JP6086311B2 - Evaluation method of polishability of steel for mold and evaluation method of polishability of mold - Google Patents

Evaluation method of polishability of steel for mold and evaluation method of polishability of mold Download PDF

Info

Publication number
JP6086311B2
JP6086311B2 JP2013030809A JP2013030809A JP6086311B2 JP 6086311 B2 JP6086311 B2 JP 6086311B2 JP 2013030809 A JP2013030809 A JP 2013030809A JP 2013030809 A JP2013030809 A JP 2013030809A JP 6086311 B2 JP6086311 B2 JP 6086311B2
Authority
JP
Japan
Prior art keywords
mold
steel
value
polishability
waviness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013030809A
Other languages
Japanese (ja)
Other versions
JP2013228369A (en
Inventor
隆一朗 菅野
隆一朗 菅野
政幸 長澤
政幸 長澤
まどか 岸川
まどか 岸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013030809A priority Critical patent/JP6086311B2/en
Publication of JP2013228369A publication Critical patent/JP2013228369A/en
Application granted granted Critical
Publication of JP6086311B2 publication Critical patent/JP6086311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Metal Extraction Processes (AREA)

Description

本発明は、作業面が磨き加工されてなる金型の製作に用いられる鋼材について、その磨き加工後の表面のうねりを測定することで、鋼材の有する磨き性を評価する方法に関するものである。または、作業面が磨き加工されてなる実際の金型について、その磨き加工後の表面である金型の作業面のうねりを測定することで、金型の有する磨き性を評価する方法に関するものである。   The present invention relates to a method for evaluating the polishability of a steel material by measuring the waviness of the surface after the polishing of a steel material used for manufacturing a mold having a polished work surface. Or, it relates to a method for evaluating the polishability of a mold by measuring the waviness of the work surface of the mold, which is the surface after polishing, for an actual mold whose work surface is polished. is there.

高品位の表面性状を有した製品、例えばプラスチック製品等を成形する金型は、その作業面に鏡面の仕上げ肌が求められる。そして、このような作業面は、例えば、あらかじめ使用硬さに調整したプリハードン鋼材を準備して、この表面を所定の形状に切削加工した後に、磨き加工を実施して、鏡面に仕上げられる。   A mold for molding a product having a high-quality surface property, such as a plastic product, requires a mirror-finished skin on its work surface. Such a work surface is finished to a mirror surface by, for example, preparing a pre-hardened steel material that has been adjusted in advance to use hardness, cutting the surface into a predetermined shape, and then polishing.

上記の磨き加工は、一般的に金型製作の最終工程で実施される。磨き加工の工程は、通常、砥石による粗磨き、次いで研磨紙による中仕上げ磨き、最後にダイヤモンドペーストによる仕上げ磨きの順で実施される。そして、砥石、研磨紙、ダイヤモンドペーストのそれぞれに含まれる砥粒には、平均粒径に応じた規格が存在する。例えば、平均粒径が約15μmの砥粒は、JIS R 6001(研削といし用研磨材の粒度)やJIS R 6010(研磨布紙用研磨材の粒度)の規格に従って「#1000」と表記をする。   The above polishing process is generally performed in the final process of mold production. The polishing process is usually carried out in the order of rough polishing with a grindstone, followed by intermediate finish polishing with abrasive paper, and finally with final polishing with diamond paste. And the specification according to an average particle diameter exists in the abrasive grain contained in each of a grindstone, abrasive paper, and a diamond paste. For example, an abrasive having an average particle size of about 15 μm is expressed as “# 1000” in accordance with the standards of JIS R 6001 (grain size of abrasive for grinding wheel) and JIS R 6010 (grain size of abrasive for abrasive cloth). To do.

ところで、上記の磨き加工によって作業面を鏡面に仕上げた金型を用いて、例えばプラスチック成を実際に行うと、それによって得られた成形品の表面に外観上の“むら(斑;shading)”が生じる場合がある。このむらは、成形品表面の各部で光の反射する程度が異なることによる外観上の表面性状不良であり、成形品の外観品質が低下する一要因である。そして、このむらが発生する原因は、その成形面の性状を転写するもととなる金型の作業面に存在する“うねり(waviness)”であることが確認されている(特許文献1〜2)。うねりとは、JIS B 0601:2001(ISO 4287:1997)に定義される、表面粗さ(roughness)より大きな間隔で起こる表面の周期的な起伏のことである(非特許文献1)。 Meanwhile, by using a mold having finished the work surface to a mirror surface by polishing process described above, for example, actually performs plastic forming shapes, "unevenness in the appearance on the surface of the obtained molded article thereby (plaques; shading) "May occur. This unevenness is a poor surface quality due to the difference in the degree of light reflection at each part of the surface of the molded product, and is one factor that deteriorates the appearance quality of the molded product. And it has been confirmed that the cause of this unevenness is “waves” present on the work surface of the mold from which the properties of the molding surface are transferred (Patent Documents 1 and 2). ). Waviness is a periodic undulation that occurs at intervals greater than the surface roughness defined in JIS B 0601: 2001 (ISO 4287: 1997) (Non-patent Document 1).

特開平01−212789号公報Japanese Patent Laid-Open No. 01-212789 特開2010−242147号公報JP 2010-242147 A

JIS B 0601:2001「製品の幾何特性仕様(GPS)―表面性状:輪郭曲線方式―用語,定義及び表面性状パラメータ」、JISハンドブック,2005年JIS B 0601: 2001 “Product Geometric Specification (GPS) —Surface Properties: Contour Curve Method—Terms, Definitions and Surface Property Parameters”, JIS Handbook, 2005

金型用鋼材を磨き加工したときに生じるうねりは、成形品の品質を左右する。したがって、金型用鋼材を実際の金型に加工する前に、その金型用鋼材の有する磨き性、つまり所定の条件による磨き加工を行ったときに発生するうねりの程度を事前かつ数値的に把握できれば、その金型用鋼材が適正材料であるかどうか、あるいは、その金型用鋼材にとって最適な用途や磨き加工条件を判断することができる。そして、既に製作された後の金型の状態であっても、その作業面に発生しているうねりの程度を数値的に評価できれば、金型を使用しなくても、成形品の表面に生じるむらの程度を予測でき、該金型の健全性を評価できる。   The undulation that occurs when the mold steel is polished affects the quality of the molded product. Therefore, before processing the mold steel material into an actual mold, the polishability of the mold steel material, that is, the degree of undulation that occurs when polishing under specified conditions is performed in advance and numerically. If it can be grasped, it is possible to determine whether or not the mold steel is an appropriate material, or the optimum use and polishing conditions for the mold steel. And even if it is in the state of the mold after it has already been manufactured, it can be generated on the surface of the molded product without using the mold if the degree of undulation occurring on the work surface can be numerically evaluated. The degree of unevenness can be predicted, and the soundness of the mold can be evaluated.

