of non-woven polishing pads have been filed. For example, a polishing pad using a non-woven fabric with a high basis weight and using a hard resin as an impregnating resin has been reported to improve the flatness of an object to be polished and prevent the occurrence of scratches (see Patent Document 4). It has also been reported that a polishing pad in which a nonwoven fabric is impregnated with a resin and pores containing a surfactant are provided inside the resin improves the flatness of the object to be polished and reduces the occurrence of scratches (patent document) 3).

特開2007−021703JP2007-021703 特開2007−027663JP2007-027663 特開2002−283221JP 2002-283221 A 特許3652572Patent 3655252

本発明は、シリコンカーバイド(SiC)等の化合物半導体の研磨において、研磨後の被研磨物表面のスクラッチ(キズ)を短時間に消去できる研磨パッドを提供することを目的とする。   An object of the present invention is to provide a polishing pad capable of erasing scratches on the surface of an object after polishing in a short time in polishing compound semiconductors such as silicon carbide (SiC).

本発明者らは、上記課題に対し、特に不織布を利用した研磨パッドについて鋭意検討した結果、不織布に樹脂を含浸させて作成した研磨パッドにおいて、特定量の導電性微粒子を添加することにより、化合物半導体の研磨においてスクラッチを短時間に消去できる研磨パッドが得られることを見出し、本発明を完成させた。
すなわち、本発明は以下を提供する。
1.研磨布基体に樹脂を含浸させてなる研磨パッドであって、前記樹脂が、乾燥後の樹脂全質量に対して、0.5〜18質量%の導電性微粒子を含むことを特徴とする、研磨パッド。
2.研磨布基体が不織布である、前記1記載の研磨パッド。
3.化合物半導体用である、前記1または2記載の研磨パッド。
4.前記含浸樹脂が1次含浸樹脂と2次含浸樹脂を含み、導電性微粒子が、2次含浸樹脂のみに又は1次含浸樹脂及び2次含浸樹脂の双方に含まれている、前記1〜3のいずれか一に記載の研磨パッド。
5.導電性微粒子が、カーボンブラック及びナノダイヤからなる群より選択される、前記1〜4のいずれか一に記載の研磨パッド。
6.樹脂が、熱可塑性樹脂、熱硬化性樹脂、エラストマー、及び生ゴムからなる群より選択される、前記1〜5のいずれか一に記載の研磨パッド。
7.研磨布基体を用意し、乾燥後の樹脂全質量に対して0.5〜18質量%の導電性微粒子を含む樹脂溶液に前記基体を含浸させる工程を含む、研磨パッドの製造方法。
8.樹脂溶液に研磨布基体を含浸させて樹脂を形成する工程が、1次含浸樹脂溶液に研磨布基体を含浸させて樹脂を形成する工程及び2次含浸樹脂溶液に研磨布基体を含浸させて樹脂を形成する工程を含み、導電性微粒子が、2次含浸樹脂溶液のみに又は1次含浸樹脂溶液及び2次含浸樹脂溶液の双方に含まれていることを特徴とする、前記7に記載の研磨パッドの製造方法。
9.2次含浸樹脂が乾式凝固法により形成されることを特徴とする、前記8に記載の研磨パッドの製造方法。
10.1次含浸樹脂が湿式凝固法により形成されることを特徴とする、前記8または9に記載の研磨パッドの製造方法。
11.研磨布基体が不織布であり、前記樹脂溶液に研磨布基体を含浸させて樹脂を形成する工程が、導電性微粒子を含む樹脂溶液に前記不織布を含浸させる前に、前記不織布を樹脂に浸漬する仮止め工程を更に含むことを特徴とする、前記8〜10のいずれか一に記載の研磨パッドの製造方法。
As a result of intensive investigations on a polishing pad using a nonwoven fabric in particular, the present inventors have made a compound by adding a specific amount of conductive fine particles in a polishing pad prepared by impregnating a resin into a nonwoven fabric. The present inventors have found that a polishing pad capable of erasing scratches in a short time in semiconductor polishing can be obtained.
That is, the present invention provides the following.
1. A polishing pad comprising a polishing cloth substrate impregnated with a resin, wherein the resin contains 0.5 to 18% by mass of conductive fine particles with respect to the total mass of the resin after drying. pad.
2. 2. The polishing pad according to 1 above, wherein the polishing cloth substrate is a non-woven fabric.
3. 3. The polishing pad according to 1 or 2 above, which is used for a compound semiconductor.
4). 1 to 3 above, wherein the impregnating resin contains a primary impregnating resin and a secondary impregnating resin, and the conductive fine particles are contained only in the secondary impregnating resin or in both the primary impregnating resin and the secondary impregnating resin. The polishing pad as described in any one.
5. The polishing pad according to any one of 1 to 4, wherein the conductive fine particles are selected from the group consisting of carbon black and nanodiamond.
6). The polishing pad according to any one of 1 to 5, wherein the resin is selected from the group consisting of a thermoplastic resin, a thermosetting resin, an elastomer, and raw rubber.
7). A method for producing a polishing pad, comprising preparing a polishing cloth substrate and impregnating the substrate with a resin solution containing 0.5 to 18% by mass of conductive fine particles based on the total mass of the resin after drying.
8). The step of forming a resin by impregnating a polishing cloth substrate with a resin solution includes the step of forming a resin by impregnating the polishing cloth substrate with a primary impregnation resin solution and the step of impregnating the polishing cloth substrate with a secondary impregnation resin solution. The polishing according to 7 above, wherein the conductive fine particles are contained only in the secondary impregnation resin solution or in both the primary impregnation resin solution and the secondary impregnation resin solution. A method for manufacturing a pad.
9. The method for producing a polishing pad as described in 8 above, wherein the secondary impregnating resin is formed by a dry solidification method.
10. The method for producing a polishing pad according to 8 or 9, wherein the 10.1 impregnating resin is formed by a wet coagulation method.
11. The polishing cloth base is a non-woven fabric, and the step of impregnating the resin solution with the polishing cloth base to form a resin includes immersing the non-woven cloth in the resin before impregnating the non-woven cloth with the resin solution containing conductive fine particles. The method for producing a polishing pad according to any one of 8 to 10, further comprising a stopping step.

不織布基体に樹脂を含浸させて製造する研磨パッドにおいて、樹脂に一定量のカーボンブラック等の導電性微粒子を添加することで、SiC等の基板の研磨時に基板表面のキズを従来よりも短時間で除去することが可能である。
また、特に不織布基体に樹脂を含浸させる際、1次含浸樹脂および2次含浸樹脂の双方に導電性微粒子を添加することにより、不織布全体の導電性微粒子含有量を増やし、かつ研磨パッド全体に導電性微粒子を均一に分散させることができ、SiC基板研磨時に基板のキズの除去能を更に強化することができる。
In a polishing pad manufactured by impregnating a non-woven fabric substrate with a resin, a certain amount of conductive fine particles such as carbon black is added to the resin so that the surface of the substrate can be scratched more quickly than before when polishing a substrate such as SiC. It is possible to remove.
In particular, when the nonwoven fabric substrate is impregnated with resin, conductive fine particles are added to both the primary impregnated resin and the secondary impregnated resin to increase the conductive fine particle content of the entire nonwoven fabric, and the entire polishing pad is electrically conductive. The fine particles can be uniformly dispersed, and the ability to remove scratches on the substrate can be further enhanced when the SiC substrate is polished.

本発明の研磨パッドの断面の顕微鏡写真(50倍)である。It is a microscope picture (50 times) of the cross section of the polishing pad of this invention. 本発明の研磨パッドの表面の顕微鏡写真(50倍)である。It is a microscope picture (50 times) of the surface of the polishing pad of this invention.

