JP5385653B2 - Polishing pad and polishing method - Google Patents

Polishing pad and polishing method Download PDF

Info

Publication number
JP5385653B2
JP5385653B2 JP2009074808A JP2009074808A JP5385653B2 JP 5385653 B2 JP5385653 B2 JP 5385653B2 JP 2009074808 A JP2009074808 A JP 2009074808A JP 2009074808 A JP2009074808 A JP 2009074808A JP 5385653 B2 JP5385653 B2 JP 5385653B2
Authority
JP
Japan
Prior art keywords
polishing
group
abrasive grains
polishing pad
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009074808A
Other languages
Japanese (ja)
Other versions
JP2010228009A (en
Inventor
美幸 山田
武 楊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2009074808A priority Critical patent/JP5385653B2/en
Publication of JP2010228009A publication Critical patent/JP2010228009A/en
Application granted granted Critical
Publication of JP5385653B2 publication Critical patent/JP5385653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体ウェハなどに用いられるSiウェハ、SiCウェハ、プラスチック製レンズなどの機能性材料の研磨に好適な研磨用パッド及び研磨方法に関する。   The present invention relates to a polishing pad and a polishing method suitable for polishing functional materials such as Si wafers, SiC wafers, and plastic lenses used for semiconductor wafers.

半導体ウェハなどに用いられるSiウェハ、SiCウェハ、プラスチック製レンズなどの機能性材料は、その性能を発揮するために、高品位、高平滑な面を得る必要がある。高品位、高平滑な面の形成は困難であるが、できるだけ短時間での加工が望まれる。機能性材料として例を挙げればシリコン半導体とその応用デバイスのCMP、高速動作、受発光性能が求められる化合物半導体、パワーデバイス用のSiCやGaN、大容量化が進むハードディスク基板、高屈折率で難加工材になってきたプラスチック製レンズがある。   Functional materials such as Si wafers, SiC wafers, and plastic lenses used for semiconductor wafers need to obtain high quality and high smooth surfaces in order to exhibit their performance. Although it is difficult to form a high-quality, high-smooth surface, processing in as short a time as possible is desired. Examples of functional materials include CMP of silicon semiconductors and their application devices, high-speed operation, compound semiconductors that require light emitting and receiving performance, SiC and GaN for power devices, hard disk substrates that are becoming larger in capacity, difficult due to high refractive index There is a plastic lens that has become a processed material.

機能性材料の加工工程の中でも研磨工程は、形状、面精度などを作り込む工程を担っているため重要な工程である。今日ではシリコンの研磨と同様に化学的機械研磨が適用されている。また、すべてにおいて高品位・低コストな研磨加工が求められている。そこで、この化学的機械研磨における研磨特性を左右する重要な因子である研磨材、研磨工具に関する研究開発が進められている。   Among functional material processing steps, the polishing step is an important step because it is responsible for forming the shape and surface accuracy. Today, chemical mechanical polishing is applied as well as silicon polishing. In addition, high-quality and low-cost polishing is required in all cases. Therefore, research and development on abrasives and polishing tools, which are important factors affecting the polishing characteristics in this chemical mechanical polishing, are underway.

例えば、特許文献1では、可溶性シラン化合物を用いて主にタンタルを研磨する方法が提案されている。そして、特許文献2では、研削砥石ヘッドの回転ブレ及び被加工物を担持するターンテーブルの回転ブレを0.1μm以下とした超精密研削を行い、続いて研削砥石を外して研磨工具(パッド、フィルム)に交換して超精密研削と同一方式で鏡面研磨を行う超精密加工方法が開示されている。また、特許文献2には、更に、同一の超精密研削装置に同一の砥石ヘッドを2組並列させ、一方に研削砥石を、他方に研磨工具(パッド、フィルム)を装着し、研削終了後に被加工物を移動させて研磨を行う超精密加工方法が開示されている。これら特許文献2に記載の加工方法は研削と研磨とを同一の装置にて行うことが可能であり、高能率化且つ低コスト化を目的とするものである。また、特許文献3では、シリコン基板に対して研磨促進剤としてのヒドラジン化合物を用いることにより研磨能率の向上を図る方法が開示されている。   For example, Patent Document 1 proposes a method of mainly polishing tantalum using a soluble silane compound. In Patent Document 2, ultra-precise grinding is performed in which the rotational shake of the grinding wheel head and the turntable of the turntable carrying the workpiece are 0.1 μm or less, and then the grinding wheel is removed and the polishing tool (pad, An ultra-precise processing method is disclosed in which mirror polishing is performed in the same manner as ultra-precision grinding by exchanging with a film). Further, in Patent Document 2, two sets of the same grinding wheel head are arranged in parallel in the same ultraprecision grinding apparatus, a grinding wheel is mounted on one side, and a polishing tool (pad, film) is mounted on the other side. An ultra-precise machining method is disclosed in which polishing is performed by moving a workpiece. These processing methods described in Patent Document 2 can perform grinding and polishing with the same apparatus, and are intended to improve efficiency and reduce costs. Patent Document 3 discloses a method for improving the polishing efficiency by using a hydrazine compound as a polishing accelerator for a silicon substrate.

特表2004−502824号公報Japanese translation of PCT publication No. 2004-502824 特開平5−285807号公報Japanese Patent Laid-Open No. 5-285807 特開平7−228863号公報JP 7-228863 A

ここで、特許文献1の技術では吸着力が弱く、研磨材が被加工物や研磨工具に保持されがたいとの問題点があった。そして、特許文献2の技術では新規装置の導入が必要な上、鏡面加工が適用できる程度にまで研削を行う必要があり、研削用の砥石の管理が難しいといった問題点がある。また、特許文献3の技術ではヒドラジン化合物による研磨促進効果は認められるものの、ヒドラジン化合物は環境負荷が高いことが問題になる。更に、特許文献3の技術では、研磨材自身の改良を組み合わせることによる研磨性能の向上が見込まれる。   Here, the technique of Patent Document 1 has a problem that the adsorptive force is weak and the abrasive is difficult to be held by the workpiece or the polishing tool. In the technique of Patent Document 2, it is necessary to introduce a new apparatus, and it is necessary to perform grinding to such an extent that mirror finishing can be applied, which makes it difficult to manage a grinding wheel for grinding. Moreover, although the technique of Patent Document 3 recognizes the polishing acceleration effect by the hydrazine compound, the hydrazine compound has a problem that the environmental load is high. Furthermore, in the technique of Patent Document 3, an improvement in polishing performance is expected by combining improvements of the abrasive itself.