しかし、実際には、磨き加工後に同程度のうねり値を有した複数の金型用鋼材でも、これらを加工してなる金型を使用して得た成形品の間には、生じたむらの程度に合否を分ける程の差異がある場合があった。従って、金型用鋼材の磨き性の評価は、最終的には、良好な成形品が得られたときの金型の作業面を基準にして、これと評価すべき磨き加工後の表面とを目視や写真で比較するという、経験的かつ感覚的な手法に頼らざるを得ず(特許文献2)、評価の結果に差異が生じていた。   However, in reality, even with a plurality of mold steels having the same level of waviness after polishing, the degree of unevenness produced between the molded products obtained by using these molds There was a case where there was a difference enough to pass or fail. Therefore, the evaluation of the polishability of the steel for molds is finally based on the work surface of the mold when a good molded product is obtained, and the polished surface to be evaluated. There was no choice but to rely on an empirical and sensory method of comparing with the naked eye or photograph (Patent Document 2), resulting in a difference in the evaluation results.

本発明の目的は、金型用鋼材を実際の金型に加工する前の時点で、あるいは、製作後の金型の時点で、該金型によって得られる成形品の表面性状を最適な測定条件で数値的に予測できる、金型用鋼材または金型の磨き性の評価方法を提供することである。   The object of the present invention is to measure the surface properties of the molded product obtained by the mold at an optimal measurement condition before the mold steel material is processed into an actual mold, or at the time of the mold after manufacture. It is to provide a method for evaluating the polishability of steel for molds or molds that can be numerically predicted by the above.

本発明者は、磨き加工した金型の作業面において測定されるうねりの程度と、この金型によって得られる成形品のむらの程度との相関性について鋭意検討した。その結果、砥粒をもって磨き加工がされた金型の作業面の表面性状から該砥粒の大きさに相当する表面粗さの要素を除去してうねりの要素だけを評価すれば、そのときのうねり値とむらの程度には相関が確認できることを突きとめた。そして、この相関を把握できれば、測定したうねり値をもってむらの発生程度を数値的に予測できることから、このためのうねりの測定条件を突きとめたことで、本発明に到達した。   The inventor has intensively studied the correlation between the degree of waviness measured on the work surface of a polished mold and the degree of unevenness of a molded product obtained by the mold. As a result, if the surface roughness element corresponding to the size of the abrasive grains is removed from the surface properties of the work surface of the mold polished with abrasive grains, and only the undulation element is evaluated, It was found that there was a correlation between the undulation value and the degree of unevenness. If this correlation can be grasped, the degree of unevenness can be predicted numerically with the measured undulation value, and the present invention has been reached by ascertaining the undulation measurement conditions for this purpose.

すなわち、本発明は、金型用鋼材の表面を砥粒によって磨き加工して、その加工後の表面のうねりを測定することで前記金型用鋼材の磨き性を評価する方法であって、前記うねりの測定は、カットオフ値λcを(磨き加工に用いた砥粒の平均粒径×10)<λc<(要素の平均長さWSm)の関係を満たす値に設定して求められたうねり曲線を用いて測定することを特徴とする金型用鋼材の磨き性の評価方法である。好ましくは、前記うねりの測定は、平均高さWcを指標として測定するものである。   That is, the present invention is a method for evaluating the polishability of the steel for molds by polishing the surface of the steel for molds with abrasive grains and measuring the waviness of the surface after the processing, The waviness curve is obtained by setting the cut-off value λc to a value satisfying the relationship of (average grain size of abrasive grains used for polishing × 10) <λc <(average element length WSm). This is a method for evaluating the polishability of a steel material for molds, characterized by measuring using Preferably, the waviness is measured using the average height Wc as an index.

そして、本発明は、金型用鋼材の表面を砥粒によって磨き加工して金型の作業面になるように仕上げた金型を製作し、その製作後の金型の作業面のうねりを測定することで前記金型の磨き性を評価する方法であって、前記うねりの測定は、カットオフ値λcを(磨き加工に用いた砥粒の平均粒径×10)<λc<(要素の平均長さWSm)の関係を満たす値に設定して求められたうねり曲線を用いて測定することを特徴とする金型の磨き性の評価方法である。好ましくは、前記うねりの測定は、平均高さWcを指標として測定するものである。   And this invention manufactures the metal mold | die which finished the surface of the steel material for metal molds with an abrasive grain, and was finished so that it may become a work surface of a mold, and measured the waviness of the work surface of the mold after the manufacture This is a method for evaluating the polishability of the mold, and the measurement of the waviness is made by measuring a cutoff value λc (average grain size of abrasive grains used for polishing × 10) <λc <(average of elements) This is a method for evaluating the polishability of a mold, characterized by performing measurement using a waviness curve obtained by setting a value satisfying the relationship of length WSm). Preferably, the waviness is measured using the average height Wc as an index.

本発明によれば、従来、経験的に評価してきた金型用鋼材または実際の金型の磨き性を、適正に処理された数値によって評価することができる。また、実際の金型を用いることなく、該金型に加工する前の金型用鋼材から小さな試験片を採取しても磨き性の評価ができることから、磨き性を簡便かつ低コストで評価できる技術にもなる。   ADVANTAGE OF THE INVENTION According to this invention, the polishability of the steel material for metal mold | die conventionally evaluated empirically or an actual metal mold | die can be evaluated by the numerical value processed appropriately. In addition, the polishability can be evaluated simply and at low cost because the polishability can be evaluated even if a small test piece is collected from the steel for the mold before being processed into the mold without using an actual mold. It becomes technology.

