WO2016199896A1 - System for recovering phosphorus from raw water to be treated, method for recovering phosphorus from raw water to be treated, fertilizer, raw material for fertilizer, and raw material for yellow phosphorus - Google Patents

System for recovering phosphorus from raw water to be treated, method for recovering phosphorus from raw water to be treated, fertilizer, raw material for fertilizer, and raw material for yellow phosphorus Download PDF

Info

Publication number
WO2016199896A1
WO2016199896A1 PCT/JP2016/067383 JP2016067383W WO2016199896A1 WO 2016199896 A1 WO2016199896 A1 WO 2016199896A1 JP 2016067383 W JP2016067383 W JP 2016067383W WO 2016199896 A1 WO2016199896 A1 WO 2016199896A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
water
treated
slag
steel slag
Prior art date
Application number
PCT/JP2016/067383
Other languages
French (fr)
Japanese (ja)
Inventor
久夫 大竹
内藤 朗
文香 金田
Original Assignee
久夫 大竹
新日鉄住金エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 久夫 大竹, 新日鉄住金エンジニアリング株式会社 filed Critical 久夫 大竹
Priority to CN201680033222.0A priority Critical patent/CN107683262A/en
Priority to JP2016541446A priority patent/JP6060320B1/en
Publication of WO2016199896A1 publication Critical patent/WO2016199896A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/04Purification of phosphorus
    • C01B25/047Purification of phosphorus of yellow phosphorus
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B11/00Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes
    • C05B11/04Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes using mineral acid
    • C05B11/12Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes using mineral acid using aqueous hydrochloric acid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Definitions

  • the present invention relates to a system for collecting phosphorus in treated water, a method for collecting phosphorus in treated water, a fertilizer, a fertilizer raw material, and a yellow phosphorus raw material.
  • Phosphorus is an indispensable element for all living organisms. It is one of the three major nutrients of plants and is an important raw material for fertilizers for agricultural crops. Recently, there is a concern about the exhaustion of phosphorus resources, and recovery of phosphorus resources is required. Phosphorus is one of the causative substances that cause eutrophication in the sea, lakes, and the like, and is often contained in, for example, domestic wastewater discharged from ordinary households. Also, industrial wastewater discharged from business establishments may contain phosphorus. For this reason, it is required to efficiently recover phosphorus from these wastewaters.
  • HAP hydroxyapatite crystallization method using crystalline calcium silicate hydrate as a seed crystal, magnesium phosphate from waste water containing phosphorus and ammonia
  • MAP hydroxyapatite
  • aggregation precipitation method using calcium hydroxide or calcium chloride are low in reaction rate, crystallization rate and coagulation sedimentation rate, require complex reaction control using various chemicals, and in crystallization methods such as the MAP method, MAP in pipes, etc.
  • problems such as frequent occurrence of troubles such as precipitation blockage. For this reason, the establishment of a low-cost and simple phosphorus recovery method has been an issue.
  • Patent Documents 1 and 2 and Non-Patent Document 1 a phosphorus recovery technique using amorphous calcium silicate as a phosphorus adsorbent has been proposed.
  • the phosphorus adsorbents described in Patent Documents 1 and 2 are, for example, a product obtained by making a silicic acid raw material and a lime raw material into an aqueous slurry and adding an alkali hydroxide to cause a hydrothermal reaction, or sodium silicate.
  • An amorphous calcium silicate hydrate formed by adding Ca (OH) 2 to an aqueous solution and an unreacted Ca (OH) 2 aggregate or an alkali-soluble silica in a readily soluble silica raw material
  • Preparation of phosphorous adsorbent which is a collection of aggregates of amorphous calcium silicate hydrate and Ca (OH) 2 hydrothermally synthesized by adding slaked lime to silica solution dissolved with NaOH
  • the process cost is not reduced.
  • the preparation of the amorphous calcium silicate described in Non-Patent Document 1 is complicated, and the reduction of the processing cost does not proceed.
  • these techniques are not phosphorus recovery techniques using steel slag, nor are techniques for reusing steel slag as fertilizer.
  • Patent Documents 3 and 4 steel-based slag is used as a material for recovering metal ions and phosphorus in water.
  • the phosphorus recovery method described in Patent Document 3 activates the slag surface with an alkaline agent to make an adsorbent, and then adsorbs the metal ions and phosphorus by mixing these adsorbents into the water to be treated.
  • the adsorbed phosphorus is eluted and recovered, and the process is extremely complicated, and the recovery efficiency of metal ions and phosphorus is low.
  • Patent Document 4 coal ash and the like are mixed with slag discharged from a steel mill, further slag is further blended, and further, an inorganic acid is added to cause gelation, and then alkali is added to agglomerate and precipitate. And an adsorbent obtained by further mixing coal ash and the like.
  • the adsorbent described in Patent Document 4 is only described as being used as a substitute for zeolite.
  • the invention described in Patent Document 5 is an invention relating to a method for recovering phosphorus from steel slag, and is not a method for recovering phosphorus in waste water.
  • Non-Patent Documents 2, 3, 4, and 5 there is a technique described in Non-Patent Documents 2, 3, 4, and 5 regarding the recovery of phosphorus from steel slag, but it is a technique that uses a large amount of energy and chemicals and has not yet been put into practical use. Moreover, these techniques are not methods for recovering phosphorus in waste water.
  • This invention is made
  • This invention makes it a subject to provide the fertilizer and fertilizer raw material which contain phosphorus, and a yellow phosphorus raw material.
  • the phosphorus recovery system shown in FIG. 1 has been devised by paying attention to slag by-produced from an ironworks (hereinafter referred to as “steel slag”).
  • steel slag By eluting calcium in steel slag, reacting calcium and phosphorus in the water to be treated to form a compound containing phosphorus and calcium, and coagulating and precipitating this compound together with the residue of steel slag after elution of calcium
  • the present inventors have found that solids containing phosphorus at a high concentration can be efficiently recovered.
  • steel slag containing phosphorus as slag, phosphorus in the steel slag is also recovered as a solid.
  • the solid material obtained by coagulation sedimentation is very cohesive and sedimentable and can be separated into solid and liquid by stationary separation. In the present invention, it is not necessary to add a flocculant when the solid is settled. In addition, solid-liquid separation can be easily performed by existing techniques such as centrifugation and membrane filtration. Further, since the recovered solid matter contains a large amount of phosphorus, it can be used as a fertilizer as it is or as a fertilizer raw material.
  • the present invention is as follows.
  • a calcium elution reaction apparatus that mixes an acid and steel slag and prepares a slag slurry from which calcium in the steel slag is eluted;
  • a steel slag supply device for supplying the steel slag to the calcium elution reaction device;
  • An acid supply device for supplying the acid to the calcium elution reaction device;
  • a phosphorus recovery reaction device that mixes the slag slurry and water to be treated containing phosphorus, reacts calcium in the slag slurry with phosphorus in the water to be treated, and obtains a solid matter containing phosphorus and calcium;
  • a treated water supply device for supplying the treated water to the phosphorus recovery reactor;
  • a dehydrator for dehydrating the solid matter produced in the phosphorus recovery reactor after supplying the water to be treated;
  • a treated water discharge device for sending the supernatant water in the phosphorus recovery reactor after supplying the treated water to the outside of the system;
  • [4] A step of stirring and mixing an acid with steel slag to obtain a slag slurry while eluting calcium in the steel slag; Stirring and mixing the water to be treated containing phosphorus in the slag slurry, and allowing to stand, thereby forming a compound containing phosphorus and calcium, and coagulating and precipitating the compound as a solid together with the steel slag residue; A step of recovering the solid matter settled, and a method of recovering phosphorus in the water to be treated. [5] The method for recovering phosphorus in the water to be treated according to [4], in which the precipitated solid matter is dried.
  • phosphorus can be efficiently recovered from water to be treated containing phosphorus. That is, the phosphorus contained in the water to be treated is coagulated and settled together with the residue of the steel slag after the elution of calcium by the acid and recovered as a solid matter, so that the phosphorus can be efficiently recovered.