1.研磨パッド
本発明の研磨パッドは、研磨布基体に樹脂を含浸させてなる研磨パッドであって、前記樹脂が、乾燥後の樹脂全質量に対して、0.5〜18質量%の導電性微粒子を含むことを特徴とする。
本発明の研磨パッドは、研磨布基体に樹脂を含浸させて製造するものである。研磨布基体としては、不織布、織物、編み物、フェルト、多孔膜、フィルム、粒子等が挙げられる。物性調整のしやすさの観点から、不織布であることが好ましい。
繊維としては、特に限定はなく、天然繊維(改質繊維を含む)、合成繊維等から製造される不織布であればよい。例えばポリエステル繊維、ポリアミド繊維、アクリル繊維等の樹脂繊維や、綿、麻等の天然繊維を用いてもよいが、製造工程中でDMF等の有機溶媒や水等の洗浄液を吸収することによる原料繊維の膨潤を防止することや原料繊維の量産性を考慮すれば、吸水(液)性を有していないポリエステル繊維等の樹脂繊維を用いることが好ましい。原料繊維には、繊度1〜50dtex、繊維長20〜100mmの繊維を用いることが好ましい。
1. Polishing pad The polishing pad of the present invention is a polishing pad formed by impregnating a polishing cloth substrate with a resin, and the resin is 0.5 to 18% by mass of conductive fine particles with respect to the total mass of the resin after drying. It is characterized by including.
The polishing pad of the present invention is produced by impregnating a polishing cloth substrate with a resin. Examples of the abrasive cloth substrate include non-woven fabric, woven fabric, knitted fabric, felt, porous membrane, film, and particles. From the viewpoint of easy physical property adjustment, a nonwoven fabric is preferable.
There is no limitation in particular as a fiber, What is necessary is just a nonwoven fabric manufactured from a natural fiber (a modified fiber is included), a synthetic fiber, etc. For example, resin fibers such as polyester fibers, polyamide fibers, and acrylic fibers, and natural fibers such as cotton and hemp may be used. However, raw fibers produced by absorbing an organic solvent such as DMF or a cleaning liquid such as water during the manufacturing process. In view of preventing swelling of the fiber and mass production of the raw material fibers, it is preferable to use resin fibers such as polyester fibers that do not have water absorption (liquid) properties. As the raw fiber, it is preferable to use a fiber having a fineness of 1 to 50 dtex and a fiber length of 20 to 100 mm.

不織布基材の密度は、0.1g/cm3未満ではポリウレタン樹脂溶液に含浸してもポリウレタン樹脂が繊維の間隙を通じて流出し繊維に付着しにくく、0.2g/cm3を超えるとポリウレタン樹脂の付着量が大きくなり繊維の間隙を塞いでしまうので、0.1〜0.2g/cm3の範囲とすることが好ましい。
研磨布基体の厚さは目的により異なるが、1.5mm未満ではポリウレタン樹脂溶液に含浸後の乾燥時に厚さ方向でポリウレタン樹脂の移動(樹脂マイグレーション)が発生しポリウレタン樹脂の被覆厚さが偏りやすく、5.0mmを超えると不織布基材の内部までポリウレタン樹脂溶液が浸透できなくなるので、1.5〜5.0mmの範囲とすることが好ましい。
The density of the nonwoven fabric base material is less likely to adhere to the outflow fiber polyurethane resin be impregnated in the polyurethane resin solution through the fiber gap is less than 0.1 g / cm 3, the polyurethane resin exceeds 0.2 g / cm 3 Since the amount of adhesion increases and closes the gap between the fibers, the range of 0.1 to 0.2 g / cm 3 is preferable.
The thickness of the polishing cloth substrate varies depending on the purpose, but if it is less than 1.5 mm, polyurethane resin migration (resin migration) occurs in the thickness direction during drying after impregnation of the polyurethane resin solution, and the polyurethane resin coating thickness tends to be uneven. If the thickness exceeds 5.0 mm, the polyurethane resin solution cannot penetrate into the nonwoven fabric base material, and thus it is preferably in the range of 1.5 to 5.0 mm.

前記研磨布基体に樹脂を含浸させることにより、本発明の研磨パッドを製造する。本発明は、前記樹脂中に、樹脂全質量に対して、0.5〜18質量%の導電性微粒子を含むことが特徴である。
前記導電性微粒子を添加することにより、研磨速度を低下させることなく、被研磨物表面に存在するスクラッチの数を減らすことができる。導電性微粒子の量は、樹脂全質量に対して、好ましくは0.9〜17質量%、より好ましくは2.5〜15質量%であり、更に好ましくは4〜10質量%である。0.5質量%より少ないと十分にスクラッチ数を低減することができない。また、18質量%より多くなると、徐々に研磨速度が低下し、更にスクラッチ数の低減効果も無くなってくる。
The polishing pad of the present invention is manufactured by impregnating the polishing cloth substrate with a resin. The present invention is characterized in that the resin contains 0.5 to 18% by mass of conductive fine particles with respect to the total mass of the resin.
By adding the conductive fine particles, the number of scratches existing on the surface of the object to be polished can be reduced without reducing the polishing rate. The amount of the conductive fine particles is preferably 0.9 to 17% by mass, more preferably 2.5 to 15% by mass, and further preferably 4 to 10% by mass with respect to the total mass of the resin. If the amount is less than 0.5% by mass, the number of scratches cannot be sufficiently reduced. On the other hand, if it exceeds 18% by mass, the polishing rate is gradually lowered and the effect of reducing the number of scratches is lost.

後述するように、1次含浸樹脂と2次含浸樹脂にわけて樹脂を含浸する場合には、導電性粒子をどちらか一方、あるいは双方の樹脂に加えてもよい。少なくとも2次含浸樹脂に含むように添加することが好ましい。すなわち、2次含浸樹脂のみあるいは1次含浸樹脂と2次含浸樹脂の双方に添加することが好ましい。更に1次含浸樹脂と2次含浸樹脂の双方に添加することがより好ましい。理由は明らかではないが、スクラッチ数を低減する効果が高くなるからである。なお、双方に添加する場合には、導電性微粒子の量は、導電性微粒子の1次含浸樹脂と2次含浸樹脂中の全質量の導電性微粒子に対し50質量%以上が2次含浸樹脂中に含まれることが好ましい。   As will be described later, when the resin is impregnated into a primary impregnation resin and a secondary impregnation resin, conductive particles may be added to either one or both resins. It is preferable to add such that it is contained in at least the secondary impregnating resin. That is, it is preferable to add only the secondary impregnation resin or both the primary impregnation resin and the secondary impregnation resin. Furthermore, it is more preferable to add to both primary impregnation resin and secondary impregnation resin. The reason is not clear, but the effect of reducing the number of scratches is enhanced. When added to both, the amount of the conductive fine particles is 50% by mass or more in the secondary impregnated resin with respect to the total amount of the conductive fine particles in the primary impregnated resin and the secondary impregnated resin of the conductive fine particles. It is preferable that it is contained in.

本発明は理論に拘束されるものではないが、本発明の導電性微粒子を使用する効果については以下の点が考察される。カーボンブラックやナノダイヤは、電子を放出する性質が知られている。放出された電子は導電性の単結晶、多結晶基板材料に入ると考えられ、電子が入りこんだ基板材料は壊れやすくなる。このため、研磨表面を効率的に研磨でき、表面のスクラッチが少なくなる効果を呈すると考えられる。   Although the present invention is not bound by theory, the following points are considered for the effect of using the conductive fine particles of the present invention. Carbon black and nano diamond are known to emit electrons. It is considered that the emitted electrons enter the conductive single crystal or polycrystalline substrate material, and the substrate material into which the electrons have entered becomes fragile. For this reason, it is considered that the polished surface can be efficiently polished and the surface scratches are reduced.

本発明において導電性微粒子は、例えば、カーボンブラック、ナノダイヤ等が挙げられるが、本発明の効果、特にスクラッチを少なくする観点から、カーボンブラックが好ましい。添加するカーボンブラックの種類は特に限定はなく、チャンネルブラック、ファーネスブラック、アセチレンブラック等のいずれも使用できる。粒子の形状は特に限定されないが、粒子サイズ(平均直径)は10〜100nm程度が好ましく、10〜30nmであることがより好ましい。   In the present invention, examples of the conductive fine particles include carbon black and nanodiamond, and carbon black is preferable from the viewpoint of the effects of the present invention, in particular, the reduction of scratches. The type of carbon black to be added is not particularly limited, and any of channel black, furnace black, acetylene black, and the like can be used. The shape of the particles is not particularly limited, but the particle size (average diameter) is preferably about 10 to 100 nm, and more preferably 10 to 30 nm.

ストラクチャーの大きさは日本工業規格(JISK6217−4、ゴム用カーボンブラック−基本特性−第4章:オイル吸収量の求め方(圧縮試料を含む))のオイル吸収量で間接的に表される。ストラクチャーでは、空隙率と大きさとが正の相関を示す。すなわち、ストラクチャーを構成するカーボンブラック粒子の数が多くなるほど粒子間の空隙が増大するため、ストラクチャーの空隙に吸収されるオイルの量(オイル吸収量)も増加する。オイル吸収量の測定にはアブソープトメータが用いられ、オイルにはフタル酸ジブチル(以下、DBPと略記する。)やパラフィンオイルが使用される。
本発明において、カーボンブラックのストラクチャーはDBP吸油量が40〜200cm3/100g程度であることが好ましく、50〜90cm3/100gであることがより好ましい。
The size of the structure is indirectly represented by the oil absorption amount of Japanese Industrial Standards (JISK6217-4, carbon black for rubber-basic characteristics-Chapter 4: Determination of oil absorption amount (including compressed sample)). In the structure, the porosity and size have a positive correlation. That is, as the number of carbon black particles constituting the structure increases, the voids between the particles increase, so the amount of oil absorbed in the voids in the structure (oil absorption amount) also increases. An absorption meter is used to measure the oil absorption, and dibutyl phthalate (hereinafter abbreviated as DBP) or paraffin oil is used as the oil.
In the present invention, it is preferred that structure of the carbon black DBP oil absorption amount is about 40~200cm 3 / 100g, and more preferably 50~90cm 3 / 100g.