また、近年の機能性材料の応用製品における高精度化、高機能化に伴い、研磨工程においても更なる精度向上に加え、環境負荷低減などが要求されている。   In addition, with the recent increase in accuracy and functionality in functional material applied products, in addition to further improvement in accuracy in the polishing process, there has been a demand for reduction of environmental impact.

本発明では上記課題に鑑み完成したものであり、機能性材料全般の研磨を高能率で行うことが可能であり、表面粗さ、平坦度、形状安定性などの点で良好な研磨特性を確保できる研磨用パッド及び研磨方法を提供することを解決すべき課題とする。   The present invention has been completed in view of the above problems, and it is possible to polish the functional materials in general with high efficiency, and to ensure good polishing characteristics in terms of surface roughness, flatness, shape stability, etc. An object to be solved is to provide a polishing pad and a polishing method that can be used.

上記課題を解決する請求項1に係る本発明の研磨用パッドの特徴は、分子中に下記式(A)で示す部分構造を持つオルガノシラザン化合物に接触して処理した微小粉体である疎水化砥粒を含有する研磨用砥粒と、
前記研磨用砥粒を内在させる多孔質体を形成する基材と、を有することにある。
The polishing pad of the present invention according to claim 1 which solves the above-mentioned problem is characterized in that it is a hydrophobic powder which is a fine powder processed by contacting an organosilazane compound having a partial structure represented by the following formula (A) in the molecule. Abrasive grains containing abrasive grains, and
And a base material that forms a porous body in which the abrasive grains are contained.

Figure 0005385653
Figure 0005385653

(式(A)中、*で表される部分にて他の部分と結合される。他の部分は複数の*の間を連結する構造であっても良い。Xは水素、炭化水素基から選択される。)
上記課題を解決する請求項2に係る本発明の研磨用パッドの特徴は、請求項1において、前記微小粉体はシリカ、及び/又は表面シランカップリング剤処理されたシリカから形成されることにある。
(In the formula (A), the portion represented by * is bonded to another portion. The other portion may be a structure connecting between a plurality of *. X is a hydrogen or hydrocarbon group. Selected.)
The polishing pad of the present invention according to claim 2 that solves the above problem is characterized in that, in claim 1, the fine powder is formed of silica and / or silica treated with a surface silane coupling agent. is there.

上記課題を解決する請求項3に係る本発明の研磨用パッドの特徴は、請求項1又は2において、前記研磨用砥粒は体積平均粒径が0.01μm以上、5μm以下であることにある。   A feature of the polishing pad of the present invention according to claim 3 that solves the above-mentioned problem is that, in claim 1 or 2, the polishing abrasive has a volume average particle diameter of 0.01 μm or more and 5 μm or less. .

上記課題を解決する請求項4に係る本発明の研磨用パッドの特徴は、請求項1〜3の何れか1項において、前記研磨用砥粒の含有量は全体の質量を基準として5〜90質量%であることにある。   The feature of the polishing pad of the present invention according to claim 4 that solves the above problem is that, in any one of claims 1 to 3, the content of the polishing abrasive grains is 5 to 90 on the basis of the total mass. It is in mass%.

上記課題を解決する請求項5に係る本発明の研磨用パッドの特徴は、請求項1〜4の何れか1項において、前記基材の表面は溝部をもつことにある。   A feature of the polishing pad of the present invention according to claim 5 that solves the above problem is that, in any one of claims 1 to 4, the surface of the substrate has a groove.

上記課題を解決する請求項6に係る本発明の研磨用パッドの特徴は、請求項1〜5の何れか1項において、前記基材は樹脂組成物から形成されており、
溶融した前記樹脂組成物、又は、溶媒に溶解させた前記樹脂組成物と、前記研磨用砥粒とを混合後、前記樹脂組成物を固形化して形成されていることにある。
The feature of the polishing pad of the present invention according to claim 6 that solves the above problem is that, in any one of claims 1 to 5, the base material is formed from a resin composition,
The molten resin composition or the resin composition dissolved in a solvent is mixed with the abrasive grains, and then the resin composition is solidified.

上記課題を解決する請求項7に係る研磨方法の特徴は、請求項1〜6の何れか1項に記載の研磨用パッドを用い、
固形物を含有しない研磨液を用いて研磨を行うことにある。
The feature of the polishing method according to claim 7 that solves the above problem is the use of the polishing pad according to any one of claims 1 to 6,
Polishing is performed using a polishing liquid that does not contain solid matter.

