JP5988018B2 - Metal recovery method in cement manufacturing process - Google Patents

Metal recovery method in cement manufacturing process Download PDF

Info

Publication number
JP5988018B2
JP5988018B2 JP2012026189A JP2012026189A JP5988018B2 JP 5988018 B2 JP5988018 B2 JP 5988018B2 JP 2012026189 A JP2012026189 A JP 2012026189A JP 2012026189 A JP2012026189 A JP 2012026189A JP 5988018 B2 JP5988018 B2 JP 5988018B2
Authority
JP
Japan
Prior art keywords
selenium
chlorine bypass
bypass dust
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012026189A
Other languages
Japanese (ja)
Other versions
JP2013053056A (en
Inventor
光雄 山下
光雄 山下
訓 惣田
訓 惣田
道彦 池
道彦 池
晶子 花田
晶子 花田
鈴木 務
務 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Osaka University NUC
Shibaura Institute of Technology
Original Assignee
Taiheiyo Cement Corp
Osaka University NUC
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Osaka University NUC, Shibaura Institute of Technology filed Critical Taiheiyo Cement Corp
Priority to JP2012026189A priority Critical patent/JP5988018B2/en
Publication of JP2013053056A publication Critical patent/JP2013053056A/en
Application granted granted Critical
Publication of JP5988018B2 publication Critical patent/JP5988018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、セメント製造工程における金属の回収方法に関する。   The present invention relates to a metal recovery method in a cement manufacturing process.

セメント製造設備において、プレヒーターの閉塞を引き起こす原因として、特に塩素が問題となる。このため、セメントキルンのキルン尻からボトムサイクロンに至るまでのキルン排ガス流路より、燃焼ガスの一部を抽気して塩素を除去する塩素バイパスシステムが用いられている。この塩素バイパスシステムでは、抽気した燃焼ガスを冷却すると、カリウムやナトリウム等の塩化物や、セメント原料を主成分とする固形物(塩素バイパスダスト)が回収される。   In cement production facilities, chlorine is a problem as a cause of blockage of the preheater. For this reason, a chlorine bypass system for extracting chlorine by extracting a part of combustion gas from the kiln exhaust gas passage from the kiln bottom of the cement kiln to the bottom cyclone is used. In this chlorine bypass system, when the extracted combustion gas is cooled, chlorides such as potassium and sodium and solids (chlorine bypass dust) mainly containing cement raw materials are recovered.

近年、セメント原料又は燃料として、種々の廃棄物が用いられているが、廃棄物には塩分が多量に含まれているため、その使用量が増加するに伴い、塩素バイパスダストの発生量も増加している。
塩素バイパスダストは、水洗浄により塩素を除去すれば、セメント原料として再利用することが可能である。しかしながら、塩素バイパスダストには、塩化カリウム等の塩素化合物と沸点が比較的近い金属類、無機元素類も含まれており、水洗浄を行うと、塩素が溶出するとともに、セレンも溶出される。セレンの排水基準値は、0.1mg/Lと厳しいため、排水処理が必要となる。
In recent years, various wastes have been used as cement raw materials or fuels, but since the waste contains a large amount of salt, the amount of chlorine bypass dust generated increases as the amount of use increases. doing.
Chlorine bypass dust can be reused as a cement raw material by removing chlorine by washing with water. However, the chlorine bypass dust contains metals and inorganic elements having a boiling point relatively close to that of chlorine compounds such as potassium chloride. When water is washed, chlorine is eluted and selenium is also eluted. Since the selenium effluent reference value is as strict as 0.1 mg / L, effluent treatment is required.

従来、塩素バイパスダストの水洗浄により発生するセレン含有排水は、凝集剤を用いた凝集沈澱により、セレンを除去しているが、多量の凝集剤が必要でコスト高になるとともに、多量の凝集沈澱汚泥が発生するという問題もあった。
このため、塩素バイパスダストに水を添加してスラリーとした後、1次ケーキとセレンを含む1次ろ液とに分離し、該セレンを含む1次ろ液にpH調整剤及び第一鉄化合物を添加してセレン濃度を低減した後、2次ケーキとセレンを含む2次ろ液とに分離し、該セレンを含む2次ろ液を電気透析装置に通して、濃縮塩水とセレンを含む脱塩水とに分離し、該セレンを含む脱塩水を、前記集塵したダストに添加する水の一部として循環使用する処理方法(特許文献1)などが検討されている。
Conventionally, selenium-containing wastewater generated by water washing of chlorine bypass dust removes selenium by agglomeration precipitation using a flocculant. However, a large amount of agglomeration agent is required and the cost is increased. There was also a problem that sludge was generated.
For this reason, after adding water to chlorine bypass dust to make a slurry, it is separated into a primary cake and a primary filtrate containing selenium, and a pH adjuster and a ferrous compound are added to the primary filtrate containing selenium. Is added to reduce the selenium concentration, and then separated into a secondary cake and a secondary filtrate containing selenium, and the secondary filtrate containing selenium is passed through an electrodialyzer to remove concentrated salt water and selenium. A treatment method (Patent Document 1) that separates into salt water and circulates the demineralized water containing the selenium as a part of the water added to the dust collected has been studied.

