WO2012165382A1 - Method for extracting phosphorus from incinerated ash - Google Patents

Method for extracting phosphorus from incinerated ash Download PDF

Info

Publication number
WO2012165382A1
WO2012165382A1 PCT/JP2012/063648 JP2012063648W WO2012165382A1 WO 2012165382 A1 WO2012165382 A1 WO 2012165382A1 JP 2012063648 W JP2012063648 W JP 2012063648W WO 2012165382 A1 WO2012165382 A1 WO 2012165382A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkalinity
phosphorus
incinerated ash
ash
liquid
Prior art date
Application number
PCT/JP2012/063648
Other languages
French (fr)
Japanese (ja)
Inventor
雅郎 田畑
孝司 木本
博和 坪井
Original Assignee
メタウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社 filed Critical メタウォーター株式会社
Priority to JP2013518081A priority Critical patent/JP5934706B2/en
Publication of WO2012165382A1 publication Critical patent/WO2012165382A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/30Incineration ashes

Definitions

  • the present invention relates to a method for extracting phosphorus from incinerated ash that performs filtration using a filter medium for solid-liquid separation.
  • the liquid mixture containing the sludge incineration ash and the chemical is separated into solid and liquid to separate the insoluble components (treated ash) and the phosphorus extract from the sludge incineration ash
  • Phosphorus can be recovered from sludge incinerated ash by adding slaked lime (calcium hydroxide (Ca (OH) 2 )) to the separated phosphorus extract and precipitating it as a phosphate.
  • the separated insoluble components are subjected to a washing process, a solid-liquid separation process, a weak acid washing process, and a dehydration process, and finally dried to form clean treated ash, which is used as asphalt filler and lower roadbed material (Patent Document 3).
  • the method for extracting phosphorus from incineration ash according to the present invention includes mixing a chemical with incineration ash containing at least silicon, aluminum, and phosphorus, thereby adding phosphorus to the chemical.
  • a method for extracting phosphorus from incinerated ash comprising: a phosphorus extraction step for extracting a liquid; and a solid-liquid separation step for separating a liquid mixture of a solution containing phosphorus and an insoluble component into a liquid component and a solid component using a filter medium
  • a phosphorus extraction step for extracting a liquid
  • a solid-liquid separation step for separating a liquid mixture of a solution containing phosphorus and an insoluble component into a liquid component and a solid component using a filter medium
  • the method for extracting phosphorus from incinerated ash includes a phosphorus extraction step of mixing a chemical and incinerated ash containing at least silicon, aluminum and phosphorus to extract phosphorus into the chemical, and a phosphorus-containing solution and insoluble A liquid-solid separation step of separating a liquid mixture with components into a liquid component and a solid component using a filter medium, and a method for extracting phosphorus from incinerated ash, the method comprising: Based on the dependence of the elution concentration on the P alkalinity, the P alkalinity at which the tendency of the elution concentration of the ionic silica on the P alkalinity changes is measured in advance as the predetermined P alkalinity of the ionic silica. The degree is set to be not more than a predetermined P alkalinity of ionic silica.
  • the method for extracting phosphorus from the incinerated ash according to the present invention is the above invention, wherein the elution concentration of phosphorus extracted from the incinerated ash to the chemical is dependent on the P alkalinity, and the elution concentration of phosphorus is dependent on the P alkalinity.
  • the predetermined P alkalinity of phosphorus in which the tendency changes is measured in advance, and the P alkalinity of the drug is set to a P alkalinity of 1.0 (equivalent / kg) lower than the predetermined P alkalinity of phosphorus. .
  • the method for extracting phosphorus from the incinerated ash according to the present invention is the above invention, wherein the elution concentration of phosphorus extracted from the incinerated ash to the chemical is dependent on the P alkalinity, and the elution concentration of phosphorus is dependent on the P alkalinity.
  • the predetermined P alkalinity of phosphorus in which the tendency changes is measured in advance, and the P alkalinity of the drug is made equal to or lower than the predetermined P alkalinity of phosphorus.
  • the method for extracting phosphorus from incinerated ash according to the present invention, clogging of the filter medium used for the filtration treatment in the solid-liquid separation of the treated ash and the phosphorus extract performed after extracting phosphorus in the incinerated ash into the alkaline solution is performed. It is possible to prevent this, and it is possible to reduce the labor of regeneration processing and replacement processing of the filter medium.
  • FIG. 1 is a flowchart showing a phosphorus recovery process according to the first embodiment of the present invention.
  • FIG. 2 is a graph showing the P alkalinity dependency of the elution concentration of phosphorus in the alkaline reaction solution according to the first embodiment of the present invention.
  • FIG. 3 is a graph showing the P alkalinity dependence of the elution concentration of aluminum in the alkaline reaction liquid according to the first embodiment of the present invention.
  • FIG. 4 is a graph showing the P alkalinity dependency of the alkaline reaction liquid in the ionic silica according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing a phosphorus recovery process according to the second embodiment of the present invention.
  • FIG. 6 is a graph showing the elemental analysis of the clogging for explaining the intensive study by the inventors of the present invention.
  • FIG. 7 is a graph showing an X-ray diffraction analysis of a clogged material for explaining the earnest study by the inventors of the present invention.
  • the alkalinity used in the present invention is expressed by converting the amount of alkali components contained in water, that is, components that consume acid, into the amount of calcium carbonate (CaCO 3 ), and represents a pH representing hydrogen ion concentration. Is different. Water with a high alkalinity is neutralized even when an acid is added, so that it is difficult for a change in pH to occur. In this sense, water is sometimes expressed as a buffering capacity for acid.
  • the alkalinity is measured by neutralization titration using hydrochloric acid in the liquid to be measured.
  • the method for measuring P alkalinity is a method in which phenolphthalein is used as a reagent and the amount of alkali component is determined from the amount of hydrochloric acid until the pH reaches 8.3. This P alkalinity corresponds to the amount of hydroxide ions among the alkali components in water.
  • P alkalinity is prescribed
  • the molecular weight of calcium carbonate (CaCO 3 ) is 100.09 g / mol and the carbonate ion is divalent
  • the commonly used P alkalinity (mg-CaCO 3 / l) and the equivalent (eq / l) is expressed by the following equation (1).
  • the unit “eq / l” is equivalent (equivalent / l) per unit volume (l) of the alkaline reaction liquid.
  • the P alkalinity (equivalent / kg) per unit mass of incinerated ash can be discussed in the same manner as the amount of hydroxide ions per unit mass of incinerated ash. Therefore, the tendency of the phenomenon that occurs when the P alkalinity (equivalent / kg) per unit mass of the incinerated ash in the alkaline solution is changed is essentially the hydroxylation per unit mass of the incinerated ash in the alkaline solution. This tends to occur when the amount of product ions is changed.
  • the present inventor conducted a process for recovering phosphorus from incinerated ash and extracted the filter medium used for the solid-liquid separation of the treated ash and the phosphorus extract after extracting phosphorus from the incinerated ash into the alkaline reaction liquid.
  • the clogging condition was analyzed in detail. That is, according to the analysis by the present inventor, it was possible to remove the clogging of the filter medium and regenerate at the initial stage of the clogging using any of the acidic solution and the alkaline solution. However, at the stage where clogging actually occurs, the filter medium cannot be regenerated using an alkaline solution, and even when a highly concentrated acidic solution is used, a long regeneration process is required. From this, the present inventor considered that the cause of clogging was the growth of hardly soluble crystals, and this hardly soluble crystals were clogged.
  • this inventor performed the elemental analysis of the clogging material of a filter medium.
  • a phosphorus extraction step using a NaOH solution having a P alkalinity of 11.0 to 12.0 (equivalent / kg) (55000 to 60000 (mg-CaCO 3 / l)) as a reaction solution.
  • the clogged filter material was clogged by repeating a series of operations of performing a solid-liquid separation step after 90 minutes in a temperature range of 50 to 60 ° C.
  • the clogged material was observed using a scanning electron microscope, and elemental analysis was performed using a fluorescent X-ray analyzer (SEM-EDS) (manufactured by JEOL Ltd.).
  • SEM-EDS fluorescent X-ray analyzer
  • the present inventor conducted X-ray diffraction analysis on the clogged crystals based on the knowledge that the clogged substances are hardly soluble crystals and the knowledge of the elements constituting the clogged substances.
  • X-ray diffraction analysis an X-ray diffraction apparatus (X 'Pert PRO, manufactured by PANalytical) was used. The results of X-ray diffraction analysis are shown in FIG.
  • the present inventor further examined a method for suppressing the generation of A-type zeolite from the viewpoint that the clogging of the filter medium can be prevented by suppressing the generation of A-type zeolite. Repeated.
  • the present inventor has found that the A-type zeolite is produced by the reaction of soluble Al and soluble Si, and when performing phosphorus extraction from the incinerated ash using a strong alkaline solution, the ease of extraction is determined by the combination of P and Al. It was found that the elution easiness of Si is lower than that of P or Al.
  • the present inventor paid attention to the amount of hydroxide ions per unit mass of the incinerated ash in the alkaline reaction liquid for extracting phosphorus, particularly the P alkalinity per unit mass of the incinerated ash.
  • the P alkalinity per unit mass of the incinerated ash is referred to as P alkalinity.
  • FIG. 1 shows a flowchart of the phosphorus recovery method according to the first embodiment.
  • an alkaline reaction liquid 1 such as a sodium hydroxide (NaOH) aqueous solution is adjusted as a drug (reaction liquid adjustment step, step ST1).
  • the P alkalinity is adjusted while mixing an aqueous NaOH solution and a regeneration liquid described later.
  • a potassium hydroxide (KOH) aqueous solution can be used in addition to the NaOH aqueous solution, and so-called various chemicals capable of controlling the amount of hydroxide ions (OH ⁇ ) can be used. .
  • Table 1 shows the properties of the three types of incineration ash A to C to be processed by the phosphorus extraction method in the first embodiment.
  • These incineration ash A to C are incineration ash obtained from sludge collected at completely different points.
  • the incineration ash A is an incineration ash in which both the concentration of P and the concentration of Ca are normal concentrations, and P is relatively easily extracted.
  • the incineration ash B has a lower Ca concentration than the normal Ca concentration, and is therefore an incineration ash that is relatively difficult to extract P.
  • the incineration ash C is an incineration ash that is relatively difficult to extract P as compared with the incineration ash A because the concentration of P is normal but the concentration of Ca is high.
  • adopting three types of incineration ash A, B, and C from which such a property differs as the incineration ash 2 is demonstrated.
  • the P alkalinity of the alkaline reaction liquid 1 according to the first embodiment of the present invention is determined as follows.
  • P alkalinity dependency the P alkalinity dependency per unit mass of the incinerated ash (hereinafter referred to as P alkalinity dependency) in the concentrations of P, Al, and ionic silica (SiO 2 ) eluted from the incinerated ash into the alkaline reaction liquid 1 is measured. To do. And the P alkalinity of the alkaline reaction liquid 1 is determined based on these measurement results. 2, 3 and 4 show the P alkalinity dependency of the concentration of the substance eluted in the alkaline reaction liquid 1 according to the first embodiment.
  • FIG. 2 shows the P alkalinity dependency of the elution concentration of P in the incineration ash A to C
  • FIG. 3 shows the P alkalinity dependency of the elution concentration of Al in the incineration ash A to C
  • the concentration tendency of P extracted into the alkaline reaction liquid 1 has the following tendency even when any of the incineration ash A to C is treated. That is, when the P alkalinity of the alkaline reaction liquid 1 is relatively low, the concentration of extracted P increases rapidly as the P alkalinity increases. And when the P alkalinity of the alkaline reaction liquid 1 becomes a certain value or more, the increase in the concentration of P extracted becomes moderate. Therefore, the P alkalinity at which the increasing tendency of the P concentration changes is defined as a predetermined P alkalinity of P (P P in FIG. 2).
  • the predetermined P alkalinity of P can be the P alkalinity at the intersection of a straight line having a large slope where the P alkalinity is relatively low and a straight line having a small slope where the P alkalinity is relatively high.
  • the P alkalinity dependency of any incineration ash A to C has a large slope up to a predetermined P alkalinity, and the slope exceeds a predetermined P alkalinity.
  • the tendency of the elution concentration of P to be dependent on the P alkalinity changes before and after the predetermined P alkalinity so as to decrease.
  • the concentration tendency of Al eluted in the alkaline reaction liquid 1 is the same as in the case of P, regardless of which of the incineration ash A to C is treated. It has the following tendency. That is, when the P alkalinity of the alkaline reaction solution 1 is relatively low, as the P alkalinity increases, the Al concentration rapidly increases, and when the P alkalinity exceeds a certain value, the Al concentration increases. The trend is moderate. Therefore, the P alkalinity at which the increasing tendency of the Al concentration changes is defined as the predetermined P alkalinity of Al (P Al in FIG. 3).
  • the predetermined P alkalinity of Al is a straight line having a large slope where the P alkalinity is relatively low and a straight line having a small slope where the P alkalinity is relatively high.
  • the P alkalinity at the intersection of That is, the tendency of the elution concentration of Al to depend on the P alkalinity changes before and after the predetermined P alkalinity of Al.
  • the concentration tendency of the ionic silica eluted in the alkaline reaction liquid 1 has the following tendency regardless of which of the incineration ash A to C is treated. . That is, when the P alkalinity of the alkaline reaction liquid 1 is relatively low, the concentration of ionic silica gradually increases as the P alkalinity increases, and when the P alkalinity exceeds a certain value, Concentration increases rapidly.
  • the P alkalinity at which the increasing tendency of the concentration of ionic silica changes is defined as the predetermined P alkalinity of ionic silica (P Si in FIG. 4).
  • the predetermined P alkalinity of this ionic silica is the intersection of a straight line with a small slope where the P alkalinity is relatively low and a straight line with a large slope where the P alkalinity is relatively high, as in the case of P and Al. P alkalinity can be obtained. That is, the tendency of the elution concentration of the ionic silica on the P alkalinity changes before and after the predetermined P alkalinity of the ionic silica.
  • the predetermined P alkalinity of P Is about 6.0 (equivalent / kg) (30000 mg / l)
  • FIG. 3 shows that the predetermined P alkalinity of Al is about 8.0 (equivalent / kg) (40000 mg / l).
  • FIG. 4 also shows that the predetermined P alkalinity of the ionic silica in the first embodiment is about 9.4 (equivalent / kg) (47000 mg / l).
  • the elution concentration of the ionic silica is not significantly increased by setting the P alkalinity of the alkaline reaction liquid 1 to be greater than 0 (equivalent / kg) and below the predetermined P alkalinity of the ionic silica. Furthermore, in the range where the P alkalinity of the alkaline reaction liquid 1 is greater than 0 and less than or equal to the predetermined P alkalinity of P or Al, the elution concentration of P or Al increases rapidly as the P alkalinity increases. The increase in the elution concentration of ionic silica is gradual.
  • the P alkalinity of the alkaline reaction liquid 1 is set to 1. from the predetermined P alkalinity of P. If the P alkalinity is set to 0 (equivalent / kg) (5000 mg / l) or lower, the recovery rate of P in the phosphorus extraction method can be ensured within a desired range.
  • the increase in the P alkalinity is accompanied.
  • the rate of increase in the elution amount of P and Al is small compared to a range of a predetermined P alkalinity or less. Therefore, considering that the elution amount of P per a predetermined amount of hydroxide ions, that is, the required P alkalinity is as low as possible to improve the P recovery efficiency, the P alkali of the alkaline reaction liquid 1 is considered.
  • the recovery rate of P by the phosphorus extraction process can be ensured within a desired range while suppressing the amount of hydroxide ions required for the alkaline reaction liquid 1. .
  • the degree of P alkalinity of the alkaline reaction liquid 1 is determined in the same manner as when extracting P from the incineration ash A described above. That is, in the incinerated ash B in which the Ca concentration is normal but the P content is low and P is relatively difficult to be extracted, the predetermined P alkalinity of P is about 6.6 from FIG. (Equivalent / kg) (33000 mg / l), and FIG. 3 shows that the predetermined P alkalinity of Al is about 7.0 (equivalent / kg) (35000 mg / l). 4 that the predetermined P alkalinity of the ionic silica in the incinerated ash B is about 8.0 (equivalent / kg) (40000 mg / l).
  • the P alkalinity of the alkaline reaction liquid 1 is determined in the same manner. That is, in the incinerated ash C in which the P concentration is normal but the Ca concentration is high and P is relatively difficult to be extracted, the predetermined P alkalinity of P is about 6.4 (equivalent weight) from FIG. / Kg) (32000 mg / l), and FIG. 3 shows that the predetermined P alkalinity of Al is about 5.6 (equivalent / kg) (28000 mg / l). 4 that the predetermined P alkalinity of the ionic silica in the incinerated ash C is about 8.4 (equivalent / kg) (42000 mg / l).
  • step ST4 the treated ash, which is a solid component separated by solid-liquid separation, and the alkaline reaction liquid 1 are mixed again, and the second phosphorus extraction step is performed (step ST4).
  • step ST5 the second solid-liquid separation step is performed in the same manner as in step ST3 (step ST5).
  • step ST6 the treated ash is washed to remove harmful components such as alkaline reaction liquid and As, Se adhering to the treated ash.
  • water cleaning using cleaning water (tap water, well water, processing water, etc.) is performed as cleaning of the processing ash.
  • solid-liquid separation step, step ST7 solid-liquid separation step
  • step ST8 solid-liquid separation step
  • the treated ash that has been subjected to the ash washing process twice and the waste liquid are separated into solid and liquid.
  • the waste liquid is disposed of by a conventionally known method such as neutralization.
  • As and Al can be efficiently removed, and the pH can be lowered to be closer to neutrality.
  • weak acid cleaning is performed on the treated ash by adding an acid such as sulfuric acid (H 2 SO 4 ) while adding treated water (weak acid cleaning step, step ST10).
  • H 2 SO 4 that is easy to handle is used as the acid to be used, but hydrochloric acid (HCl), nitric acid (HNO 3 ), or the like can also be used.
  • HCl hydrochloric acid
  • HNO 3 nitric acid
  • concentration using a belt concentrator is performed on the mixture of the treated ash and the acidic solution (belt concentration step, step ST11).
  • the mixture of the treated ash and the acidic solution is separated into the concentrated and cleaned treated ash and the waste liquid discharged by the concentration.
  • the waste liquid is disposed of by a conventionally known method such as neutralization.
  • the concentrated treated ash is dried to remove water adhering to the treated ash (drying step, step ST12).
  • a clean treated ash 3 having a minimum moisture content is finally obtained. Since this clean treated ash 3 satisfies the soil environmental standards, it can be used as, for example, asphalt filler or lower roadbed material.
  • Ca phosphate 4 is precipitated by adding the Ca component 4 to the phosphorus extract separated in the solid-liquid separation step of Step ST3 and Step ST5 (phosphate precipitation step, Step ST13).
  • slaked lime calcium hydroxide (Ca (OH) 2 )
  • the amount of phosphoric acid in the phosphorus extract is determined according to the formula (1).
  • reaction equivalent the amount of calcium hydroxide reacting without excess or deficiency
  • step ST14 solid-liquid separation step
  • a filtration process using a filter cloth is performed in the same manner as the solid-liquid separation for the treated ash in step ST3 and step ST5, but gravity sedimentation can also be adopted in addition to the filtration process. is there.
  • separated by the solid-liquid separation process is mixed with the alkaline reaction liquid 1 as a reproduction
  • the phosphate crystals as solids separated by solid-liquid separation are washed by adding treated water (washing step, step ST15).
  • the phosphate crystals and the treated water are concentrated using a belt concentrator in the same manner as the belt concentration step in step ST11, whereby the phosphate crystals are concentrated, and the waste liquid (Belt concentration step, step ST16).
  • step ST17 moisture contained in the phosphate crystals is removed to the minimum (drying step, step ST17). Thereafter, a granulation process is performed in which the phosphate crystals are pulverized into granules (granulation step, step ST18). Thereby, powdery calcium phosphate 5 is obtained.
  • This calcium phosphate 5 can be effectively used as a raw material for phosphate fertilizer, for example.
  • the P alkalinity of the alkaline reaction liquid 1 is equal to or less than the predetermined P alkalinity of ionic silica in which the P alkalinity dependency of ionic silica changes, preferably By reducing the P alkalinity by 1.0 (equivalent / kg) (5000 mg / l) lower than the predetermined P alkalinity of P, more preferably by setting the P alkalinity below P, the amount of extraction of P can be greatly reduced.
  • the alkalinity for extracting phosphorus based on the adjustment method of the alkaline reaction liquid in the phosphorus extraction method according to the present invention.
  • reaction liquid 1 that is, the amount of hydroxide ions, incineration ash 2 of all properties suppresses the generation of soluble Si and suppresses generation of A-type zeolite, and after the phosphorus extraction step The clogging of the filter cloth used for the solid-liquid separation can be prevented.
  • FIG. 5 shows a flowchart of the phosphorus recovery method according to the second embodiment of the present invention.
  • step ST21 the adjustment of the alkaline reaction liquid 1 (step ST21), the phosphorus extraction step (step ST22), and the solid-liquid separation step (step ST23) are performed, and the processing is performed. Ash and phosphorus extract are separated.
  • step ST23 the solid-liquid separation step
  • each of the phosphorus extraction step and the solid-liquid separation step is performed only once.
  • a large amount of P and unreacted NaOH are attached to the water adhering to the treated ash and having a mass about three times that of the treated ash. Remains.
  • an ash washing step (step ST24) and a solid-liquid separation step (step ST25) by filtration using a filter cloth are performed, and the treated ash and liquid component as solid components are Are separated.
  • the ash washing step and the solid-liquid separation step are each performed only once.
  • the liquid component separated by the process and the solid-liquid separation process includes P and unreacted NaOH. Therefore, this liquid component is used as a phosphorus extract.
  • an acid such as H 2 SO 4 is added to the treated ash while adding treated water, and a weak acid washing is performed by adding polyferric sulfate (polytetsu) (weak acid washing step, Step ST26).
  • polytetsu polyferric sulfate
  • a solid-liquid separation process is performed on the mixture of the treated ash and the acidic solution (solid-liquid separation step, step ST27).
  • the waste liquid is disposed of by a conventionally known method such as neutralization.
  • a part of the waste liquid discharged as necessary can be used as the phosphorus extract.
  • step ST28 by performing the drying process (step ST28), a clean treated ash 3 having a minimum moisture content is finally obtained.
  • Ca component 4 is added by the phosphate precipitation process to precipitate Ca phosphate (step ST29).
  • the amount of Ca (OH) 2 added is smaller than the amount added in the first embodiment, specifically, the reaction equivalent of 1.3% of the phosphorus extract. Is less than twice.
  • step ST30 the solid-liquid separation process (step ST30), the cleaning process using treated water (step ST31), the belt concentration process (step ST32), the drying process (step ST33), and the granulation
  • step ST34 powdered calcium phosphate 5 is obtained.
  • the regenerated liquid separated in the solid-liquid separation step in step ST30 is mixed with the alkaline reaction liquid 1 before being used in circulation.
  • a process for removing As contained in the regeneration liquid As removal process, step ST35
  • a process for removing Al contained in the regeneration liquid Al removal process, step ST36
  • the As removal step is performed when the concentration of As contained in the regenerated liquid that has been subjected to solid-liquid separation in Step ST30 becomes a predetermined value (for example, 10 mg / l) or more.
  • the As removal step after adding slaked lime to the regenerated liquid to adsorb As, the As is removed from the regenerated liquid by performing solid-liquid separation.
  • regeneration liquid it determines suitably according to the density
  • the Al removal step is performed when the concentration of Al contained in the regenerated liquid that has been subjected to solid-liquid separation in Step ST30 becomes a predetermined value (for example, 10,000 mg / l) or more.
  • a predetermined value for example, 10,000 mg / l
  • Al is removed by adding soluble Si to the regenerating solution.
  • each of the phosphorus extraction step and the subsequent solid-liquid separation step is performed only once, and each of the ash washing step and the subsequent solid-liquid separation step is 1 each.
  • the number of steps can be reduced without reducing the amount of P extracted.
  • the As removal step is performed when the concentration of As exceeds a predetermined value with respect to the regenerated solution separated by solid-liquid separation after depositing Ca phosphate.
  • the concentration of As exceeds a predetermined value
  • the addition amount of Ca (OH) 2 added in the phosphate precipitation step of step ST29 is increased to 1.3 times 1.5 times the reaction equivalent or more.
  • the amount of Ca may be increased by less than double.
  • the P alkalinity dependency per unit mass of the incinerated ash is adopted as an example of the hydroxide ion amount dependency per unit mass of the incinerated ash.
  • the elution of P, Al, and Si can be controlled based on the dependence of the incineration ash on the liquid-solid ratio.
  • a straight line is applied from the largest measured value to the smaller measured value among the measured values of P alkalinity, and on the other hand A straight line is applied sequentially from the smallest measured value of the measured values of P alkalinity to the measured value of the larger side, and the P alkalinity at the intersection of the two straight lines is defined as the predetermined P alkalinity.
  • a derivation method may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The objective of the present invention is to prevent clogging of a filter medium used in solid-liquid separation of a phosphorus extraction liquid and processed ash after extracting phosphorus in incinerated ash into an alkaline solution. This method for extracting phosphorus separates a solid component and a liquid component using a filter medium in a solid-liquid separation step performed after first performing a phosphorus extraction step for extracting phosphorus by mixing an alkaline reaction liquid (1) and incinerated ash (2) containing P. Of the incinerated ash (2), the P alkalinity dependence of the elution concentration of ionic silica on the alkaline reaction liquid (1) is measured, and the P alkalinity of the alkaline reaction liquid (1) is caused to be no greater than a predetermined P alkalinity of ionic silica at which the tendency for the P alkalinity dependence of the elution concentration of ionic silica changes. Of the incinerated ash, the P alkalinity dependence of the elution concentration of phosphorus on the alkaline reaction liquid (1) is also measured, and the P alkalinity of the alkaline reaction liquid (1) is caused to be at least the P alkalinity that is 1.0 (equivalents/kg) lower than a predetermined P alkalinity of P at which the tendency for the P alkalinity dependence of the elution concentration of phosphorus changes.