実施例1において、#3000のダイヤモンドペーストで仕上げの磨き加工を行った後の金型用鋼材の表面に測定された断面曲線と、それのカットオフ値を0.160mmとしたときのうねり曲線を示す図である。In Example 1, the cross-sectional curve measured on the surface of the mold steel after finishing polishing with # 3000 diamond paste and the undulation curve when the cut-off value thereof is 0.160 mm. FIG. 実施例1において、#3000のダイヤモンドペーストで仕上げの磨き加工を行った後の金型用鋼材の表面を示す金属ミクロ写真である。In Example 1, it is a metal micro photograph which shows the surface of the steel material for metal mold | dies after performing finishing polishing with the diamond paste of # 3000. 実施例2において、#2000の研磨紙で仕上げの磨き加工を行った後の金型用鋼材の表面を示す金属ミクロ写真である。In Example 2, it is a metal micro photograph which shows the surface of the steel material for metal mold | dies after finishing polishing with # 2000 abrasive paper. 実施例2において、#5000のダイヤモンドペーストで仕上げの磨き加工を行った後の金型用鋼材の表面を示す金属ミクロ写真である。In Example 2, it is a metal micro photograph which shows the surface of the steel material for metal mold | dies after finishing polishing with the diamond paste of # 5000. 実施例2において、#14000のダイヤモンドペーストで仕上げの磨き加工を行った後の金型用鋼材の表面を示す金属ミクロ写真である。In Example 2, it is a metal micro photograph which shows the surface of the steel material for metal mold | dies after finishing polishing with the diamond paste of # 14000.

本発明の特徴は、金型に加工する前の金型用鋼材を事前に磨き加工したときの表面、または、実際の金型に加工したときの作業面(以下、併せて「表面」とする。)が有しているうねりを適正に測定することで、成形品に生じるむらの程度を数値的に評価できるところにある。つまり、上記のJIS B 0601:2001に従ってうねりを測定するとき、その測定の対象となる断面曲線は、該砥粒の大きさに相当し、むらの発生には関与しない“表面粗さ”の要素も含んでいることから、この要素を除外せずに測定したうねりでは、成形品のむらを相関的に評価できなかった。そこで、本発明は、磨き加工後の表面性状における断面曲線の中から、表面粗さの要素は除外して、むらの発生に大きく関与するうねりの要素だけを適正に抽出した断面曲線を得ることで、該曲線から“真の”うねり値を測定するものである。   The feature of the present invention is that the surface of the mold steel before being processed into a mold is polished in advance, or the work surface when processed into an actual mold (hereinafter, also referred to as “surface”). )) Can be numerically evaluated for the degree of unevenness occurring in the molded product by appropriately measuring the swell. That is, when waviness is measured according to the above JIS B 0601: 2001, the cross-sectional curve to be measured corresponds to the size of the abrasive grain and is an element of “surface roughness” that does not contribute to the occurrence of unevenness. Therefore, the undulation measured without excluding this element could not evaluate the unevenness of the molded product in a correlated manner. Therefore, the present invention obtains a cross-sectional curve in which only the waviness elements that are greatly involved in the occurrence of unevenness are properly extracted by excluding the surface roughness elements from the cross-sectional curves in the surface properties after polishing. The “true” waviness value is measured from the curve.

本発明に係る金型用鋼材または金型の磨き性の評価方法について具体的に説明する。磨き加工後の金型用鋼材または実際の金型(以下、併せて「金型用鋼材」とする。)の表面において、成形品のむら発生の要因となるうねりは、主として、金型用鋼材の硬さのばらつきによって、その研磨されやすい部分と研磨され難い部分とで形成された起伏である。そして、この起伏の周期は、概して磨き加工に使用される砥粒よりも大きいことから、これが大きなうねりとなって、成形品に目視で確認できる程のむらを転写する。   The steel material for metal mold | die which concerns on this invention, or the evaluation method of the polishability of a metal mold | die is demonstrated concretely. The undulation that causes unevenness of the molded product on the surface of the mold steel after polishing or the actual mold (hereinafter referred to as “mold steel”) is mainly caused by the mold steel. Due to the variation in hardness, it is an undulation formed by a portion that is easily polished and a portion that is difficult to polish. And since the period of this undulation is generally larger than the abrasive grain used for polishing, this becomes a big wave | undulation and the nonuniformity which can be visually confirmed is transferred to a molded article.

一方、磨き加工に使用した砥粒は、金型用鋼材の表面に研削痕を形成する。この研削痕は微細であり、いわば、JIS B 0601:2001に規定される表面粗さの要素である。そして、この研削痕も表面の起伏を形成するものであるが、微細であることから、成形品にむらが発生する大きな要因とはならない。これにも係わらず、成形品のむらを予測するためのうねりの測定に、この表面粗さの要素も入れてしまうと、上記の起伏が同程度の表面であっても(成形品に発生したむらが同程度であっても)、研削痕が多い場合と少ない場合で、測定されたうねりの値は異なり、発生したむらとの数値的な関係が把握できなくなる。   On the other hand, the abrasive grains used for the polishing process form grinding marks on the surface of the mold steel. This grinding mark is fine, so to speak, it is an element of surface roughness specified in JIS B 0601: 2001. This grinding mark also forms the undulations on the surface, but since it is fine, it does not become a major factor causing unevenness in the molded product. In spite of this, if this surface roughness factor is also included in the measurement of waviness for predicting the unevenness of the molded product, even if the above-mentioned undulations are on the same level (unevenness generated in the molded product). However, the measured waviness values differ depending on whether there are many grinding traces or few grinding traces, and it is impossible to grasp the numerical relationship with the generated unevenness.