請求項1に係る発明においては、分子中に上記式(A)で示される部分構造を持つオルガノシラザン化合物に接触して処理した微小粉体である疎水化砥粒を含有する研磨用砥粒を有することにより、研磨用砥粒の基材への吸着力が向上し、研磨用砥粒の有効利用を図ることが可能になる。ここで、基材は多孔質であるため、その孔中に研磨用砥粒を保持することができる。その孔は連続であっても、不連続であっても良い。不連続である場合には基材の摩耗と共に孔の内部に保持された研磨用砥粒が外部に露出して研磨作用を発揮する。特に請求項2のようなシリカからなる微小粉体を採用したり、請求項3のような粒径分布の研磨用砥粒を採用したりすることで、更に高い研磨能を発揮することができる。   In the invention which concerns on Claim 1, the abrasive grain containing the hydrophobized abrasive grain which is the fine powder processed in contact with the organosilazane compound which has the partial structure shown by said Formula (A) in a molecule | numerator is included. By having it, the adsorption | suction power to the base material of the abrasive grain for polishing improves and it becomes possible to aim at the effective utilization of the abrasive grain for grinding | polishing. Here, since the base material is porous, the abrasive grains for polishing can be held in the holes. The holes may be continuous or discontinuous. In the case of discontinuity, the abrasive grains held inside the hole are exposed to the outside along with the wear of the base material and exhibit a polishing action. In particular, by adopting a fine powder made of silica as in claim 2 or adopting abrasive grains having a particle size distribution as in claim 3, a higher polishing ability can be exhibited. .

請求項4に係る発明においては、研磨用砥粒の含有量を規定することにより高い研磨能率を発揮することが可能になった。   In the invention which concerns on Claim 4, it became possible to exhibit high polishing efficiency by prescribing | regulating content of the abrasive grain for polishing.

請求項5に係る発明においては、基材の表面に溝部を備えることで研磨により生成する被研磨物を効果的に研磨面から除去することが可能になり、常に高い研磨能力を保つことができる。   In the invention which concerns on Claim 5, it becomes possible to remove the to-be-polished object produced | generated by grinding | polishing effectively from a grinding | polishing surface by providing a groove part in the surface of a base material, and can always maintain a high grinding | polishing capability. .

請求項6に係る発明においては、基材を樹脂組成物から形成し、溶融乃至溶液化した樹脂組成物中に研磨用砥粒を混合・分散させることにより、基材中に均一に研磨用砥粒を分散させることができる。また、分散させる研磨用砥粒は前述したように樹脂組成物への親和性が高く耐久性に優れる。   In the invention according to claim 6, the base material is formed from the resin composition, and the abrasive grains are mixed and dispersed in the melted or solutionized resin composition, thereby uniformly polishing the base material in the base material. The grains can be dispersed. Further, the abrasive grains to be dispersed have high affinity for the resin composition and excellent durability as described above.

請求項7に係る発明においては、本発明の研磨用パッドを用い、固形物を用いずに研磨を行うため、固形物に由来する環境への負荷を少なくできる。通常の研磨では研磨用パッドと被研磨物との間にも固形物としての研磨用砥粒を含む研磨液を介在させている。   In the invention which concerns on Claim 7, since it grind | polishes without using a solid substance using the polishing pad of this invention, the load to the environment originating in a solid substance can be decreased. In normal polishing, a polishing liquid containing polishing grains as a solid material is interposed between a polishing pad and an object to be polished.

本実施形態における研磨用砥粒と基材の孔との関係を示す概略断面図である。It is a schematic sectional drawing which shows the relationship between the abrasive grain for polishing in this embodiment, and the hole of a base material.

本発明の研磨用パッド及び研磨方法について、実施形態に基づき以下、詳細に説明する。   The polishing pad and the polishing method of the present invention will be described in detail below based on the embodiments.

(研磨用パッド)
本実施形態の研磨用パッドは研磨用砥粒と基材とを有する。本実施形態の研磨用パッドは膜状乃至板状の形態にすることができる。その場合には、何らかの固定部材に貼付して用いることが望ましい。固定部材上に貼付して被研磨物の表面に当接して相対移動させることにより、外部に露出する研磨用パッドに含まれる研磨用砥粒が被研磨物を研磨する。研磨用パッドは接着層、クッション層などを介して固定部材上に固定することができる。接着層は研磨用パッドを固定部材上に接着する作用を発揮し、クッション層は自身が撓むことにより研磨用パッドが被研磨物に密着できるようにする作用を発揮する。
(Polishing pad)
The polishing pad of the present embodiment has polishing abrasive grains and a substrate. The polishing pad of this embodiment can be in the form of a film or plate. In that case, it is desirable to affix to some fixing member. By affixing on the fixing member and abutting on the surface of the object to be polished, the abrasive grains contained in the polishing pad exposed to the outside polish the object to be polished. The polishing pad can be fixed on the fixing member via an adhesive layer, a cushion layer, or the like. The adhesive layer exhibits an effect of adhering the polishing pad onto the fixing member, and the cushion layer exhibits an effect of allowing the polishing pad to adhere to an object to be polished by bending itself.

研磨用砥粒は疎水化砥粒を含有する。疎水化砥粒の含有量は限定しないが研磨用砥粒全体の質量を基準として0.01質量%以上含有することが望ましく、0.1以上含有することがより望ましい。研磨用砥粒は体積平均粒径が0.01μm以上、5μm以下であることが望ましく、0.02、0.1下であることがより望ましい。研磨後の研磨面に必要とされる平滑度が大きい場合には研磨用砥粒の平均粒径は小さくすることが望ましいが、研磨速度向上の観点からは平均粒径は大きいことが望ましい。また、必要な平滑度に応じ、一定粒径(例えば、3μm、5μm)以上の研磨用砥粒を含有しない(又は含有量が制限される)ことが望ましい。   Polishing abrasive grains contain hydrophobized abrasive grains. The content of the hydrophobized abrasive grains is not limited, but is preferably 0.01% by mass or more, more preferably 0.1% or more based on the total mass of the abrasive grains for polishing. The polishing abrasive particles preferably have a volume average particle size of 0.01 μm or more and 5 μm or less, and more preferably 0.02 or 0.1. When the smoothness required for the polished surface after polishing is large, it is desirable to reduce the average particle size of the abrasive grains, but from the viewpoint of improving the polishing rate, it is desirable that the average particle size is large. Further, it is desirable not to contain abrasive grains having a certain particle size (for example, 3 μm, 5 μm) or more (or the content is limited) according to the required smoothness.