Description

焼却灰からのリン抽出方法Method for extracting phosphorus from incineration ash
 本発明は、固液分離にろ材を用いたろ過処理を行う焼却灰からのリン抽出方法に関する。 The present invention relates to a method for extracting phosphorus from incinerated ash that performs filtration using a filter medium for solid-liquid separation.
 従来、下水処理場で発生する下水汚泥などを焼却して減量化した際に生じる汚泥焼却灰は、その多くが無価値物として廃棄処理により埋立処分がされてきた。しかしながら、この汚泥焼却灰にはリン(P)が多く含まれている。このリンは、現在世界的に枯渇が危惧されている資源のひとつであることから、近年、汚泥焼却灰からリンを回収し再利用する技術が種々提案されている。 Conventionally, most of the sludge incineration ash generated by incineration of sewage sludge and the like generated at a sewage treatment plant has been disposed of by landfill as wasteless. However, this sludge incineration ash contains a lot of phosphorus (P). Since this phosphorus is one of the resources that are currently in danger of being exhausted worldwide, various techniques for recovering and reusing phosphorus from sludge incineration ash have been proposed in recent years.
 汚泥焼却灰からリンを回収するには、汚泥焼却灰中のリンを薬剤で抽出する必要がある。このリンの抽出方法としては、苛性ソーダ水溶液のような強アルカリ性溶液を用いる抽出方法が知られている(特許文献1,2)。このようにリンの抽出において強アルカリ性溶液を用いることによって、リンを含有する汚泥焼却灰からリンを効率よく抽出することができる。 To recover phosphorus from sludge incineration ash, it is necessary to extract the phosphorus in sludge incineration ash with a chemical. As a method for extracting phosphorus, an extraction method using a strong alkaline solution such as an aqueous caustic soda solution is known (Patent Documents 1 and 2). Thus, phosphorus can be efficiently extracted from the sludge incineration ash containing phosphorus by using a strong alkaline solution in the extraction of phosphorus.
 そして、汚泥焼却灰中のリンを薬剤中に抽出した後は、汚泥焼却灰および薬剤を含む混合液を固液分離して、汚泥焼却灰の不溶成分(処理灰)とリン抽出液とを分離させる。分離されたリン抽出液に対しては、消石灰(水酸化カルシウム(Ca(OH)2))を加えてリン酸塩として析出させることにより、汚泥焼却灰からリンを回収することができる。他方、分離された不溶成分に対しては、洗浄工程、固液分離工程、弱酸洗浄工程および脱水工程が実行され、最後に乾燥されて清浄な処理灰とされ、アスファルトフィラーや下層路盤材として使用される(特許文献3)。 After extracting the phosphorus in the sludge incineration ash into the chemical, the liquid mixture containing the sludge incineration ash and the chemical is separated into solid and liquid to separate the insoluble components (treated ash) and the phosphorus extract from the sludge incineration ash Let Phosphorus can be recovered from sludge incinerated ash by adding slaked lime (calcium hydroxide (Ca (OH) 2 )) to the separated phosphorus extract and precipitating it as a phosphate. On the other hand, the separated insoluble components are subjected to a washing process, a solid-liquid separation process, a weak acid washing process, and a dehydration process, and finally dried to form clean treated ash, which is used as asphalt filler and lower roadbed material (Patent Document 3).
特開2007-246360号公報JP 2007-246360 A 特開2007-246361号公報JP 2007-246361 A 特開2008-229576号公報JP 2008-229576 A
 ところで、上述した汚泥焼却灰の処理において、汚泥焼却灰中のリンを薬剤中に抽出した後に行う処理灰とリン抽出液との固液分離では、ろ材を用いたろ過処理による固液分離が行われている。ところが、本発明者が、上述した汚泥焼却灰の処理を実施したところ、このろ材が目詰まりしてしまうという問題が生じることを知見した。 By the way, in the above-described treatment of sludge incineration ash, solid-liquid separation by filtration using a filter medium is performed in the solid-liquid separation of the treated ash and the phosphorus extract after extracting phosphorus in the sludge incineration ash into the chemical. It has been broken. However, when this inventor performed the process of the sludge incineration ash mentioned above, it discovered that the problem that this filter medium will be clogged arises.
 この固液分離に用いられるろ材に目詰まりが生じると、固液分離が十分に行われず、リン抽出液の抽出量が減少して、リンの回収率も大幅に減少してしまう。また、ろ材の交換や再生処理も必要となるため、高コスト化してしまうという問題も生じる。 If clogging occurs in the filter medium used for this solid-liquid separation, the solid-liquid separation is not sufficiently performed, the amount of extraction of the phosphorus extract is reduced, and the phosphorus recovery rate is also greatly reduced. In addition, replacement of the filter medium and regeneration processing are also required, resulting in a problem of high cost.
 本発明は、上記に鑑みてなされたものであって、その目的は、焼却灰中のリンを薬剤中に抽出した後に行う処理灰とリン抽出液との固液分離の際にろ過処理に用いられるろ材の目詰まりを防止することができる焼却灰からのリン抽出方法を提供することにある。 The present invention has been made in view of the above, and its object is to use it in a filtration process in the case of solid-liquid separation of the treated ash and the phosphorus extract after the phosphorus in the incinerated ash is extracted into the medicine. Another object of the present invention is to provide a method for extracting phosphorus from incinerated ash that can prevent clogging of the filter medium.
 上述した課題を解決し、上記目的を達成するために、本発明に係る焼却灰からのリン抽出方法は、薬剤と、少なくともケイ素、アルミニウムおよびリンを含有する焼却灰とを混合させて薬剤にリンを抽出するリン抽出工程と、リンを含有する溶液と不溶性成分との混合液を、ろ材を用いて液体成分と固体成分とに分離する固液分離工程と、を含む焼却灰からのリン抽出方法であって、焼却灰から薬剤に溶出するイオン状シリカの溶出濃度における、焼却灰の単位質量当たりの水酸化物イオン量依存性に基づいて、イオン状シリカの溶出濃度の焼却灰の単位質量当たりの水酸化物イオン量依存性の傾向が変化する焼却灰の単位質量当たりの水酸化物イオン量を、イオン状シリカの所定水酸化物イオン量としてあらかじめ計測し、薬剤における、焼却灰の単位質量当たりの水酸化物イオン量を、イオン状シリカの所定水酸化物イオン量以下にすることを特徴とする。 In order to solve the above-described problems and achieve the above object, the method for extracting phosphorus from incineration ash according to the present invention includes mixing a chemical with incineration ash containing at least silicon, aluminum, and phosphorus, thereby adding phosphorus to the chemical. A method for extracting phosphorus from incinerated ash, comprising: a phosphorus extraction step for extracting a liquid; and a solid-liquid separation step for separating a liquid mixture of a solution containing phosphorus and an insoluble component into a liquid component and a solid component using a filter medium Based on the dependence of the amount of hydroxide ions per unit mass of incinerated ash on the elution concentration of ionic silica eluted from the incinerated ash into the chemical, Measure the amount of hydroxide ions per unit mass of incinerated ash, which has a tendency to depend on the amount of hydroxide ions, in advance as the predetermined amount of hydroxide ions of ionic silica. The hydroxide ions per unit mass of ash, characterized in that below a predetermined hydroxide ions of the ion-like silica.
 本発明に係る焼却灰からのリン抽出方法は、薬剤と、少なくともケイ素、アルミニウムおよびリンを含有する焼却灰とを混合させて薬剤にリンを抽出するリン抽出工程と、リンを含有する溶液と不溶性成分との混合液を、ろ材を用いて液体成分と固体成分とに分離する固液分離工程と、を含む焼却灰からのリン抽出方法であって、焼却灰から薬剤に溶出するイオン状シリカの溶出濃度のPアルカリ度依存性に基づいて、イオン状シリカの溶出濃度のPアルカリ度依存性の傾向が変化するPアルカリ度をイオン状シリカの所定Pアルカリ度としてあらかじめ計測し、薬剤のPアルカリ度をイオン状シリカの所定Pアルカリ度以下にすることを特徴とする。 The method for extracting phosphorus from incinerated ash according to the present invention includes a phosphorus extraction step of mixing a chemical and incinerated ash containing at least silicon, aluminum and phosphorus to extract phosphorus into the chemical, and a phosphorus-containing solution and insoluble A liquid-solid separation step of separating a liquid mixture with components into a liquid component and a solid component using a filter medium, and a method for extracting phosphorus from incinerated ash, the method comprising: Based on the dependence of the elution concentration on the P alkalinity, the P alkalinity at which the tendency of the elution concentration of the ionic silica on the P alkalinity changes is measured in advance as the predetermined P alkalinity of the ionic silica. The degree is set to be not more than a predetermined P alkalinity of ionic silica.
 本発明に係る焼却灰からのリン抽出方法は、上記の発明において、焼却灰から薬剤に抽出されるリンの溶出濃度のPアルカリ度依存性に基づいて、リンの溶出濃度のPアルカリ度依存性の傾向が変化するリンの所定Pアルカリ度をあらかじめ計測し、薬剤のPアルカリ度を、リンの所定Pアルカリ度より1.0(当量/kg)低いPアルカリ度以上にすることを特徴とする。 The method for extracting phosphorus from the incinerated ash according to the present invention is the above invention, wherein the elution concentration of phosphorus extracted from the incinerated ash to the chemical is dependent on the P alkalinity, and the elution concentration of phosphorus is dependent on the P alkalinity. The predetermined P alkalinity of phosphorus in which the tendency changes is measured in advance, and the P alkalinity of the drug is set to a P alkalinity of 1.0 (equivalent / kg) lower than the predetermined P alkalinity of phosphorus. .
 本発明に係る焼却灰からのリン抽出方法は、上記の発明において、焼却灰から薬剤に抽出されるリンの溶出濃度のPアルカリ度依存性に基づいて、リンの溶出濃度のPアルカリ度依存性の傾向が変化するリンの所定Pアルカリ度をあらかじめ計測し、薬剤のPアルカリ度を、リンの所定Pアルカリ度以下にすることを特徴とする。 The method for extracting phosphorus from the incinerated ash according to the present invention is the above invention, wherein the elution concentration of phosphorus extracted from the incinerated ash to the chemical is dependent on the P alkalinity, and the elution concentration of phosphorus is dependent on the P alkalinity. The predetermined P alkalinity of phosphorus in which the tendency changes is measured in advance, and the P alkalinity of the drug is made equal to or lower than the predetermined P alkalinity of phosphorus.
 本発明による焼却灰からのリン抽出方法によれば、焼却灰中のリンをアルカリ性溶液中に抽出した後に行う処理灰とリン抽出液との固液分離におけるろ過処理に用いられるろ材の目詰まりを防止することができ、ろ材の再生処理や交換処理の手間を低減させることができる。 According to the method for extracting phosphorus from incinerated ash according to the present invention, clogging of the filter medium used for the filtration treatment in the solid-liquid separation of the treated ash and the phosphorus extract performed after extracting phosphorus in the incinerated ash into the alkaline solution is performed. It is possible to prevent this, and it is possible to reduce the labor of regeneration processing and replacement processing of the filter medium.
図1は、本発明の第1の実施形態によるリン回収のプロセスを示すフローチャートである。FIG. 1 is a flowchart showing a phosphorus recovery process according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態によるアルカリ性反応液へのリンの溶出濃度のPアルカリ度依存性を示すグラフである。FIG. 2 is a graph showing the P alkalinity dependency of the elution concentration of phosphorus in the alkaline reaction solution according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態によるアルカリ性反応液へのアルミニウムの溶出濃度のPアルカリ度依存性を示すグラフである。FIG. 3 is a graph showing the P alkalinity dependence of the elution concentration of aluminum in the alkaline reaction liquid according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態によるイオン状シリカにおけるアルカリ性反応液のPアルカリ度依存性を示すグラフである。FIG. 4 is a graph showing the P alkalinity dependency of the alkaline reaction liquid in the ionic silica according to the first embodiment of the present invention. 図5は、本発明の第2の実施形態によるリン回収のプロセスを示すフローチャートである。FIG. 5 is a flowchart showing a phosphorus recovery process according to the second embodiment of the present invention. 図6は、本発明の発明者による鋭意検討を説明するための目詰まり物の元素分析を示すグラフである。FIG. 6 is a graph showing the elemental analysis of the clogging for explaining the intensive study by the inventors of the present invention. 図7は、本発明の発明者による鋭意検討を説明するための目詰まり物のX線回折解析を示すグラフである。FIG. 7 is a graph showing an X-ray diffraction analysis of a clogged material for explaining the earnest study by the inventors of the present invention.
 以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。また、本発明は以下に説明する実施形態によって限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings of the following embodiments, the same or corresponding parts are denoted by the same reference numerals. Further, the present invention is not limited to the embodiments described below.
 まず、Pアルカリ度について説明する。本発明において用いるアルカリ度とは水中に含まれているアルカリ成分、すなわち酸を消費する成分の量を炭酸カルシウム(CaCO3)の量に換算して表示したものであり、水素イオン濃度を表わすpHとは異なる。アルカリ度の高い水は酸が添加されても中和してしまうためにpHの変化が生じにくくなり、この意味から水が持つ酸に対する緩衝能力と表現されることもある。 First, the P alkalinity will be described. The alkalinity used in the present invention is expressed by converting the amount of alkali components contained in water, that is, components that consume acid, into the amount of calcium carbonate (CaCO 3 ), and represents a pH representing hydrogen ion concentration. Is different. Water with a high alkalinity is neutralized even when an acid is added, so that it is difficult for a change in pH to occur. In this sense, water is sometimes expressed as a buffering capacity for acid.