本発明において、樹脂は、熱可塑性樹脂、熱硬化性樹脂、エラストマー、生ゴム等が挙げられ、更に詳細には、ポリアミド、ポリアクリル、ポリオレフィン、ポリビニル、ポリカーボネート、ポリアセタール、ポリウレタン、ポリイミド樹脂等の熱可塑性樹脂、ポリウレタン、エポキシ、フェノール、メラミン、ウレア、ポリイミド等の熱硬化性樹脂が挙げられる。エラストマー又は生ゴムとしては、ジエン系エラストマー(例えば1,2−ポリブタジエン等)、オレフィン系エラストマー(例えばエチレン−プロピレンゴムとポリプロピレン樹脂を動的に架橋したもの等)、ウレタン系エラストマー、ウレタン系ゴム(例えばウレタンゴム等)、スチレン系エラストマー(例えばスチレン−ブタジエン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物等)、共役ジエン系ゴム(例えば高シスブタジエンゴム、低シスブタジエンゴム、イソプレンゴム、スチレン−ブタジエンゴム、スチレン−イソプレンゴム、アクリロニトリル−ブタジエンゴム、クロロプレンゴム等)、エチレン−α−オレフィンゴム(例えばエチレン−プロピレンゴム、エチレン−プロピレン−非共役ジエンゴム等)、ブチルゴム、その他のゴム(例えばシリコーンゴム、フッ素ゴム、ニトリルゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム等)等を挙げることができる。また、これらの樹脂を混合して用いてもよい。   In the present invention, examples of the resin include thermoplastic resins, thermosetting resins, elastomers, raw rubbers, and the like, and more specifically, thermoplastics such as polyamide, polyacryl, polyolefin, polyvinyl, polycarbonate, polyacetal, polyurethane, and polyimide resin. Examples thereof include thermosetting resins such as resin, polyurethane, epoxy, phenol, melamine, urea, and polyimide. Examples of the elastomer or raw rubber include diene elastomers (for example, 1,2-polybutadiene), olefin elastomers (for example, those obtained by dynamically cross-linking ethylene-propylene rubber and polypropylene resin, etc.), urethane elastomers, urethane rubbers (for example, Urethane rubber, etc.), styrene elastomer (eg, styrene-butadiene-styrene block copolymer, hydrogenated styrene-butadiene-styrene block copolymer), conjugated diene rubber (eg, high cis butadiene rubber, low cis butadiene) Rubber, isoprene rubber, styrene-butadiene rubber, styrene-isoprene rubber, acrylonitrile-butadiene rubber, chloroprene rubber, etc.), ethylene-α-olefin rubber (for example, ethylene-propylene rubber, ethylene-propylene rubber) Down - non-conjugated diene rubber) include butyl rubber, other rubbers (e.g. silicone rubber, fluorine rubber, nitrile rubber, chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, etc.) and the like. Further, these resins may be mixed and used.

本発明において、樹脂は、少なくとも2回にわけて含浸することにより形成されたものであることが好ましい。このように2回にわけて含浸することにより、樹脂を十分量含浸させやすく、導電性微粒子が樹脂内に安定して担持されるからである。樹脂の種類と導電性微粒子のサイズや性状により、3回以上にわけて含浸してもよい。   In the present invention, the resin is preferably formed by impregnating at least twice. This is because the impregnation in two steps makes it easy to impregnate a sufficient amount of resin, and the conductive fine particles are stably supported in the resin. Depending on the type of resin and the size and properties of the conductive fine particles, the impregnation may be performed three or more times.

また、導電性微粒子を含んだ樹脂を含浸する前に、繊維間に形成された空隙を維持するために、乾式樹脂(乾式凝固法により形成された樹脂)を事前に含浸して繊維を仮止めしてもよい。これにより繊維間に形成された空隙が維持されるため、導電性微粒子を含んだ樹脂を十分含浸させることができる。なお、本明細書において「樹脂全質量」という場合には、複数回にわけて含浸した樹脂質量の全合計量を意味する。
仮止めに使用される乾式樹脂の付着量は、繊維集合体質量(樹脂非含浸)の10質量%以下であることが好ましい。一次含浸樹脂の付着量は、繊維集合体質量の50〜80質量%であることが好ましい。二次含浸樹脂の付着量は、繊維集合体質量の50〜80質量%であることが好ましい。
Also, before impregnating the resin containing conductive fine particles, in order to maintain the voids formed between the fibers, a dry resin (resin formed by dry coagulation method) is impregnated in advance to temporarily fix the fibers May be. As a result, voids formed between the fibers are maintained, so that the resin containing conductive fine particles can be sufficiently impregnated. In the present specification, the “total resin mass” means the total total mass of the resin impregnated in a plurality of times.
The adhesion amount of the dry resin used for temporary fixing is preferably 10% by mass or less of the mass of the fiber aggregate (non-impregnated resin). The adhesion amount of the primary impregnating resin is preferably 50 to 80% by mass of the mass of the fiber assembly. The adhesion amount of the secondary impregnating resin is preferably 50 to 80% by mass of the mass of the fiber assembly.

1次含浸樹脂と2次含浸樹脂は、上述した樹脂からそれぞれ任意に選択することができるが、2次含浸樹脂として、乾式凝固により形成される樹脂が好ましい。そのような樹脂の例としては、ポリウレタン、エポキシ、フェノール、メラミン、ウレア、ポリイミド等、が挙げられる。   The primary impregnation resin and the secondary impregnation resin can be arbitrarily selected from the resins described above, but a resin formed by dry coagulation is preferable as the secondary impregnation resin. Examples of such resins include polyurethane, epoxy, phenol, melamine, urea, polyimide, and the like.

更に1次含浸樹脂は、湿式凝固により形成される樹脂が好ましい。そのような樹脂の例としては、ポリウレタン、ポリウレタンポリウレア等のポリウレタン系、ポリアクリレート、ポリアクリロニトリル等のアクリル系、ポリ塩化ビニル、ポリ酢酸ビニル、ポリフッ化ビニリデン等のビニル系、ポリサルホン、ポリエーテルサルホン等のポリサルホン系、アセチル化セルロース、ブチリル化セルロース等のアシル化セルロース系、ポリアミド系、ポリスチレン系、等が挙げられる。
1次含浸樹脂量と、2次含浸樹脂量は、質量比で1:1〜1:5程度であることが好ましい。
Further, the primary impregnating resin is preferably a resin formed by wet coagulation. Examples of such resins include polyurethanes such as polyurethane and polyurethane polyurea, acrylics such as polyacrylate and polyacrylonitrile, vinyls such as polyvinyl chloride, polyvinyl acetate, and polyvinylidene fluoride, polysulfone, and polyethersulfone. And polysulfone type such as acetylated cellulose, acylated cellulose type such as butyrylated cellulose, polyamide type and polystyrene type.
The amount of the primary impregnation resin and the amount of the secondary impregnation resin is preferably about 1: 1 to 1: 5 by mass ratio.

本発明の樹脂には、更に、架橋剤、添加剤等が含まれていてもよい。
架橋剤としては、多価イソシアネート化合物、有機ジアミン化合物等が挙げられる。架橋剤の量は、架橋させる樹脂(1次含浸樹脂あるいは2次含浸樹脂各々)に対して、1〜20質量%程度添加することが好ましい。
添加剤としては、発泡を促進させる親水性活性剤及びポリウレタン樹脂の凝固再生を安定化させる疎水性活性剤等を用いることができる。親水性添加剤としては、例えば、カルボン酸塩、スルホン酸塩、硫酸エステル塩、燐酸エステル塩等のアニオン界面活性剤を使用する。疎水性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、パーフルオロアルキルエチレンオキサイド付加物、グリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステルなどのノニオン系界面活性剤や、アルキルカルボン酸などのアニオン系界面活性剤を用いることができる。添加量は添加剤の種類や樹脂の種類によって異なり、特に制限されるものではないが、例えば、樹脂溶液100質量部に対して0.2〜10質量部の間で添加する。
The resin of the present invention may further contain a crosslinking agent, an additive and the like.
Examples of the crosslinking agent include polyvalent isocyanate compounds and organic diamine compounds. The amount of the crosslinking agent is preferably about 1 to 20% by mass relative to the resin to be crosslinked (primary impregnation resin or secondary impregnation resin).
As the additive, a hydrophilic active agent that promotes foaming, a hydrophobic active agent that stabilizes the coagulation regeneration of the polyurethane resin, and the like can be used. As the hydrophilic additive, for example, an anionic surfactant such as carboxylate, sulfonate, sulfate ester salt, phosphate ester salt or the like is used. Examples of the hydrophobic surfactant include nonions such as polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, perfluoroalkylethylene oxide adduct, glycerin fatty acid ester, and propylene glycol fatty acid ester. An anionic surfactant such as an alkyl surfactant or an alkyl carboxylic acid can be used. The addition amount varies depending on the type of additive and the type of resin, and is not particularly limited. For example, the addition amount is 0.2 to 10 parts by mass with respect to 100 parts by mass of the resin solution.