疎水化砥粒は素になる微小粉体に対して上記式(A)にて示される部分構造をもつシラザン化合物(以下、「シラザン化合物」と断り無く称する場合には上記式(A)の部分構造をもつシラザン化合物を示す。)を接触させて処理することにより製造されるものである。ここで、式(A)中、*で表される部分に連結される他の部分の構造は限定されないが、(a)炭化水素基のほか、(b)炭化水素基のうちの、炭素原子、及び/又は、炭素原子及び水素原子、の一部について、酸素又は窒素にて置換したもの、(c)水素原子の一部又は全部をハロゲンにて置換したものなどを採用できる。炭化水素基は複数の*の間を連結する構造であっても良く、その場合には本化合物は環状化合物になる。   A hydrophobized abrasive grain is a silazane compound having a partial structure represented by the above formula (A) with respect to a fine powder to be elementary (hereinafter referred to as “silazane compound” unless otherwise indicated) It is a silazane compound having a structure.) Produced by bringing it into contact. Here, in the formula (A), the structure of the other portion connected to the portion represented by * is not limited, but in addition to (a) a hydrocarbon group, (b) a carbon atom in the hydrocarbon group. And / or a part of carbon atom and hydrogen atom may be substituted with oxygen or nitrogen, or (c) a part or all of hydrogen atom may be substituted with halogen. The hydrocarbon group may have a structure in which a plurality of * are connected, in which case the present compound becomes a cyclic compound.

シラザン化合物としては下記一般式(1)にて表されるシラザン化合物、下記一般式(2)にて表されるシクロポリシラザン化合物、下記一般式(3)にて表される環状有機ケイ素化合物が望ましい。
(1):RSi-NH-SiR
The silazane compound is preferably a silazane compound represented by the following general formula (1), a cyclopolysilazane compound represented by the following general formula (2), or a cyclic organosilicon compound represented by the following general formula (3). .
(1): R 3 Si—NH—SiR 3 ,

Figure 0005385653
Figure 0005385653

シラザン化合物を微小粉体に接触させた後、加熱したり、そのまま放置したりできる。シラザン化合物を微小粉体に接触させる方法としては、シラザン化合物をそのまま微小粉体に混合する方法、シラザン化合物を適正な溶媒に溶解乃至分散させて微小粉体に混合する方法などがある。混合は撹拌などにより促進できる。   After the silazane compound is brought into contact with the fine powder, it can be heated or left as it is. Examples of the method for bringing the silazane compound into contact with the fine powder include a method in which the silazane compound is directly mixed with the fine powder, and a method in which the silazane compound is dissolved or dispersed in an appropriate solvent and mixed with the fine powder. Mixing can be facilitated by stirring or the like.

一般式(1)におけるRは炭素数1〜10、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基で、1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基からそれぞれ独立して選択可能である。また、上記1価炭化水素基はハロゲン基、水酸基、エステル基、エーテル基、アミド基、ウレイド基、ウレア基、シアノ基、ニトロ基、スルホン基等にて水素原子の1又は2以上を置換する置換アルキル基を含んでもよい。6つのRは、全て同一であっても、全て異なる基であっても、一部が同一であっても良い。好ましいシラザン化合物としてはヘキサメチルジシラザン、ヘキサエチルジシラザンを挙げることができ、より好ましくはヘキサメチルジシラザンが挙げられる。   R in the general formula (1) is a monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms, and examples of the monovalent hydrocarbon group include a methyl group, Alkyl groups such as ethyl group, propyl group, isopropyl group and butyl group, etc., preferably methyl group, ethyl group and propyl group, particularly preferably methyl group and ethyl group can be selected independently. The monovalent hydrocarbon group replaces one or more hydrogen atoms with a halogen group, hydroxyl group, ester group, ether group, amide group, ureido group, urea group, cyano group, nitro group, sulfone group, or the like. It may contain a substituted alkyl group. The six Rs may all be the same, may be different groups, or may be partly the same. Preferred examples of the silazane compound include hexamethyldisilazane and hexaethyldisilazane, and more preferred is hexamethyldisilazane.

一般式(2)におけるRは式(1)と同様であり、nは3〜10までの整数にて表される。好ましいシクロポリシラザン化合物としては1,1,3,3,5,5-ヘキサメチルシクロトリシラザン、1,1,3,3,5,5-ヘキサエチルシクロトリシラザンが挙げられる。Xは水素又は炭化水素基である。Xの炭化水素基は炭素数が1又は2程度であることが望ましい。   R in the general formula (2) is the same as that in the formula (1), and n is represented by an integer of 3 to 10. Preferred cyclopolysilazane compounds include 1,1,3,3,5,5-hexamethylcyclotrisilazane and 1,1,3,3,5,5-hexaethylcyclotrisilazane. X is hydrogen or a hydrocarbon group. The hydrocarbon group for X preferably has about 1 or 2 carbon atoms.

一般式(3)におけるR、X、nは式(1)と同等である。mは1〜nまでの整数にて表される。好ましい環状有機ケイ素化合物としては下記の構造の化合物(nが3、mが1)が挙げられる。   R, X, and n in the general formula (3) are the same as those in the formula (1). m is represented by an integer from 1 to n. Preferred cyclic organosilicon compounds include compounds having the following structure (n is 3, m is 1).