 公定法では、アルカリ度は測定対象液中に塩酸を用いた中和滴定により測定される。Pアルカリ度の測定方法は、試薬にフェノールフタレインを使用し、pHが8.3になるまでの塩酸量からアルカリ成分の量を求める方法である。このPアルカリ度は、水中のアルカリ成分のうち水酸化物イオン量に対応する。 In the official method, the alkalinity is measured by neutralization titration using hydrochloric acid in the liquid to be measured. The method for measuring P alkalinity is a method in which phenolphthalein is used as a reagent and the amount of alkali component is determined from the amount of hydrochloric acid until the pH reaches 8.3. This P alkalinity corresponds to the amount of hydroxide ions among the alkali components in water.
 また、本発明において、Pアルカリ度は、焼却灰の単位質量当たりの当量によって規定する。また、炭酸カルシウム(CaCO3)の分子量が100.09g/molであり、炭酸イオンが2価であることから、通常用いられるPアルカリ度(mg-CaCO3/l)と、当量(eq/l)で規定されるPアルカリ度との関係は、以下の(1)式で表される。 Moreover, in this invention, P alkalinity is prescribed | regulated by the equivalent per unit mass of incineration ash. Further, since the molecular weight of calcium carbonate (CaCO 3 ) is 100.09 g / mol and the carbonate ion is divalent, the commonly used P alkalinity (mg-CaCO 3 / l) and the equivalent (eq / l) The relationship with the P alkalinity defined by (1) is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 なお、単位「eq/l」は、アルカリ性反応液の単位体積(l)当たりの当量(当量/l)である。
Figure JPOXMLDOC01-appb-M000001
The unit “eq / l” is equivalent (equivalent / l) per unit volume (l) of the alkaline reaction liquid.
 そして、所定のPアルカリ度(当量/l)のアルカリ性溶液(薬液)を焼却灰に対して用いる場合、単位質量当たりの焼却灰に対して使用するアルカリ性溶液の量(液固比)に応じてPアルカリ度が変化する。従って、単位質量の焼却灰に対して使用するアルカリ性溶液のPアルカリ度(当量/kg)との関係は、以下の(2)式で表される。 And when using the alkaline solution (chemical | medical solution) of predetermined P alkalinity (equivalent / l) with respect to incineration ash, according to the quantity (liquid-solid ratio) of the alkaline solution used with respect to the incineration ash per unit mass. P alkalinity changes. Therefore, the relationship with the P alkalinity (equivalent / kg) of the alkaline solution used for the unit mass of incinerated ash is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 すなわち、焼却灰の単位質量当たりのPアルカリ度(当量/kg)は、焼却灰の単位質量当たりの水酸化物イオン量と同様に議論することが可能となる。したがって、アルカリ性溶液における、焼却灰の単位質量当たりのPアルカリ度(当量/kg)を変化させた時に生じる現象の傾向は、本質的には、アルカリ性溶液における、焼却灰の単位質量当たりの水酸化物イオン量を変化させた時に生じる現象の傾向になる。 That is, the P alkalinity (equivalent / kg) per unit mass of incinerated ash can be discussed in the same manner as the amount of hydroxide ions per unit mass of incinerated ash. Therefore, the tendency of the phenomenon that occurs when the P alkalinity (equivalent / kg) per unit mass of the incinerated ash in the alkaline solution is changed is essentially the hydroxylation per unit mass of the incinerated ash in the alkaline solution. This tends to occur when the amount of product ions is changed.
 次に、本発明の理解を容易にするために、本発明者が上記課題を解決し上記目的を達成するために行った、種々の実験および鋭意検討について説明する。 Next, in order to facilitate understanding of the present invention, various experiments and diligent studies conducted by the present inventor in order to solve the above problems and achieve the above objects will be described.
 まず、本発明者は、焼却灰からのリンの回収プロセスを実施し、焼却灰からアルカリ性反応液中にリンを抽出した後に行う処理灰とリン抽出液との固液分離に用いられるろ材の目詰まり状態を詳細に分析した。すなわち、本発明者が分析したところによると、目詰まりの初期段階においては、酸性溶液およびアルカリ性溶液のいずれを用いてもろ材の目詰まりを除去して再生させることが可能であった。しかしながら、実際に目詰まりが生じた段階においては、アルカリ性溶液を用いてろ材を再生することができず、高濃度の酸性溶液を用いた場合でも、長時間の再生処理が必要となった。このことから、本発明者は、目詰まりの原因が難溶解性結晶の成長であり、この難溶解性結晶が目詰まり物であると考えた。 First, the present inventor conducted a process for recovering phosphorus from incinerated ash and extracted the filter medium used for the solid-liquid separation of the treated ash and the phosphorus extract after extracting phosphorus from the incinerated ash into the alkaline reaction liquid. The clogging condition was analyzed in detail. That is, according to the analysis by the present inventor, it was possible to remove the clogging of the filter medium and regenerate at the initial stage of the clogging using any of the acidic solution and the alkaline solution. However, at the stage where clogging actually occurs, the filter medium cannot be regenerated using an alkaline solution, and even when a highly concentrated acidic solution is used, a long regeneration process is required. From this, the present inventor considered that the cause of clogging was the growth of hardly soluble crystals, and this hardly soluble crystals were clogged.
 そこで、本発明者は、ろ材の目詰まり物の元素分析を行った。この元素分析においては、反応液として、Pアルカリ度が、11.0~12.0(当量/kg)(55000~60000(mg-CaCO3/l))のNaOH溶液を用いたリン抽出工程を、50~60℃の温度範囲で90分間行った後に、固液分離工程を行うという一連の作業を繰り返し行って、目詰まりをしたろ材の目詰まり物を用いた。そして、この目詰まり物を、走査電子顕微鏡を用いて観測し、蛍光X線分析装置(SEM-EDS)(日本電子(株)製)を用いて元素分析を行った。この元素分析結果を図6に示す。図6に示す元素分析結果によれば、ナトリウム(Na)、アルミニウム(Al)、ケイ素(Si)、リン(P)およびカルシウム(Ca)の特性X線の強度が大きいことから、本発明者は、ろ材の目詰まり物には、Na、Al、Si、PおよびCaが多く含まれているとの知見を得た。なお、これらの元素のうちのPについては、リン抽出液中に多く含まれているために検出されたと考えられることから、本発明者は、ろ材の目詰まり物を構成する元素としては、Na、Al、SiおよびCaが含まれていると考えた。 Then, this inventor performed the elemental analysis of the clogging material of a filter medium. In this elemental analysis, a phosphorus extraction step using a NaOH solution having a P alkalinity of 11.0 to 12.0 (equivalent / kg) (55000 to 60000 (mg-CaCO 3 / l)) as a reaction solution. The clogged filter material was clogged by repeating a series of operations of performing a solid-liquid separation step after 90 minutes in a temperature range of 50 to 60 ° C. The clogged material was observed using a scanning electron microscope, and elemental analysis was performed using a fluorescent X-ray analyzer (SEM-EDS) (manufactured by JEOL Ltd.). The results of this elemental analysis are shown in FIG. According to the elemental analysis results shown in FIG. 6, since the intensity of characteristic X-rays of sodium (Na), aluminum (Al), silicon (Si), phosphorus (P) and calcium (Ca) is large, the present inventor It was found that the filter material clogging material contained a large amount of Na, Al, Si, P and Ca. In addition, since it is thought that P of these elements was detected because it was contained in the phosphorus extract in large quantities, the present inventor used Na as the element constituting the filter material clogging. , Al, Si and Ca were considered to be contained.
 本発明者は、目詰まり物が難溶解性結晶であるとの知見と、目詰まり物を構成する元素の知見とに基づいて、目詰まり物の結晶に対してX線回折分析を行った。なお、このX線回折分析においては、X線回折装置(X' Pert PRO、PANalytical社製)を用いた。このX線回折分析結果を図7に示す。 The present inventor conducted X-ray diffraction analysis on the clogged crystals based on the knowledge that the clogged substances are hardly soluble crystals and the knowledge of the elements constituting the clogged substances. In this X-ray diffraction analysis, an X-ray diffraction apparatus (X 'Pert PRO, manufactured by PANalytical) was used. The results of X-ray diffraction analysis are shown in FIG.
 図7に示すX線回折分析結果から、A型ゼオライトに由来するピーク(図7中、Zのピーク)が多く見られることが分かる。このことから、本発明者は、ろ材の主な目詰まり物がA型ゼオライト(アルミノケイ酸塩)であるという知見を得るに至った。 From the X-ray diffraction analysis results shown in FIG. 7, it can be seen that many peaks derived from the A-type zeolite (Z peak in FIG. 7) are observed. From this, the present inventor came to obtain the knowledge that the main clogging material of the filter medium is A-type zeolite (aluminosilicate).
 以上の知見に基づいて、本発明者は、A型ゼオライトの発生を抑制することによって、ろ材の目詰まりを防止することができるとの観点から、A型ゼオライトの発生を抑制する方法についてさらに検討を重ねた。そして、本発明者は、A型ゼオライトは溶解性Alと溶解性Siとの反応により生成され、焼却灰から強アルカリ性溶液を用いてリン抽出を行うに当たり、抽出のされやすさはPとAlとで同等であり、Siの溶出のしやすさはPやAlに比して低いことを知見した。すなわち、本発明者は実験によって、焼却灰を処理するに際して、アルカリ性反応液における水酸化物イオン量、すなわちPアルカリ度を増加させていくと、まず、先行してPやAlの溶出量が増加し、さらに水酸化物イオン量、Pアルカリ度を増加させていくと、Siの溶出量が増加し始めることを知見するに至った。これにより、本発明者は、A型ゼオライトの生成を抑制するためには、溶解性Siの生成を抑制する必要があるとの考えに至った。 Based on the above knowledge, the present inventor further examined a method for suppressing the generation of A-type zeolite from the viewpoint that the clogging of the filter medium can be prevented by suppressing the generation of A-type zeolite. Repeated. The present inventor has found that the A-type zeolite is produced by the reaction of soluble Al and soluble Si, and when performing phosphorus extraction from the incinerated ash using a strong alkaline solution, the ease of extraction is determined by the combination of P and Al. It was found that the elution easiness of Si is lower than that of P or Al. That is, when the inventor treated the incinerated ash by experiment, when the amount of hydroxide ions in the alkaline reaction liquid, that is, the P alkalinity was increased, first, the elution amount of P and Al increased first. As a result, it was found that as the amount of hydroxide ions and P alkalinity were further increased, the amount of elution of Si began to increase. Thereby, this inventor came to the idea that in order to suppress the production | generation of A-type zeolite, it is necessary to suppress the production | generation of soluble Si.
 そこで、本発明者は、リンを抽出するためのアルカリ性反応液における焼却灰の単位質量当たりの水酸化物イオン量、特に焼却灰の単位質量当たりのPアルカリ度に着目した。なお、以下、焼却灰の単位質量当たりのPアルカリ度を、Pアルカリ度と称する。そして、本発明者は、アルカリ性反応液における、焼却灰の単位質量当たりの水酸化物イオン量を、このアルカリ性反応液に溶出するイオン状シリカ(SiO2)の濃度の、焼却灰の単位質量当たりの水酸化物イオン量依存性の傾向が変化する値以下、具体的には、Pアルカリ度依存性の傾向が変化する値(所定Pアルカリ度)以下にすることによって、溶解性Siの生成を抑制してA型ゼオライトの発生を抑制しつつPの抽出を確保できることを想起するに至った。本発明は以上の検討に基づいて案出されたものである。 Therefore, the present inventor paid attention to the amount of hydroxide ions per unit mass of the incinerated ash in the alkaline reaction liquid for extracting phosphorus, particularly the P alkalinity per unit mass of the incinerated ash. Hereinafter, the P alkalinity per unit mass of the incinerated ash is referred to as P alkalinity. Then, the inventors in an alkaline reaction solution, hydroxide ions per unit mass of ash, the concentration of ions like silica eluting the alkaline reaction mixture (SiO 2), per unit mass of ash By setting the value to be less than the value at which the tendency of dependence on the amount of hydroxide ions changes, specifically, to the value at which the tendency to dependence on P alkalinity changes (predetermined P alkalinity) or less, the generation of soluble Si is reduced. It came to recall that the extraction of P can be secured while suppressing the generation of A-type zeolite. The present invention has been devised based on the above studies.
 次に、以上の検討に基づいて案出された本発明の第1の実施形態による焼却灰からのリン抽出方法について説明する。図1に、この第1の実施形態によるリン回収方法のフローチャートを示す。 Next, a method for extracting phosphorus from incinerated ash according to the first embodiment of the present invention devised based on the above examination will be described. FIG. 1 shows a flowchart of the phosphorus recovery method according to the first embodiment.
 図1に示すように、まず、薬剤としての、例えば水酸化ナトリウム(NaOH)水溶液などのアルカリ性反応液1の調整が行われる(反応液調整工程、ステップST1)。この反応液調整工程においては、NaOH水溶液と後述する再生液とが混合されつつ、そのPアルカリ度が調整される。なお、アルカリ性反応液1としては、NaOH水溶液以外にも水酸化カリウム(KOH)水溶液を用いることもでき、いわゆる、水酸化物イオン(OH)量を制御可能な種々の薬剤を用いることができる。 As shown in FIG. 1, first, an alkaline reaction liquid 1 such as a sodium hydroxide (NaOH) aqueous solution is adjusted as a drug (reaction liquid adjustment step, step ST1). In this reaction liquid adjustment step, the P alkalinity is adjusted while mixing an aqueous NaOH solution and a regeneration liquid described later. In addition, as the alkaline reaction liquid 1, a potassium hydroxide (KOH) aqueous solution can be used in addition to the NaOH aqueous solution, and so-called various chemicals capable of controlling the amount of hydroxide ions (OH ) can be used. .
 ここで、表1は、この第1の実施形態におけるリン抽出方法の処理対象となる3種類の焼却灰A~Cの性状を示す。なお、これらの焼却灰A~Cは、それぞれ互いに全く異なる地点において採取された汚泥から得られた焼却灰である。 Here, Table 1 shows the properties of the three types of incineration ash A to C to be processed by the phosphorus extraction method in the first embodiment. These incineration ash A to C are incineration ash obtained from sludge collected at completely different points.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、焼却灰Aは、Pの濃度およびCaの濃度がいずれも通常の濃度であり、比較的Pが抽出されやすい焼却灰である。これに対し、焼却灰Bは、Caの濃度が通常であるのに対しPの濃度が低めであり、このことから、比較的Pが抽出されにくい焼却灰である。さらに、焼却灰Cは、Pの濃度は通常であるがCaの濃度が高めであることから、焼却灰Aに比して比較的Pが抽出されにくい焼却灰である。そして、この第1の実施形態においては、焼却灰2として、このような性状が異なる3種類の焼却灰A,B,Cを採用して、Pを抽出する方法について説明する。 As shown in Table 1, the incineration ash A is an incineration ash in which both the concentration of P and the concentration of Ca are normal concentrations, and P is relatively easily extracted. In contrast, the incineration ash B has a lower Ca concentration than the normal Ca concentration, and is therefore an incineration ash that is relatively difficult to extract P. Further, the incineration ash C is an incineration ash that is relatively difficult to extract P as compared with the incineration ash A because the concentration of P is normal but the concentration of Ca is high. And in this 1st Embodiment, the method of extracting P by employ | adopting three types of incineration ash A, B, and C from which such a property differs as the incineration ash 2 is demonstrated.