一方、セレンは、レアメタルの一種であり、半導体製造の材料や着色剤原料などとして、幅広い用途に使用されており、近年、その需要が増大し、資源価値が高まっている。   On the other hand, selenium is a kind of rare metal and is used in a wide range of applications as a semiconductor manufacturing material, a colorant raw material, and the like. In recent years, its demand has increased and its resource value has increased.

特開2004−330148号公報JP 2004-330148 A

従って、本発明の目的は、セメント製造工程で発生する塩素バイパスダストから、セレン等の金属を効率良く回収する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for efficiently recovering a metal such as selenium from chlorine bypass dust generated in a cement manufacturing process.

本発明者らは、斯かる実情に鑑み、種々検討した結果、塩素バイパスダストを特定の溶出助剤の水溶液で洗浄するとともに、微生物及び/又は酵素で処理すれば、セレン等の金属を効率良く回収できることを見出し、本発明を完成した。   As a result of various studies in view of such circumstances, the present inventors have efficiently cleaned metals such as selenium by washing chlorine bypass dust with an aqueous solution of a specific elution aid and treating it with microorganisms and / or enzymes. The present invention was completed by finding that it can be recovered.

すなわち、本発明は、セメント製造工程で発生する塩素バイパスダストを、アルカリ金属及びアルカリ土類金属の水酸化物、アルカリ金属及びアルカリ土類金属のオキソ酸塩、有機酸及び有機酸塩、水溶性炭酸塩並びに強酸からなる群から少なくとも1以上選択される溶出助剤の水溶液で洗浄して、金属を溶出させる溶出工程を含むことを特徴とする塩素バイパスダストからの金属の回収方法を提供するものである。
ただし、これらの工程の前後や間に、1又は2以上の他の任意の調製工程を含んでも良い。調製工程としては、ろ過、希釈、pH調整、塩濃度調整工程等が挙げられるが、これらに限定されるものではない。
That is, the present invention relates to chlorine bypass dust generated in the cement manufacturing process, alkali metal and alkaline earth metal hydroxides, alkali metal and alkaline earth metal oxoacid salts, organic acids and organic acid salts, water-soluble Provided is a method for recovering metal from chlorine bypass dust, comprising an elution step of eluting the metal by washing with an aqueous solution of at least one elution aid selected from the group consisting of carbonate and strong acid It is.
However, one, two or more other arbitrary preparation steps may be included before, after, or between these steps. Examples of the preparation process include, but are not limited to, filtration, dilution, pH adjustment, salt concentration adjustment process, and the like.

本発明によれば、セメント製造工程において、塩素バイパスダストから、セレン等の金属を効率良く回収することができる。回収される金属のうち、特に、セレンは、半導体製造の材料や着色剤原料などとして、幅広い用途に、資源として再利用することが可能である。また、溶出液中のセレンが回収されるため、セレン濃度を排水基準未満にすることもできる。   ADVANTAGE OF THE INVENTION According to this invention, metals, such as selenium, can be efficiently collect | recovered from chlorine bypass dust in a cement manufacturing process. Of the recovered metals, in particular, selenium can be reused as a resource for a wide range of applications as a semiconductor manufacturing material, a colorant raw material, and the like. In addition, since selenium in the eluate is recovered, the selenium concentration can be made lower than the drainage standard.