  • the solids Phosphorus is contained in a high concentration therein, and such a solid can be suitably used as a fertilizer, a fertilizer raw material, or a yellow phosphorus raw material.
  • steel slag discharged from steelworks can be reused as fertilizer.
  • phosphorus can be efficiently recovered from steelworks and sewage, which are the two major sources of phosphorus.
  • the block flow figure showing the phosphorus recovery system which is an embodiment of the present invention.
  • the schematic diagram which shows an example of the phosphorus collection
  • the graph which shows the relationship between a steel slag residue recovery rate and phosphorus sedimentation rate.
  • the graph which shows the relationship between the amount of hydrochloric acid, the amount of phosphorus collection
  • the graph which shows the relationship between the calcium elution reaction time in a steel slag, and a calcium elution rate.
  • the graph which shows the relationship between the particle size of steel slag, a phosphorus removal rate, a phosphorus sedimentation rate, a phosphorus recovery rate, a soluble phosphorus content rate, and the phosphorus concentration of the slag slurry in a supernatant liquid.
  • the graph which shows the relationship between the molar ratio (Ca / P) of the calcium eluted from steel slag, and the phosphorus in to-be-processed water, a phosphorus removal rate, and a soluble phosphorus content rate.
  • recovery reaction time and phosphorus removal rate The graph which shows the relationship between pH at the time of phosphorus collection
  • FIG. The graph which shows the relationship between phosphorus removal rate and stirring reaction time about Example A and Comparative Example B.
  • a calcium elution reaction apparatus 101 is provided with a calcium elution reaction apparatus 101, a phosphorus recovery reaction apparatus 102, a solid-liquid separation apparatus 103, a dehydration apparatus 104, and a drying apparatus 105.
  • the calcium elution reaction apparatus 101 forms slag slurry by mixing steel slag and acid.
  • the formed slag slurry is sent to the phosphorus recovery reactor 102.
  • the phosphorus recovery reactor 102 forms a compound containing phosphorus and calcium by mixing the slag slurry supplied from the calcium elution reactor 101 and the water to be treated supplied from the outside. This compound aggregates with the residue of steel slag to form a solid.
  • the mixture containing the solid is sent to the solid-liquid separator 103.
  • the solid-liquid separator 103 accepts the mixture obtained in the phosphorus recovery reactor 102 and agglomerates and settles the solid in the mixture.
  • the compound containing phosphorus and calcium and the slurry residue after elution of calcium are agglomerated and precipitated to form a solid, whereby solid-liquid separation is performed.
  • the coagulated and settled solid matter is sent to the dehydrator 104, and the water after separating the solid matter is discharged as phosphorus removal water.
  • the solid matter separated from the solid and liquid is further dehydrated.
  • the phosphorus is finally recovered as a solid containing a high concentration of phosphorus.
  • a part of the dehydrated solid is used as it is for the fertilizer, and another part is sent to the drying device 105. Further, the water that has been dehydrated and separated is discharged as phosphorus-removed water.
  • the solid matter dehydrated in the dehydrating device 104 is further dried.
  • the dried solid becomes a fertilizer or a fertilizer raw material containing a high concentration of phosphorus.
  • the system for recovering phosphorus in the water to be treated according to the present embodiment elutes the calcium content in the steel slag supply device 3, the acid supply device 4, and the steel slag.
  • a calcium elution reaction apparatus 1 (calcium elution reaction apparatus 101 in FIG. 1), a phosphorus recovery reaction apparatus 2 (phosphorus recovery reaction apparatus 102 and solid-liquid separation apparatus 103 in FIG. 1) for recovering phosphorus in the water to be treated, phosphorus
  • a pH adjusting device 9 for adjusting the pH in the recovery reaction device 2
  • a dehydration device 6 dehydration device 104 in FIG. 1 for reducing the water content of the solids coagulated and settled in the phosphorus recovery reaction device 2
  • a drying device. 8 drying device 105 in FIG. 1) and treated water discharging device 7 after removing phosphorus.
  • the calcium elution reaction apparatus 1 is equipped with a stirring and mixing apparatus (not shown).
  • the calcium elution reaction apparatus 1 is connected to a steel slag storage tank 2a through a slag supply line L1, and is connected to an acid storage tank 4a through an acid supply line L2.
  • the calcium elution reaction apparatus 1 is connected to the phosphorus recovery reaction apparatus 2 via a slag slurry line L3.
  • steel slag S1 is charged from the steel slag storage tank 2a, and acid A1 is charged from the acid storage tank 4a, and these steel slag S1 and acid A1 are stirred and mixed for a predetermined time.
  • This slag slurry SS which eluted calcium in steel slag S1 is obtained.
  • This slag slurry SS contains an acid solution containing calcium eluted from the steel slag S1 and a steel slag residue, and is supplied to the phosphorus recovery reactor 2 by the slag slurry line L3.
  • the phosphorus recovery reaction apparatus 2 is connected to a pH adjusting device 9 via a caustic soda supply line L5, and is connected to a treated water supply device 5 via a treated water supply line L4. Moreover, the phosphorus collection
  • recovery reaction apparatus 2 is connected to the dehydration apparatus 6 via the coagulation sediment line L6, and is connected to the treated water discharge apparatus 7 via the treated water line L7. Further, the phosphorus recovery reaction apparatus 2 is provided with a stirring and mixing apparatus (not shown). To-be-treated water W1 is fed from the treated water tank 5a to the phosphorus recovery reactor 2, slag slurry SS is fed from the calcium elution reactor 1, and caustic soda A2 is further fed from the caustic soda storage tank 9a.
  • the steel slag supply device 3 includes a steel slag storage tank 2a, and a steel slag supply line L1 that connects the steel slag storage tank 2a and the calcium elution reactor 1.
  • the steel slag supply device 3 can supply the steel slag S1 stored in the steel slag storage tank 2a to the calcium elution reaction device 1.
  • the acid supply device 4 includes an acid storage tank 4a and an acid supply line L2 for supplying the acid A1 from the acid storage tank 4a to the calcium elution reaction apparatus 1.
  • the acid supply device 4 can supply the acid A1 to the calcium elution reaction device 1 via the acid supply line L2.
  • the treated water supply apparatus 5 includes a treated water tank 5a and a treated water supply line L4 that connects the treated water tank 5a and the phosphorus recovery reactor 2.
  • the treated water supply device 5 can supply the treated water W1 stored in the treated water tank 5a to the phosphorus recovery reactor 2.
  • the pH adjusting device 9 includes a caustic soda storage tank 9a, and a caustic soda supply line L5 connecting the caustic soda storage tank 9a and the phosphorus recovery reactor 2.
  • the pH adjusting device 9 can supply the caustic soda A2 stored in the caustic soda storage tank 9a to the phosphorus recovery reactor 2.
  • the treated water discharge device 7 includes a treated water line L7 that receives a dephosphorized supernatant W2 that is a supernatant after the solids S2 is coagulated and separated in the phosphorus recovery reaction device 2, and dehydrated water from the dehydrator 6. It consists of a dewatered water line L8 for receiving W3, a treated water line L7, and a treated water tank 7a connected to the tip of the dewatered water line L8.
  • the dehydrating device 6 is a device that receives the solid matter S2 that has been coagulated and separated in the phosphorus recovery reaction device 2, and dehydrates the solid matter S2.
  • the dehydrator 6 is connected to a dewatered water line L8 for sending dehydrated water W3 dehydrated from the solid S2 to the treated water tank 7a and a dehydrated line L9 for discharging the dehydrated S3 to the outside.
  • the dehydrated product S3 may be used as a fertilizer as it is, or may be further dried and used as a fertilizer or a fertilizer raw material. When the dehydrated product S3 is further dried, the dehydrated product S3 is fed into the drying device 8 from the middle of the dehydrated product line L9.
  • the phosphorus recovery method of the present embodiment shown below is an example of batch processing, but the phosphorus recovery method of the present invention is not limited to batch processing, while continuously flowing water to be treated and slag slurry. Of course, it may be processed.
  • steel slag S1, treated water W1, and acid A1 used in the phosphorus recovery method of the present embodiment will be described.
  • the steel slag S1 is stored in the steel slag storage tank 2a of the phosphorus recovery system shown in FIG.