 ここで、本発明の第1の実施形態によるアルカリ性反応液1のPアルカリ度について、次のように決定する。 Here, the P alkalinity of the alkaline reaction liquid 1 according to the first embodiment of the present invention is determined as follows.
 まず、焼却灰からアルカリ性反応液1に溶出するP、Al、イオン状シリカ(SiO2)の濃度における、焼却灰の単位質量当たりのPアルカリ度依存性(以下、Pアルカリ度依存性)を測定する。そして、これらの測定結果に基づいてアルカリ性反応液1のPアルカリ度を決定する。図2,3,4はそれぞれ、第1の実施形態によるアルカリ性反応液1に溶出される物質の濃度のPアルカリ度依存性を示す。図2は、焼却灰A~CのPの溶出濃度のPアルカリ度依存性、図3は、焼却灰A~CのAlの溶出濃度のPアルカリ度依存性、図4は、焼却灰A~Cのイオン状シリカ(SiO2)の溶出濃度のPアルカリ度依存性の計測結果を示す。 First, the P alkalinity dependency per unit mass of the incinerated ash (hereinafter referred to as P alkalinity dependency) in the concentrations of P, Al, and ionic silica (SiO 2 ) eluted from the incinerated ash into the alkaline reaction liquid 1 is measured. To do. And the P alkalinity of the alkaline reaction liquid 1 is determined based on these measurement results. 2, 3 and 4 show the P alkalinity dependency of the concentration of the substance eluted in the alkaline reaction liquid 1 according to the first embodiment. FIG. 2 shows the P alkalinity dependency of the elution concentration of P in the incineration ash A to C, FIG. 3 shows the P alkalinity dependency of the elution concentration of Al in the incineration ash A to C, and FIG. a C ions like silica (SiO 2) P alkalinity dependence of the measurement results of the dissolution concentration of.
 図2に示すように、アルカリ性反応液1に抽出されるPの濃度傾向は、焼却灰A~Cのいずれを処理対象とした場合であっても、次のような傾向を有する。すなわち、アルカリ性反応液1のPアルカリ度が比較的低いところでは、Pアルカリ度が増加するのに伴って、抽出されるPの濃度が急激に増加する。そして、アルカリ性反応液1のPアルカリ度がある値以上になると、抽出されるPの濃度の増加は緩やかになる。そこで、このPの濃度の増加傾向が変化するPアルカリ度をPの所定Pアルカリ度(図2中、P)とする。Pの所定Pアルカリ度は、Pアルカリ度が比較的低いところの傾きの大きい直線とPアルカリ度が比較的高いところの傾きが小さい直線との交点のPアルカリ度とすることができる。換言すると、図2に示すグラフにおいて、焼却灰A~Cのいずれの焼却灰においても、そのPアルカリ度依存性は、所定Pアルカリ度までは傾きが大きく、所定Pアルカリ度を超えると傾きが小さくなるというように、所定Pアルカリ度の前後において、Pの溶出濃度のPアルカリ度依存性の傾向は変化する。 As shown in FIG. 2, the concentration tendency of P extracted into the alkaline reaction liquid 1 has the following tendency even when any of the incineration ash A to C is treated. That is, when the P alkalinity of the alkaline reaction liquid 1 is relatively low, the concentration of extracted P increases rapidly as the P alkalinity increases. And when the P alkalinity of the alkaline reaction liquid 1 becomes a certain value or more, the increase in the concentration of P extracted becomes moderate. Therefore, the P alkalinity at which the increasing tendency of the P concentration changes is defined as a predetermined P alkalinity of P (P P in FIG. 2). The predetermined P alkalinity of P can be the P alkalinity at the intersection of a straight line having a large slope where the P alkalinity is relatively low and a straight line having a small slope where the P alkalinity is relatively high. In other words, in the graph shown in FIG. 2, the P alkalinity dependency of any incineration ash A to C has a large slope up to a predetermined P alkalinity, and the slope exceeds a predetermined P alkalinity. The tendency of the elution concentration of P to be dependent on the P alkalinity changes before and after the predetermined P alkalinity so as to decrease.
 また、図3に示すように、アルカリ性反応液1に溶出されるAlの濃度傾向についてもPの場合と同様に、焼却灰A~Cのいずれを処理対象とした場合であっても、次のような傾向を有する。すなわち、アルカリ性反応液1のPアルカリ度が比較的低いところではPアルカリ度が増加するのに伴って、Alの濃度が急激に増加し、Pアルカリ度がある値以上になるとAlの濃度の増加傾向は緩やかになる。そこで、このAlの濃度の増加傾向が変化するPアルカリ度をAlの所定Pアルカリ度(図3中、PAl)とする。Alの所定Pアルカリ度は、Pの所定Pアルカリ度の導出の場合と同様に、Pアルカリ度が比較的低いところの傾きの大きい直線とPアルカリ度が比較的高いところの傾きが小さい直線との交点のPアルカリ度とすることができる。すなわち、Alの所定Pアルカリ度の前後において、Alの溶出濃度のPアルカリ度依存性の傾向は変化する。 Further, as shown in FIG. 3, the concentration tendency of Al eluted in the alkaline reaction liquid 1 is the same as in the case of P, regardless of which of the incineration ash A to C is treated. It has the following tendency. That is, when the P alkalinity of the alkaline reaction solution 1 is relatively low, as the P alkalinity increases, the Al concentration rapidly increases, and when the P alkalinity exceeds a certain value, the Al concentration increases. The trend is moderate. Therefore, the P alkalinity at which the increasing tendency of the Al concentration changes is defined as the predetermined P alkalinity of Al (P Al in FIG. 3). As in the case of deriving the predetermined P alkalinity of P, the predetermined P alkalinity of Al is a straight line having a large slope where the P alkalinity is relatively low and a straight line having a small slope where the P alkalinity is relatively high. The P alkalinity at the intersection of That is, the tendency of the elution concentration of Al to depend on the P alkalinity changes before and after the predetermined P alkalinity of Al.
 また、図4に示すように、アルカリ性反応液1に溶出されるイオン状シリカの濃度傾向は、焼却灰A~Cのいずれを処理対象とした場合であっても、次のような傾向を有する。すなわち、アルカリ性反応液1のPアルカリ度が比較的低いところでは、Pアルカリ度が増加するに伴ってイオン状シリカの濃度も緩やかに増加し、Pアルカリ度がある値以上となるとイオン状シリカの濃度の増加傾向が急になる。このイオン状シリカの濃度の増加傾向が変化するPアルカリ度をイオン状シリカの所定Pアルカリ度(図4中、PSi)とする。このイオン状シリカの所定Pアルカリ度は、PやAlの場合と同様に、Pアルカリ度が比較的低いところの傾きの小さい直線とPアルカリ度が比較的高いところの傾きが大きい直線との交点のPアルカリ度とすることができる。すなわち、イオン状シリカの所定Pアルカリ度の前後において、イオン状シリカの溶出濃度のPアルカリ度依存性の傾向は変化する。 Further, as shown in FIG. 4, the concentration tendency of the ionic silica eluted in the alkaline reaction liquid 1 has the following tendency regardless of which of the incineration ash A to C is treated. . That is, when the P alkalinity of the alkaline reaction liquid 1 is relatively low, the concentration of ionic silica gradually increases as the P alkalinity increases, and when the P alkalinity exceeds a certain value, Concentration increases rapidly. The P alkalinity at which the increasing tendency of the concentration of ionic silica changes is defined as the predetermined P alkalinity of ionic silica (P Si in FIG. 4). The predetermined P alkalinity of this ionic silica is the intersection of a straight line with a small slope where the P alkalinity is relatively low and a straight line with a large slope where the P alkalinity is relatively high, as in the case of P and Al. P alkalinity can be obtained. That is, the tendency of the elution concentration of the ionic silica on the P alkalinity changes before and after the predetermined P alkalinity of the ionic silica.
 そして、図2から、この第1の実施形態において、Pの含有濃度およびCaの含有濃度がいずれも通常の濃度であり、比較的Pが抽出されやすい焼却灰Aにおいて、Pの所定Pアルカリ度は、約6.0(当量/kg)(30000mg/l)であり、図3から、Alの所定Pアルカリ度は、約8.0(当量/kg)(40000mg/l)であることが分かる。また、図4から、この第1の実施形態におけるイオン状シリカの所定Pアルカリ度は、約9.4(当量/kg)(47000mg/l)であることが分かる。 From FIG. 2, in the first embodiment, in the incinerated ash A in which both the P concentration and the Ca concentration are normal concentrations and P is relatively easily extracted, the predetermined P alkalinity of P Is about 6.0 (equivalent / kg) (30000 mg / l), and FIG. 3 shows that the predetermined P alkalinity of Al is about 8.0 (equivalent / kg) (40000 mg / l). . FIG. 4 also shows that the predetermined P alkalinity of the ionic silica in the first embodiment is about 9.4 (equivalent / kg) (47000 mg / l).
 また、上述した本発明者が実験および鋭意検討を行って得た知見によれば、種々の焼却灰から強アルカリ性溶液を用いてリンの抽出を行うに当たり、抽出のされやすさはPとAlとで同等であり、Siの溶出のしやすさはPやAlに比して低い。これにより、Siの所定Pアルカリ度は、PやAlの所定Pアルカリ度より大きくなる。 In addition, according to the knowledge obtained by the inventor's experiments and diligent studies described above, when extracting phosphorus from various incineration ash using a strong alkaline solution, the ease of extraction is P and Al. The elution easiness of Si is lower than that of P or Al. Thereby, the predetermined P alkalinity of Si becomes larger than the predetermined P alkalinity of P or Al.
 以上から、アルカリ性反応液1のPアルカリ度を0(当量/kg)より大きくイオン状シリカの所定Pアルカリ度以下にすることにより、イオン状シリカの溶出濃度が大幅に増加しないことがわかる。さらに、アルカリ性反応液1のPアルカリ度が0より大きくPやAlの所定Pアルカリ度以下の範囲においては、Pアルカリ度の増加に伴ってPやAlの溶出濃度が急激に増加するのに対し、イオン状シリカの溶出濃度の増加は緩やかである。そこで、本発明者の知見によれば、Pの抽出量を確保しつつ、イオン状シリカの溶出を抑制するには、アルカリ性反応液1のPアルカリ度を、Pの所定Pアルカリ度より1.0(当量/kg)(5000mg/l)低いPアルカリ度以上にすれば、リン抽出方法におけるPの回収率を所望の範囲内で確保することができる。 From the above, it can be seen that the elution concentration of the ionic silica is not significantly increased by setting the P alkalinity of the alkaline reaction liquid 1 to be greater than 0 (equivalent / kg) and below the predetermined P alkalinity of the ionic silica. Furthermore, in the range where the P alkalinity of the alkaline reaction liquid 1 is greater than 0 and less than or equal to the predetermined P alkalinity of P or Al, the elution concentration of P or Al increases rapidly as the P alkalinity increases. The increase in the elution concentration of ionic silica is gradual. Therefore, according to the knowledge of the present inventor, in order to suppress the elution of ionic silica while securing the extraction amount of P, the P alkalinity of the alkaline reaction liquid 1 is set to 1. from the predetermined P alkalinity of P. If the P alkalinity is set to 0 (equivalent / kg) (5000 mg / l) or lower, the recovery rate of P in the phosphorus extraction method can be ensured within a desired range.
 また、図2および図3から分かるように、本発明者の知見によれば、アルカリ性反応液1のPアルカリ度がPやAlの所定Pアルカリ度より大きい範囲では、Pアルカリ度の増加に伴うPやAlの溶出量の増加の割合は、所定Pアルカリ度以下の範囲に比して小さい。そこで、水酸化物イオンの所定量当たりのPの溶出量、すなわち必要とされるPアルカリ度を可能な限り低くしてPの回収効率を向上させることを考慮すると、アルカリ性反応液1のPアルカリ度をPの所定Pアルカリ度以下とすることによって、アルカリ性反応液1に必要な水酸化物イオン量を抑制しつつ、リン抽出処理によるPの回収率を所望の範囲内で確保することができる。 Further, as can be seen from FIGS. 2 and 3, according to the knowledge of the present inventor, in the range where the P alkalinity of the alkaline reaction liquid 1 is larger than the predetermined P alkalinity of P or Al, the increase in the P alkalinity is accompanied. The rate of increase in the elution amount of P and Al is small compared to a range of a predetermined P alkalinity or less. Therefore, considering that the elution amount of P per a predetermined amount of hydroxide ions, that is, the required P alkalinity is as low as possible to improve the P recovery efficiency, the P alkali of the alkaline reaction liquid 1 is considered. By setting the degree to be equal to or less than the predetermined P alkalinity of P, the recovery rate of P by the phosphorus extraction process can be ensured within a desired range while suppressing the amount of hydroxide ions required for the alkaline reaction liquid 1. .
 これらの知見から、この第1の実施形態においては、焼却灰AからPを抽出する場合には、アルカリ性反応液1のPアルカリ度を、9.4(当量/kg)(47000mg/l)以下とし、さらに、(6.0-1.0=)5.0(当量/kg)以上9.4(当量/kg)以下(25000mg/l以上47000mg/l以下)とするのが好ましく、5.0(当量/kg)以上6.0(当量/kg)以下(25000mg/l以上30000mg/l以下)とするのがより好ましい。 From these findings, in this first embodiment, when extracting P from the incineration ash A, the P alkalinity of the alkaline reaction liquid 1 is 9.4 (equivalent / kg) (47000 mg / l) or less. Further, (6.0−1.0 =) 5.0 (equivalent / kg) or more and 9.4 (equivalent / kg) or less (25000 mg / l or more and 47000 mg / l or less) is preferable. More preferably, it is 0 (equivalent / kg) or more and 6.0 (equivalent / kg) or less (25000 mg / l or more and 30000 mg / l or less).
 また、焼却灰BからPを抽出する際にも、上述した焼却灰AからPを抽出する場合と同様にして、アルカリ性反応液1のPアルカリ度を決定する。すなわち、Caの含有濃度が通常であるのに対しPの含有濃度が低めであって、比較的Pが抽出されにくい焼却灰Bにおいて、図2から、Pの所定Pアルカリ度が約6.6(当量/kg)(33000mg/l)であり、図3から、Alの所定Pアルカリ度が約7.0(当量/kg)(35000mg/l)であることが分かる。また、図4から、焼却灰Bにおけるイオン状シリカの所定Pアルカリ度が約8.0(当量/kg)(40000mg/l)であることが分かる。 Also, when extracting P from the incineration ash B, the degree of P alkalinity of the alkaline reaction liquid 1 is determined in the same manner as when extracting P from the incineration ash A described above. That is, in the incinerated ash B in which the Ca concentration is normal but the P content is low and P is relatively difficult to be extracted, the predetermined P alkalinity of P is about 6.6 from FIG. (Equivalent / kg) (33000 mg / l), and FIG. 3 shows that the predetermined P alkalinity of Al is about 7.0 (equivalent / kg) (35000 mg / l). 4 that the predetermined P alkalinity of the ionic silica in the incinerated ash B is about 8.0 (equivalent / kg) (40000 mg / l).