Figure 0005385653
Figure 0005385653

シラザン化合物の量としては特に限定しないが、微小粉体の単位表面積あたりのトリ1価炭化水素シリル基モル数が0.1〜15μmol/m、好ましくは0.5〜8μmol/m、となるように処理することが望ましい
微小粉体としては特に限定しないが、無機物であることが望ましく、シリカ、炭化ケイ素、アルミナ、窒化ホウ素など(これらの混合物を含む)が望ましい。微小粉体にシラザン化合物を接触させることにより、微小粉体の表面を疎水化する。微小粉体としては球状物、破砕物、球状物及び破砕物の混合物などが挙げられる。
The amount of the silazane compound is not particularly limited, but the number of moles of tri-monovalent hydrocarbon silyl groups per unit surface area of the fine powder is 0.1 to 15 μmol / m 2 , preferably 0.5 to 8 μmol / m 2 . Although it does not specifically limit as a fine powder which it is desirable to process so that it may be an inorganic substance and a silica, a silicon carbide, an alumina, boron nitride etc. (including these mixtures) are desirable. By bringing the silazane compound into contact with the fine powder, the surface of the fine powder is hydrophobized. Examples of the fine powder include a spherical product, a crushed product, a mixture of a sphere and a crushed product.

微小粉体はシラザン化合物による処理に加えて他の処理を行うことが出来る。他の処理はシラザン化合物による処理の前後に行うことも、シラザン化合物による処理と同時に行うことも出来る。他の処理としては疎水化できる処理が好ましい。例えば、シランカップリング剤、チタネート、ジルコニウム系カップリング剤、アニオン系界面活性剤、ノニオン系界面活性剤、シリコーンなどを微小粉体の表面に接触させて、化学反応を生じさせて表面を改質したり、物理的に吸着させて表面を改質することが出来る。   The fine powder can be subjected to other treatments in addition to the treatment with the silazane compound. Other treatments can be performed before or after the treatment with the silazane compound or simultaneously with the treatment with the silazane compound. As other treatments, treatments that can be hydrophobized are preferred. For example, silane coupling agents, titanates, zirconium coupling agents, anionic surfactants, nonionic surfactants, silicones, etc. are brought into contact with the surface of the fine powder to cause a chemical reaction to modify the surface. Or can be physically adsorbed to modify the surface.

疎水化砥粒以外に含有する研磨用砥粒としては特に限定されず一般的な砥粒(シリカ、炭化ケイ素、アルミナ、窒化ホウ素など)を採用できる。   The abrasive grains to be contained other than the hydrophobized abrasive grains are not particularly limited, and general abrasive grains (silica, silicon carbide, alumina, boron nitride, etc.) can be employed.

基材は多孔質体である。例えば、不織布や発泡ウレタンなどの発泡樹脂である。多孔質を形成する孔は連続する物であっても不連続のものであっても良い。その孔中に研磨用組成物を保持する。なお、孔が連続するとは外部から連続する(すなわち、外部と連通する)ことを意味する。不連続とは外部に連続しない(連通しない)ことを意味する。連続する孔と、不連続の孔とが混在することもある。また、形成されている孔の大きさが研磨用砥粒の大きさとほぼ等しく、基材と密着する場合もある。また、研磨用砥粒が基材との間に間隙を介して保持される場合もある。図1に孔の形態と研磨用砥粒の分散の様子とについて類型を示す。   The substrate is a porous body. For example, a foamed resin such as a nonwoven fabric or foamed urethane. The pores forming the porosity may be continuous or discontinuous. The polishing composition is held in the holes. In addition, that a hole continues means that it continues from the outside (namely, it communicates with the exterior). Discontinuous means not continuous (not communicated) to the outside. There may be a mixture of continuous holes and discontinuous holes. Further, the size of the formed holes is almost the same as the size of the abrasive grains for polishing, and there are cases where they are in close contact with the substrate. In some cases, the abrasive grains are held between the substrate and the base material through a gap. FIG. 1 shows the types of the hole shape and the state of dispersion of the abrasive grains for polishing.

図1(a)には基材2中に不連続な孔が形成され、その形成された孔の大きさと分散されている研磨用砥粒1の大きさとが一致する形態を示す。つまり、研磨用砥粒1と基材2とは隙間無く密着する。図1(b)には基材2a中に不連続な孔が形成され、その形成された孔の大きさが分散されている研磨用砥粒1の大きさよりも大きい形態を示す。つまり、孔は外部に連通せず、孔と研磨用砥粒との間には隙間がある。図1(c)には基材2b中に外部と連続する孔が形成され、その孔内に研磨用砥粒1が分散されている。孔は管状である。図1(d)には基材2c中に外部と連続する孔が形成され、その孔内に研磨用砥粒1が分散されている。基材2cは繊維が集合する不織布である。また、この不織布に分散されている砥粒はバインダーで不織布に固定されていてもよい。   FIG. 1 (a) shows a form in which discontinuous holes are formed in the substrate 2, and the size of the formed holes and the size of the abrasive grains 1 dispersed are the same. That is, the polishing abrasive grain 1 and the substrate 2 are in close contact with each other without a gap. FIG. 1B shows a form in which discontinuous holes are formed in the substrate 2a, and the size of the formed holes is larger than the size of the abrasive grains 1 for dispersion. That is, the hole does not communicate with the outside, and there is a gap between the hole and the abrasive grains for polishing. In FIG. 1 (c), holes continuous with the outside are formed in the substrate 2b, and abrasive grains 1 are dispersed in the holes. The hole is tubular. In FIG. 1 (d), holes continuous with the outside are formed in the substrate 2c, and the abrasive grains 1 for polishing are dispersed in the holes. The base material 2c is a nonwoven fabric in which fibers are gathered. Moreover, the abrasive grains dispersed in the nonwoven fabric may be fixed to the nonwoven fabric with a binder.

基材が有する孔の孔径は1μm〜100μm程度であることが望ましい。研磨用組成物の添加量は特に限定しないが、基材中に均一に含有させる場合には全体の質量を基準として5〜90質量%程度含有させることができる。また、基材の表面積を基準として1mあたり20g程度の研磨用砥粒を保持する程度にすることもできる。 As for the hole diameter of the hole which a base material has, it is desirable that it is about 1 micrometer-100 micrometers. Although the addition amount of polishing composition is not specifically limited, When making it contain uniformly in a base material, about 5-90 mass% can be contained on the basis of the whole mass. Moreover, it can also be a grade which hold | maintains the abrasive grain of about 20g per 1 m < 2 > on the basis of the surface area of a base material.