  • both blast furnace slag and steelmaking slag can be used as the steel slag S1.
  • blast furnace slag contains a relatively high concentration of calcium.
  • a blast furnace slag containing a relatively large amount of calcium is suitable as the steel slag of this embodiment.
  • Steelmaking slag includes hot metal pretreatment slag generated by hot metal desulfurization and dephosphorization, converter slag generated by decarburization refining of the converter, and casting slag generated by secondary refining.
  • the steelmaking slag contains a relatively high concentration of calcium.
  • the average particle diameter of the steel slag S1 is preferably 0.3 mm or less, more preferably 0.2 mm or less, and further preferably 0.15 mm or less.
  • an optimal value may be determined in consideration of the cost.
  • the particle size of steel slag should be limited to an average particle size that allows smooth solid-liquid separation. . For example, 0.01 mm or more is preferable.
  • the calcium content of the steel slag S1 before addition of hydrochloric acid is preferably in the range of 15 to 55% by mass, and more preferably in the range of 25 to 55% by mass. If the calcium content in the steel slag S1 is too low, the phosphorus recovery rate decreases, which is not preferable. On the other hand, if the calcium content is too high, the amount of iron slag S1 residue after elution of calcium decreases. In addition, when the quantity of the residue of steel slag S1 decreases, the steel slag residue recovery rate will fall and the phosphorus sedimentation rate will fall. Moreover, the phosphorus sedimentation rate also decreases when the steel slag residue recovery rate is large.
  • the steel slag residue recovery rate after addition of hydrochloric acid is preferably 35 to 65%, more preferably 40 to 60%, and even more preferably 45 to 55%.
  • Steel slag that provides such a residue recovery rate may be selected.
  • molten slag may be used instead of steel slag. Molten slag is slag obtained after processing combustible waste etc. with a gasification melting furnace.
  • the water to be treated W1 applicable to the phosphorus recovery method of the present embodiment is not particularly limited as long as it contains phosphorus, and the concentration of phosphorus is not particularly limited.
  • the sewage which flows into a terminal treatment plant from a public sewer is mentioned, for example.
  • Examples of such sewage include urban drainage mainly discharged from urban areas.
  • Urban sewage includes domestic wastewater discharged from ordinary households and wastewater discharged from stores and other facilities.
  • such sewage may include industrial wastewater discharged from metal refining factories such as steelworks and other factories.
  • domestic wastewater and industrial wastewater may contain a relatively large amount of phosphorus.
  • the sewage treated at the final treatment plant of the public sewer can be suitably used as the treated water W1 in the phosphorus collection method of the present embodiment, and the phosphorus collection method of the present invention can be used at the final treatment plant. You may apply when collect
  • the water to be treated of the present invention is not limited to domestic wastewater and industrial wastewater, and any water containing phosphorus can be applied.
  • the aqueous solution of hydrochloric acid is preferable.
  • the concentration of the aqueous hydrochloric acid solution is preferably 0.5 to 2.0N, more preferably 0.7 to 1.6N, and 0.9 to 1.2N because it is easy to handle and requires a certain level of concentration. Further preferred.
  • sulfuric acid as an acid other than hydrochloric acid, sulfuric acid is not preferable because it reacts with calcium eluted from steel slag to form gypsum (CaSO 4 ).
  • nitric acid contains nitrogen, it becomes unpleasant because it causes eutrophication when the treated water W4 after phosphorus recovery is discharged into public waters.
  • the phosphorus recovery method of the present embodiment by adding acid A1 to steel slag S1 to obtain slag slurry SS, the water to be treated W1 containing phosphorus and slag slurry SS are stirred and mixed and allowed to stand,
  • the method includes forming a compound containing phosphorus and calcium, coagulating and sedimenting the formed compound together with the residue of the steel slag S1, and dehydrating the settled solid matter S2. Further, in the phosphorus recovery system of the present embodiment, the dehydrated product S3 may be further dried.
  • each step will be described.
  • acid A1 is added to steel slag S1 to obtain slag slurry SS.
  • the steel slag S1 and the acid A1 are supplied from the steel slag supply device 3 and the acid supply device 4 to the calcium elution reaction device 1, and the steel slag S1 and the acid A1 are stirred in the calcium elution reaction device 1.
  • calcium contained in the steel slag S1 is eluted by hydrochloric acid.
  • the steel slag S1 and the acid A1 are preferably stirred and mixed for 1 minute or more, more preferably 2 minutes or more, and even more preferably 5 minutes or more.
  • the upper limit is preferably 60 minutes or less, more preferably 30 minutes or less, still more preferably 20 minutes or less, and most preferably 10 minutes or less.
  • the mixing ratio of the steel slag S1 and the acid A1 depends on the type of the steel slag, but, for example, about 10 L of 0.5 to 2 mol / L hydrochloric acid may be added to 1 kg of the steel slag.
  • the amount of calcium elution is such that when the treated water W1 and the slag slurry SS are mixed, the molar ratio (Ca / P) between the amount of calcium in the steel slag and the amount of phosphorus in the treated water is in the range of 2-4. It may be adjusted so that More preferably, the Ca / P ratio is in the range of 2.5 to 3.5. When the Ca / P ratio is less than 2, the phosphorus removal rate decreases.
  • the soluble phosphorus content in the finally obtained dried product S4 decreases.
  • the term “soluble” refers to the property of being dissolved in a 2% aqueous citric acid solution.
  • the term “soluble phosphorus” refers to phosphorus that is dissolved in a 2% aqueous citric acid solution.
  • the amount of hydrochloric acid A1 added to the steel slag S1 is an important factor.
  • the molar amount of hydrochloric acid A1 per 1 kg of the steel slag S1 is preferably in the range of 5 to 20 mol, more preferably 7 to 15 mol. 8 to 12 mol is more preferable.
  • the water to be treated W1 containing phosphorus and the slag slurry SS are stirred and mixed, and then allowed to stand.
  • the water to be treated W1 is supplied from the water to be treated supply device 5 to the phosphorus recovery reactor 2, and after stirring and mixing with the slag slurry SS, it is allowed to stand.
  • the mixing ratio of the calcium amount in the steel slag and the phosphorus amount in the treated water W1 may be adjusted so that the Ca / P ratio is in the range of 2-4.
  • the adjustment of the Ca / P ratio may be controlled by the mixing ratio of the slag slurry SS and the water to be treated W1, the amount of hydrochloric acid added when forming the slag slurry SS, and the like.
  • the calcium concentration in the slag slurry SS and the phosphorus concentration in the water to be treated W1 are preferably measured in advance.
  • the stirring time of the water to be treated W1 and the slag slurry SS is preferably 1 minute or longer, and 5 minutes or longer. Is more preferable.
  • the upper limit is preferably 60 minutes or less, more preferably 30 minutes or less, and even more preferably 20 minutes or less. If the stirring time is too short, the reaction between calcium and phosphorus may not proceed sufficiently. Moreover, when stirring time is too long, the whole apparatus will become large and an installation cost will become high. Therefore, the stirring time is preferably set to an appropriate time.
  • phosphorus contained in the water to be treated W1 reacts with calcium in the slag slurry SS eluted from the steel slag to contain phosphorus and calcium.
  • a compound forms.
  • the following compounds can be considered as the compound to be formed.
  • Part of the phosphorus contained in the water to be treated W1 exists as hydrogen phosphate ions (HPO 4 2 ⁇ ), and the hydrogen phosphate ions and calcium ions react to form calcium hydrogen phosphate (CaHPO 4 ). I guess it will be. At this time, it is considered that calcium is further bound to calcium hydrogen phosphate to form Ca 2 HPO 4 2+ (triplet).
  • the pH of the water W1 to be treated after mixing the slag slurry SS is preferably adjusted to a range of 7.7 to 9.0.
  • the range of 0.0 to 8.7 is more preferable, and the range of 8.2 to 8.5 is still more preferable.