 そこで、焼却灰BからPを抽出する場合には、アルカリ性反応液1のPアルカリ度を、8.0(当量/kg)(40000mg/l)以下とし、さらに、(6.6-1.0=)5.6(当量/kg)以上8.0(当量/kg)以下(28000mg/l以上40000mg/l以下)とするのが好ましく、5.6(当量/kg)以上6.6(当量/kg)以下(28000mg/l以上33000mg/l以下)とするのがより好ましい。 Therefore, when extracting P from the incinerated ash B, the alkalinity of the alkaline reaction solution 1 is set to 8.0 (equivalent / kg) (40000 mg / l) or less, and (6.6-1.0 =) 5.6 (equivalent / kg) or more and 8.0 (equivalent / kg) or less (28000 mg / l or more and 40000 mg / l or less), preferably 5.6 (equivalent / kg) or more and 6.6 (equivalent) / Kg) or less (28000 mg / l or more and 33000 mg / l or less).
 また、焼却灰CからPを抽出する場合においても同様にして、アルカリ性反応液1のPアルカリ度を決定する。すなわち、Pの含有濃度は通常であるがCaの含有濃度が高めであって、比較的Pが抽出されにくい焼却灰Cにおいて、図2から、Pの所定Pアルカリ度が約6.4(当量/kg)(32000mg/l)であり、図3から、Alの所定Pアルカリ度が約5.6(当量/kg)(28000mg/l)であることが分かる。また、図4から、焼却灰Cにおけるイオン状シリカの所定Pアルカリ度が約8.4(当量/kg)(42000mg/l)であることが分かる。 In the case where P is extracted from the incinerated ash C, the P alkalinity of the alkaline reaction liquid 1 is determined in the same manner. That is, in the incinerated ash C in which the P concentration is normal but the Ca concentration is high and P is relatively difficult to be extracted, the predetermined P alkalinity of P is about 6.4 (equivalent weight) from FIG. / Kg) (32000 mg / l), and FIG. 3 shows that the predetermined P alkalinity of Al is about 5.6 (equivalent / kg) (28000 mg / l). 4 that the predetermined P alkalinity of the ionic silica in the incinerated ash C is about 8.4 (equivalent / kg) (42000 mg / l).
 そこで、焼却灰CからPを抽出する場合には、アルカリ性反応液1のPアルカリ度を、8.4(当量/kg)(42000mg/l)以下とし、さらに、(6.4-1.0=)5.4(当量/kg)以上8.4(当量/kg)以下(27000mg/l以上42000mg/l以下)とするのが好ましく、5.4(当量/kg)以上6.4(当量/kg)以下(27000mg/l以上32000mg/l以下)とするのがより好ましい。 Therefore, when extracting P from the incineration ash C, the alkalinity of the alkaline reaction liquid 1 is set to 8.4 (equivalent / kg) (42000 mg / l) or less, and (6.4-1.0). =) 5.4 (equivalent / kg) or more and 8.4 (equivalent / kg) or less (27000 mg / l or more and 42000 mg / l or less), preferably 5.4 (equivalent / kg) or more and 6.4 (equivalent) / Kg) or less (27000 mg / l or more and 32000 mg / l or less).
 (リン抽出方法)
 上述のようにしてそれぞれの焼却灰A~Cの性状に応じて、アルカリ性反応液1のPアルカリ度を調整した後、図1に示すように、少なくともP、Al、Siを含有する汚泥焼却灰などの焼却灰2をアルカリ性反応液1に混合させてリン抽出液を得る、いわゆるリン抽出を行う(リン抽出工程、ステップST2)。これにより、Pを含有する溶液であるP抽出液が得られる。このとき、焼却灰2には多量のリンのほか、砒素(As)などの有害成分も含有されているが、これらの成分はアルカリ性反応液1との接触により液体側に抽出される。次に、ろ材としてろ布を用いたろ過処理による固液分離を行うことによって、固体成分である処理灰と、液体成分であるリン抽出液とが分離される(固液分離工程、ステップST3)。
(Phosphorus extraction method)
After adjusting the P alkalinity of the alkaline reaction liquid 1 according to the properties of the respective incineration ash A to C as described above, as shown in FIG. 1, sludge incineration ash containing at least P, Al, and Si. Incineration ash 2 such as the above is mixed with the alkaline reaction liquid 1 to obtain a phosphorus extract, so-called phosphorus extraction is performed (phosphorus extraction step, step ST2). Thereby, P extract which is a solution containing P is obtained. At this time, the incinerated ash 2 contains a large amount of phosphorus and harmful components such as arsenic (As), but these components are extracted to the liquid side by contact with the alkaline reaction liquid 1. Next, by performing solid-liquid separation by filtration using a filter cloth as a filter medium, the treated ash as a solid component and the phosphorus extract as a liquid component are separated (solid-liquid separation step, step ST3). .
 その後、固液分離された固体成分である処理灰とアルカリ性反応液1とが再度混合されて2回目のリン抽出工程が行われる(ステップST4)。続いて、ステップST3と同様にして2回目の固液分離工程が行われる(ステップST5)。これらの工程により2回のリン抽出工程が施された処理灰とリン抽出液とが得られる。以上のようにリン抽出工程と固液分離工程とを2回行うことにより、リンの回収率を向上させることができる。 Thereafter, the treated ash, which is a solid component separated by solid-liquid separation, and the alkaline reaction liquid 1 are mixed again, and the second phosphorus extraction step is performed (step ST4). Subsequently, the second solid-liquid separation step is performed in the same manner as in step ST3 (step ST5). By these steps, a treated ash and a phosphorus extract subjected to two phosphorus extraction steps are obtained. As described above, the phosphorus recovery rate can be improved by performing the phosphorus extraction step and the solid-liquid separation step twice.
 次に、処理灰に付着しているアルカリ性反応液やAs、Se等の有害成分を除去するために処理灰の洗浄が行われる(灰洗浄工程、ステップST6)。この第1の実施形態においては、処理灰の洗浄として、洗浄水(水道水、井水、処理水など)を用いた水洗浄が行われる。続いて、ろ布を用いたろ過処理による固液分離を行うことによって、固体成分の処理灰と液体成分であり廃棄される廃液とが分離される(固液分離工程、ステップST7)。その後、固液分離された固体分である処理灰に対して処理水を再度混合して2回目の灰洗浄工程が行われる(ステップST8)。続いて、ステップST7と同様にして固液分離工程が行われる(ステップST9)。 Next, the treated ash is washed to remove harmful components such as alkaline reaction liquid and As, Se adhering to the treated ash (ash washing step, step ST6). In the first embodiment, water cleaning using cleaning water (tap water, well water, processing water, etc.) is performed as cleaning of the processing ash. Subsequently, by performing solid-liquid separation by filtration using a filter cloth, the solid ash is separated from the waste liquid that is a liquid component and discarded (solid-liquid separation step, step ST7). Thereafter, the treated ash, which is a solid component separated by solid-liquid separation, is mixed with treated water again, and the second ash washing step is performed (step ST8). Subsequently, a solid-liquid separation process is performed in the same manner as in step ST7 (step ST9).
 以上により2回の灰洗浄処理がされた処理灰と廃液とが固液分離される。これらのうちの廃液に対しては、中和などの従来公知の方法により廃棄処理がされる。このように、灰洗浄工程と固液分離工程とを2回行うことにより、AsやAlなどを効率よく除去することができるとともに、pHを低下させてより中性に近づけることが可能となる。 As a result, the treated ash that has been subjected to the ash washing process twice and the waste liquid are separated into solid and liquid. Of these, the waste liquid is disposed of by a conventionally known method such as neutralization. As described above, by performing the ash washing step and the solid-liquid separation step twice, As and Al can be efficiently removed, and the pH can be lowered to be closer to neutrality.
 次に、処理灰に対して、処理水を添加しつつ例えば硫酸(H2SO4)などの酸を加えることにより弱酸洗浄を行う(弱酸洗浄工程、ステップST10)。なお、この第1の実施形態においては、使用する酸として取り扱いの容易なH2SO4を用いているが、塩酸(HCl)、硝酸(HNO3)等を用いることも可能である。この弱酸洗浄工程により、処理灰に付着しているアルカリ性反応液やAs、Se等が除去される。続いて、処理灰と酸性溶液との混合物に対して、ベルト濃縮装置を用いた濃縮が行われる(ベルト濃縮工程、ステップST11)。これによって、処理灰と酸性溶液との混合物が、濃縮され清浄化された処理灰と濃縮によって排出される廃液とに分離される。これらのうちの廃液に対しては、中和などの従来公知の方法により廃棄処理がされる。 Next, weak acid cleaning is performed on the treated ash by adding an acid such as sulfuric acid (H 2 SO 4 ) while adding treated water (weak acid cleaning step, step ST10). In the first embodiment, H 2 SO 4 that is easy to handle is used as the acid to be used, but hydrochloric acid (HCl), nitric acid (HNO 3 ), or the like can also be used. By this weak acid washing process, the alkaline reaction liquid, As, Se, etc. adhering to the treated ash are removed. Subsequently, concentration using a belt concentrator is performed on the mixture of the treated ash and the acidic solution (belt concentration step, step ST11). As a result, the mixture of the treated ash and the acidic solution is separated into the concentrated and cleaned treated ash and the waste liquid discharged by the concentration. Of these, the waste liquid is disposed of by a conventionally known method such as neutralization.
 次に、濃縮された処理灰を乾燥させて処理灰に付着した水分を除去する(乾燥工程、ステップST12)。これによって、最終的に水分の含有が最小限となった清浄な処理灰3が得られる。この清浄な処理灰3は土壌環境基準を満たすことから、例えばアスファルトフィラーや下層路盤材などとして使用することができる。 Next, the concentrated treated ash is dried to remove water adhering to the treated ash (drying step, step ST12). As a result, a clean treated ash 3 having a minimum moisture content is finally obtained. Since this clean treated ash 3 satisfies the soil environmental standards, it can be used as, for example, asphalt filler or lower roadbed material.
 さて、ステップST3およびステップST5の固液分離工程において分離されたリン抽出液に対しては、Ca成分4を添加することにより、リン酸Caを析出させる(リン酸塩析出工程、ステップST13)。この第1の実施形態においては、Ca成分として、消石灰(水酸化カルシウム(Ca(OH)2))を用いることができ、その添加量は、リン抽出液中のリン酸が(1)式に従って反応すると仮定した場合に水酸化カルシウムが過不足なく反応する量(以下、反応等量)の1.3倍~1.5倍である。
 2PO 3-+3Ca(OH)⇒Ca(PO+6OH ……(1)
Now, Ca phosphate 4 is precipitated by adding the Ca component 4 to the phosphorus extract separated in the solid-liquid separation step of Step ST3 and Step ST5 (phosphate precipitation step, Step ST13). In the first embodiment, slaked lime (calcium hydroxide (Ca (OH) 2 )) can be used as the Ca component, and the amount of phosphoric acid in the phosphorus extract is determined according to the formula (1). Assuming that the reaction takes place, the amount of calcium hydroxide reacting without excess or deficiency (hereinafter referred to as reaction equivalent) is 1.3 to 1.5 times.
2PO 4 3− + 3Ca (OH) 2 ⇒Ca 3 (PO 4 ) 2 + 6OH (1)
 その後、リン酸塩が析出した混合物に対して固液分離を行うことにより、リン酸Caなどのリン酸塩の結晶が取り出される(固液分離工程、ステップST14)。この固液分離工程においては、ステップST3、ステップST5における処理灰に対する固液分離と同様に、ろ布を用いたろ過処理が行われるが、ろ過処理以外にも重力沈降を採用することも可能である。そして、固液分離工程により分離された液体成分は、再生液としてアルカリ性反応液1に混合されて循環使用される。他方、固液分離により分離された固体分としてのリン酸塩の結晶に対しては、処理水を添加することにより洗浄が行われる(洗浄工程、ステップST15)。これにより、リン酸塩の結晶に付着している各種有害成分が除去されて、清浄なリン酸塩の結晶が得られる。その後、リン酸塩の結晶と処理水との混合物に対して、ステップST11におけるベルト濃縮工程と同様にして、ベルト濃縮装置を用いた濃縮を行うことにより、リン酸塩の結晶が濃縮され、廃液と分離される(ベルト濃縮工程、ステップST16)。 Then, by performing solid-liquid separation on the mixture in which the phosphate is precipitated, phosphate crystals such as Ca phosphate are taken out (solid-liquid separation step, step ST14). In this solid-liquid separation process, a filtration process using a filter cloth is performed in the same manner as the solid-liquid separation for the treated ash in step ST3 and step ST5, but gravity sedimentation can also be adopted in addition to the filtration process. is there. And the liquid component isolate | separated by the solid-liquid separation process is mixed with the alkaline reaction liquid 1 as a reproduction | regeneration liquid, and is circulated and used. On the other hand, the phosphate crystals as solids separated by solid-liquid separation are washed by adding treated water (washing step, step ST15). Thereby, various harmful components adhering to the phosphate crystals are removed, and clean phosphate crystals are obtained. Thereafter, the phosphate crystals and the treated water are concentrated using a belt concentrator in the same manner as the belt concentration step in step ST11, whereby the phosphate crystals are concentrated, and the waste liquid (Belt concentration step, step ST16).
 次に、濃縮された清浄なリン酸塩の結晶に対して、乾燥処理を行うことにより、リン酸塩の結晶に含まれる水分が最小限まで除去される(乾燥工程、ステップST17)。その後、リン酸塩の結晶を粒状に粉砕する造粒処理が行われる(造粒工程、ステップST18)。これにより粉末状のリン酸カルシウム5が得られる。このリン酸カルシウム5は、例えばリン酸肥料の原料として有効利用することができる。 Next, by performing a drying treatment on the concentrated clean phosphate crystals, moisture contained in the phosphate crystals is removed to the minimum (drying step, step ST17). Thereafter, a granulation process is performed in which the phosphate crystals are pulverized into granules (granulation step, step ST18). Thereby, powdery calcium phosphate 5 is obtained. This calcium phosphate 5 can be effectively used as a raw material for phosphate fertilizer, for example.