本発明で用いる溶出助剤は、アルカリ金属及びアルカリ土類金属の水酸化物、アルカリ金属及びアルカリ土類金属のオキソ酸塩、有機酸及び有機酸塩、水溶性炭酸塩並びに強酸から選ばれるものである。
アルカリ金属及びアルカリ土類金属の水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられ、特に、水酸化ナトリウムが好ましい。
アルカリ金属及びアルカリ土類金属のオキソ酸塩としては、リン酸塩、ホウ酸塩等が挙げられ、例えば、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸水素二カリウム、リン酸二水素カリウム等が挙げられ、特に、リン酸水素二カリウム、リン酸二水素カリウムが好ましい。
有機酸及び有機酸塩としては、例えば、クエン酸、乳酸、リンゴ酸、酒石酸等のヒドロキシ酸、酢酸、プロピオン酸及びこれらのナトリウム、カリウム等のアルカリ金属塩が挙げられ、特に、クエン酸三ナトリウムが好ましい。
水溶性炭酸塩としては、例えば、炭酸ナトリウム、炭酸カリウム等が挙げられ、特に、炭酸ナトリウムが好ましい。
強酸としては、例えば、硫酸、硝酸、塩酸等が挙げられ、特に、硫酸が好ましい。
これらの溶出助剤は、水溶液として用いられ、その濃度は、0.1〜3M、特に0.5〜2Mであるのが好ましい。
また、溶出助剤は、緩衝液として調製されたものも、好適に使用することができる。
The elution aid used in the present invention is selected from alkali metal and alkaline earth metal hydroxides, alkali metal and alkaline earth metal oxoacid salts, organic acids and organic acid salts, water-soluble carbonates and strong acids. It is.
Examples of the alkali metal and alkaline earth metal hydroxides include sodium hydroxide, potassium hydroxide, calcium hydroxide and the like, and sodium hydroxide is particularly preferable.
Examples of oxo acid salts of alkali metals and alkaline earth metals include phosphates and borates, such as disodium hydrogen phosphate, sodium dihydrogen phosphate, dipotassium hydrogen phosphate, dihydrogen phosphate. Examples thereof include potassium, and dipotassium hydrogen phosphate and potassium dihydrogen phosphate are particularly preferable.
Examples of the organic acid and organic acid salt include hydroxy acids such as citric acid, lactic acid, malic acid, and tartaric acid, acetic acid, propionic acid, and alkali metal salts thereof such as sodium and potassium. Is preferred.
Examples of the water-soluble carbonate include sodium carbonate and potassium carbonate, and sodium carbonate is particularly preferable.
Examples of the strong acid include sulfuric acid, nitric acid, hydrochloric acid and the like, and sulfuric acid is particularly preferable.
These dissolution aids are used as an aqueous solution, and the concentration thereof is preferably 0.1 to 3M, particularly 0.5 to 2M.
Moreover, what was prepared as a buffer solution can also be used suitably for an elution adjuvant.

本発明においては、セメント製造工程で発生する塩素バイパスダストを、上記のような溶出助剤の水溶液で洗浄する。
洗浄に用いる水溶液は、塩素バイパスダストの質量に対して、1〜50質量倍、特に2〜20質量倍であるのが、金属を効率良く溶出させることができるので好ましい。
In the present invention, chlorine bypass dust generated in the cement manufacturing process is washed with the aqueous solution of the dissolution aid as described above.
The aqueous solution used for washing is preferably 1 to 50 times by mass, particularly 2 to 20 times by mass, with respect to the mass of the chlorine bypass dust, because the metal can be efficiently eluted.

洗浄方法は、特に制限されず、例えば、水溶液に塩素バイパスダストを加え、好ましくは4〜60℃で、1〜24時間程度、静置又は攪拌すれば良い。
このように洗浄することにより、塩素バイパスダスト中の金属を、水溶液中に効率良く溶出させることができる。
ここで、金属とは、主として塩素バイパスダスト中に含まれるもので、セレン等のレアメタル;鉛、カドミウム等の重金属;アルミニウム等の軽金属などが挙げられる。
The cleaning method is not particularly limited, and for example, chlorine bypass dust may be added to the aqueous solution, and it may be allowed to stand or stir at 4 to 60 ° C. for about 1 to 24 hours.
By washing in this way, the metal in the chlorine bypass dust can be efficiently eluted into the aqueous solution.
Here, the metal is mainly contained in chlorine bypass dust, and includes rare metals such as selenium; heavy metals such as lead and cadmium; light metals such as aluminum.