  • the pH is less than 7.7, more dihydrogen phosphate ions are present than hydrogen phosphate ions. Since the solubility product of dihydrogen phosphate ion and calcium ion is larger than the solubility product of hydrogen phosphate ion and calcium ion, when the pH is less than 7.7, the precipitated amount of calcium hydrogen phosphate decreases and the phosphorus Recovery may be reduced.
  • the pH in the water to be treated W1 may be adjusted by supplying the caustic soda A2 from the pH adjusting device 9 shown in FIG. 2 through the caustic soda supply line L5.
  • these compounds are agglomerated and precipitated using the residue of the steel slag S1.
  • the residue of the steel slag S1 is negatively charged as a whole because calcium is eluted as a cation.
  • calcium hydrogen phosphate and Ca 2 HPO 4 2+ have a low apparent specific gravity, so that they float in the water to be treated, and Ca 2 HPO 4 2+ is positively charged.
  • the negatively charged residue of the steel slag S1 and the floating calcium hydrogen phosphate and Ca 2 HPO 4 2+ coexist, thereby generating an electrostatic interaction between them, and the residue of the steel slag S1.
  • calcium hydrogen phosphate and compounds such as Ca 2 HPO 4 2+ aggregate and finally settle as solid S2. Since it is considered that coagulation sedimentation proceeds by the above mechanism, it is not necessary to add an aggregating agent when the solid matter is settled.
  • the sedimentation time depends on the size of the phosphorus recovery reactor 2, it is preferably 7 minutes or longer, more preferably 10 minutes or longer, and even more preferably 30 minutes or longer.
  • the upper limit is preferably 60 minutes or less, more preferably 50 minutes or less, and even more preferably 40 minutes or less.
  • a dephosphorization supernatant W2 that is a supernatant after sedimentation of the solid S2 in the phosphorus recovery reactor 2 is sent to the treated water tank 7a through the treated water drain line L7. Thereafter, the dephosphorization supernatant W2 is dephosphorized together with the dehydrated water W3 from the dehydrator 6 and discharged from the treated water tank 7a to the public water area as treated water W4 or sent to another water treatment facility. .
  • the solid matter S2 that has aggregated and settled at the bottom of the phosphorus recovery reactor 2 is sent to the dehydrator 6 via the aggregated sediment line L6.
  • the solid matter S2 is dehydrated in the dehydrating device 6, and the dewatered water W3 separated at that time is sent to the treated water discharging device 7 via the dehydrated water line L8.
  • the dehydrated product S3 after dehydration is carried out as a fertilizer or a fertilizer raw material by the dehydrated product line L9. Or it is sent to the drying apparatus 8 and is carried out as a fertilizer or a fertilizer raw material after drying.
  • the dehydrated product S3 transported from the dehydrating device 6 via the dehydrated product line L9 is a solute-soluble phosphorus of 15% by mass or more, which is a standard value for the content of solute-soluble phosphorus, for directing the recovered material for fertilizer use. Contained and used as fertilizer as it is.
  • the dried material S4 carried out from the drying apparatus 8 contains 15% by mass or more of solute-soluble phosphorus, which is a standard value of the solute-soluble phosphorus content, in order to direct the recovered material for fertilizer use as it is. Used as a fertilizer raw material, or as a yellow phosphorus raw material.
  • the phosphorus recovery method of the present embodiment described above is an example of recovering phosphorus by batch processing.
  • the phosphorus recovery of the present embodiment may be performed by continuous processing. Specifically, the water to be treated W1 containing phosphorus and the slag slurry SS are continuously charged into the phosphorus recovery reactor 2.
  • calcium is eluted from steel slag and reacted with hydrogen phosphate ions in the water to be treated. Since calcium hydrogen phosphate is agglomerated and precipitated by using calcium oxyhydrogen and the residue after elution of calcium from steel slag, phosphorus in water to be treated W1 can be efficiently recovered with high yield.
  • calcium hydrogen phosphate can be coagulated and settled in a short time, and the recovery efficiency of phosphorus can be increased. Further, it is not necessary to separately add a flocculant for aggregating calcium hydrogen phosphate, and there is no need for equipment for adding the flocculant. Furthermore, calcium hydrogen phosphate can be generated and aggregated at the same time, so that phosphorus can be recovered in a short time and only one reaction tank is required to recover the phosphorus necessary for recovering phosphorus.
  • the phosphorus recovery reactor 2 can be downsized.
  • the formation of slag slurry and the coagulation sedimentation separation of solids can be performed in a short time, and the treatment efficiency of water to be treated and steel slag can be greatly increased.
  • some steel slag contains a lot of phosphorus discharged from steelworks.
  • the phosphorus in the steel slag and the phosphorus in the water to be treated are simultaneously recovered with one apparatus, and the phosphorus content in the aggregated sediment can be increased, and the aggregated sediment is useful. Can be reused as a valuable phosphorus resource.
  • sewage treated at a terminal treatment plant sewage treatment plant
  • phosphorus in sewage that is a cause of eutrophication of the sea or lake can be recovered.
  • the volume of the solids can be reduced, and handling of the aggregated and settled solids is facilitated.
  • the collected solid substance contains phosphorus in a high concentration, it can be used as a fertilizer, a fertilizer raw material, a yellow phosphorus raw material, or the like as a phosphorus resource. Moreover, according to this embodiment, since the whole amount of steel slag used for the recovery of phosphorus can be used as fertilizer or fertilizer raw material, steel slag can be effectively used.
  • the mixture was allowed to stand for 5 minutes to coagulate and settle the solid matter.
  • the coagulated and settled solid was centrifuged and collected after drying at 100 ° C., and the slag residue weight, the amount of the supernatant and the total phosphorus concentration in the supernatant were measured.
  • the total phosphorus concentration in the supernatant was measured by the molybdenum blue method.
  • FIG. 3 shows the relationship between the steel slag residue recovery rate obtained by the following equation (1) and the phosphorus sedimentation rate obtained by the following equation (2).
  • the phosphorus sedimentation rate becomes maximum when the steel slag residue recovery rate is around 50%, and the phosphorus sedimentation rate is 70% or more when the steel slag residue recovery rate is in the range of 35 to 65%.
  • the steel slag residue recovery rate is small, the phosphorus sedimentation rate is lowered.
  • the phosphorus sedimentation rate also decreases when the steel slag residue recovery rate is large.
  • Phosphorus sedimentation rate (phosphorus concentration in model liquid ⁇ model liquid volume ⁇ total phosphorus concentration in supernatant ⁇ supernatant liquid volume) / (phosphorus concentration in model liquid ⁇ model liquid volume) ⁇ 100 (2)
  • Total phosphorus concentration in the supernatant in the formula (2) is as follows.
  • Total phosphorus concentration in supernatant (water-soluble phosphorus amount + phosphorus amount in slag slurry) / supernatant liquid amount
  • the amount of ku-soluble phosphorus was determined by measuring the mass of the extract extracted from the solid with a 2% citric acid solution and calculating the amount of ku-soluble phosphorus contained in the extract.
  • the calculated amount of soluble phosphorus was used in the following formulas (4) and (5) to obtain the soluble phosphorus content and the soluble phosphorus content in the recovered phosphorus. In the following experimental examples, measurement and calculation were performed in the same manner as described above.
  • FIG. 4 shows the relationship of the content of soluble phosphorus. According to FIG. 4, the amount of phosphorus recovered per steel slag and the soluble phosphorus content are maximum when the value of the amount of hydrochloric acid per unit weight of steel slag is around 10 mol / kg.
  • the amount of hydrochloric acid per unit weight of steel slag is less than 10 mol / kg, the recovered amount of phosphorus, the content of soluble phosphorus in the recovered phosphorus, and the content of soluble phosphorus will decrease. Moreover, when the amount of hydrochloric acid per steel slag unit weight becomes larger than 10 mol / L, it turns out that the collection
  • the content of the soluble phosphorus in the recovered phosphorus takes a value of almost 100% within the range of the amount of hydrochloric acid per unit weight of the steel slag of 10 to 25 mol / L, and the content of the soluble phosphorus is 5 to 40 mol / L. In the range of 15% or more.
  • the phosphorus recovery amount in the formula (3) is the phosphorus amount in the recovered water-containing solid material after settling.