 以上説明したように、この第1の実施形態によれば、アルカリ性反応液1のPアルカリ度を、イオン状シリカのPアルカリ度依存性が変化するイオン状シリカの所定Pアルカリ度以下、好ましくはPの所定Pアルカリ度より1.0(当量/kg)(5000mg/l)低いPアルカリ度以上、より好ましくはPの所定Pアルカリ度以下とすることによって、Pの抽出量の大幅な減少を招くことなく、溶解性Siの生成を抑制してA型ゼオライトの発生を抑制し、リン抽出工程後の固液分離に用いられるろ布の目詰まりを防止することができる。 As described above, according to the first embodiment, the P alkalinity of the alkaline reaction liquid 1 is equal to or less than the predetermined P alkalinity of ionic silica in which the P alkalinity dependency of ionic silica changes, preferably By reducing the P alkalinity by 1.0 (equivalent / kg) (5000 mg / l) lower than the predetermined P alkalinity of P, more preferably by setting the P alkalinity below P, the amount of extraction of P can be greatly reduced. Without inviting, generation | occurrence | production of soluble Si can be suppressed, generation | occurrence | production of A type zeolite can be suppressed, and the clogging of the filter cloth used for solid-liquid separation after a phosphorus extraction process can be prevented.
 さらに、この第1の実施形態によれば、表1に示すような性状の異なる種々の焼却灰からリンを抽出する場合であっても、リン、アルミニウム、およびイオン状シリカがアルカリ性反応液1に溶出する際のPアルカリ度依存性は、いずれの焼却灰においても同様の傾向を有することから、本発明によるリン抽出方法でのアルカリ性反応液の調整方法に基づいて、リンを抽出するためのアルカリ性反応液1のPアルカリ度、すなわち水酸化物イオン量を制御することにより、あらゆる性状の焼却灰2において、溶解性Siの生成を抑制してA型ゼオライトの発生を抑制し、リン抽出工程後の固液分離に用いられるろ布の目詰まりを防止することができる。 Further, according to the first embodiment, even when phosphorus is extracted from various incineration ash having different properties as shown in Table 1, phosphorus, aluminum, and ionic silica are added to the alkaline reaction liquid 1. Since the P alkalinity dependency at the time of elution has the same tendency in any incineration ash, the alkalinity for extracting phosphorus based on the adjustment method of the alkaline reaction liquid in the phosphorus extraction method according to the present invention. By controlling the P alkalinity of reaction liquid 1, that is, the amount of hydroxide ions, incineration ash 2 of all properties suppresses the generation of soluble Si and suppresses generation of A-type zeolite, and after the phosphorus extraction step The clogging of the filter cloth used for the solid-liquid separation can be prevented.
 次に、本発明の第2の実施形態について説明する。この第2の実施形態においては、第1の実施形態と同一の部分についてはその説明を省略する。図5に、本発明の第2の実施形態によるリン回収方法のフローチャートを示す。 Next, a second embodiment of the present invention will be described. In the second embodiment, the description of the same parts as those in the first embodiment is omitted. FIG. 5 shows a flowchart of the phosphorus recovery method according to the second embodiment of the present invention.
 図4に示すように、まず、第1の実施形態と同様に、アルカリ性反応液1の調整(ステップST21)、リン抽出工程(ステップST22)および固液分離工程(ステップST23)が行われ、処理灰とリン抽出液とが分離される。ここで、この第2の実施形態においては、第1の実施形態と異なり、リン抽出工程と固液分離工程とはそれぞれ1回のみ行われる。このようにリン抽出工程と固液分離工程とが1回のみの場合、処理灰に付着している、処理灰の3倍程度の質量の付着水には、多くのPおよび未反応のNaOHが残存している。 As shown in FIG. 4, first, similarly to the first embodiment, the adjustment of the alkaline reaction liquid 1 (step ST21), the phosphorus extraction step (step ST22), and the solid-liquid separation step (step ST23) are performed, and the processing is performed. Ash and phosphorus extract are separated. Here, in the second embodiment, unlike the first embodiment, each of the phosphorus extraction step and the solid-liquid separation step is performed only once. As described above, when the phosphorus extraction step and the solid-liquid separation step are performed only once, a large amount of P and unreacted NaOH are attached to the water adhering to the treated ash and having a mass about three times that of the treated ash. Remains.
 その後、第1の実施形態におけると同様に、灰洗浄工程(ステップST24)およびろ布を用いたろ過処理による固液分離工程(ステップST25)が行われ、固体成分としての処理灰と液体成分とが分離される。ここで、この第2の実施形態においては、第1の実施形態と異なり、灰洗浄工程と固液分離工程とはそれぞれ1回のみ行われる。なお、上述したように、リン抽出工程と固液分離工程とが1回のみの場合、処理灰に付着した付着水には多くのPおよび未反応のNaOHが残存していることから、灰洗浄工程および固液分離工程によって分離された液体成分にはPおよび未反応のNaOHが含まれる。そのため、この液体成分は、リン抽出液として利用される。 Thereafter, as in the first embodiment, an ash washing step (step ST24) and a solid-liquid separation step (step ST25) by filtration using a filter cloth are performed, and the treated ash and liquid component as solid components are Are separated. Here, in the second embodiment, unlike the first embodiment, the ash washing step and the solid-liquid separation step are each performed only once. As described above, when the phosphorus extraction step and the solid-liquid separation step are performed only once, a large amount of P and unreacted NaOH remain in the adhering water adhering to the treated ash. The liquid component separated by the process and the solid-liquid separation process includes P and unreacted NaOH. Therefore, this liquid component is used as a phosphorus extract.
 その後、処理灰に対して、処理水を加えつつ例えばH2SO4などの酸を添加するとともに、ポリ硫酸第二鉄(ポリテツ)を添加することにより、弱酸洗浄が行われる(弱酸洗浄工程、ステップST26)。この弱酸洗浄工程においてポリテツを添加していることにより、処理灰に付着しているAsの溶出を抑制しつつ処理灰の中和洗浄を行うことが可能となる。続いて、処理灰と酸性溶液との混合物に対して、固液分離処理が行われる(固液分離工程、ステップST27)。これによって、処理灰を含む混合物が、清浄化された処理灰と排出される廃液とに分離される。これらのうちの廃液に対しては、中和などの従来公知の方法により廃棄処理がされる。なお、この第2の実施形態においては、必要に応じて排出される廃液の一部をリン抽出液として用いることも可能である。 Thereafter, an acid such as H 2 SO 4 is added to the treated ash while adding treated water, and a weak acid washing is performed by adding polyferric sulfate (polytetsu) (weak acid washing step, Step ST26). By adding polytetsu in this weak acid washing step, it becomes possible to perform neutralization washing of the treated ash while suppressing elution of As adhering to the treated ash. Subsequently, a solid-liquid separation process is performed on the mixture of the treated ash and the acidic solution (solid-liquid separation step, step ST27). Thereby, the mixture containing the processed ash is separated into the cleaned processed ash and the discharged waste liquid. Of these, the waste liquid is disposed of by a conventionally known method such as neutralization. In the second embodiment, a part of the waste liquid discharged as necessary can be used as the phosphorus extract.
 次に、第1の実施形態におけると同様に、乾燥工程(ステップST28)を行うことにより、最終的に水分の含有が最小限となった清浄な処理灰3が得られる。 Next, as in the first embodiment, by performing the drying process (step ST28), a clean treated ash 3 having a minimum moisture content is finally obtained.
 さて、ステップST23およびステップST25の固液分離工程において分離されたリン抽出液に対しては、リン酸塩析出工程によりCa成分4を添加してリン酸Caを析出させる(ステップST29)。この第2の実施形態においては、Ca(OH)2の添加量は、第1の実施形態における添加量に比して少ない量、具体的には、リン抽出液の反応等量の1.3倍未満である。 Now, with respect to the phosphorus extract separated in the solid-liquid separation process of step ST23 and step ST25, Ca component 4 is added by the phosphate precipitation process to precipitate Ca phosphate (step ST29). In this second embodiment, the amount of Ca (OH) 2 added is smaller than the amount added in the first embodiment, specifically, the reaction equivalent of 1.3% of the phosphorus extract. Is less than twice.
 その後、第1の実施形態におけると同様に、固液分離工程(ステップST30)、処理水を用いた洗浄工程(ステップST31)、ベルト濃縮工程(ステップST32)、乾燥工程(ステップST33)および造粒工程(ステップST34)を行うことにより、粉末状のリン酸カルシウム5が得られる。 Thereafter, as in the first embodiment, the solid-liquid separation process (step ST30), the cleaning process using treated water (step ST31), the belt concentration process (step ST32), the drying process (step ST33), and the granulation By performing the process (step ST34), powdered calcium phosphate 5 is obtained.
 次に、この第2の実施形態においては、第1の実施形態と異なり、ステップST30の固液分離工程において分離された再生液に対しては、アルカリ性反応液1に混合させて循環使用する前に、必要に応じて、再生液に含まれるAsを除去する処理(As除去工程、ステップST35)や、再生液に含まれるAlを除去する処理(Al除去工程、ステップST36)が行われる。 Next, in the second embodiment, unlike the first embodiment, the regenerated liquid separated in the solid-liquid separation step in step ST30 is mixed with the alkaline reaction liquid 1 before being used in circulation. In addition, a process for removing As contained in the regeneration liquid (As removal process, step ST35) and a process for removing Al contained in the regeneration liquid (Al removal process, step ST36) are performed as necessary.
 具体的には、As除去工程は、ステップST30において固液分離された再生液中に含まれるAsの濃度が所定値(例えば、10mg/l)以上になった場合に行われる。このAs除去工程においては、再生液に消石灰を添加してAsを吸着させた後、固液分離を行うことによって、再生液からAsを除去する。ここで、再生液に添加する消石灰の添加量については、Asの濃度に応じて適宜決定される。 Specifically, the As removal step is performed when the concentration of As contained in the regenerated liquid that has been subjected to solid-liquid separation in Step ST30 becomes a predetermined value (for example, 10 mg / l) or more. In this As removal step, after adding slaked lime to the regenerated liquid to adsorb As, the As is removed from the regenerated liquid by performing solid-liquid separation. Here, about the addition amount of the slaked lime added to a reproduction | regeneration liquid, it determines suitably according to the density | concentration of As.
 また、Al除去工程は、ステップST30において固液分離された再生液中に含まれるAlの濃度が所定値(例えば、10000mg/l)以上になった場合に行われる。このAl除去工程においては、再生液に溶解性Siを添加することによりAlを除去する。 In addition, the Al removal step is performed when the concentration of Al contained in the regenerated liquid that has been subjected to solid-liquid separation in Step ST30 becomes a predetermined value (for example, 10,000 mg / l) or more. In this Al removal step, Al is removed by adding soluble Si to the regenerating solution.
 以上説明したように、この第2の実施形態によれば、リン抽出工程とこれに続く固液分離工程とをそれぞれ1回のみ行い、灰洗浄工程とこれに続く固液分離工程とをそれぞれ1回のみ行って分離された液体をリン抽出液としていることにより、Pの抽出量を低減させることなく、その工程数を低減することができる。また、弱酸洗浄工程においてポリテツを添加していることにより、処理灰からのAsの溶出を抑制することが可能となる。 As described above, according to the second embodiment, each of the phosphorus extraction step and the subsequent solid-liquid separation step is performed only once, and each of the ash washing step and the subsequent solid-liquid separation step is 1 each. By using the liquid separated by performing only once as the phosphorus extract, the number of steps can be reduced without reducing the amount of P extracted. Moreover, it becomes possible to suppress the elution of As from the treated ash by adding polytetsu in the weak acid washing step.
 以上、本発明の実施形態について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。 The embodiments of the present invention have been specifically described above, but the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible. For example, the numerical values given in the above embodiment are merely examples, and different numerical values may be used as necessary.
 上述した第2の実施形態においては、リン酸Caを析出させた後の固液分離により分離された再生液に対して、Asの濃度が所定値を超えた場合にAs除去工程を行っているが、Asの濃度が所定値を超えた場合に、ステップST29のリン酸塩析出工程において添加するCa(OH)2の添加量を増加させて、反応等量の1.3倍以上1.5倍以下としCaの量を増加させるようにしてもよい。 In the above-described second embodiment, the As removal step is performed when the concentration of As exceeds a predetermined value with respect to the regenerated solution separated by solid-liquid separation after depositing Ca phosphate. However, when the concentration of As exceeds a predetermined value, the addition amount of Ca (OH) 2 added in the phosphate precipitation step of step ST29 is increased to 1.3 times 1.5 times the reaction equivalent or more. The amount of Ca may be increased by less than double.
 上述した実施形態においては、焼却灰の単位質量当たりの水酸化物イオン量依存性の一例として、焼却灰の単位質量当たりのPアルカリ度依存性を採用しているが、焼却灰の単位質量当たりの水酸化物イオン量依存性の他の例として、焼却灰の液固比依存性に基づいて、P、Al、およびSiの溶出を制御することも可能である。 In the embodiment described above, the P alkalinity dependency per unit mass of the incinerated ash is adopted as an example of the hydroxide ion amount dependency per unit mass of the incinerated ash. As another example of the dependence of the amount of hydroxide ions, the elution of P, Al, and Si can be controlled based on the dependence of the incineration ash on the liquid-solid ratio.
 また、上述した実施形態において、所定Pアルカリ度の導出方法としては、Pアルカリ度の計測値のうちの、最も大きい側の計測値から順次小さい側の計測値に向けて直線を当て、他方で、Pアルカリ度の計測値のうちの、最も小さい側の計測値から順次大きい側の計測値に向けて直線を当て、それらの2本の直線の交点におけるPアルカリ度を所定Pアルカリ度とする導出方法を採用しても良い。 Further, in the above-described embodiment, as a method for deriving the predetermined P alkalinity, a straight line is applied from the largest measured value to the smaller measured value among the measured values of P alkalinity, and on the other hand A straight line is applied sequentially from the smallest measured value of the measured values of P alkalinity to the measured value of the larger side, and the P alkalinity at the intersection of the two straight lines is defined as the predetermined P alkalinity. A derivation method may be adopted.
 1 アルカリ性反応液
 2 焼却灰
 3 処理灰
 4 Ca成分
 5 リン酸カルシウム
DESCRIPTION OF SYMBOLS 1 Alkaline reaction liquid 2 Incineration ash 3 Processed ash 4 Ca component 5 Calcium phosphate