(研磨方法)
本実施形態の研磨方法は、本実施形態の研磨用パッドを用い、研磨液の存在下、被研磨物を研磨する方法である。研磨液は研磨用砥粒などの固形物を有さない。なお、本実施形態の研磨方法には含まれないが、本実施形態の研磨用パッドは研磨用砥粒などの固形物を含む研磨液を介在させた研磨方法に適用可能である。
(Polishing method)
The polishing method of this embodiment is a method of polishing an object to be polished in the presence of a polishing liquid using the polishing pad of this embodiment. The polishing liquid does not have solids such as abrasive grains for polishing. Although not included in the polishing method of the present embodiment, the polishing pad of the present embodiment can be applied to a polishing method in which a polishing liquid containing solids such as polishing abrasive grains is interposed.

研磨液は水系、非水系を問わない。研磨液にはアルカリ性物質、酸化剤、酸化物溶解剤、砥粒分散剤、キレート剤、及び糖類から選択される1つ以上の添加剤を含有することもできる。この研磨液を滴下しながら被加工物を研磨する。砥粒分散剤は研磨パッド中から脱落した研磨用砥粒を研磨液中に均等に分散させるために添加する。キレート剤は被加工物の種類(銅など)によっては被加工物の表面の硬度を低下させることができ研磨を促進できる。糖類は研磨用砥粒の濡れ性を適正に制御することができる。   The polishing liquid may be aqueous or non-aqueous. The polishing liquid may also contain one or more additives selected from alkaline substances, oxidizing agents, oxide solubilizers, abrasive dispersants, chelating agents, and sugars. The workpiece is polished while dripping this polishing liquid. The abrasive dispersing agent is added in order to uniformly disperse the abrasive grains dropped from the polishing pad in the polishing liquid. Depending on the type of workpiece (such as copper), the chelating agent can reduce the surface hardness of the workpiece and promote polishing. Saccharides can appropriately control the wettability of abrasive grains.

(試験1)
・研磨用パッドの調製
50nmのコロイダルシリカ(比較例1の研磨用砥粒)と比較例1のコロイダルシリカ(微小粉体)にシラザン化合物(Rがすべてメチル基の化合物)を接触・反応させたもの(疎水化砥粒:実施例1の研磨用砥粒)を用意した。疎水化処理されたかどうかの確認はIRスペクトルにより行った。その結果、2900〜3000cm−1程度に吸収が認められコロイダルシリカの表面にトリメチルシリル基の存在(導入)が確認された。
(Test 1)
-Preparation of polishing pad Contacted and reacted 50 nm colloidal silica (polishing abrasive grains of Comparative Example 1) and colloidal silica (fine powder) of Comparative Example 1 with a silazane compound (R is all methyl group compound). (Hydrophobized abrasive grains: polishing abrasive grains of Example 1) was prepared. It was confirmed by IR spectrum whether or not it was hydrophobized. As a result, absorption was recognized at about 2900 to 3000 cm −1, and the presence (introduction) of trimethylsilyl group was confirmed on the surface of colloidal silica.

不織布(ニッタハースSUBA400)に実施例1及び比較例1の研磨用砥粒を含浸させて研磨用部材(研磨工具)を作成し、Siウェハを研磨したときの研磨レートを測定した。研磨用砥粒の含浸は以下のように行った。まず、各研磨用砥粒を40質量%の濃度で分散媒(実施例1:イソプロパノール、比較例1:水)中に分散させたものをφ380mmの大きさの不織布に上記溶液が5gとなるように不織布中に含浸させた(実施例1の研磨用パッド及び比較例1の研磨用パッド)。   A polishing member (polishing tool) was prepared by impregnating the non-woven fabric (Nitta Hearth SUBA400) with the abrasive grains of Example 1 and Comparative Example 1, and the polishing rate when the Si wafer was polished was measured. The impregnation of the abrasive grains for polishing was performed as follows. First, each polishing abrasive is dispersed in a dispersion medium (Example 1: isopropanol, Comparative Example 1: water) at a concentration of 40% by mass on a nonwoven fabric having a size of φ380 mm so that the above solution becomes 5 g. Were impregnated into a nonwoven fabric (the polishing pad of Example 1 and the polishing pad of Comparative Example 1).

また、実施例1の研磨用砥粒に水系ウレタン樹脂(タケラックWS5100:武田薬品工業製、固形分濃度30質量%)を研磨用砥粒とウレタン樹脂との質量比が4:1になるように混合したものを実施例1と同様の不織布の表面に5g塗布後、110℃で乾燥させた。(実施例2の研磨用パッド)
Siウェハの研磨はMATBC15を用い、圧力約27kPa(4psi)、回転数60rpmの研磨条件で添加剤としてのピペラジンを0.6質量%になるように溶解した水溶液をそれぞれの研磨用部材上に滴下しながら行った。対照試験として、研磨用砥粒を含浸させていない不織布について同様の試験を行った。その結果、実施例1の研磨用パッドでは研磨レートが1.4μm/分、実施例2の研磨用パッドでは研磨レートが1.3μm/分であるのに対し、比較例1の研磨用パッド及び対照試験では研磨レートが約0μm/分であった。比較例1の研磨用部材においてほぼ研磨が進行しないのは含浸させた研磨用砥粒が滴下した添加剤水溶液により流出したためと推測された。従って、実施例1、実施例2の研磨用パッドは研磨用砥粒の脱落が少なく耐久性が高いことが明らかになった。
Further, water-based urethane resin (Takelac WS5100: manufactured by Takeda Pharmaceutical Co., Ltd., solid content concentration of 30% by mass) is applied to the polishing abrasive grains of Example 1 so that the mass ratio of the polishing abrasive grains to the urethane resin is 4: 1. 5 g of the mixture was applied to the surface of the same nonwoven fabric as in Example 1 and dried at 110 ° C. (Polishing pad of Example 2)
The polishing of the Si wafer uses MATLAB 15 and drops an aqueous solution prepared by dissolving piperazine as an additive to 0.6% by mass on each polishing member under polishing conditions of a pressure of about 27 kPa (4 psi) and a rotation speed of 60 rpm. I went there. As a control test, a similar test was performed on a non-woven fabric not impregnated with abrasive grains. As a result, while the polishing rate of the polishing pad of Example 1 was 1.4 μm / min and the polishing rate of the polishing pad of Example 2 was 1.3 μm / min, the polishing pad of Comparative Example 1 and In the control test, the polishing rate was about 0 μm / min. The reason why the polishing did not proceed substantially in the polishing member of Comparative Example 1 was presumed to be because the impregnated polishing abrasive particles were drained by the dropped additive aqueous solution. Therefore, it has been clarified that the polishing pads of Examples 1 and 2 have a high durability with little loss of polishing abrasive grains.