そこで、本発明では、うねりを測定するための断面曲線から、研削痕による影響、すなわち表面粗さの要素を除外する。具体的には、金型用鋼材の表面を砥粒によって磨き加工して、その加工後の表面のうねりを測定することで該金型用鋼材の磨き性を評価する方法であって、上記のうねりは、カットオフ値λcを砥粒の平均粒径を超える値としたうねり曲線で測定する金型用鋼材の磨き性の評価方法である。カットオフ値とは、断面曲線から除去される所定の波長のことをいう。そして、具体的には、磨き加工に用いた砥粒の平均粒径の10倍のカットオフ値とすることで、成形品に発生するむらの程度が、うねりの数字として十分に表れる。そして、好ましくは、測定するうねりの指標(パラメーター)は、うねりの起伏そのものを全体的に把握できる平均高さWcとする。平均高さとは、基準長さにおける輪郭曲線要素の高さの平均値である。このように測定されたうねりは、その値が低い程、その際の金型用鋼材の磨き性が優れていることを示す。そして、例えば、良好な成形品が得られたときの金型の作業面のうねりの値を知っておけば、あとは評価対象である表面のうねりを測定するだけで、磨き性の数値的な判断ができる。   Therefore, in the present invention, the influence of grinding marks, that is, the element of the surface roughness is excluded from the cross-sectional curve for measuring the waviness. Specifically, it is a method for polishing the surface of a mold steel material with abrasive grains and measuring the waviness of the surface after the processing to evaluate the polishability of the mold steel material, which is described above. Waviness is a method for evaluating the polishability of steel for molds, which is measured by a waviness curve with a cutoff value λc exceeding the average grain size of the abrasive grains. The cut-off value refers to a predetermined wavelength that is removed from the cross-sectional curve. Specifically, by setting the cut-off value to 10 times the average particle size of the abrasive grains used in the polishing process, the degree of unevenness occurring in the molded product is sufficiently expressed as the number of waviness. Preferably, the swell index (parameter) to be measured is an average height Wc that allows the undulations themselves to be grasped as a whole. The average height is an average value of the heights of the contour curve elements at the reference length. The waviness measured in this way indicates that the lower the value, the better the polishability of the steel for molds at that time. And, for example, if you know the value of the waviness of the work surface of the mold when a good molded product is obtained, you can measure the waviness of the surface to be evaluated, Judgment can be made.

砥粒の平均粒径について説明しておく。従来、金型用鋼材の磨き加工には、精密研磨用の微粉が砥粒として用いられている。精密研磨用の微粉は、その粒度分布(平均粒径)に応じて、細かい区分で規格化されている。そして、その表示方法には、上述したJIS R 6001等にならって、一般的に#1000、#2000、#3000等の番号が用いられている(番号が大きい程、細粒である)。また、この規格化された番号の砥粒以外にも、さらに大きな番号が付された、より細かな砥粒も提案されている。これら砥粒の平均粒径は、JIS R 6002にならって、沈降試験方法と電気抵抗試験方法によって測定することができる。沈降試験方法とは、分散媒中を沈降する粒子の沈降速度から粒子径を測定する方法である。電気抵抗試験方法とは、電解液中の粒子が細孔を通過したときの電気抵抗値が異なることを利用して粒子径を測定する方法である。そして、砥粒の番号と平均粒径の関係について、概ね下記の通りである。これらの砥粒(例えば#500〜#14000の砥粒)の中から、磨き加工の目的に合った番号(平均粒径)のものを、適宜、選択して使用している。
# 500 : 30〜36μm
# 1000 : 14〜22μm
# 2000 : 5〜10μm
# 3000 : 4〜 8μm
# 4000 : 3〜 6μm
# 8000 : 2〜 4μm
#14000 : 〜 2μm
The average particle size of the abrasive grains will be described. Conventionally, fine powder for precision polishing has been used as abrasive grains for polishing steel for molds. Fine powder for precision polishing is standardized in fine categories according to its particle size distribution (average particle size). In the display method, numbers such as # 1000, # 2000, and # 3000 are generally used in accordance with the above-described JIS R 6001 and the like (the larger the number, the finer the particles). In addition to the standardized abrasive grains, finer abrasive grains with larger numbers have also been proposed. The average particle diameter of these abrasive grains can be measured by a sedimentation test method and an electrical resistance test method according to JIS R 6002. The sedimentation test method is a method in which the particle diameter is measured from the sedimentation speed of particles that settle in the dispersion medium. The electric resistance test method is a method of measuring the particle diameter by utilizing the fact that the electric resistance value when the particles in the electrolytic solution pass through the pores is different. The relationship between the abrasive grain number and the average grain size is generally as follows. Among these abrasive grains (for example, abrasive grains of # 500 to # 14000), those having numbers (average particle diameter) suitable for the purpose of polishing are appropriately selected and used.
# 500: 30-36 μm
# 1000: 14-22 μm
# 2000: 5-10 μm
# 3000: 4-8 μm
# 4000: 3 to 6 μm
# 8000: 2-4 μm
# 14000: ~ 2μm

そして、上記のカットオフ値は、そのときのうねり曲線が有している要素の平均長さWSmに応じた上限が必要である。要素の平均長さとは、基準長さにおける輪郭曲線要素の長さの平均であり、いわば、うねりの周期(波長)を示すものである。よって、カットオフ値が、このうねりの周期を超えると、むらの発生に関与するうねりの要素すらも除外されてしまう。この結果、成形品に顕著なむらが発生している場合でも、カットオフ後のうねり曲線は平坦となって、むらの発生の程度に相関した数値的な評価ができない。そこで、うねりを測定する際には、その事前に、または、同時にWSmも測定することで、カットオフ値をこのWSmよりも小さく設定すれば、専ら測定すべきうねりの要素だけでなる断面曲線をより正確に取り出せて、本発明の評価方法の精度が向上する。   The cut-off value needs to have an upper limit corresponding to the average length WSm of the elements included in the undulation curve at that time. The average element length is the average of the lengths of the contour curve elements in the reference length, and so to speak, indicates the period (wavelength) of undulation. Therefore, if the cut-off value exceeds this undulation period, even the undulation element related to the occurrence of the undulation will be excluded. As a result, even when noticeable unevenness occurs in the molded product, the waviness curve after the cut-off becomes flat, and a numerical evaluation correlated with the degree of unevenness cannot be made. Therefore, when measuring the swell, by measuring WSm in advance or simultaneously, if the cut-off value is set smaller than this WSm, a sectional curve consisting exclusively of the swell element to be measured can be obtained. More accurately, the accuracy of the evaluation method of the present invention is improved.

なお、評価に供する金型用鋼材に実施する磨き加工の条件は、実際の金型を製作する際のそれに合わせておくことが好ましい。これは特に、実際の金型に加工する前の金型用鋼材の時点で磨き性の評価をするときに、有効である。通常、実際の金型の作業面が曲面であるのに対して、金型用鋼材から迅速かつ簡便に採取した試料は専ら平面である。そして、これらの間で磨き加工の条件が大きく異なる場合、その磨き加工後に測定したうねりの値が同程度であったとしても、成形品のむらに程度の差が生じ得る。   In addition, it is preferable to match | combine the conditions of the polishing process implemented to the steel material for metal mold | die used for evaluation according to it at the time of manufacturing an actual metal mold | die. This is particularly effective when the polishability is evaluated at the time of the mold steel before being processed into an actual mold. Usually, the working surface of an actual mold is a curved surface, whereas a sample collected quickly and simply from a steel material for molds is exclusively a flat surface. And when the conditions of polishing process differ greatly between these, even if the value of the waviness measured after the polishing process is the same level, the degree of unevenness of the molded product may be different.