Claims (4)

  1.  薬剤と、少なくともケイ素、アルミニウムおよびリンを含有する焼却灰とを混合させて前記薬剤にリンを抽出するリン抽出工程と、
     リンを含有する溶液と不溶性成分との混合液を、ろ材を用いて液体成分と固体成分とに分離する固液分離工程と、を含む焼却灰からのリン抽出方法であって、
     前記焼却灰から前記薬剤に溶出するイオン状シリカの溶出濃度における、前記焼却灰の単位質量当たりの水酸化物イオン量依存性に基づいて、イオン状シリカの溶出濃度の前記焼却灰の単位質量当たりの水酸化物イオン量依存性の傾向が変化する前記焼却灰の単位質量当たりの水酸化物イオン量を、イオン状シリカの所定水酸化物イオン量としてあらかじめ計測し、
     前記薬剤における、前記焼却灰の単位質量当たりの水酸化物イオン量を、前記イオン状シリカの所定水酸化物イオン量以下にする
     ことを特徴とする焼却灰からのリン抽出方法。
    A phosphorus extraction step of mixing the drug and incinerated ash containing at least silicon, aluminum and phosphorus to extract phosphorus in the drug;
    A method for extracting phosphorus from incinerated ash, comprising: a solid-liquid separation step of separating a liquid mixture of a solution containing phosphorus and an insoluble component into a liquid component and a solid component using a filter medium,
    Based on the dependence of the amount of hydroxide ions per unit mass of the incinerated ash in the elution concentration of ionic silica eluted from the incinerated ash on the chemical, the unit concentration of the incinerated ash per unit mass of the ionic silica Measure the amount of hydroxide ions per unit mass of the incinerated ash, the tendency of which depends on the amount of hydroxide ions of
    The method for extracting phosphorus from incinerated ash, wherein the amount of hydroxide ions per unit mass of the incinerated ash in the medicine is made equal to or less than a predetermined amount of hydroxide ions of the ionic silica.
  2.  薬剤と、少なくともケイ素、アルミニウムおよびリンを含有する焼却灰とを混合させて前記薬剤にリンを抽出するリン抽出工程と、
     リンを含有する溶液と不溶性成分との混合液を、ろ材を用いて液体成分と固体成分とに分離する固液分離工程と、を含む焼却灰からのリン抽出方法であって、
     前記焼却灰から前記薬剤に溶出するイオン状シリカの溶出濃度のPアルカリ度依存性に基づいて、イオン状シリカの溶出濃度のPアルカリ度依存性の傾向が変化するPアルカリ度をイオン状シリカの所定Pアルカリ度としてあらかじめ計測し、
     前記薬剤のPアルカリ度を前記イオン状シリカの所定Pアルカリ度以下にする
     ことを特徴とする焼却灰からのリン抽出方法。
    A phosphorus extraction step of mixing the drug and incinerated ash containing at least silicon, aluminum and phosphorus to extract phosphorus in the drug;
    A method for extracting phosphorus from incinerated ash, comprising: a solid-liquid separation step of separating a liquid mixture of a solution containing phosphorus and an insoluble component into a liquid component and a solid component using a filter medium,
    Based on the P alkalinity dependence of the elution concentration of ionic silica eluted from the incinerated ash into the chemical, the P alkalinity of which the tendency of the elution concentration of the ionic silica depends on the P alkalinity is changed. Measure in advance as the predetermined P alkalinity,
    The method for extracting phosphorus from incinerated ash, wherein the P alkalinity of the drug is made equal to or less than a predetermined P alkalinity of the ionic silica.
  3.  前記焼却灰から前記薬剤に抽出されるリンの溶出濃度のPアルカリ度依存性に基づいて、リンの溶出濃度のPアルカリ度依存性の傾向が変化するリンの所定Pアルカリ度をあらかじめ計測し、前記薬剤のPアルカリ度を、前記リンの所定Pアルカリ度より1.0(当量/kg)低いPアルカリ度以上にすることを特徴とする請求項2に記載の焼却灰からのリン抽出方法。 Based on the P alkalinity dependency of the elution concentration of phosphorus extracted from the incinerated ash to the chemical, the predetermined P alkalinity of phosphorus in which the tendency of the phosphorus elution concentration to depend on the P alkalinity changes is measured in advance, The method for extracting phosphorus from incinerated ash according to claim 2, wherein the P alkalinity of the chemical is set to a P alkalinity which is 1.0 (equivalent / kg) lower than a predetermined P alkalinity of the phosphorus.
  4.  前記焼却灰から前記薬剤に抽出されるリンの溶出濃度のPアルカリ度依存性に基づいて、リンの溶出濃度のPアルカリ度依存性の傾向が変化するリンの所定Pアルカリ度をあらかじめ計測し、前記薬剤のPアルカリ度を、前記リンの所定Pアルカリ度以下にすることを特徴とする請求項2または3に記載の焼却灰からのリン抽出方法。 Based on the P alkalinity dependency of the elution concentration of phosphorus extracted from the incinerated ash to the chemical, the predetermined P alkalinity of phosphorus in which the tendency of the phosphorus elution concentration to depend on the P alkalinity changes is measured in advance, The method for extracting phosphorus from incinerated ash according to claim 2 or 3, wherein the P alkalinity of the drug is set to be equal to or less than a predetermined P alkalinity of the phosphorus.
PCT/JP2012/063648 2011-05-27 2012-05-28 Method for extracting phosphorus from incinerated ash WO2012165382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013518081A JP5934706B2 (en) 2011-05-27 2012-05-28 Method for extracting phosphorus from incineration ash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011119581 2011-05-27
JP2011-119581 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012165382A1 true WO2012165382A1 (en) 2012-12-06