  • Quantitative phosphorus content in recovered phosphorus amount of soluble phosphorus / total amount of recovered phosphorus x 100 ... (5)
  • FIG. 5 shows the relationship between the concentration of the hydrochloric acid aqueous solution, the amount of phosphorus recovered per steel slag determined by the equation (3), and the content of soluble phosphorus determined by the equation (4).
  • the phosphorus recovery amount and the soluble phosphorus content are maximized when the hydrochloric acid aqueous solution concentration is around 1N.
  • the hydrochloric acid aqueous solution concentration is higher than 1N, the phosphorus recovery amount and the soluble phosphorus content gradually decrease, whereas when the hydrochloric acid aqueous solution concentration is lower than 1N, the phosphorus recovered amount and the soluble phosphorus content rapidly increase. It is falling.
  • the optimum value is determined by comprehensively considering the value of the collected phosphorus, the procurement cost of slag and hydrochloric acid, etc.
  • the relationship between calcium elution reaction time and calcium elution rate is shown in FIG.
  • Calcium elution rapidly proceeds with the optimum value (10 mol / kg) of the amount of hydrochloric acid per unit weight of slag shown in Experimental Example 2 and the optimal value (1N) of the aqueous hydrochloric acid concentration shown in Experimental Example 3;
  • the calcium elution rate is almost saturated in about 2 minutes, and is completely saturated in 5 minutes. Therefore, the mixing time of the steel slag and hydrochloric acid depends on the mixing ratio and hydrochloric acid concentration, but is preferably 1 minute or longer, more preferably 2 minutes or longer, and 5 minutes or longer is sufficient.
  • FIG. 7 shows the relationship between the soluble phosphorus content and the phosphorus concentration in the supernatant slag slurry.
  • the phosphorus removal rate does not depend on the slag particle size, but when the slag particle size is smaller than 0.3 mm, the phosphorus sedimentation rate and the phosphorus recovery rate increase rapidly, and the phosphorus concentration in the supernatant liquid slag slurry is It drops rapidly (ie, it tends to settle).
  • the phosphorus sedimentation rate and the phosphorus recovery rate are relatively slowly lowered, and the phosphorus concentration in the supernatant liquid slag slurry is gradually increased.
  • the soluble phosphorus content in solids decreases as the slag particle size decreases, but at any particle size, the soluble phosphorus content is 15% by mass, which is the standard value when used as a fertilizer as it is. The above numerical values are shown. Therefore, it is found that it is preferable to finely pulverize the slag particle size to 0.3 mm or less in order to allow the removed phosphorus to settle and recover efficiently.
  • Phosphorus removal rate (Phosphorus concentration in model solution ⁇ Water-soluble phosphorus concentration in supernatant) / Phosphorus concentration in model solution ⁇ 100 (6)
  • Phosphorus recovery rate total phosphorus amount in hydrous solids after settling / (phosphorus concentration in model liquid x model liquid amount + phosphorus amount in input slag) x 100 ... (7)
  • FIG. 8 shows the relationship between the Ca / P ratio, the phosphorus removal rate determined by the equation (6), and the soluble phosphorus content determined by the equation (4).
  • the Ca / P ratio is preferably in the range of 2-4.
  • the soluble phosphorus content is required to be 15% by mass or more and that the Ca / P ratio is preferably about 3 in order to secure the phosphorus removal rate.
  • FIG. 9 shows the relationship between the phosphorus recovery reaction time and the phosphorus removal rate determined by the above equation (6). It can be seen that phosphorus in the model solution reacts quickly with the slag slurry, the phosphorus removal rate reaches 85% or more after 5 minutes reaction, and the phosphorus removal rate reaches the maximum value after 20 minutes reaction. Therefore, it can be seen that the stirring time is preferably 5 minutes or more.
  • FIG. 10 shows the relationship between the pH and the phosphorus recovery rate determined by the equation (7). There is a maximum value of phosphorus recovery near pH 8.4. It can be seen that when the pH is in the range of 7.7 to 9.0, the phosphorus recovery rate is greater than 70%, and in the range of 8.0 to 8.7, the phosphorus recovery rate is greater than 80%.
  • Example A 5 % of a 1.3 mol / L hydrochloric acid aqueous solution was added to 0.5 g of steel slag having a mass percentage of 4% P 2 O 5 , a calcium content of 40%, and a particle size of 0.125 mm.
  • a slag slurry from which calcium in the steel slag was eluted was obtained.
  • the slag slurry contained steel slag residues.
  • a model solution containing KH 2 PO 4 at a concentration of 392 mg / L, NH 4 Cl at a concentration of 1.86 g / L, and NaHCO 3 at a concentration of 3.36 g / L was prepared.
  • the entire amount of the slag slurry prepared above is added, and immediately after the addition, the pH is adjusted to 8.5 using a 1 mol / L NaOH aqueous solution, and 0 minutes, 5 minutes, 20 minutes and 60 minutes.
  • 2 ml of the liquid was sampled and filtered through a syringe filter having a pore size of 0.22 ⁇ m.
  • Phosphorus removal rate (%) ⁇ (PO 4 ⁇ P) 0 ⁇ (PO 4 ⁇ P) x ⁇ / (PO 4 ⁇ P) 0 ⁇ 100 (8)
  • (PO 4 -P) 0 and (PO 4 -P) x in the formula (8) are as follows.
  • (PO 4 -P) 0 Concentration of water-soluble phosphorus in the filtrate with stirring 0 minutes
  • (PO 4 -P) x Concentration of water-soluble phosphorus in the filtrate with stirring time x minutes (where x is 5 minutes, 20 Min, 60 min)
  • Phosphorus sedimentation rate (%) phosphorus amount in 100 ml of residual liquid / phosphorus amount in model solution ⁇ 100 (9)
  • Example B In the same manner as in Example A, a slag slurry from which calcium in the steel slag was eluted was obtained, and the residue of the steel slag was removed from the slag slurry to obtain a supernatant.
  • a model solution was prepared in the same manner as in Example A. To the 500 ml of this model solution, the supernatant of the slurry prepared previously is added, and immediately after the addition, the pH is adjusted to 8.5 using a 1 mol / L NaOH aqueous solution, and 0 minutes, 5 minutes, 20 minutes and 60 minutes. Stir at the level of. Thereafter, in the same manner as in Example A, the phosphorus concentration, phosphorus removal rate, and phosphorus precipitation rate were determined. The results are shown in Tables 1 and 2 and FIGS.
  • Example A has a higher phosphorus removal rate than Comparative Example B. This is because in Example A, the residue of iron and steel slag was contained, so that the calcium phosphate coagulation sedimentation was performed efficiently. Further, as shown in Table 2 and FIG. 13, in Comparative Example B, the phosphorus precipitation rate was about 39%, whereas in Example A, the phosphorus precipitation rate reached 69%. Thus, in Example A, it can be seen that phosphorus can be coagulated and settled in a relatively short time.
  • the pH was adjusted to 8.5, and the mixture was stirred and mixed for 60 minutes, and then allowed to stand for 5 minutes to coagulate and sediment the solid matter.
  • the water-soluble phosphorus concentration in the supernatant and the amount of soluble phosphorus in the collected solid were measured.
  • a similar experiment was also conducted using actual sewage as the treated water. Sewage with phosphorus concentrations of 109 mg / L and 291 mg / L was used.
  • FIG. 15 shows the relationship between the phosphorus concentration, the phosphorus removal rate determined by the equation (6), and the soluble phosphorus content determined by the equation (4).
  • the phosphorus concentration is 50 to 600 mg / L
  • the soluble phosphorus content is 15% by mass or more. Since the standard value of the content of soluble phosphorus when using the coagulated and settled solid as it is as a fertilizer is 15% by mass or more, it is understood that any phosphorus concentration used in this example is effective.
  • both the phosphorus removal rate and the soluble phosphorus content are close to the results of the model solution, so the treated water is effective for a wide range of sewage in the sewage treatment plant. I believe that.