(試験2)
80℃に加熱したコロネートC−6912(日本ポリウレタン工業製)100質量部に実施例1の研磨用砥粒を100質量部添加、混合後、110℃に加熱し、更に、3,3’−ジクロル−4,4’−ジアミノジフェニルメタン(MOCA)を20質量部添加した。得られた分散液を型に流し込み、厚み1.2mm、φ380mmの円板状の研磨用パッドを作成した。パッド中における研磨用砥粒の含有量は45質量%であった。パッドの裏面に両面テープを貼付し、固定部材上に固定した。研磨条件は実施例1と同様の条件として研磨レートを測定した結果、1.3μm/分であった。
(Test 2)
100 parts by weight of abrasive grains of Example 1 were added to 100 parts by weight of Coronate C-6912 (manufactured by Nippon Polyurethane Industry) heated to 80 ° C., mixed, heated to 110 ° C., and further 3,3′-dichloro. 20 parts by mass of -4,4'-diaminodiphenylmethane (MOCA) was added. The obtained dispersion was poured into a mold to prepare a disc-shaped polishing pad having a thickness of 1.2 mm and φ380 mm. The content of polishing abrasive grains in the pad was 45% by mass. Double-sided tape was affixed to the back side of the pad and fixed on the fixing member. As a result of measuring the polishing rate under the same conditions as in Example 1, the polishing condition was 1.3 μm / min.

Claims (8)

分子中に下記式(A)で示す部分構造を持つオルガノシラザン化合物に接触して処理した微小粉体である疎水化砥粒を含有する研磨用砥粒と、
前記研磨用砥粒を内在させる多孔質体を形成する基材と、を有することを特徴とする研磨用パッド(ただし、外径が2〜500nm、アスペクト比が5〜15000で中心部に中空構造を有する多層構造の炭素繊維を含むものを除く)
Figure 0005385653
(式(A)中、*で表される部分にて他の部分と結合される。他の部分は複数の*の間を連結する構造であっても良い。Xは水素、炭化水素基から選択される。)
Abrasive grains containing hydrophobized abrasive grains, which are fine powders processed in contact with an organosilazane compound having a partial structure represented by the following formula (A) in the molecule;
A polishing pad comprising a porous body containing the polishing abrasive grains (however, the outer diameter is 2 to 500 nm, the aspect ratio is 5 to 15000, and the hollow structure is formed in the center) Except for those containing multi-layered carbon fibers having
Figure 0005385653
(In the formula (A), the portion represented by * is bonded to another portion. The other portion may be a structure connecting between a plurality of *. X is a hydrogen or hydrocarbon group. Selected.)
一般式(2)にて表されるシクロポリシラザン化合物又は一般式(3)にて表される環状有機ケイ素化合物に接触して処理した微小粉体である疎水化砥粒を含有する研磨用砥粒と、
前記研磨用砥粒を内在させる多孔質体を形成する基材と、を有することを特徴とする研磨用パッド。
Figure 0005385653
一般式(2)、一般式(3)中、Rは、それぞれ独立する炭素数1〜10の1価炭化水素基であり、また、該1価炭化水素基はハロゲン基、水酸基、エステル基、エーテル基、アミド基、ウレイド基、ウレア基、シアノ基、ニトロ基、スルホン基にて水素原子の1又は2以上を置換する置換アルキル基を含んでもよい。Xは水素、炭化水素基から選択される。nは3〜10までの整数にて表される。mは1〜nまでの整数にて表される。
Polishing abrasive grains comprising hydrophobized abrasive grains, which are fine powders processed in contact with the cyclopolysilazane compound represented by the general formula (2) or the cyclic organosilicon compound represented by the general formula (3) When,
A polishing pad comprising a base material that forms a porous body in which the polishing abrasive grains are contained.
Figure 0005385653
(In General Formula (2) and General Formula (3), R is an independent monovalent hydrocarbon group having 1 to 10 carbon atoms, and the monovalent hydrocarbon group is a halogen group, a hydroxyl group, or an ester group. , An ether group, an amide group, a ureido group, a urea group, a cyano group, a nitro group, and a sulfone group may include a substituted alkyl group that substitutes one or more hydrogen atoms, and X is selected from hydrogen and a hydrocarbon group N is represented by an integer from 3 to 10. m is represented by an integer from 1 to n.
前記微小粉体はシリカ、及び/又は表面シランカップリング剤処理されたシリカから形成される請求項1又は2に記載の研磨用パッド。 The polishing pad according to claim 1 or 2 micro-powder is formed from silica, and / or surface silane coupling agent-treated silica. 前記研磨用砥粒は体積平均粒径が0.01μm以上、5μm以下である請求項1〜3の何れか1項に記載の研磨用パッド。 The abrasive grains have a volume-average diameter in the 0.01μm or more, the polishing pad according to any one of claims 1 to 3 is 5μm or less. 前記研磨用砥粒の含有量は全体の質量を基準として5〜90質量%である請求項1〜の何れか1項に記載の研磨用パッド。 The polishing pad according to any one of claims 1 to 4 , wherein a content of the polishing abrasive is 5 to 90% by mass based on the total mass. 前記基材の表面は溝部をもつ請求項1〜の何れか1項に記載の研磨用パッド。 Polishing pad according to any one of claims 1 to 5 the surface of the substrate having the groove. 前記基材は樹脂組成物から形成されており、
溶融した前記樹脂組成物、又は、溶媒に溶解させた前記樹脂組成物と、前記研磨用砥粒とを混合後、前記樹脂組成物を固形化して形成されている請求項1〜の何れか1項に記載の研磨用パッド。
The substrate is formed of a resin composition;
The resin composition was melt, or with the resin composition dissolved in a solvent, after mixing the abrasive grains, claim 1-6 which is formed by solidifying the resin composition 2. The polishing pad according to item 1.
請求項1〜の何れか1項に記載の研磨用パッドを用い、
固形物を含有しない研磨液を用いて研磨を行うことを特徴とする研磨方法。
Using the polishing pad according to any one of claims 1 to 7 ,
A polishing method comprising polishing using a polishing liquid containing no solid matter.
JP2009074808A 2009-03-25 2009-03-25 Polishing pad and polishing method Active JP5385653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074808A JP5385653B2 (en) 2009-03-25 2009-03-25 Polishing pad and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074808A JP5385653B2 (en) 2009-03-25 2009-03-25 Polishing pad and polishing method