溶出工程で得られた金属を含む溶出液は、更に、生物学的処理及び/又は化学的処理することにより、金属を回収することができる。
得られた溶出液を微生物、酵素、タンパク質、細胞、細胞組織等を用いた生物処理、特に微生物と接触させて処理する微生物処理工程及び/又は酵素と接触させて処理する酵素処理工程により、金属を回収するのが好ましい。微生物処理工程においては、セレン酸還元菌、特に、好気的セレン酸還元菌を使用するのが好ましく、酵素処理工程においては、セレン酸還元菌、特に、好気的セレン酸還元菌より抽出したセレン酸還元酵素を使用するのが好ましい。
処理工程の態様としては、溶出液中に微生物、酵素、タンパク質、細胞、細胞組織等を分散させる態様だけでなく、担体に担持させる態様、グラニュールを形成させる態様等が適応可能であるが、これらに限定されるものではない。
凝集沈殿法等の化学処理でも、金属の回収はできるが、目的とする金属の選択性に優れている、あるいは高濃度の金属回収物を得られる等の点で生物処理の方が優れている。また、化学処理と生物処理を組み合わせることにより、より高効率な処理が可能となる場合もある。
The eluate containing the metal obtained in the elution step can be further recovered by subjecting it to biological treatment and / or chemical treatment.
Metals obtained by biological treatment using microorganisms, enzymes, proteins, cells, cell tissues, etc., in particular microorganism treatment steps for treatment by contacting with microorganisms and / or enzyme treatment steps for treatment by contacting with enzymes. Is preferably recovered. Selenate-reducing bacteria, particularly aerobic selenate-reducing bacteria are preferably used in the microbial treatment step, and extracted from selenate-reducing bacteria, particularly aerobic selenate-reducing bacteria, in the enzyme treatment step. Selenate reductase is preferably used.
As an aspect of the treatment step, not only an aspect in which microorganisms, enzymes, proteins, cells, cell tissues, etc. are dispersed in the eluate, but also an aspect in which it is supported on a carrier, an aspect in which granules are formed, etc. can be applied. It is not limited to these.
Metals can be recovered even by chemical treatment such as coagulation and precipitation, but biological treatment is superior in that it is excellent in the selectivity of the target metal or can obtain a high concentration of recovered metal. . In addition, by combining chemical treatment and biological treatment, more efficient treatment may be possible.

得られた溶出液において、セレンは、水溶性のセレン酸(SeO4 2-)又は亜セレン酸(SeO3 2-)として存在する。この溶出液を、セレン酸還元菌で処理することにより、溶出液中のセレン酸を固形の元素態に還元して、固形物として回収することができる。また、セレン酸をガス態であるメチル化セレンにまで還元して、回収することもできる。
セレン酸還元菌としては、公知のものを使用することができ、例えば、Pseudomonas stutzeri NT-I株(NITE P−685)、Enterobacter cloacae SLD1a-1、Bacillus selenatarsenatis SF-1等が挙げられる。これらのうち、セレンを好気的条件で回収できる点から、特に、Pseudomonas stutzeri NT-I株(NITE P−685)が好ましい。
In the obtained eluate, selenium exists as water-soluble selenic acid (SeO 4 2− ) or selenious acid (SeO 3 2− ). By treating this eluate with selenate-reducing bacteria, selenate in the eluate can be reduced to a solid elemental state and recovered as a solid. It is also possible to recover selenic acid by reducing it to gaseous methylated selenium.
As the selenate-reducing bacteria, known ones can be used, and examples thereof include Pseudomonas stutzeri NT-I strain (NITE P-685), Enterobacter cloacae SLD1a-1, Bacillus selenatarsenatis SF-1. Among these, the Pseudomonas stutzeri NT-I strain (NITE P-685) is particularly preferable because selenium can be recovered under aerobic conditions.

溶出液を、セレン酸還元菌で処理するには、公知の方法により行えば良い。例えば、好気的セレン酸還元菌である、Pseudomonas stutzeri NT-I株(NITE P−685)を用いる場合には、特開2010−142166号公報に記載の方法に従って行うことができる。より具体的には、セレン酸を含む溶出液中、28〜38℃、8時間〜20日程度、好気的条件下でNT−I株を培養すれば良く、溶出液中のセレン酸(水溶性)は、亜セレン酸(水溶性)を経て、固形の元素態セレン、更に、ガス態のメチル化セレンにまで、還元され、固体又は気体として回収することができる。
また、微生物処理に用いられる微生物は、セレン酸還元機能を有する酵素をコードする外来遺伝子を少なくとも1つ有する遺伝子組み換え微生物でも良い。さらに、例えばNT-I株の持つセレン酸還元酵素を用いた生物処理でも、溶出液中のセレン酸を還元し、セレンを固形の元素体、あるいは、ガス状のセレン化合物として回収することができる。
In order to treat the eluate with selenate-reducing bacteria, a known method may be used. For example, when Pseudomonas stutzeri NT-I strain (NITE P-685), which is an aerobic selenate-reducing bacterium, is used, it can be performed according to the method described in JP 2010-142166 A. More specifically, the NT-I strain may be cultured in an eluate containing selenic acid under aerobic conditions at 28 to 38 ° C. for about 8 hours to 20 days. Is reduced to solid elemental selenium and further to gaseous methylated selenium via selenious acid (water-soluble) and can be recovered as a solid or gas.
The microorganism used for the microorganism treatment may be a genetically modified microorganism having at least one foreign gene encoding an enzyme having a selenate reducing function. Furthermore, for example, even in a biological treatment using selenate reductase possessed by the NT-I strain, selenate in the eluate can be reduced and selenium can be recovered as a solid elemental body or a gaseous selenium compound. .