AISIの規格鋼種であるP21鋼およびJISの規格鋼種であるSCM440鋼を準備して、これらの磨き性を評価した。これらの鋼種は、それぞれに適用されている通常のプリハードン硬さにおいて、同じ条件の磨き加工を実施しても、該加工後の表面性状が異なる(つまり、磨き性が異なる)材料である。P21鋼は、一般的に磨き性がよいとされる金型用鋼材である。そして、SCM440鋼は、P21鋼よりは磨き性に劣るとされる金型用鋼材である。   P21 steel, which is a standard steel type of AISI, and SCM440 steel, which is a standard steel type of JIS, were prepared, and their polishability was evaluated. These steel types are materials having different surface properties after processing (that is, polishing properties are different) even if polishing is performed under the same conditions at normal pre-hardened hardness applied to each steel type. P21 steel is a steel material for molds that is generally considered to have good polishability. And SCM440 steel is a steel material for metal mold | die considered to be inferior to polishability compared with P21 steel.

まず、これらの鋼材に焼入れ焼戻しを行って、それぞれを通常のプリハードン硬さである、P21鋼は40HRC、SCM440鋼は26HRCに調整し、サイズが10×10×20mmの試料を得た。次に、これらの試料の一平面に対して、実際の金型製作に実施される条件による磨き加工を施した。磨き加工の詳細は、10×20mmの2面を平行に研磨した後の1面に対して、砥石、研磨紙、ダイヤモンドペーストの順で磨き加工を実施して、最後は#3000のダイヤモンドペーストで仕上げた。なお、#3000のダイヤモンドペーストの場合、砥粒の平均粒径は約6μmである。   First, these steel materials were tempered and tempered, and each sample was adjusted to 40 HRC for P21 steel and 26 HRC for SCM440 steel, each having a normal prehardened hardness, and a sample having a size of 10 × 10 × 20 mm was obtained. Next, a polishing process was performed on one plane of these samples under the conditions used for actual mold production. For details of the polishing process, polishing is performed in the order of a grindstone, abrasive paper, and diamond paste on one side after two 10 x 20 mm surfaces are polished in parallel, and finally with a # 3000 diamond paste. Finished. In the case of # 3000 diamond paste, the average grain size of the abrasive grains is about 6 μm.

そして、JIS B 0601:2001に従って、磨き加工後の表面において、表面粗さ形状測定機(株式会社東京精密製サーフコム570A)を用いて、様々なカットオフ値を適用したときのうねりの平均高さWcおよび要素の平均長さWSmを測定した。このとき、算術平均粗さRa(カットオフ値0.08mm)も測定した。これらの結果を表1に示す。なお、図1は、両試料の磨き加工後の表面に測定された断面曲線と、それのカットオフ値を0.160mmとしたときのうねり曲線である。そして、特許文献2が評価に利用する微分干渉機能による光学顕微鏡写真も撮影したので、図2に示す。   And according to JIS B 0601: 2001, the average height of the swell when various cut-off values are applied to the surface after polishing using a surface roughness shape measuring instrument (Surfcom 570A manufactured by Tokyo Seimitsu Co., Ltd.). Wc and the average element length WSm were measured. At this time, the arithmetic average roughness Ra (cut-off value 0.08 mm) was also measured. These results are shown in Table 1. FIG. 1 is a cross-sectional curve measured on the surfaces of both samples after polishing and a undulation curve when the cut-off value is 0.160 mm. And since the optical microscope photograph by the differential interference function utilized by patent document 2 for evaluation is also image | photographed, it shows in FIG.

まず、カットオフ値が小さい条件で測定したRa値は、専ら使用した砥粒の大きさに依存することから、両鋼種の間で値に差が見られなかった。しかし、図2の光学顕微鏡写真を観察することで、目視において、SCM440鋼の表面にはうねりが確認され、P21鋼の磨き性がSCM440鋼のそれよりも優れる事実が確認された。そして、この磨き性の差は、適正な条件によるうねりの測定によって、P21鋼のWc値がSCM440鋼のそれよりも小さく表れることで、数値的に確認できる。   First, since the Ra value measured under conditions with a small cut-off value depends exclusively on the size of the abrasive grains used, no difference in value was observed between the two steel types. However, by observing the optical micrograph of FIG. 2, undulation was confirmed on the surface of the SCM440 steel by visual observation, and it was confirmed that the polishability of the P21 steel was superior to that of the SCM440 steel. And this difference in polishability can be confirmed numerically by the Wc value of P21 steel appearing smaller than that of SCM440 steel by measuring the swell under appropriate conditions.

そこで、使用した砥粒の大きさに対しては、カットオフ値を小さく設定したNo.1の場合、測定に使用したうねり曲線が表面粗さの要素も含むことから、結果として、SCM440鋼の方が小さいWc値となっており、正しい評価が示されていなかった。なお、No.1において、SCM440鋼のWSm値が測定できなかったとしたのは、カットオフ値が小さすぎたことから、表面粗さの要素も多く含み、得られた値をWSmとして扱い難かったからである。これに対して、カットオフ値を大きく設定していくことで、両鋼のWc値の信頼性が高まり、かつ、それらがSCM440鋼>P21鋼の正しい関係を示しだし、カットオフ値が砥粒の大きさの10倍以上であるNo.3以降で、その関係は十分に示された。   Therefore, for the size of the abrasive used, No. with a small cut-off value was set. In the case of 1, since the waviness curve used for the measurement also includes an element of surface roughness, as a result, the SCM440 steel had a smaller Wc value, and the correct evaluation was not shown. In addition, No. The reason why the WSm value of the SCM440 steel could not be measured in No. 1 was that the cut-off value was too small, and it contained many elements of surface roughness, and it was difficult to handle the obtained value as WSm. On the other hand, by setting the cut-off value large, the reliability of the Wc values of both steels increases, and they show the correct relationship of SCM440 steel> P21 steel, and the cut-off value is the abrasive grain. No. which is 10 times the size of From 3 onwards, the relationship was fully demonstrated.