  • Example 11 In Experimental Examples 1 to 10, Example A and Comparative Example B, steel slag containing 4% by mass of P 2 O 5 and having a calcium content of 40% is used as the steel slag. Then, in order to investigate the relationship between phosphorus removal rate, phosphorus sedimentation rate, and soluble phosphorus content using steel slag having different chemical components, Experimental Example 11 shown below was performed. The experiment was also conducted in the waste melting furnace slag.
  • the steel slag used in Experimental Example 11 is as follows. These are typical steel slag by-produced in steelworks. Moreover, molten slag is slag obtained after processing combustible waste etc. with a gasification melting furnace.
  • Steel slag A containing 0% P 2 O 5 by mass%, a calcium content of 42%, a basicity of 1.8, and a particle size of 0.125 mm.
  • Steel slag B containing 0% P 2 O 5 by mass%, a calcium content of 28%, a basicity of 5.6, and a particle size of 0.125 mm.
  • Steel slag C containing 4% P 2 O 5 by mass%, having a calcium content of 40%, a basicity of 2.0, and a particle size of 0.125 mm.
  • Steel slag D containing 2% P 2 O 5 by mass%, having a calcium content of 50%, a basicity of 3.8, and a particle size of 0.125 mm.
  • Steel slag E containing 0% P 2 O 5 by mass%, a calcium content of 33%, a basicity of 6.6, and a particle size of 0.125 mm.
  • a molten slag containing 0% P 2 O 5 by mass%, a calcium content of 37%, a basicity of 1.2, and a particle size of 0.125 mm.
  • the phosphorus removal rate is 85% or more, which indicates that any steel slag by-produced in the steelworks can be applied to this system.
  • this system is considered effective for phosphorus removal rate.
  • the content of soluble phosphorus satisfies 15% by mass or more, the recovered product can be directly used for fertilizer, and those having a soluble phosphorus content of less than 15% by mass can also be used in blended fertilizers and the like. . That is, when the collected material is used as it is as a fertilizer, it may be determined by comprehensively considering the application location, the value of collected phosphorus, the procurement cost of steel slag and hydrochloric acid, and the like.
  • phosphorus can be efficiently recovered from water to be treated containing phosphorus. That is, the phosphorus contained in the water to be treated is coagulated and settled together with the residue of the steel slag after the elution of calcium by the acid and recovered as a solid matter, so that the phosphorus can be efficiently recovered.
  • the phosphorus in steel to be treated and phosphorus in steel slag can be recovered at the same time, since phosphorus is contained in a high concentration, fertilizer, fertilizer raw material or yellow phosphorus It can be suitably used as a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Fertilizers (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Adopted is a system for recovering phosphorus from raw water to be treated, the system being equipped with: a calcium dissolution reactor (1); a steel-slag feeder (3) for supplying steel slag to the calcium dissolution reactor (1); an acid feeder (4) for supplying an acid to the calcium dissolution reactor (1); a phosphorus recovery reactor (2) for recovering phosphorus from phosphorus-containing raw water to be treated, by the action of a steel-slag slurry from the calcium dissolution reactor (1); a raw-water feeder (5) for supplying the phosphorus-containing raw water to the phosphorus recovery reactor (1); a dehydrator (6) for dehydrating solid matter which has flocculated and sedimented inside the phosphorus recovery reactor (1) upon standing after the supply of the raw water and subsequent stirring for mixing; a treated-water discharge device (7) for sending outside a supernatant resulting from the reaction inside the phosphorus recovery reactor (1); and a dryer (8) for drying dehydrated matter having been dehydrated.

Description

被処理水中のリンの回収システム、被処理水中のリンの回収方法、肥料及び肥料原料並びに黄リン原料Recovery system of phosphorus in treated water, recovery method of phosphorus in treated water, fertilizer, fertilizer raw material and yellow phosphorus raw material
 本発明は、被処理水中のリンの回収システム、被処理水中のリンの回収方法、肥料及び肥料原料並びに黄リン原料に関する。
 本願は、2015年6月11日に、日本に出願された特願2015-118263号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a system for collecting phosphorus in treated water, a method for collecting phosphorus in treated water, a fertilizer, a fertilizer raw material, and a yellow phosphorus raw material.
This application claims priority on June 11, 2015 based on Japanese Patent Application No. 2015-118263 for which it applied to Japan, and uses the content here.
 リンは、全ての生物にとって欠くことができない元素である。また、植物の三大栄養素の一つであって、農作物の肥料の重要な原料である。最近では、リン資源の枯渇が危惧されており、リン資源の回収が求められている。また、リンは海や湖などでの富栄養化をもたらす原因物質の一つであり、例えば、一般家庭等から排出される生活排水に多く含まれる。また、事業所から排出される産業排水にもリンが含まれる場合がある。このため、これらの排水からリンを効率的に回収することが求められている。 リ ン Phosphorus is an indispensable element for all living organisms. It is one of the three major nutrients of plants and is an important raw material for fertilizers for agricultural crops. Recently, there is a concern about the exhaustion of phosphorus resources, and recovery of phosphorus resources is required. Phosphorus is one of the causative substances that cause eutrophication in the sea, lakes, and the like, and is often contained in, for example, domestic wastewater discharged from ordinary households. Also, industrial wastewater discharged from business establishments may contain phosphorus. For this reason, it is required to efficiently recover phosphorus from these wastewaters.
 リンを含む被処理水からのリンの回収技術として、結晶性ケイ酸カルシウム水和物を種晶としてリンを晶析させるHAP(ヒドロキシアパタイト)晶析法、リンとアンモニアを含む排水からリン酸マグネシウムアンモニウム晶析させるMAP法、水酸化カルシウムや塩化カルシウムを用いた凝集沈殿法がある。しかし、これらの方法は、反応速度や晶析速度や凝集沈降速度が低いこと、各種の薬品を使用した複雑な反応制御が必要なこと、MAP法のような晶析法では配管等でのMAPの析出閉塞等のトラブルが多発する等、様々な課題を抱えている。このため、低コストで簡潔なリン回収方法の技術確立が課題となっている。 As technology for recovering phosphorus from water to be treated containing phosphorus, HAP (hydroxyapatite) crystallization method using crystalline calcium silicate hydrate as a seed crystal, magnesium phosphate from waste water containing phosphorus and ammonia There are a MAP method in which ammonium crystallization is performed, and an aggregation precipitation method using calcium hydroxide or calcium chloride. However, these methods are low in reaction rate, crystallization rate and coagulation sedimentation rate, require complex reaction control using various chemicals, and in crystallization methods such as the MAP method, MAP in pipes, etc. There are various problems such as frequent occurrence of troubles such as precipitation blockage. For this reason, the establishment of a low-cost and simple phosphorus recovery method has been an issue.
 最近では、特許文献1、2、非特許文献1に示すように、非晶質ケイ酸カルシウムをリン吸着剤として用いたリン回収技術が提案されている。しかし、特許文献1、2に記載されたリン吸着剤は、例えば、ケイ酸原料と石灰原料とを水性スラリーとし、水酸化アルカリを添加して水熱反応させて得た物や、ケイ酸ナトリウム水溶液にCa(OH)を加えて生成した非晶質ケイ酸カルシウム水和物と未反応のCa(OH)との凝集体からなる物や、易溶解性シリカ原料中のアルカリ可溶性シリカをNaOHで溶解したシリカ溶解液に、消石灰を加えて水熱合成した非晶質ケイ酸カルシウム水和物とCa(OH)との凝集体を回収してなる物であり、リン吸着剤の調製が煩雑であり、処理コストの低減が進まない状況になっている。また、非特許文献1に記載された非晶質ケイ酸カルシウムについても、その調製が煩雑であり、処理コストの低減が進まない状況になっている。また、これらの技術は、鉄鋼スラグを用いたリン回収技術ではなく、鉄鋼スラグを肥料に再利用する技術でもない。 Recently, as shown in Patent Documents 1 and 2 and Non-Patent Document 1, a phosphorus recovery technique using amorphous calcium silicate as a phosphorus adsorbent has been proposed. However, the phosphorus adsorbents described in Patent Documents 1 and 2 are, for example, a product obtained by making a silicic acid raw material and a lime raw material into an aqueous slurry and adding an alkali hydroxide to cause a hydrothermal reaction, or sodium silicate. An amorphous calcium silicate hydrate formed by adding Ca (OH) 2 to an aqueous solution and an unreacted Ca (OH) 2 aggregate or an alkali-soluble silica in a readily soluble silica raw material Preparation of phosphorous adsorbent, which is a collection of aggregates of amorphous calcium silicate hydrate and Ca (OH) 2 hydrothermally synthesized by adding slaked lime to silica solution dissolved with NaOH However, the process cost is not reduced. Moreover, the preparation of the amorphous calcium silicate described in Non-Patent Document 1 is complicated, and the reduction of the processing cost does not proceed. Moreover, these techniques are not phosphorus recovery techniques using steel slag, nor are techniques for reusing steel slag as fertilizer.