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに何ら制限されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not restrict | limited to these at all.

実施例1
溶出助剤として、(1)水酸化ナトリウム、(2)炭酸ナトリウム、(3)リン酸水素二カリウム、(4)クエン酸三ナトリウム・二水和物の4種を用い、それぞれ終濃度0.75Mとなるように水溶液を調製した。なお、溶出助剤を用いず、水のみを用いた例も、比較として行った。
300mL容三角フラスコに、各水溶液100mLを分取し、それぞれに、塩素バイパスダスト(塩含有量 20.6%、セレン含有量 368mg/L)10gずつを添加した。これを、ブチルゴム栓で密栓して、約24時間回転振盪(120rpm,28℃)した。なお、水のみを用いた例では、60℃で処理を行った。
その後、水溶液を、孔径1.0μmのガラスフィルター(GF/B、Whatman)を用いてろ過し、各溶出液を得た。溶出液の最終pH、得られた溶出液の塩濃度及びセレン濃度を表1に示した。
なお、最終pHは、pH計F−52(HORIBA)を用いてろ過前に測定し、溶出液の塩濃度は、塩分濃度計SK−5S(佐藤計量器)を用い、ろ過後に適宜希釈して測定した。また、得られた各溶出液は、更に孔径0.22μmのマイクロフィルターでろ過して懸濁物質を除去した後、ICP発光分光装置(SPS7800、SII Nano Technology)に供し、全水溶性セレン濃度を測定した。
Example 1
As elution aids, four types of (1) sodium hydroxide, (2) sodium carbonate, (3) dipotassium hydrogen phosphate, and (4) trisodium citrate dihydrate were used, each with a final concentration of 0. An aqueous solution was prepared to 75M. In addition, the example using only water, without using an elution adjuvant was also performed as a comparison.
100 mL of each aqueous solution was fractionated into a 300 mL Erlenmeyer flask, and 10 g of chlorine bypass dust (salt content 20.6%, selenium content 368 mg / L) was added to each. This was sealed with a butyl rubber stopper and rotated and shaken (120 rpm, 28 ° C.) for about 24 hours. In the example using only water, the treatment was performed at 60 ° C.
Thereafter, the aqueous solution was filtered using a glass filter (GF / B, Whatman) having a pore size of 1.0 μm to obtain each eluate. Table 1 shows the final pH of the eluate, the salt concentration and the selenium concentration of the obtained eluate.
The final pH is measured before filtration using a pH meter F-52 (HORIBA), and the salt concentration of the eluate is appropriately diluted after filtration using a salt concentration meter SK-5S (Sato meter). It was measured. In addition, each eluate obtained was filtered through a microfilter with a pore size of 0.22 μm to remove suspended substances, and then subjected to an ICP emission spectrometer (SPS7800, SII Nano Technology) to determine the total water-soluble selenium concentration. It was measured.

Figure 0005988018
Figure 0005988018

実施例2
実施例1において、(3)リン酸水素二カリウム、(4)クエン酸三ナトリウム・二水和物で得られた溶出液を純水で5倍に希釈し、TSB培地成分(Becton-Dickinson)を添加後、塩酸を用いてpH8.0に調整した。これらをろ過することにより、形成された沈澱を除去した後、それぞれ50mLバイアル瓶に20mL分注した。ここに、TSB培地で培養したNT−I株の培養液1mLを添加し、好気条件下で回転振盪(120rpm、28℃)して、120時間培養した。溶液を遠心分離した後、上清をろ過し、実施例1と同様にして、全水溶性セレン濃度を測定した。微生物処理工程前後の全水溶性セレン濃度の結果を表2に示す。
なお、溶液を遠心分離して上清をろ過したところで、固形のセレンを回収することができる。さらに、培養を続けることにより、気化セレン(ジメチルジセレニド)を回収することができる。
Example 2
In Example 1, the eluate obtained with (3) dipotassium hydrogen phosphate and (4) trisodium citrate dihydrate was diluted 5-fold with pure water, and TSB medium components (Becton-Dickinson) Was added to adjust the pH to 8.0 using hydrochloric acid. These were filtered to remove the formed precipitate, and then 20 mL was dispensed into each 50 mL vial. To this, 1 mL of a culture solution of NT-I strain cultured in TSB medium was added, and the mixture was cultured under aerobic conditions by rotary shaking (120 rpm, 28 ° C.) for 120 hours. After centrifuging the solution, the supernatant was filtered, and the total water-soluble selenium concentration was measured in the same manner as in Example 1. Table 2 shows the results of the total water-soluble selenium concentration before and after the microorganism treatment process.
When the solution is centrifuged and the supernatant is filtered, solid selenium can be recovered. Furthermore, vaporizing selenium (dimethyl diselenide) can be recovered by continuing the culture.