化合物半導体とは、II−VI族、III−V族、IV−IV族の2種以上の元素が結合して半導体の性質を示す物質によりなる基板を意味し、例えば、SiC(シリコンカーバイド)基板、GaN(窒化ガリウム)基板等が挙げられる。   A compound semiconductor means a substrate made of a substance that exhibits properties of a semiconductor by combining two or more elements of Group II-VI, Group III-V, and Group IV-IV. For example, a SiC (silicon carbide) substrate GaN (gallium nitride) substrate and the like.

SiC単結晶を例に簡単に製造方法について説明する。
SiC単結晶は昇華再結合法という結晶成長法で製造される。2400℃という高温のるつぼの中でSiC粉末を昇華させ、その蒸気を種結晶上に再結合させることでSiCインゴットを得る。出来上がったインゴットはダイヤモンド電着ワイヤーソー等により切断し単結晶基板を得る。
得られた単結晶基板をラッピングにより表面のスクラッチを除去するが、完全に除去することができないため仕上げ研磨処理を行うことでスクラッチを除去する。
得られた基板単結晶上に異なる導電型や所定の抵抗率を持つ単結晶層を基板の結晶構造に連続して成長させるエピタキシャル成長を行うことでSiCウェハーを製造するが、基板表面にスクラッチ等があるとエピタキシャル成長させた単結晶層に欠陥が出てしまう。このため、エピタキシャル成長の前に基板の欠陥は仕上げ研磨処理により取り除いておく必要がある。
A manufacturing method will be briefly described by taking a SiC single crystal as an example.
The SiC single crystal is manufactured by a crystal growth method called a sublimation recombination method. The SiC powder is sublimated in a crucible having a high temperature of 2400 ° C., and the vapor is recombined on the seed crystal to obtain a SiC ingot. The completed ingot is cut with a diamond electrodeposited wire saw to obtain a single crystal substrate.
The surface scratches of the obtained single crystal substrate are removed by lapping. However, since the surface scratches cannot be completely removed, the scratches are removed by performing a final polishing process.
A SiC wafer is manufactured by performing epitaxial growth in which single crystal layers having different conductivity types and predetermined resistivities are continuously grown on the crystal structure of the substrate on the obtained substrate single crystal. If so, defects will appear in the epitaxially grown single crystal layer. For this reason, it is necessary to remove the substrate defects by finish polishing before the epitaxial growth.

本発明の研磨パッドは、特に、従来の研磨パッドでは、スクラッチ数を低減するために非常に時間がかかっていた化合物半導体の研磨、特に上述した仕上げ研磨処理に適している。十分な研磨速度をもってスクラッチ数を低減することができるからである。
なお、本発明の研磨パッドの研磨面には必要に応じて適宜ミゾ加工を行ってもよい。
The polishing pad of the present invention is particularly suitable for the polishing of a compound semiconductor, particularly the above-described finish polishing treatment, which has taken a very long time to reduce the number of scratches in the conventional polishing pad. This is because the number of scratches can be reduced with a sufficient polishing rate.
It should be noted that the polishing surface of the polishing pad of the present invention may be appropriately grooved as necessary.

2.研磨パッドの製造方法
本発明の研磨パッドの製造方法は、研磨布基体を用意し、乾燥後の樹脂全質量に対して0.5〜18質量%の導電性微粒子を含む樹脂溶液に前記基体を含浸させる工程を含む。
本発明の方法において、樹脂溶液は、上述した導電性微粒子を含む樹脂を溶媒に溶解して作成する。溶媒の種類としては、湿式凝固の場合には、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、テトラヒドロフラン(THF)、ジメチルスルホキシド(DMSO)、アセトン、アセトニトリル、N−メチルピロリドン(NMP)等及びこれらの混合物が挙げられる。この中で特にDMFが好ましい。乾式凝固の場合には、DMF,MEK及びこれらの混合物が挙げられる。
溶媒量は、特に制限されないが、樹脂固形分濃度が例えば10〜50(v/w)%となるように添加すればよい。
2. Method for Producing Polishing Pad The method for producing a polishing pad of the present invention comprises preparing a polishing cloth substrate and applying the substrate to a resin solution containing 0.5 to 18% by mass of conductive fine particles based on the total mass of the resin after drying. Impregnating.
In the method of the present invention, the resin solution is prepared by dissolving the above resin containing conductive fine particles in a solvent. In the case of wet coagulation, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), acetone, acetonitrile, N- Examples include methylpyrrolidone (NMP) and a mixture thereof. Among these, DMF is particularly preferable. In the case of dry coagulation, DMF, MEK and a mixture thereof can be mentioned.
The amount of the solvent is not particularly limited, but may be added so that the resin solid content concentration is, for example, 10 to 50 (v / w)%.

前記樹脂溶液に、研磨布基体を浸漬する。5〜40℃程度で1〜30分程度浸漬すれば良い。浸漬後乾燥して、溶媒を除去する。
その後、使用する樹脂の種類により、任意に、熱硬化処理などを行う。
A polishing cloth substrate is immersed in the resin solution. What is necessary is just to immerse for about 1 to 30 minutes at about 5-40 degreeC. After immersion, the solvent is removed by drying.
Thereafter, a thermosetting treatment or the like is optionally performed depending on the type of resin used.

前記樹脂溶液に基体を含浸させて樹脂を形成する工程は、1次含浸樹脂溶液に基体を含浸させて樹脂を形成する工程及び2次含浸樹脂溶液に基体を含浸させて樹脂を形成する工程を含むことが好ましい。   The step of impregnating the substrate with the resin solution to form the resin includes the step of impregnating the substrate with the primary impregnation resin solution to form the resin and the step of impregnating the substrate with the secondary impregnation resin solution to form the resin. It is preferable to include.

(1次含浸工程)
各含浸工程で含浸する方法に特に規定はないが、1次含浸で乾式樹脂を直接シート状繊維基材に含浸し、乾燥炉内において溶剤乾燥と樹脂の硬化を同時に行わせる場合、乾燥硬化までの間に繊維基材の厚さ方向に樹脂移行が起こり、研磨クロスの厚み方向で樹脂量が不均一となる可能性がある。このため、次の含浸工程で含浸する樹脂が不均一になり物性のバラツキが発生する可能性がある。従って、1次含浸では湿式凝固法を使用することが好ましい。
(Primary impregnation step)
There is no particular restriction on the impregnation method in each impregnation step, but when the dry resin is impregnated directly into the sheet fiber substrate by primary impregnation, and solvent drying and resin curing are simultaneously performed in a drying furnace, until dry curing During this period, resin migration may occur in the thickness direction of the fiber base material, and the amount of resin may become non-uniform in the thickness direction of the polishing cloth. For this reason, the resin impregnated in the next impregnation step may become non-uniform, resulting in variations in physical properties. Therefore, it is preferable to use a wet coagulation method in the primary impregnation.

湿式凝固法とは、不織布等の基体を樹脂溶液に含浸させ、含浸後の不織布を樹脂に対して貧溶媒である水を主成分とする水系凝固液に常温で浸漬することで樹脂を凝固再生させることにより行う方法である。凝固液中では、不織布の繊維に付着している樹脂溶液の表面で樹脂溶液の溶媒(例えばDMF)と凝固液との置換の進行により樹脂が繊維の表面に凝固再生される。本発明の方法では、上記樹脂溶液に導電性微粒子を予め添加しておく。   The wet coagulation method impregnates a resin solution by impregnating a substrate such as a nonwoven fabric into a resin solution, and immersing the nonwoven fabric after impregnation in an aqueous coagulation liquid mainly composed of water, which is a poor solvent for the resin. It is a method performed by making it. In the coagulation liquid, the resin is coagulated and regenerated on the surface of the fiber by the progress of substitution of the resin solution solvent (for example, DMF) and the coagulation liquid on the surface of the resin solution adhering to the fibers of the nonwoven fabric. In the method of the present invention, conductive fine particles are added in advance to the resin solution.