 一方、特許文献3、4に示すように、水中の金属イオンやリンを回収するための資材として、鉄鋼系のスラグが利用されている。しかし、特許文献3に記載されたリンの回収方法は、スラグ表面をアルカリ剤によって活性化させて吸着剤としてから、これら吸着剤を被処理水に混入して金属イオンやリンを吸着させ、その後、吸着したリンを溶出させて回収するという方法であり、工程が極めて煩雑であり、また、金属イオンやリンの回収効率が低い問題がある。 On the other hand, as shown in Patent Documents 3 and 4, steel-based slag is used as a material for recovering metal ions and phosphorus in water. However, the phosphorus recovery method described in Patent Document 3 activates the slag surface with an alkaline agent to make an adsorbent, and then adsorbs the metal ions and phosphorus by mixing these adsorbents into the water to be treated. In this method, the adsorbed phosphorus is eluted and recovered, and the process is extremely complicated, and the recovery efficiency of metal ions and phosphorus is low.
 また、特許文献4には、製鉄所から排出されるスラグに石炭灰等を混合し、更に別のスラグを配合し、更に無機酸を加えてゲル化させ、その後、アルカリを添加して凝集沈殿させ、更に石炭灰等を混合してなる吸着剤が記載されている。しかし、特許文献4に記載された吸着剤は、ゼオライトの代替品として用いることが記載されているに過ぎない。
 更に特許文献5に記載された発明は、鉄鋼スラグ中からのリンの回収方法に関する発明であり、排水中のリンを回収する方法ではない。
In Patent Document 4, coal ash and the like are mixed with slag discharged from a steel mill, further slag is further blended, and further, an inorganic acid is added to cause gelation, and then alkali is added to agglomerate and precipitate. And an adsorbent obtained by further mixing coal ash and the like. However, the adsorbent described in Patent Document 4 is only described as being used as a substitute for zeolite.
Furthermore, the invention described in Patent Document 5 is an invention relating to a method for recovering phosphorus from steel slag, and is not a method for recovering phosphorus in waste water.
 また、鉄鋼スラグからのリンの回収に関しては非特許文献2、3、4、5に記載された技術があるが、エネルギーや薬剤を大量に使用する技術であり実用化に至っていない。また、これらの技術は、排水中のリンを回収する方法ではない。 Also, there is a technique described in Non-Patent Documents 2, 3, 4, and 5 regarding the recovery of phosphorus from steel slag, but it is a technique that uses a large amount of energy and chemicals and has not yet been put into practical use. Moreover, these techniques are not methods for recovering phosphorus in waste water.
特開2013-6733号公報JP 2013-6733 A 特開2013-27865号公報JP 2013-27865 A 特開2002-86139号公報JP 2002-86139 A 特公平4-17088号公報Japanese Examined Patent Publication No. 4-17088 特開2010-270378号公報JP 2010-270378 A
 本発明は上記事情に鑑みてなされたものであり、リンを含む被処理水からリンを効率よく回収することが可能な、被処理水中のリンの回収システム及び被処理水中のリンの回収方法を提供することを課題とする。
 また、本発明は、リンを含む肥料及び肥料原料並びに黄リン原料を提供することを課題とする。
This invention is made | formed in view of the said situation, The collection | recovery system of the phosphorus in to-be-processed water which can collect | recover phosphorus efficiently from the to-be-processed water containing phosphorus, and the collection | recovery method of the phosphorus in to-be-processed water The issue is to provide.
Moreover, this invention makes it a subject to provide the fertilizer and fertilizer raw material which contain phosphorus, and a yellow phosphorus raw material.
 本発明者らが鋭意検討した結果、製鉄所から副生するスラグ(以下「鉄鋼スラグ」という)に着目し、図1に示すリン回収システムを考案した。鉄鋼スラグ中のカルシウムを溶出させ、カルシウムと被処理水中のリンとを反応させてリンとカルシウムを含む化合物を形成させ、この化合物を、カルシウムを溶出後の鉄鋼スラグの残渣とともに凝集沈降させることで、リンが高濃度で含まれる固形物を効率よく回収できることを見出した。スラグとしてリンを含有する鉄鋼スラグを使用することにより、鉄鋼スラグ中のリンも固形物として回収される。凝集沈降させて得られた固形物は凝集性、沈降性が非常によく静置分離により固液分離が可能である。なお、本発明において固形物を沈降させる際には、凝集剤を添加する必要がない。そのほか、遠心分離や膜ろ過等の既存技術でも容易に固液分離可能である。また、回収した固形物はリンを多量に含むことから、そのままで肥料となる、若しくは肥料原料としての利用が可能である。
 本発明は、以下の通りである。
As a result of intensive studies by the present inventors, the phosphorus recovery system shown in FIG. 1 has been devised by paying attention to slag by-produced from an ironworks (hereinafter referred to as “steel slag”). By eluting calcium in steel slag, reacting calcium and phosphorus in the water to be treated to form a compound containing phosphorus and calcium, and coagulating and precipitating this compound together with the residue of steel slag after elution of calcium The present inventors have found that solids containing phosphorus at a high concentration can be efficiently recovered. By using steel slag containing phosphorus as slag, phosphorus in the steel slag is also recovered as a solid. The solid material obtained by coagulation sedimentation is very cohesive and sedimentable and can be separated into solid and liquid by stationary separation. In the present invention, it is not necessary to add a flocculant when the solid is settled. In addition, solid-liquid separation can be easily performed by existing techniques such as centrifugation and membrane filtration. Further, since the recovered solid matter contains a large amount of phosphorus, it can be used as a fertilizer as it is or as a fertilizer raw material.
The present invention is as follows.