Figure 0005988018
Figure 0005988018

実施例3
溶出助剤として、1.0M K2HPO4−KH2PO4緩衝液(pH6.8〜7.0)50mL、塩素バイパスダスト(セレン含有量 478ppm)20gを用い、実施例1と同様に処理を行い、溶出液を得た。得られた溶出液はpH9.7、セレン濃度153mg/L(溶出率80%)であった。
Example 3
The same treatment as in Example 1 was carried out using 50 mL of 1.0 M K 2 HPO 4 -KH 2 PO 4 buffer solution (pH 6.8 to 7.0) and 20 g of chlorine bypass dust (selenium content 478 ppm) as elution aids. To obtain an eluate. The obtained eluate had a pH of 9.7 and a selenium concentration of 153 mg / L (elution rate 80%).

実施例4
(1)培養方法;
5L容ジャーファーメンター(丸菱バイオエンジ社製、Bioneer-C500N型5L(S))に、TSB培地90gと脱イオン水2600mLを入れ、オートクレーブ処理を行った。実施例3で得られた溶出液400mLを本培地に添加した。
NT−I株をTSB培地で12時間前培養を行った培養液を遠心分離により集菌し、OD660=1.0に調整後、30mL(1%)接種し、好気条件下で回転振盪(250rpm、38℃)して、120時間培養した。
120時間培養後の溶出液中に残留した水溶性セレン濃度(液中セレン)、還元されて不溶化した元素セレン濃度(固体セレン)、揮発化したメチル化セレン濃度(気体セレン)を、以下の方法により、測定した。結果を表3に示す。
Example 4
(1) culture method;
To a 5 L jar fermenter (manufactured by Maruhishi Bioengineer, Bioneer-C500N type 5 L (S)), 90 g of TSB medium and 2600 mL of deionized water were added and autoclaved. 400 mL of the eluate obtained in Example 3 was added to the medium.
The culture solution obtained by pre-culturing the NT-I strain in TSB medium for 12 hours was collected by centrifugation, adjusted to OD660 = 1.0, inoculated with 30 mL (1%), and subjected to rotary shaking under aerobic conditions ( 250 rpm, 38 ° C.) and cultured for 120 hours.
Water soluble selenium concentration (selenium in liquid) remaining in the eluate after 120-hour culture, elemental selenium concentration reduced (insoluble) (solid selenium), and volatile methylated selenium concentration (gaseous selenium) were Was measured. The results are shown in Table 3.

(2)サンプリングと測定試料調製;
ジャーファーメンターより培養液を採取し、菌体濁度(O.D.600)を測定した。培養液を2mL分取し、15,000rpm、5分間の条件で遠心分離を行った。遠心分離後、上清をフィルタレーションした試料を上清試料とし、遠心分離により得られたペレットを沈澱試料とした。
(2) Sampling and measurement sample preparation;
The culture solution was collected from the jar fermenter and the microbial turbidity (OD600) was measured. 2 mL of the culture broth was collected and centrifuged at 15,000 rpm for 5 minutes. After centrifugation, a sample obtained by filtering the supernatant was used as a supernatant sample, and a pellet obtained by centrifugation was used as a precipitated sample.

(3)セレン酸および亜セレン酸濃度の測定;
上清試料100μLを分取し、超純水900μLにて1/10倍希釈した。この希釈液をイオンクロマトグラフィー(ダイオネクス社、ICS-1100;検出器、CDM-3、DS6 conductivity cell;カラム、IonPac AS12A;ガードカラム、AG12A;サプレッサー、ASRS300;溶離液、3.0mM Na2CO3;流速、1.5mL/min)に供し、セレン酸および亜セレン酸の濃度(液中セレン)を測定した。
(3) measurement of selenate and selenite concentrations;
100 μL of the supernatant sample was collected and diluted 1/10 times with 900 μL of ultrapure water. The diluted solution was subjected to ion chromatography (Dionex, ICS-1100; detector, CDM-3, DS6 conductivity cell; column, IonPac AS12A; guard column, AG12A; suppressor, ASRS300; eluent, 3.0 mM Na 2 CO 3. The flow rate was 1.5 mL / min), and the concentrations of selenic acid and selenious acid (selenium in the liquid) were measured.