洗浄・乾燥工程では、表面に樹脂が凝固再生された不織布基材を水等の洗浄液中で洗浄し不織布基材中に残存するDMF等の溶媒を除去する。洗浄後、不織布基材を洗浄液から引き上げ、マングルローラ等を用いて余分な洗浄液を絞り落とす。その後、不織布基材を、100℃〜150℃(例えば、約120℃)の乾燥機中で乾燥させてもよい。   In the washing / drying step, the nonwoven fabric base material on which the resin has been coagulated and regenerated is washed in a washing liquid such as water to remove the solvent such as DMF remaining in the nonwoven fabric base material. After washing, the nonwoven fabric substrate is pulled up from the washing liquid, and excess washing liquid is squeezed out using a mangle roller or the like. Then, you may dry a nonwoven fabric base material in the dryer of 100 to 150 degreeC (for example, about 120 degreeC).

ポリウレタン樹脂等の樹脂溶液に予め多価イソシアネート化合物のような架橋剤を含ませておき、前記乾燥を行った後、熱処理等により架橋剤による架橋反応を進行させ、架橋された樹脂層を更に作成してもよい。
熱処理工程では、例えば、乾燥後の不織布基材を、100〜130℃(例えば、約110℃)に設定された加熱機中でおよそ12〜36時間(例えば17時間)加熱する。この加熱処理により、凝固再生した樹脂の分子間に、樹脂溶液に予め含有された多価イソシアネート化合物等の架橋剤により架橋結合が形成される。ポリエステル繊維の表面には、架橋された樹脂による架橋樹脂層が形成される
A cross-linking agent such as a polyvalent isocyanate compound is previously contained in a resin solution such as a polyurethane resin, and after the drying, a cross-linking reaction by the cross-linking agent is advanced by heat treatment or the like to further create a cross-linked resin layer. May be.
In the heat treatment step, for example, the non-woven fabric substrate after drying is heated for about 12 to 36 hours (for example, 17 hours) in a heater set to 100 to 130 ° C. (for example, about 110 ° C.). By this heat treatment, a cross-linking bond is formed between the coagulated and regenerated resin molecules by a cross-linking agent such as a polyvalent isocyanate compound previously contained in the resin solution. A crosslinked resin layer is formed on the surface of the polyester fiber by a crosslinked resin.

前記乾燥後あるいは架橋後、更にバフ処理又はスライス処理工程を行ってもよい。
バフ処理工程では、第1層形成後(1次含浸後)の不織布基材の両面側にバフ処理を施してもよい。繊維の表面に熱硬化被覆層が形成された不織布基材では、両面側の樹脂量が多く、繊維間の空隙が狭められているため、両面側にバフ処理を施すことで、空隙が狭められた部分を除去する。このとき、樹脂量が多い部分を除去するためには、両面をそれぞれ、厚さ0.1〜0.7mmバフ処理する必要がある。
You may perform a buff process or a slice process process after the said drying or bridge | crosslinking.
In the buffing step, buffing may be performed on both sides of the nonwoven fabric substrate after the first layer is formed (after the primary impregnation). In a nonwoven fabric base material with a thermosetting coating layer formed on the surface of the fiber, the amount of resin on both sides is large, and the gap between fibers is narrowed, so the gap is narrowed by buffing on both sides. Remove the part. At this time, in order to remove a portion having a large amount of resin, both surfaces need to be buffed with a thickness of 0.1 to 0.7 mm.

(2次含浸工程)
2次含浸樹脂溶液に基体を含浸させて樹脂を形成する工程は、乾式凝固法により行うことが好ましい。乾式凝固法とは、モノマーあるいはプレポリマーを含む溶剤溶液あるいはポリマー(樹脂)を含む溶剤溶液に、不織布等の基体を浸漬して、モノマーについては加熱等により硬化させた後、溶剤を除去して行う。
本明細書において「樹脂溶液に前記基体を含浸させて樹脂を形成する工程」という場合、前記「樹脂溶液」には、モノマーあるいはプレポリマーを含む溶剤溶液のような溶液を含むものとする。
(Secondary impregnation step)
The step of forming the resin by impregnating the substrate with the secondary impregnating resin solution is preferably performed by a dry solidification method. The dry coagulation method means that a substrate such as a nonwoven fabric is immersed in a solvent solution containing a monomer or prepolymer or a solvent solution containing a polymer (resin), and the monomer is cured by heating, and then the solvent is removed. Do.
In the present specification, when the “step of forming a resin by impregnating the substrate with a resin solution”, the “resin solution” includes a solution such as a solvent solution containing a monomer or a prepolymer.

2次含浸工程についてより具体的に例を挙げて説明する。
一つの例は、不織布等の基体を、イソシアネート末端ウレタンプレポリマー、有機ジアミン化合物等のモノマーを含む樹脂の溶剤溶液に浸漬し、基体にモノマーを含浸させる。
他の例は、一次含浸で用いた溶剤溶液に含有された熱硬化性ポリウレタン樹脂の濃度の少なくとも1/2以下の濃度で熱硬化性ポリウレタン樹脂を溶解した溶剤溶液に含浸する。
前者の溶剤溶液を用いた場合、二次含浸工程では、イソシアネート末端ウレタンプレポリマと、有機ジアミン化合物とを、例えばメチルエチルケトン(以下、MEKと略記する。)に溶解した溶剤溶液に、両面がバフ処理された不織布中間体を浸漬した後、一次含浸工程と同様にマングルローラを用いて過剰な溶剤溶液を絞り落とし、不織布中間体に均一に含浸させる。
溶剤溶液の固形分濃度は、例えば、30〜70質量%の範囲とすることが好ましい。また、架橋剤の固形分濃度は、4〜20質量%が好ましい。二次含浸は、5〜40℃で行うことが好ましく、20〜30℃が更に好ましい。二次含浸をこの温度範囲で行うことで、溶剤溶液に含有された有機ジアミン化合物による架橋反応の進行が抑制される。
The secondary impregnation step will be described more specifically with an example.
In one example, a substrate such as a nonwoven fabric is immersed in a solvent solution of a resin containing a monomer such as an isocyanate-terminated urethane prepolymer or an organic diamine compound, and the substrate is impregnated with the monomer.
In another example, the solvent solution in which the thermosetting polyurethane resin is dissolved is impregnated at a concentration of at least ½ or less of the concentration of the thermosetting polyurethane resin contained in the solvent solution used in the primary impregnation.
When the former solvent solution is used, in the secondary impregnation step, both surfaces are buffed in a solvent solution in which an isocyanate-terminated urethane prepolymer and an organic diamine compound are dissolved in, for example, methyl ethyl ketone (hereinafter abbreviated as MEK). After immersing the non-woven fabric intermediate, excess solvent solution is squeezed out using a mangle roller in the same manner as in the primary impregnation step, and the non-woven fabric intermediate is uniformly impregnated.
The solid content concentration of the solvent solution is preferably in the range of 30 to 70% by mass, for example. The solid content concentration of the crosslinking agent is preferably 4 to 20% by mass. The secondary impregnation is preferably performed at 5 to 40 ° C, more preferably 20 to 30 ° C. By performing the secondary impregnation within this temperature range, the progress of the crosslinking reaction by the organic diamine compound contained in the solvent solution is suppressed.

また、導電性微粒子を含んだ樹脂を含浸する前(あるいは一次含浸工程前)に、繊維間に形成された空隙を維持するために、乾式樹脂を事前に含浸して繊維を仮止めしてもよい。この時の乾式樹脂の付着量は、繊維集合体質量(樹脂非含浸)の10質量%以下であることが好ましい。これにより繊維間に形成された空隙が維持されるため、繊維間に導電性微粒子を含んだ樹脂を十分含浸させることができる。   Also, before impregnating the resin containing conductive fine particles (or before the primary impregnation step), in order to maintain the void formed between the fibers, the fibers may be preliminarily impregnated and temporarily fixed. Good. At this time, the dry resin adhesion amount is preferably 10% by mass or less of the mass of the fiber assembly (resin non-impregnated). As a result, voids formed between the fibers are maintained, so that a resin containing conductive fine particles can be sufficiently impregnated between the fibers.