しかし、カットオフ値が大きくなりすぎると、うねり曲線からは測定すべきうねりの要素も除外され始めて、うねりの値が正確性を失う。そして、No.8以降では、SCM440鋼において、そのときのカットオフ値がWSm値を超えたことから、WSm値は特定できず、そして、Wc値も不正確である低い数値を示した。No.9においては、両鋼において、カットオフ値がWSm値を超えた。この結果、両鋼のWc値がSCM440鋼<P21鋼の関係となり、正しい評価が示されていなかった。   However, if the cutoff value becomes too large, the undulation element to be measured begins to be excluded from the undulation curve, and the undulation value loses accuracy. And No. From 8 onwards, in SCM440 steel, the cutoff value at that time exceeded the WSm value, so the WSm value could not be specified, and the Wc value also showed a low value that was inaccurate. No. In 9, the cut-off value exceeded the WSm value in both steels. As a result, the Wc values of both steels were in the relationship of SCM440 steel <P21 steel, and correct evaluation was not shown.

JISの規格鋼種であるSUS420J2鋼の改良鋼と、上記P21鋼を準備して、これらの磨き性を評価した。まず、サイズが100×100×10mmであるこれらの鋼材に焼入れ焼戻しを行って、SUS420J2改良鋼は30HRC、P21鋼は40HRCに調整した。次に、これら試料の一平面(100×100mm)を、けがき線で50×30mmの3ヶ所の領域A、B、Cに区切ってから、各領域について、実際の金型製作に実施される条件による磨き加工を施した。磨き加工の詳細は、領域Aについて、砥石、研磨紙の順で磨き加工を実施し、最後は#2000の研磨紙で仕上げた(砥粒の平均粒径は約10μm)。残りの領域B、Cは、砥石、研磨紙、ダイヤモンドペーストの順で磨き加工を実施して、領域Bは#5000のダイヤモンドペーストで仕上げ(砥粒の平均粒径は約5μm)、領域Cは#14000のダイヤモンドペーストで仕上げた(砥粒の平均粒径は約1μm)。   An improved steel of SUS420J2 steel, which is a JIS standard steel grade, and the above P21 steel were prepared, and their polishability was evaluated. First, these steel materials having a size of 100 × 100 × 10 mm were quenched and tempered, and the SUS420J2 improved steel was adjusted to 30 HRC and the P21 steel was adjusted to 40 HRC. Next, one plane (100 × 100 mm) of these samples is divided into three regions A, B, and C of 50 × 30 mm with a marking line, and then each region is subjected to actual mold production. Polished according to conditions. As for the details of the polishing process, the polishing process was carried out in the order of the grindstone and the abrasive paper in the region A, and finally finished with # 2000 abrasive paper (the average particle diameter of the abrasive grains was about 10 μm). The remaining regions B and C are polished in the order of a grindstone, abrasive paper, and diamond paste. Region B is finished with # 5000 diamond paste (the average grain size of the abrasive is about 5 μm). Finished with # 14000 diamond paste (average grain size of the abrasive grains was about 1 μm).

そして、磨き加工後の領域A〜Cの各表面において、実施例1と同じ要領で、様々なカットオフ値を適用したときのうねりの平均高さWcおよび要素の平均長さWSmを測定した。算術平均粗さRa(カットオフ値0.08mm)も測定した。領域A(砥粒の平均粒径;約10μm)における結果を表2に、領域B(同約5μm)における結果を表3に、領域C(同約1μm)における結果を表4に、それぞれ示す。また、特許文献2が評価に利用する微分干渉機能による光学顕微鏡写真も、図3(領域A)、4(領域B)、5(領域C)に示す。   Then, on each surface of the areas A to C after polishing, the average swell height Wc and the average element length WSm when various cut-off values were applied were measured in the same manner as in Example 1. The arithmetic average roughness Ra (cut-off value 0.08 mm) was also measured. The results in region A (average grain size of abrasive grains; about 10 μm) are shown in Table 2, the results in region B (about 5 μm) are shown in Table 3, and the results in region C (about 1 μm) are shown in Table 4, respectively. . Moreover, the optical micrograph by the differential interference function which patent document 2 utilizes for evaluation is also shown to FIG. 3 (area | region A), 4 (area | region B), and 5 (area | region C).

実施例1と同様、カットオフ値が小さい条件で測定したRa値は、磨き加工後の全ての領域A、B、Cにおいて、両鋼種の間で値に差が見られなかった。しかし、図3、4、5の光学顕微鏡写真を観察することで、目視において、SUS420J2改良鋼の表面にはうねりが確認され、P21鋼の磨き性がSUS420J2改良鋼のそれよりも優れる事実が確認された。そこで、本発明に係るカットオフ値の選択であれば、P21鋼のWc値がSUS420J2改良鋼のそれよりも小さい関係が測定されることで、上記の事実を示しているかを確認した。   As in Example 1, the Ra values measured under conditions with a small cut-off value showed no difference between the two steel types in all regions A, B, and C after polishing. However, by observing the optical micrographs of FIGS. 3, 4, and 5, the surface of the SUS420J2 improved steel is visually confirmed to be wavy, and the fact that the polishability of P21 steel is superior to that of SUS420J2 improved steel is confirmed. It was done. Then, if it was selection of the cut-off value which concerns on this invention, it was confirmed whether the Wc value of P21 steel measured the relationship smaller than that of SUS420J2 improved steel, and showed the said fact.

<研磨紙#2000仕上げのとき(砥粒の平均粒径;約10μm)>
使用した砥粒の大きさに対して、その平均粒径の10倍未満のカットオフ値で測定したNo.A−1からA−3では、磨き性に優れるP21鋼のWc値がSUS420J2改良鋼のそれよりも大きい値となっており、正しいWc値の関係が示されていなかった。これに対して、本発明の方法を実施して、カットオフ値を砥粒の平均粒径の10倍より大きく設定したNo.A−4以降で、P21鋼のWc値がSUS420J2改良鋼のそれよりも小さくなり、磨き性の正しい評価結果を示した。但し、設定したカットオフ値がWSm値を超えたNo.A−9では、いずれの鋼種においても、WSm値を測定することができなかった。
<When polishing paper # 2000 is finished (average grain size of abrasive grains; about 10 μm)>
No. measured with a cut-off value of less than 10 times the average particle size with respect to the size of the abrasive used. In A-1 to A-3, the Wc value of P21 steel excellent in polishability was larger than that of SUS420J2 improved steel, and the relationship of the correct Wc value was not shown. On the other hand, by carrying out the method of the present invention, the cut-off value was set to be larger than 10 times the average grain size of the abrasive grains. After A-4, the Wc value of P21 steel was smaller than that of SUS420J2 modified steel, and the correct evaluation result of polishability was shown. However, if the set cutoff value exceeds the WSm value, In A-9, the WSm value could not be measured in any steel type.