(4)溶存セレン濃度の測定;
上清試料1000μLを、濃硝酸100μLを添加した超純水8900μLに添加し、1/10倍希釈した。この溶液を測定試料とし、ICP-AES(Thermo Fisher iCAP6300 Duo senes)により全セレン濃度の測定を行った。
(4) Measurement of dissolved selenium concentration;
1000 μL of the supernatant sample was added to 8900 μL of ultrapure water to which 100 μL of concentrated nitric acid had been added, and diluted 1/10 times. Using this solution as a measurement sample, the total selenium concentration was measured by ICP-AES (Thermo Fisher iCAP6300 Duo senes).

(5)元素態セレン濃度の測定;
沈澱試料に超純水2mLを加え、ボルテックスにより洗浄後、遠心分離により沈殿を回収した。繰り返し、洗浄作業を行った後、沈澱試料に1500μLの濃硝酸と50μLの濃硫酸を添加し、ボルテックスにより沈殿物を溶解させた。
溶解液を15,000rpm、5分間の条件で遠心分離を行い、上清と沈殿物を分離した。上澄みの溶液は10mLメスフラスコに分取した。沈澱物は、再度同条件で溶解操作を行い、上清を回収し、上澄み溶液を回収したメスフラスコに分取した。10mLメスフラスコに超純水を標線まで足し、定容したものを測定試料とした。測定試料はICP-AESによりセレン濃度(固体セレン)の測定を行った。
(5) Measurement of elemental selenium concentration;
2 mL of ultrapure water was added to the precipitated sample, washed with vortex, and then collected by centrifugation. After repeated washing operations, 1500 μL of concentrated nitric acid and 50 μL of concentrated sulfuric acid were added to the precipitated sample, and the precipitate was dissolved by vortexing.
The lysate was centrifuged at 15,000 rpm for 5 minutes to separate the supernatant and the precipitate. The supernatant solution was dispensed into a 10 mL volumetric flask. The precipitate was dissolved again under the same conditions, the supernatant was collected, and fractionated into a volumetric flask from which the supernatant solution was collected. A 10 mL volumetric flask was added with ultrapure water up to the marked line, and a constant volume was used as a measurement sample. The measurement sample was selenium concentration (solid selenium) measured by ICP-AES.

(6)気体の回収と分析;
ジャーファーメンターの排気口にファーメードチューブを接続し、250mL容の試薬瓶に添加した濃硝酸150mLへバブリングを行った。濃硝酸との接触面にはエアーストーンを接続した。濃硝酸は経過時的にサンプリングし、ICP-AESによりセレン濃度(気体セレン)を測定した。
(6) Gas recovery and analysis;
A fermented tube was connected to the exhaust port of the jar fermenter, and bubbling was performed to 150 mL of concentrated nitric acid added to a 250 mL reagent bottle. An air stone was connected to the contact surface with concentrated nitric acid. Concentrated nitric acid was sampled over time, and the selenium concentration (gas selenium) was measured by ICP-AES.

Figure 0005988018
Figure 0005988018

表3の結果より、溶出液中のセレンのうち、約70%が、気体セレンとして回収された。   From the results in Table 3, about 70% of the selenium in the eluate was recovered as gaseous selenium.

Claims (2)

セメント製造工程で発生する塩素バイパスダストを、アルカリ金属及びアルカリ土類金属の水酸化物、アルカリ金属及びアルカリ土類金属のリン酸塩及びホウ酸塩、有機酸及び有機酸塩並びに水溶性炭酸塩からなる群から少なくとも1以上選択される溶出助剤の水溶液で洗浄して、セレンを溶出させて得られたセレンの溶出液を、Pseudomonas stutzeri NT-I株(NITE P−685)と接触させて処理することを特徴とする塩素バイパスダストからのセレンの回収方法。 Chlorine bypass dust generated in the cement manufacturing process is treated with alkali metal and alkaline earth metal hydroxides, alkali metal and alkaline earth metal phosphates and borates , organic acids and organic acid salts, and water-soluble carbonates. The selenium eluate obtained by washing with an aqueous solution of at least one elution aid selected from the group consisting of the following and eluting selenium is brought into contact with Pseudomonas stutzeri NT-I strain (NITE P-685). A method for recovering selenium from chlorine bypass dust, characterized in that it is treated . 溶出助剤が、水酸化ナトリウム、リン酸水素二カリウム、リン酸二水素カリウム、クエン酸三ナトリウム及び炭酸ナトリウムから選ばれるものである請求項記載の塩素バイパスダストからのセレンの回収方法。 Elution aid, sodium hydroxide, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, selenium method of recovery from the chlorine bypass dust according to claim 1, wherein those selected from sodium citrate and sodium carbonate.
JP2012026189A 2011-08-05 2012-02-09 Metal recovery method in cement manufacturing process Active JP5988018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026189A JP5988018B2 (en) 2011-08-05 2012-02-09 Metal recovery method in cement manufacturing process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011172045 2011-08-05
JP2011172045 2011-08-05
JP2012026189A JP5988018B2 (en) 2011-08-05 2012-02-09 Metal recovery method in cement manufacturing process