本発明の研磨パッドは、上述した樹脂含浸処理工程の後、任意に、乾燥、架橋、熱硬化処理等を行い、その後、0.5〜2.0mm程度の厚さにスライスすることが好ましい。
また、スライスした後、更に表面のバフ処理を行うことが好ましい。バフ処理は、バフ機により処理することができる。バフ機は表面が略平坦に形成された圧接ローラを備えている。圧接ローラの表層には、ゴム等の弾性材で弾性層が形成されている。圧接ローラの反対側には、樹脂含浸不織布を介して圧接ローラと対向するように、樹脂含浸不織布をバフ処理するためのバフローラが配置されている。バフローラの表面には、バフシートとしてのサンドペーパーが貼付されている。バフ処理時には、圧接ローラの表面に樹脂含浸不織布の裏面を圧接させる。樹脂含浸不織布が圧接ローラの表面で略平坦に支持された状態で、反対面側にバフローラでバフ処理が施される。バフ量は圧接ローラとバフローラの間隔(クリアランス)を適宜変更することで調整する。サンドペーパーの番手、バフ量、処理スピードは適宜調整するが、サンドペーパーの番手は#100〜#200、バフ量0.05〜1.0mm、処理スピードは0.5〜5m/minで処理することが好ましい。
The polishing pad of the present invention is preferably subjected to drying, crosslinking, thermosetting treatment, and the like after the resin impregnation treatment step described above, and then sliced to a thickness of about 0.5 to 2.0 mm.
Further, it is preferable to further buff the surface after slicing. The buffing process can be performed by a buffing machine. The buffing machine is provided with a pressure roller having a substantially flat surface. On the surface layer of the pressure roller, an elastic layer is formed of an elastic material such as rubber. A baffler for buffing the resin-impregnated nonwoven fabric is disposed on the opposite side of the pressure roller so as to face the pressure-contact roller via the resin-impregnated nonwoven fabric. Sandpaper as a buff sheet is attached to the surface of the baflora. At the time of buffing, the back surface of the resin-impregnated nonwoven fabric is pressed against the surface of the pressure roller. In a state where the resin-impregnated nonwoven fabric is supported substantially flat on the surface of the pressure roller, buffing is performed on the opposite surface side with a buffalo. The buff amount is adjusted by appropriately changing the interval (clearance) between the pressure roller and the buffalo. The sandpaper count, buff amount, and processing speed are adjusted as appropriate, but the sandpaper count is # 100 to # 200, the buff amount is 0.05 to 1.0 mm, and the processing speed is 0.5 to 5 m / min. It is preferable.

本発明の研磨パッドを製造する方法の一例を挙げると以下のとおりとなる。
(i)不織布基体に含浸した熱硬化性ポリウレタン樹脂を湿式凝固させた後乾燥し、熱処理により湿式凝固した熱硬化性ポリウレタン樹脂を架橋する第1の工程
(ii)第1の工程で樹脂層が形成された繊維集合体の両面をバフ処理する工程
(iii)バフ処理された繊維集合体をイソシアネート末端ウレタンプレポリマと架橋剤との溶剤溶液に含浸する2次含浸工程と、乾燥熱処理により2次含浸工程で含浸したイソシアネート末端ウレタンプレポリマを架橋剤で架橋させる工程
(iv)2次含浸後、架橋剤で架橋した繊維集合体をスライスする工程
(v)スライスした繊維集合体をバフ処理する工程
上記方法において、導電性微粒子は(i)及び/又は(iii)の工程で樹脂に添加する。
An example of a method for producing the polishing pad of the present invention is as follows.
(i) A first step of wet-coagulating a thermosetting polyurethane resin impregnated in a non-woven fabric substrate and then drying and crosslinking the thermosetting polyurethane resin wet-coagulated by heat treatment
(ii) Buffing both surfaces of the fiber assembly on which the resin layer is formed in the first step
(iii) A secondary impregnation step of impregnating the buffed fiber aggregate in a solvent solution of an isocyanate-terminated urethane prepolymer and a crosslinking agent, and a crosslinking agent obtained by impregnating the isocyanate-terminated urethane prepolymer impregnated in the secondary impregnation step by a drying heat treatment Cross-linking step
(iv) A step of slicing a fiber aggregate crosslinked with a crosslinking agent after secondary impregnation
(v) Step of buffing the sliced fiber aggregate In the above method, the conductive fine particles are added to the resin in the step (i) and / or (iii).

他の態様として、以下のように、熱硬化性ポリウレタン樹脂を用いて不織布基体に繊維を仮止めさせる工程を含む方法が挙げられる。
(a)不織布基体に乾式樹脂を含浸させたのち、乾燥、熱処理により樹脂を硬化させることで繊維を仮止めする工程
(b)工程(a)で仮止めした繊維集合体をスライスする工程
(i)工程(b)の繊維集合体、熱硬化性ポリウレタン樹脂を含浸し、湿式凝固させた後乾燥し、熱処理により湿式凝固した熱硬化性ポリウレタン樹脂を架橋する第1の工程
(ii)第1の工程で樹脂層が形成された繊維集合体の両面をバフ処理する工程
(iii)バフ処理された繊維集合体をイソシアネート末端ウレタンプレポリマと架橋剤との溶剤溶液に含浸する2次含浸工程と、乾燥熱処理により2次含浸工程で含浸したイソシアネート末端ウレタンプレポリマを架橋剤で架橋させる工程
(vi)2次含浸後、架橋剤で架橋した繊維集合体をスライスする工程
(v)スライスした繊維集合体をバフ処理する工程
上記方法において、導電性微粒子は(i)及び/又は(iii)の工程で樹脂に添加する。
As another embodiment, a method including a step of temporarily fixing fibers to a nonwoven fabric substrate using a thermosetting polyurethane resin can be given as follows.
(a) A process of temporarily fixing a fiber by impregnating a nonwoven fabric substrate with a dry resin and then curing the resin by drying and heat treatment
(b) A step of slicing the fiber assembly temporarily fixed in step (a)
(i) The first step of impregnating the fiber aggregate and thermosetting polyurethane resin in step (b), wet coagulating and then drying, and crosslinking the thermosetting polyurethane resin wet coagulated by heat treatment
(ii) Buffing both surfaces of the fiber assembly on which the resin layer is formed in the first step
(iii) A secondary impregnation step of impregnating the buffed fiber aggregate in a solvent solution of an isocyanate-terminated urethane prepolymer and a crosslinking agent, and a crosslinking agent obtained by impregnating the isocyanate-terminated urethane prepolymer impregnated in the secondary impregnation step by a drying heat treatment Cross-linking step
(vi) A step of slicing a fiber aggregate crosslinked with a crosslinking agent after secondary impregnation
(v) Step of buffing the sliced fiber aggregate In the above method, the conductive fine particles are added to the resin in the step (i) and / or (iii).

以下の工程により研磨パッドを製造した。
1)製造工程
(i)不織布基体(繊維名:ポリエステル)(目付:0.138g/cm3)(厚さ:3.4mm)に乾式樹脂バーノックDN950(DIC社製)(ポリイソシアネートプレポリマー/DMF+MEK、8質量%濃度)を含浸させたのち、乾燥(120℃)、熱処理(110℃、17時間)により樹脂を硬化させることで繊維を仮止めした。
(ii)前記(i)の工程で仮止めした不織布基体を厚さ2.2〜2.3mmにスライスした。
(iii)前記(ii)の不織布基体に熱硬化性ポリウレタン樹脂を含浸し、湿式凝固させた後乾燥し、熱処理(110℃、17時間)により、湿式凝固した熱硬化性ポリウレタン樹脂を架橋した(1次含浸工程)。
(iv)前記(iii)の工程で樹脂層が形成された繊維集合体の両面をバフ処理し、厚さ1.95mmの繊維集合体を得た。
(v)前記(iv)の工程でバフ処理した繊維集合体を、イソシアネート末端ウレタンプレポリマと架橋剤との溶剤溶液に含浸した後、乾燥(120℃)、熱処理(110℃、24時間)により含浸したイソシアネート末端ウレタンプレポリマを架橋剤で架橋した(2次含浸工程)。
(vi)前記(v)の工程後、架橋剤で架橋した繊維集合体を1.5〜1.6mm厚にスライスした。
(vii)スライスした繊維集合体を更にバフ処理して最終厚み1.3mmの研磨パッドを得た。
カーボンブラック(平均直径16nm,吸油量:69)は(iii)(v)の両工程(実施例6、7では一方の工程)で、エステル系ウレタン樹脂に分散させたカーボンブラックを所定のカーボンブラック量になるように樹脂に添加した。
比較例3では、カーボンブラックの代わりにシリカ(粒径:約20nm、比重1.070〜1.100)を使用した。
各樹脂、カーボンブラック、架橋剤、溶剤の量を、表1及び2に示した。
なお、仮止め工程における乾式樹脂の付着量は、繊維集合体質量(樹脂非含浸)の10質量%であった。一次含浸樹脂の付着量は、繊維集合体質量の75質量%であった。二次含浸樹脂の付着量は、繊維集合体質量の65質量%であった。従って、仮止め樹脂、一次含浸樹脂及び二次含浸樹脂の合計付着量は、繊維集合体質量の150質量%であった。
A polishing pad was produced by the following steps.
1) Manufacturing process
(i) Non-woven fabric substrate (fiber name: polyester) (weight: 0.138 g / cm 3 ) (thickness: 3.4 mm) and dry resin Bernock DN950 (manufactured by DIC) (polyisocyanate prepolymer / DMF + MEK, 8% by mass) After the impregnation, the fiber was temporarily fixed by curing the resin by drying (120 ° C.) and heat treatment (110 ° C., 17 hours).
(ii) The nonwoven fabric substrate temporarily fixed in the step (i) was sliced to a thickness of 2.2 to 2.3 mm.
(iii) The non-woven fabric substrate of (ii) is impregnated with a thermosetting polyurethane resin, wet-coagulated and then dried, and the wet-coagulated thermosetting polyurethane resin is crosslinked by heat treatment (110 ° C., 17 hours) ( Primary impregnation step).
(iv) Both surfaces of the fiber assembly on which the resin layer was formed in the step (iii) were buffed to obtain a fiber assembly having a thickness of 1.95 mm.
(v) After impregnating the fiber aggregate buffed in the step (iv) with a solvent solution of an isocyanate-terminated urethane prepolymer and a crosslinking agent, drying (120 ° C.) and heat treatment (110 ° C., 24 hours) The impregnated isocyanate-terminated urethane prepolymer was crosslinked with a crosslinking agent (secondary impregnation step).
(vi) After the step (v), the fiber assembly crosslinked with a crosslinking agent was sliced to a thickness of 1.5 to 1.6 mm.
(vii) The sliced fiber assembly was further buffed to obtain a polishing pad having a final thickness of 1.3 mm.
Carbon black (average diameter 16 nm, oil absorption: 69) is a predetermined carbon black obtained by dispersing carbon black dispersed in an ester urethane resin in both steps (iii) and (v) (one step in Examples 6 and 7). It added to resin so that it might become quantity.
In Comparative Example 3, silica (particle diameter: about 20 nm, specific gravity 1.070 to 1.100) was used instead of carbon black.
The amounts of each resin, carbon black, crosslinking agent and solvent are shown in Tables 1 and 2.
In addition, the adhesion amount of the dry resin in the temporary fixing step was 10% by mass of the fiber aggregate mass (resin non-impregnated). The adhesion amount of the primary impregnation resin was 75% by mass of the mass of the fiber assembly. The adhesion amount of the secondary impregnating resin was 65% by mass of the mass of the fiber assembly. Therefore, the total adhesion amount of the temporary fixing resin, the primary impregnation resin and the secondary impregnation resin was 150% by mass of the mass of the fiber assembly.