Family

ID=47259238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063648 WO2012165382A1 (en) 2011-05-27 2012-05-28 Method for extracting phosphorus from incinerated ash

Country Status (2)

Country Link
JP (1) JP5934706B2 (en)
WO (1) WO2012165382A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964655A (en) * 2016-05-17 2016-09-28 华中科技大学 Curing method for heavy metals in waste incineration ash and application thereof
JP2017518956A (en) * 2014-05-02 2017-07-13 レモンディス アクア ゲーエムベーハ アンド シーオー.ケージー A method of purifying raw phosphoric acid (such as MGA acid) by adding ash derived from a waste incineration site, including the production of purified phosphoric acid, calcium sulfate, water-soluble calcium hydrogen phosphate and metal salt solution.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223315A (en) * 2003-01-20 2004-08-12 Mie Prefecture Method for recovering phosphate and zeolite
JP2006205154A (en) * 2004-12-28 2006-08-10 Central Res Inst Of Electric Power Ind Method for manufacturing adsorbent consisting essentially of hydroxyapatite crystal
JP2008230940A (en) * 2007-03-23 2008-10-02 Metawater Co Ltd Method for recovering phosphorus from incineration ash of sewage sludge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223315A (en) * 2003-01-20 2004-08-12 Mie Prefecture Method for recovering phosphate and zeolite
JP2006205154A (en) * 2004-12-28 2006-08-10 Central Res Inst Of Electric Power Ind Method for manufacturing adsorbent consisting essentially of hydroxyapatite crystal
JP2008230940A (en) * 2007-03-23 2008-10-02 Metawater Co Ltd Method for recovering phosphorus from incineration ash of sewage sludge

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARI IWASHITA ET AL.: "Development of Recovering Phosphorus from Sewage Sludge Ash", THE SOCIETY OF ENVIRONMENTAL INSTRUMENTATION CONTROL AND AUTOMATION GAKKAISHI 'EICA', vol. 14, no. 1, 2009, pages 15 - 18 *
MARI IWASHITA ET AL.: "Gesui Odei Shokyakubai kara no Rin Kaishu", PROCEEDINGS OF THE 56TH ANNUAL CONFERENCE OF THE JAPAN SOCEITY OF CIVIL ENGINEERS, October 2001 (2001-10-01), pages 608 - 609 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017518956A (en) * 2014-05-02 2017-07-13 レモンディス アクア ゲーエムベーハ アンド シーオー.ケージー A method of purifying raw phosphoric acid (such as MGA acid) by adding ash derived from a waste incineration site, including the production of purified phosphoric acid, calcium sulfate, water-soluble calcium hydrogen phosphate and metal salt solution.
CN105964655A (en) * 2016-05-17 2016-09-28 华中科技大学 Curing method for heavy metals in waste incineration ash and application thereof

Also Published As

Publication number Publication date
JPWO2012165382A1 (en) 2015-02-23
JP5934706B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5201455B2 (en) Phosphorus recovery material, its manufacturing method and phosphorus recovery method
AU2015261392B2 (en) Process for producing a calcium phosphate reactant, reactant obtained and use thereof in the purification of liquid effluents
EP3393968B1 (en) Process for producing a phosphorus product from wastewater
JP2009285635A (en) Phosphorus recovery material and method for recovering phosphorus
WO2011132770A1 (en) Agent for eliminating heavy metal ions and phosphate ions in wastewater, and method for eliminating heavy metal ions and phosphate ions using same
JP5344987B2 (en) Dephosphorization material, dephosphorization device and dephosphorization by-product
JP5550459B2 (en) Recovery phosphorus and recovery method
JP5934706B2 (en) Method for extracting phosphorus from incineration ash
JP5118572B2 (en) Sewage treatment method
WO2016199896A1 (en) System for recovering phosphorus from raw water to be treated, method for recovering phosphorus from raw water to be treated, fertilizer, raw material for fertilizer, and raw material for yellow phosphorus
US8013204B2 (en) Use of partly prehydrated lime for separating a solid matter/liquid mixture, method for treating sludge and purified sludge obtained by said method
JP4444457B2 (en) Phosphorus recovery method
JP2000140891A (en) Method for recovering phosphorus in sludge and device therefor
JP6062222B2 (en) Method for extracting phosphorus from incineration ash
JP2012148265A (en) Method and device for recovering calcium fluoride
JP2009119382A (en) Crystallization reactor and crystallization reaction method
WO2012165383A1 (en) Method for recovering phosphorus from incinerated ash
JP2008246398A (en) Method for recovering gypsum from molten fly ash
JP5875259B2 (en) Method and apparatus for treating organic wastewater and sludge
WO2021006737A1 (en) Recovery of phosphorous
JP6888798B2 (en) Boron removal method and boron removal device
WO2017017833A1 (en) Fluorine-containing wastewater treatment method and device therefor
JP7477995B2 (en) Waste liquid treatment method
JP7440859B2 (en) How to treat boron-containing water
JP5461802B2 (en) Dephosphorization material and dephosphorization apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793952

Country of ref document: EP

Kind code of ref document: A1