Publications (2)

Publication Number Publication Date
JP2013053056A JP2013053056A (en) 2013-03-21
JP5988018B2 true JP5988018B2 (en) 2016-09-07

Family

ID=48130396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026189A Active JP5988018B2 (en) 2011-08-05 2012-02-09 Metal recovery method in cement manufacturing process

Country Status (1)

Country Link
JP (1) JP5988018B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6844600B2 (en) * 2018-03-19 2021-03-17 Jfeスチール株式会社 Method and device for removing selenium from slag, reuse method for slag, and manufacturing method for recycled slag

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733452B2 (en) * 1999-10-14 2006-01-11 太平洋セメント株式会社 Waste disposal method
JP3911538B2 (en) * 2000-06-07 2007-05-09 Dowaエコシステム株式会社 Heavy metal recovery from fly ash
JP2003211127A (en) * 2002-01-29 2003-07-29 Taiheiyo Cement Corp Method for treating dust containing chloride
JP3773467B2 (en) * 2002-05-07 2006-05-10 太平洋セメント株式会社 Method for treating substances containing calcium and heavy metals
JP2010142166A (en) * 2008-12-19 2010-07-01 Shibaura Institute Of Technology Method for treating selenium
JP5501694B2 (en) * 2009-08-19 2014-05-28 太平洋セメント株式会社 Fertilizer and method and apparatus for manufacturing the same

Also Published As

Publication number Publication date
JP2013053056A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP6078379B2 (en) Silica-containing water treatment apparatus, water treatment system, and silica-containing water treatment method
TW201439013A (en) Metal concentration method, metal recovery method, metal concentration apparatus, and metal recovery apparatus
JP5666835B2 (en) Metal recovery method
WO2018168558A1 (en) Water treatment method, magnesium agent for water treatment, and method for producing magnesium agent for water treatment
JP5988018B2 (en) Metal recovery method in cement manufacturing process
CN109173984A (en) A method of Pb In Exhausted Water is removed using composite material
US10047378B2 (en) Method for recovering selenium
JP5200225B2 (en) Phosphorous adsorbent
EP1468122A1 (en) Method for the separation of zinc and a second metal which does not form an anionic complex in the presence of chloride ions
JP4039820B2 (en) Wastewater treatment method
JP2005238083A (en) Treatment method for solution containing selenium
WO2012165382A1 (en) Method for extracting phosphorus from incinerated ash
JP3859001B2 (en) Arsenic sorption material with excellent stability and purification method for contaminated water using the same
JP2005218982A (en) Method for removing phosphorus from water
JP6950893B2 (en) Treatment method of boron-containing water
JP6901807B1 (en) Treatment method of water containing selenate ion
JP7018772B2 (en) Method for reducing selenate compound, method for removing selenate compound, method for producing metallic selenium, method for reducing selenate compound, method for reducing nitrate compound, method for removing nitrate compound, method for producing nitrogen gas, method for producing nitrate compound reduction preparation, wastewater Treatment equipment and wastewater treatment method
CN108069561B (en) Method and device for treating selenium-containing wastewater
JP6043164B2 (en) Selenium-containing water treatment method and selenium-containing water treatment apparatus
JP4029054B2 (en) Liquid purification device
CN113277680A (en) Method for treating heavy metal ions in chemical wastewater by using silicon dioxide
JP5988226B2 (en) Phosphorus removal material
JP5754695B2 (en) Phosphorus removal material
JP6062222B2 (en) Method for extracting phosphorus from incineration ash
JP6253325B2 (en) Activated carbon with low phosphorus elution amount and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R150 Certificate of patent or registration of utility model

Ref document number: 5988018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250