表1及び2における略号の意味を以下に記載する。
MDI:ジフェニルメタン−4,4’−ジイソシアネート
MBOCA:4,4’−メチレン−ビス[2−クロロアニリン]
DMF:ジメチルホルムアミド
添加剤A:成膜安定剤、セルロース系添加剤(アセチルブチルセルロース)
The meanings of the abbreviations in Tables 1 and 2 are described below.
MDI: Diphenylmethane-4,4′-diisocyanate MBOCA: 4,4′-methylene-bis [2-chloroaniline]
DMF: Dimethylformamide additive A: Film forming stabilizer, cellulose additive (acetylbutylcellulose)

2)研磨評価方法
(i)研磨方法
研磨装置にSiC基板、研磨パッドをセットし、研磨剤を間欠的にパッドに滴下しながら研磨した。
研磨剤はDSC−0901((株)フジミインコーポレーテッド製)を使用し、1分間に12ccを研磨パッドに滴下した。定盤の回転速度は35rpmとした。
加圧ヘッドによりSiC基板を研磨パッドに押し付ける圧力は0.1MPa(530g/cm2)とした。
尚、SiC基板は3インチ(直径7.62cm)を5枚使用してSi面の研磨を行った。研磨時間は6時間行った。
2) Polishing evaluation method
(i) Polishing method A SiC substrate and a polishing pad were set in a polishing apparatus, and polishing was performed while an abrasive was dropped on the pad intermittently.
As the abrasive, DSC-0901 (manufactured by Fujimi Incorporated) was used, and 12 cc was dropped onto the polishing pad per minute. The rotation speed of the platen was 35 rpm.
The pressure for pressing the SiC substrate against the polishing pad by the pressure head was 0.1 MPa (530 g / cm 2 ).
The SiC surface was polished using five SiC substrates of 3 inches (diameter 7.62 cm). The polishing time was 6 hours.

(ii)物性
(厚さ)
日本工業規格(JIS K6550)に記載された厚さ測定方法に準じて、ポリウレタンシートの厚さを測定した。すなわち、ポリウレタンシートに厚さ方向に初荷重として1cm2あたり100gの荷重をかけた(負加した)ときのシート厚みを測定した。シートを縦10cm×横10cmの100ピースに切り分け、1ピースにつき四隅および中心部の厚みをダイヤルゲージ(最小目盛り0.01mm)を使用して最小目盛りまで読み取り計測し、5点の平均値を1ピースの厚みとした。シートの平均厚みは、100ピースについてそれぞれ測定した厚みの平均値とした。
(ii) Physical properties (thickness)
The thickness of the polyurethane sheet was measured according to the thickness measurement method described in Japanese Industrial Standard (JIS K6550). That is, the sheet thickness was measured when a load of 100 g per 1 cm 2 was applied (added) to the polyurethane sheet as the initial load in the thickness direction. The sheet is cut into 100 pieces of 10 cm in length and 10 cm in width, and the thickness of the four corners and the center of each piece is read and measured to the minimum scale using a dial gauge (minimum scale 0.01 mm), and the average value of 5 points is 1 It was set as the thickness of the piece. The average thickness of the sheet was the average thickness measured for 100 pieces.

(A硬度)
A硬度は、JIS K7311に準じて測定した。
(密度g/cm3
所定サイズの大きさに切り出した試料の重量(g)を測定して、サイズから体積(g/cm3)を求めることにより算出した。
(圧縮率%)
圧縮率は、JIS L 1021に従い、圧縮時の厚み減少分を測定し、圧縮前の厚さに対する圧縮時の厚み減少分の百分率を算出した。
(圧縮弾性率%)
圧縮率は、JIS L 1021に従い算出した。
(テーバー摩耗(mg/1000回))
日本工業規格(JIS K 6902)のテーバー摩耗試験に準じた方法に従い測定した。
(A hardness)
A hardness was measured according to JIS K7311.
(Density g / cm 3 )
The weight (g) of the sample cut into a predetermined size was measured, and the volume (g / cm 3 ) was calculated from the size.
(Compression rate%)
The compression rate was measured in accordance with JIS L 1021, and the thickness reduction during compression was measured, and the percentage of thickness reduction during compression relative to the thickness before compression was calculated.
(Compressive modulus%)
The compression rate was calculated according to JIS L 1021.
(Taber wear (mg / 1000 times))
It measured according to the method according to the Taber abrasion test of Japanese Industrial Standard (JIS K 6902).

(iii)顕微鏡写真
実施例3の研磨パッドの断面の顕微鏡写真(50倍)を図1に示す。
実施例3の研磨パッドの表面(上面)の顕微鏡写真(50倍)を図2に示す。
(iii) Micrograph A micrograph (50 times) of a cross section of the polishing pad of Example 3 is shown in FIG.
The microscope picture (50 times) of the surface (upper surface) of the polishing pad of Example 3 is shown in FIG.

(iv)評価方法
・レート:研磨前後の重量を測定して減少量を算出した(n=5)。SiC密度=3.22g/cm3のものを使用した。
・スクラッチ測定:コンフォーカル(共焦点)顕微鏡を使用して基板1枚当たりのスクラッチ数を測定した。
(iv) Evaluation method and rate: The amount of decrease was calculated by measuring the weight before and after polishing (n = 5). The SiC density = 3.22 g / cm 3 was used.
Scratch measurement: The number of scratches per substrate was measured using a confocal microscope.

表1及び表2から以下のことが明らかである。
本発明の導電性微粒子であるカーボンブラックを0.5〜18質量%含む場合には、それぞれ、研削量、研磨レートが十分に大きく、かつスクラッチ数を低減することができた(実施例1〜8)。なお、1次含浸樹脂のみにカーボンブラックを添加した場合(実施例6)には、双方に添加した場合(実施例3)と比較して研磨レートはほぼ同等であったが、スクラッチ数の低減効果が弱かった。
一方、カーボンブラックを全く含まない場合には、研磨レートの低下はあまり見られないが、スクラッチ数は1.4個/基板1枚(5回平均)(研磨前は無数のスクラッチあり)であり、低減できなかった(比較例1)。また、カーボンブラックを18質量%より多く添加した場合には、研磨レートが低下し、更にスクラッチも十分に低減できなかった(比較例2)。カーボンブラックをシリカに変更した場合には、スクラッチの低減効果が無かった(比較例3)。
From Tables 1 and 2, the following is clear.
When carbon black, which is the conductive fine particles of the present invention, was contained in an amount of 0.5 to 18% by mass, the grinding amount and polishing rate were sufficiently large, and the number of scratches could be reduced (Examples 1 to 8). In addition, when carbon black was added only to the primary impregnating resin (Example 6), the polishing rate was almost the same as when it was added to both (Example 3), but the number of scratches was reduced. The effect was weak.
On the other hand, when carbon black is not included at all, the polishing rate is not significantly reduced, but the number of scratches is 1.4 / one substrate (average of 5 times) (there are countless scratches before polishing). , Could not be reduced (Comparative Example 1). Further, when carbon black was added in an amount of more than 18% by mass, the polishing rate was lowered and the scratch could not be sufficiently reduced (Comparative Example 2). When carbon black was changed to silica, there was no scratch reduction effect (Comparative Example 3).