Publications (2)

Publication Number Publication Date
JP2010228009A JP2010228009A (en) 2010-10-14
JP5385653B2 true JP5385653B2 (en) 2014-01-08

Family

ID=43044371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074808A Active JP5385653B2 (en) 2009-03-25 2009-03-25 Polishing pad and polishing method

Country Status (1)

Country Link
JP (1) JP5385653B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990830B2 (en) * 2012-02-29 2016-09-14 富士紡ホールディングス株式会社 Polishing pad and manufacturing method thereof
JP6086311B2 (en) 2012-03-28 2017-03-01 日立金属株式会社 Evaluation method of polishability of steel for mold and evaluation method of polishability of mold
JP6324958B2 (en) * 2013-07-02 2018-05-16 富士紡ホールディングス株式会社 Polishing pad and manufacturing method thereof
WO2018012468A1 (en) * 2016-07-12 2018-01-18 株式会社ノリタケカンパニーリミテド Polishing body and manufacturing method therefor
CN106926115B (en) * 2017-03-15 2022-12-09 东莞华晶粉末冶金有限公司 Grinding pad and manufacturing method thereof
SG11202000259RA (en) * 2017-07-11 2020-02-27 3M Innovative Properties Co Abrasive articles including conformable coatings and polishing system therefrom

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2261236T3 (en) * 1999-10-07 2006-11-16 Saint-Gobain Abrasives, Inc. FORMULATIONS FOR ELECTROSTATIC DISPOSITION.
JP2001332517A (en) * 2000-05-22 2001-11-30 Okamoto Machine Tool Works Ltd Chemical mechanical polishing method for substrate
JP2003245861A (en) * 2002-02-21 2003-09-02 Sumitomo Bakelite Co Ltd Polishing expanded sheet and manufacturing method for the same
JP2004037602A (en) * 2002-07-01 2004-02-05 Canon Inc Method for producing developer support, developer support and developing apparatus using the same
JP4381790B2 (en) * 2002-12-11 2009-12-09 昭和電工株式会社 Composite material and processing method using the same
JP4276466B2 (en) * 2003-05-06 2009-06-10 株式会社ディスコ Polishing equipment
JP4606733B2 (en) * 2003-12-22 2011-01-05 東洋ゴム工業株式会社 Polishing pad and semiconductor wafer polishing method

Also Published As

Publication number Publication date
JP2010228009A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5385653B2 (en) Polishing pad and polishing method
CN101668825B (en) Coated abrasive products containing aggregates
JP5336699B2 (en) Polishing method of crystal material
JP4952745B2 (en) CMP abrasive and substrate polishing method
TWI500722B (en) A chemical mechanical polishing (cmp) composition comprising inorganic particles and polymer particles
US7097677B2 (en) Polishing slurry
CN101497765A (en) Chemico-mechanical polishing solution
JP7139299B2 (en) Polishing pad, manufacturing method thereof, and polishing method using same
KR100798555B1 (en) Polishing Compound and Method for Preparation Thereof, and Polishing Method
JP2007335847A (en) Silicon nitride film abrasive powder and abrading method
JP5309692B2 (en) Polishing method of silicon wafer
US8105131B2 (en) Method and apparatus for removing material from microfeature workpieces
CN113414705B (en) Large-size double-layer flexible polishing pad and preparation method and application thereof
JP2006315110A (en) Abrasive material, manufacturing method and polishing method
JP5385619B2 (en) Polishing composition, polishing member, and polishing method
US6347978B1 (en) Composition and method for polishing rigid disks
JP2005048125A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP2007067166A (en) Chemomechanical polishing method of sic substrate
JP5603591B2 (en) Abrasive grain for processing, processing tool, processing liquid, and processing method using them
KR20200012107A (en) Polishing pad, preparation method thereof, and polishing method applying of the same
JP2023008827A (en) CMP polishing pad
JP2008288240A (en) SiC CRYSTAL POLISHING METHOD
CN101665663A (en) Chemical mechanical polishing solution
CN111409015B (en) Grinding machine mechanism, grinding process and preparation process of grinding material of grinding machine mechanism
Liu et al. Chemically grafted polyurethane/graphene ternary slurry for advanced chemical–mechanical polishing of single-crystalline SiC wafers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250