<ダイヤモンドペースト#5000仕上げのとき(砥粒の平均粒径;約5μm)>
使用した砥粒の大きさに対して、その平均粒径の10倍未満のカットオフ値で測定したNo.B−1、B−2では、磨き性に優れるP21鋼のWc値がSUS420J2改良鋼のそれよりも大きい値となっており、正しいWc値の関係が示されていなかった。これに対して、本発明の方法を実施して、カットオフ値を砥粒の平均粒径の10倍より大きく設定したNo.B−3以降で、P21鋼のWc値がSUS420J2改良鋼のそれよりも小さくなり、磨き性の正しい評価結果を示した。カットオフ値がWSm値を超えたNo.B−8以降は、WSm値の測定が困難となった。
<Diamond paste # 5000 finish (average grain size of abrasive grains; about 5 μm)>
No. measured with a cut-off value of less than 10 times the average particle size with respect to the size of the abrasive used. In B-1 and B-2, the Wc value of P21 steel excellent in polishability was larger than that of SUS420J2 improved steel, and the relationship of the correct Wc value was not shown. On the other hand, by carrying out the method of the present invention, the cut-off value was set to be larger than 10 times the average grain size of the abrasive grains. After B-3, the Wc value of P21 steel became smaller than that of SUS420J2 modified steel, and the correct evaluation result of polishability was shown. The cut-off value exceeded the WSm value. After B-8, it was difficult to measure the WSm value.

<ダイヤモンドペースト#14000仕上げのとき(砥粒の平均粒径;約1μm)>
使用した砥粒の大きさに対して、本発明の方法を実施して、カットオフ値を砥粒の平均粒径の10倍より大きく設定したNo.C−1以降で、P21鋼のWc値がSUS420J2改良鋼のそれよりも小さく、磨き性の正しい評価結果を示していた。カットオフ値がWSm値を超えたNo.C−9では、WSm値の測定が困難であった。
<Diamond paste # 14000 finish (average grain size of abrasive grains; about 1 μm)>
For the size of the abrasive grains used, the method of the present invention was carried out, and the cut-off value was set larger than 10 times the average grain size of the abrasive grains. After C-1, the Wc value of the P21 steel was smaller than that of the SUS420J2 improved steel, indicating a correct evaluation result of the polishability. The cut-off value exceeded the WSm value. In C-9, it was difficult to measure the WSm value.

Claims (4)

金型用鋼材の表面を砥粒によって磨き加工して、その加工後の表面のうねりを測定することで前記金型用鋼材の磨き性を評価する方法であって、前記うねりの測定は、カットオフ値λcを(磨き加工に用いた砥粒の平均粒径×10)<λc<(要素の平均長さWSm)の関係を満たす値に設定して求められたうねり曲線を用いて測定することを特徴とする金型用鋼材の磨き性の評価方法。 The surface of the mold steel is polished with abrasive grains, and the swell of the mold steel is evaluated by measuring the waviness of the surface after the processing, and the measurement of the waviness is cut Measure using an undulation curve obtained by setting the off value λc to a value satisfying the relationship of (average grain size of abrasive grains used for polishing × 10) <λc <(average element length WSm). A method for evaluating the polishability of steel for molds characterized by 前記うねりの測定は、平均高さWcを指標として測定することを特徴とする請求項1に記載の金型用鋼材の磨き性の評価方法。 2. The method for evaluating the polishability of a steel for molds according to claim 1, wherein the measurement of the waviness is measured using the average height Wc as an index. 金型用鋼材の表面を砥粒によって磨き加工して金型の作業面になるように仕上げた金型を製作し、その製作後の金型の作業面のうねりを測定することで前記金型の磨き性を評価する方法であって、前記うねりの測定は、カットオフ値λcを(磨き加工に用いた砥粒の平均粒径×10)<λc<(要素の平均長さWSm)の関係を満たす値に設定して求められたうねり曲線を用いて測定することを特徴とする金型の磨き性の評価方法。 The mold is made by polishing the surface of the mold steel with abrasive grains to produce a mold work surface and measuring the undulation of the work surface of the mold after the manufacture. The waviness is measured by measuring the cut-off value λc as follows: (average grain size of abrasive grains used in polishing process × 10) <λc <(average element length WSm) A method for evaluating the polishability of a mold, characterized by performing measurement using a waviness curve obtained by setting a value satisfying the above. 前記うねりの測定は、平均高さWcを指標として測定することを特徴とする請求項3に記載の金型の磨き性の評価方法。 4. The method for evaluating the polishability of a mold according to claim 3, wherein the waviness is measured using an average height Wc as an index.
JP2013030809A 2012-03-28 2013-02-20 Evaluation method of polishability of steel for mold and evaluation method of polishability of mold Active JP6086311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030809A JP6086311B2 (en) 2012-03-28 2013-02-20 Evaluation method of polishability of steel for mold and evaluation method of polishability of mold

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012073094 2012-03-28
JP2012073094 2012-03-28
JP2013030809A JP6086311B2 (en) 2012-03-28 2013-02-20 Evaluation method of polishability of steel for mold and evaluation method of polishability of mold

Publications (2)

Publication Number Publication Date
JP2013228369A JP2013228369A (en) 2013-11-07
JP6086311B2 true JP6086311B2 (en) 2017-03-01

Family

ID=49366141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030809A Active JP6086311B2 (en) 2012-03-28 2013-02-20 Evaluation method of polishability of steel for mold and evaluation method of polishability of mold

Country Status (4)