Claims (11)

ポリビニルアルコールを含まない研磨布基体に樹脂を含浸させてなる研磨パッドであって、前記樹脂が、乾燥後の樹脂全質量に対して、0.5〜18質量%の導電性微粒子を含むことを特徴とする、研磨パッド。 A polishing pad obtained by impregnating a polishing cloth base not containing polyvinyl alcohol with a resin, wherein the resin contains 0.5 to 18% by mass of conductive fine particles based on the total mass of the resin after drying. A characteristic polishing pad. 研磨布基体が不織布である、請求項1記載の研磨パッド。   The polishing pad according to claim 1, wherein the polishing cloth substrate is a nonwoven fabric. 化合物半導体用である、請求項1または2記載の研磨パッド。   The polishing pad according to claim 1 or 2, which is used for a compound semiconductor. 前記含浸樹脂が1次含浸樹脂と2次含浸樹脂を含み、導電性微粒子が、2次含浸樹脂のみに又は1次含浸樹脂及び2次含浸樹脂の双方に含まれている、請求項1〜3のいずれか一項に記載の研磨パッド。   The said impregnating resin contains primary impregnation resin and secondary impregnation resin, and electroconductive fine particles are contained only in secondary impregnation resin or in both primary impregnation resin and secondary impregnation resin. The polishing pad as described in any one of these. 導電性微粒子が、カーボンブラック及びナノダイヤからなる群より選択される、請求項1〜4のいずれか一項に記載の研磨パッド。   The polishing pad according to any one of claims 1 to 4, wherein the conductive fine particles are selected from the group consisting of carbon black and nanodiamond. 樹脂が、熱可塑性樹脂、熱硬化性樹脂、エラストマー、及び生ゴムからなる群より選択される、請求項1〜5のいずれか一項に記載の研磨パッド。   The polishing pad according to any one of claims 1 to 5, wherein the resin is selected from the group consisting of a thermoplastic resin, a thermosetting resin, an elastomer, and raw rubber. ポリビニルアルコールを含まない研磨布基体を用意し、乾燥後の樹脂全質量に対して0.5〜18質量%の導電性微粒子を含む樹脂溶液に前記基体を含浸させて樹脂を形成する工程を含む、研磨パッドの製造方法。 Providing a polishing cloth base containing no polyvinyl alcohol, and impregnating the base with a resin solution containing 0.5 to 18% by weight of conductive fine particles based on the total weight of the resin after drying. A method of manufacturing a polishing pad. 樹脂溶液に研磨布基体を含浸させて樹脂を形成する工程が、1次含浸樹脂溶液に研磨布基体を含浸させて樹脂を形成する工程及び2次含浸樹脂溶液に研磨布基体を含浸させて樹脂を形成する工程を含み、導電性微粒子が、2次含浸樹脂溶液のみに又は1次含浸樹脂溶液及び2次含浸樹脂溶液の双方に含まれていることを特徴とする、請求項7に記載の研磨パッドの製造方法。   The step of forming a resin by impregnating a polishing cloth substrate with a resin solution includes the step of forming a resin by impregnating the polishing cloth substrate with a primary impregnation resin solution and the step of impregnating the polishing cloth substrate with a secondary impregnation resin solution. The method according to claim 7, wherein the conductive fine particles are contained only in the secondary impregnation resin solution or in both the primary impregnation resin solution and the secondary impregnation resin solution. Manufacturing method of polishing pad. 2次含浸樹脂が乾式凝固法により形成されることを特徴とする、請求項8に記載の研磨パッドの製造方法。   The method for producing a polishing pad according to claim 8, wherein the secondary impregnating resin is formed by a dry solidification method. 1次含浸樹脂が湿式凝固法により形成されることを特徴とする、請求項8または9に記載の研磨パッドの製造方法。   The method for producing a polishing pad according to claim 8 or 9, wherein the primary impregnation resin is formed by a wet coagulation method. 研磨布基体が不織布であり、前記樹脂溶液に研磨布基体を含浸させて樹脂を形成する工程が、導電性微粒子を含む樹脂溶液に前記不織布を含浸させる前に、前記不織布を樹脂に浸漬する仮止め工程を更に含むことを特徴とする、請求項8〜10のいずれか一項に記載の研磨パッドの製造方法。   The polishing cloth base is a non-woven fabric, and the step of impregnating the resin solution with the polishing cloth base to form a resin includes immersing the non-woven cloth in the resin before impregnating the non-woven cloth with the resin solution containing conductive fine particles. The method for producing a polishing pad according to claim 8, further comprising a stopping step.
JP2012044489A 2012-02-29 2012-02-29 Polishing pad and manufacturing method thereof Active JP5990830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044489A JP5990830B2 (en) 2012-02-29 2012-02-29 Polishing pad and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044489A JP5990830B2 (en) 2012-02-29 2012-02-29 Polishing pad and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013182952A JP2013182952A (en) 2013-09-12
JP5990830B2 true JP5990830B2 (en) 2016-09-14

Family

ID=49273421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044489A Active JP5990830B2 (en) 2012-02-29 2012-02-29 Polishing pad and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5990830B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6654357B2 (en) * 2015-04-02 2020-02-26 富士紡ホールディングス株式会社 Polishing pad, method for manufacturing polishing pad and polishing method
KR102597982B1 (en) * 2015-10-27 2023-11-02 후지보 홀딩스 가부시키가이샤 Wrapping material and its manufacturing method, and manufacturing method of abrasive material
JP6835517B2 (en) * 2016-09-28 2021-02-24 富士紡ホールディングス株式会社 Polishing pad and its manufacturing method, and manufacturing method of polished material
US11565366B2 (en) 2016-06-01 2023-01-31 Fujibo Holdings, Inc. Polishing pad and method for producing the same, and method for producing polished product
JP6800617B2 (en) * 2016-06-01 2020-12-16 富士紡ホールディングス株式会社 Polishing pad and its manufacturing method, and manufacturing method of polished material
JP6912239B2 (en) * 2017-03-28 2021-08-04 富士紡ホールディングス株式会社 Wrapping material and its manufacturing method, and polishing material manufacturing method
JP7295624B2 (en) * 2018-09-28 2023-06-21 富士紡ホールディングス株式会社 Polishing pad, method for producing same, and method for producing abrasive product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066908A (en) * 2000-08-29 2002-03-05 Toray Ind Inc Polishing pad, polishing device, and polishing method
JP2002283221A (en) * 2001-03-21 2002-10-03 Rodel Nitta Co Abrasive cloth
US6685540B2 (en) * 2001-11-27 2004-02-03 Cabot Microelectronics Corporation Polishing pad comprising particles with a solid core and polymeric shell
JP2004281995A (en) * 2003-01-24 2004-10-07 Mitsui Chemicals Inc Abrasive pad
WO2009002124A1 (en) * 2007-06-27 2008-12-31 Kolon Industries, Inc Polishing pad and method of manufacturing the same
JP5385653B2 (en) * 2009-03-25 2014-01-08 株式会社アドマテックス Polishing pad and polishing method
JP2011148082A (en) * 2009-12-25 2011-08-04 Filwel:Kk Abrasive cloth

Also Published As

Publication number Publication date
JP2013182952A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5990830B2 (en) Polishing pad and manufacturing method thereof
JP6324958B2 (en) Polishing pad and manufacturing method thereof
JP6608239B2 (en) Polishing pad
KR102372553B1 (en) Polishing pad, manufacturing method thereof, and manufacturing method of abrasive article
TWI703253B (en) Lapping material and method for producing the same, and method for producing polished article
JP5762668B2 (en) Polishing pad
JP2017092423A (en) Polishing pad and method for manufacturing the same
JP6800617B2 (en) Polishing pad and its manufacturing method, and manufacturing method of polished material
TWI515238B (en) Preparation method of poly-urethane mounting pad
JP6835517B2 (en) Polishing pad and its manufacturing method, and manufacturing method of polished material
JP6868454B2 (en) Polishing pad and its manufacturing method
JP6912239B2 (en) Wrapping material and its manufacturing method, and polishing material manufacturing method
US20150050866A1 (en) Polishing pad, polishing apparatus and method for manufacturing polishing pad
WO2019073956A1 (en) Holding pad and production method therefor
JP2011009584A (en) Polishing pad
JP2019198957A (en) Polishing sheet
TWI290879B (en) Polishing pad and method of producing same
JP2020032469A (en) Polishing sheet
JP2011067924A (en) Holding pad
JP2011086704A (en) Semiconductor wafer polishing system and method
TWM457604U (en) Polishing pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5990830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250