Country Link
JP (1) JP6086311B2 (en)
KR (1) KR101397291B1 (en)
CN (1) CN103364295B (en)
TW (1) TWI532577B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018102514U1 (en) 2017-12-22 2018-05-22 Schott Ag Glass-ceramic with reduced lithium content
US10995961B2 (en) 2017-12-22 2021-05-04 Schott Ag Fitout articles and articles of equipment for kitchens or laboratories with a lighting element
US11059739B2 (en) 2017-12-22 2021-07-13 Schott Ag Coloured stove sightglass with colour-neutral transmission characteristics
US11097979B2 (en) 2017-12-22 2021-08-24 Schott Ag Cover panel with colour-neutral coating
US11136262B2 (en) 2017-12-22 2021-10-05 Schott Ag Fitout articles and articles of equipment for kitchens or laboratories with a display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235877B2 (en) * 2013-11-21 2017-11-22 矢崎総業株式会社 Metal decoration parts
TWI744991B (en) * 2020-07-20 2021-11-01 中國鋼鐵股份有限公司 Method for evaluating roughening macroscopic defect of surface of formed steel material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159751A (en) * 1994-12-08 1996-06-21 Nippon Sheet Glass Co Ltd Method for evaluating surface of glass plate
JPH10103948A (en) * 1996-09-30 1998-04-24 Tokyo Seimitsu Co Ltd Method of setting measuring conditions for surface roughness shape measuring apparatus and apparatus therefor
JP3241615B2 (en) * 1996-11-01 2001-12-25 株式会社東京精密 Method and apparatus for automatically setting measurement conditions of surface roughness profile measuring machine
JP3525432B2 (en) * 2000-09-29 2004-05-10 株式会社東京精密 Roughness measuring method and roughness measuring device
CN101428478B (en) * 2003-08-26 2013-11-06 三菱丽阳株式会社 Light reflector and method for producing molded article for light reflector
JP5095141B2 (en) * 2006-07-05 2012-12-12 日本ミクロコーティング株式会社 Tape-like metal substrate surface polishing system and polishing method
CN101352818A (en) * 2007-07-23 2009-01-28 江苏海迅实业集团股份有限公司 Method for reducing roughness concentration during surface polishing of metallic workpiece
JP2010214547A (en) 2009-03-17 2010-09-30 Nihon Micro Coating Co Ltd Polishing sheet and method for manufacturing the same
JP2010214576A (en) 2009-03-19 2010-09-30 Konica Minolta Opto Inc Polishing method, manufacturing method of optical element and re-machining method of die
JP5385653B2 (en) 2009-03-25 2014-01-08 株式会社アドマテックス Polishing pad and polishing method
SG176255A1 (en) * 2009-08-19 2012-01-30 Hitachi Chemical Co Ltd Polishing solution for cmp and polishing method
JP5717593B2 (en) * 2011-08-31 2015-05-13 住友ゴム工業株式会社 Mold for molding gasket for prefilled syringe

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018102514U1 (en) 2017-12-22 2018-05-22 Schott Ag Glass-ceramic with reduced lithium content
DE102018110855A1 (en) 2017-12-22 2018-06-28 Schott Ag Glass-ceramic with reduced lithium content
EP3502069A1 (en) 2017-12-22 2019-06-26 Schott Ag Glass ceramic with reduced lithium content
US10995961B2 (en) 2017-12-22 2021-05-04 Schott Ag Fitout articles and articles of equipment for kitchens or laboratories with a lighting element
US11059739B2 (en) 2017-12-22 2021-07-13 Schott Ag Coloured stove sightglass with colour-neutral transmission characteristics
US11072557B2 (en) 2017-12-22 2021-07-27 Schott Ag Glass ceramic with reduced lithium content
US11097979B2 (en) 2017-12-22 2021-08-24 Schott Ag Cover panel with colour-neutral coating
US11136262B2 (en) 2017-12-22 2021-10-05 Schott Ag Fitout articles and articles of equipment for kitchens or laboratories with a display device
US11267748B2 (en) 2017-12-22 2022-03-08 Schott Ag Transparent coloured lithium aluminium silicate glass ceramic and process for production and use of the glass ceramic
US11365889B2 (en) 2017-12-22 2022-06-21 Schott Ag Fitout articles and articles of equipment for kitchens or laboratories with a lighting element
US11724960B2 (en) 2017-12-22 2023-08-15 Schott Ag Glass ceramic with reduced lithium content

Also Published As

Publication number Publication date
KR101397291B1 (en) 2014-05-20
CN103364295B (en) 2015-07-15
CN103364295A (en) 2013-10-23
TW201350299A (en) 2013-12-16
TWI532577B (en) 2016-05-11
JP2013228369A (en) 2013-11-07
KR20130110095A (en) 2013-10-08

Similar Documents

Publication Publication Date Title
JP6086311B2 (en) Evaluation method of polishability of steel for mold and evaluation method of polishability of mold
Kapłonek et al. The use of focus-variation microscopy for the assessment of active surfaces of a new generation of coated abrasive tools
KR102265892B1 (en) Razor blade
Zawada-Tomkiewicz Analysis of surface roughness parameters achieved by hard turning with the use of PCBN tools
Denkena et al. Impact of hard machining on zirconia based ceramics for dental applications
CN110573351B (en) Decorative part
JP7071110B2 (en) Resin molded products and manufacturing methods for resin molded products
Denkena et al. New profiling approach with geometrically defined cutting edges for sintered metal bonded CBN grinding layers
Żak et al. Metrological aspects of surface topographies produced by different machining operations regarding their potential functionality
Ham et al. Surface topography from single point incremental forming using an acetal tool
Rebeggiani et al. A quantitative method to estimate high gloss polished tool steel surfaces
Rebeggiani et al. Quantitative evaluation of the surface finish of high gloss polished tool steels
Zak Areal field and fractal based characterization of hard surfaces produced by different machining operations
Tournier et al. Grinding of medical implants in cobalt-chromium alloy
Bae et al. A Study on the Optimal Cutting Depth upon Surface Roughness of Al Alloy 7075 in High-speed Machining
Kapłonek et al. High-accuracy surface topography measurements of abrasive tools using a 3D optical profiling system
Brient et al. Multiscale topography analysis of waterjet pocketing of silica glass surfaces
Raymond et al. Surface polishing of hardened grey cast iron with a compliant abrasive filament tool
Ha et al. Machining characteristics of mold material in high-speed grinding
Ichida et al. Fractal analysis of grain cutting edge wear in superabrasive grinding
JP6864034B2 (en) Razor blade
Vidal Irusta et al. An Analysis of Electroplated cBN Grinding Wheel Wear and Conditioning during Creep Feed Grinding of Aeronautical Alloys
Zangl et al. METROLOGICAL QUANTIFICATION OF TOOL WEAR BEHAVIOR OVER TIME.
Simariya et al. “Improvement of surface finish of ceramics”-A review
ŁĘTOCHA et al. Influence of measurement areas selection on roughness parameters in burnished surfaces measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170119

R150 Certificate of patent or registration of utility model

Ref document number: 6086311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350