[1] 酸と鉄鋼スラグとを混合し、前記鉄鋼スラグ中のカルシウムが溶出したスラグスラリーを調製するカルシウム溶出反応装置と、
 前記カルシウム溶出反応装置に前記鉄鋼スラグを供給する鉄鋼スラグ供給装置と、
 前記カルシウム溶出反応装置に前記酸を供給する酸供給装置と、
 前記スラグスラリーとリンを含む被処理水とを混合し、前記スラグスラリー中のカルシウムと前記被処理水中のリンとを反応させて、リン及びカルシウムを含む固形物を得るリン回収反応装置と、
 前記リン回収反応装置に前記被処理水を供給する被処理水供給装置と、
 前記被処理水供給後に前記リン回収反応装置内において生成した前記固形物を脱水する脱水装置と、
 前記被処理水供給後の前記リン回収反応装置内の上澄み水を系外に送り出す処理水払出し装置と、
 が備えられた被処理水中のリンの回収システム。
[2] 前記脱水装置において脱水された前記固形物を乾燥させる乾燥装置が備えられた[1]に記載の被処理水中のリンの回収システム。
[3] 前記鉄鋼スラグに代えて、溶融スラグを用いる[1]または[2]に記載の被処理水中のリンの回収システム。
[4] 鉄鋼スラグに酸を撹拌混合して、前記鉄鋼スラグ中のカルシウムを溶出させつつスラグスラリーを得る段階と、
 前記スラグスラリーにリンを含む被処理水を撹拌混合してから静置することにより、リンとカルシウムを含む化合物を形成させ、前記化合物を前記鉄鋼スラグの残渣とともに固形物として凝集沈降させる段階と、
 沈降させた前記固形物を回収する段階と、を備えた被処理水中のリンの回収方法。
[5] 沈降させた前記固形物を乾燥させる[4]記載の被処理水中のリンの回収方法。
[6] 前記鉄鋼スラグの塩基度が1~7の範囲である[4]または[5]記載の被処理水中のリンの回収方法。
[7] 塩酸添加前の前記鉄鋼スラグのカルシウム含有率が15~55質量%の範囲である[4]乃至[6]の何れか一項に記載の被処理水中のリンの回収方法。
[8] 塩酸添加前の鉄鋼スラグの平均粒径が0.3mm以下である[4]乃至[7]の何れか一項に記載の被処理水中のリンの回収方法。
[9] 前記被処理水と前記スラグスラリーとを混合する際に、混合液のpHを7.7~9.0に調整する[4]乃至[8]の何れか一項に記載の被処理水中のリンの回収方法。
[10] 前記被処理水と前記スラグスラリーとを混合する際に、前記鉄鋼スラグ中のカルシウム量と前記被処理水中のリン量のモル比(Ca/P)が2以上4以下になるように調整する[4]乃至[9]の何れか一項に記載の被処理水中のリンの回収方法。
[11] 前記鉄鋼スラグに前記塩酸を添加して前記スラグスラリーを得る際に、濃度が0.5N以上2.0N以下に調整された塩酸水溶液を用いる[4]乃至[10]の何れか一項に記載の被処理水中のリンの回収方法。
[12] 前記鉄鋼スラグに前記塩酸を添加して前記スラグスラリーを得る際に、混合時間を30分以下とする[4]乃至[11]の何れか一項に記載の被処理水中のリンの回収方法。
[13] 前記被処理水と前記スラグスラリーとの撹拌混合時間を5分以上とする[4]乃至[12]の何れか一項に記載の被処理水中のリンの回収方法。
[14] 前記リンを含む被処理水が生活排水または産業排水のうちの何れか一方または両方を含む[4]乃至[13]の何れか一項に記載の被処理水中のリンの回収方法。
[15] 前記鉄鋼スラグに代えて、溶融スラグを用いる[4]乃至[14]の何れか一項に記載の被処理水中のリンの回収方法。
[16] [4]乃至[15]の何れか一項に記載の被処理水中のリンの回収方法によって得られた前記固形物を含むものである、肥料。
[17] [4]乃至[15]の何れか一項に記載の被処理水中のリンの回収方法によって得られた前記固形物を含むものである、肥料原料。
[18] [4]乃至[15]の何れか一項に記載の被処理水中のリンの回収方法によって得られた前記固形物を含むものである、黄リン原料。
[1] A calcium elution reaction apparatus that mixes an acid and steel slag and prepares a slag slurry from which calcium in the steel slag is eluted;
A steel slag supply device for supplying the steel slag to the calcium elution reaction device;
An acid supply device for supplying the acid to the calcium elution reaction device;
A phosphorus recovery reaction device that mixes the slag slurry and water to be treated containing phosphorus, reacts calcium in the slag slurry with phosphorus in the water to be treated, and obtains a solid matter containing phosphorus and calcium;
A treated water supply device for supplying the treated water to the phosphorus recovery reactor;
A dehydrator for dehydrating the solid matter produced in the phosphorus recovery reactor after supplying the water to be treated;
A treated water discharge device for sending the supernatant water in the phosphorus recovery reactor after supplying the treated water to the outside of the system;
A system for recovering phosphorus in water to be treated.
[2] The system for recovering phosphorus in water to be treated according to [1], further comprising a drying device that dries the solid matter dehydrated in the dehydrating device.
[3] The system for recovering phosphorus in water to be treated according to [1] or [2], in which molten slag is used instead of the steel slag.
[4] A step of stirring and mixing an acid with steel slag to obtain a slag slurry while eluting calcium in the steel slag;
Stirring and mixing the water to be treated containing phosphorus in the slag slurry, and allowing to stand, thereby forming a compound containing phosphorus and calcium, and coagulating and precipitating the compound as a solid together with the steel slag residue;
A step of recovering the solid matter settled, and a method of recovering phosphorus in the water to be treated.
[5] The method for recovering phosphorus in the water to be treated according to [4], in which the precipitated solid matter is dried.
[6] The method for recovering phosphorus in water to be treated according to [4] or [5], wherein the basicity of the steel slag is in the range of 1 to 7.
[7] The method for recovering phosphorus in the water to be treated according to any one of [4] to [6], wherein a calcium content of the steel slag before addition of hydrochloric acid is in a range of 15 to 55% by mass.
[8] The method for recovering phosphorus in the water to be treated according to any one of [4] to [7], wherein the average particle diameter of the steel slag before addition of hydrochloric acid is 0.3 mm or less.
[9] The treated material according to any one of [4] to [8], wherein the pH of the mixed solution is adjusted to 7.7 to 9.0 when the treated water and the slag slurry are mixed. How to recover phosphorus in water.
[10] When mixing the water to be treated and the slag slurry, the molar ratio (Ca / P) of the amount of calcium in the steel slag and the amount of phosphorus in the water to be treated is 2 or more and 4 or less. The method for recovering phosphorus in the water to be treated according to any one of [4] to [9] to be adjusted.
[11] When the hydrochloric acid is added to the steel slag to obtain the slag slurry, a hydrochloric acid aqueous solution whose concentration is adjusted to 0.5 N or more and 2.0 N or less is used. The method for recovering phosphorus in the water to be treated according to the item.
[12] When the hydrochloric acid is added to the steel slag to obtain the slag slurry, the mixing time is set to 30 minutes or less. The phosphorus in the treated water according to any one of [4] to [11] Collection method.
[13] The method for recovering phosphorus in the water to be treated according to any one of [4] to [12], wherein a stirring and mixing time of the water to be treated and the slag slurry is 5 minutes or more.
[14] The method for recovering phosphorus in the water to be treated according to any one of [4] to [13], wherein the water to be treated containing phosphorus includes one or both of domestic wastewater and industrial wastewater.
[15] The method for recovering phosphorus in the water to be treated according to any one of [4] to [14], in which molten slag is used instead of the steel slag.
[16] A fertilizer containing the solid matter obtained by the method for recovering phosphorus in water to be treated according to any one of [4] to [15].
[17] A fertilizer raw material containing the solid obtained by the method for recovering phosphorus in water to be treated according to any one of [4] to [15].
[18] A yellow phosphorus raw material containing the solid matter obtained by the method for recovering phosphorus in the water to be treated according to any one of [4] to [15].
 本発明によれば、リンを含む被処理水からリンを効率よく回収できる。
 すなわち、被処理水中に含まれていたリンは、酸によるカルシウム溶出後の鉄鋼スラグの残渣とともに凝集沈降して固形物として回収されるので、リンの効率的な回収が可能になる。ここで、例えばリンを含む鉄鋼スラグを使用する場合には、沈降した固形物中に、被処理水から回収したリンと、鉄鋼スラグに元々含まれていたリンとが含有されるので、固形物中にリンが高い濃度で含まれることになり、このような固形物を肥料、肥料原料または黄リン原料として好適に用いることができる。また、製鉄所から排出される鉄鋼スラグを肥料に再利用することができる。更に、被処理水として生活排水等を使用する場合は、リンの二大排出源である製鉄所及び下水からリンを効率よく回収することができる。
According to the present invention, phosphorus can be efficiently recovered from water to be treated containing phosphorus.
That is, the phosphorus contained in the water to be treated is coagulated and settled together with the residue of the steel slag after the elution of calcium by the acid and recovered as a solid matter, so that the phosphorus can be efficiently recovered. Here, for example, when using steel slag containing phosphorus, since the phosphorus recovered from the water to be treated and the phosphorus originally contained in the steel slag are contained in the settled solids, the solids Phosphorus is contained in a high concentration therein, and such a solid can be suitably used as a fertilizer, a fertilizer raw material, or a yellow phosphorus raw material. In addition, steel slag discharged from steelworks can be reused as fertilizer. Furthermore, when domestic wastewater or the like is used as water to be treated, phosphorus can be efficiently recovered from steelworks and sewage, which are the two major sources of phosphorus.
本発明の実施形態であるリン回収システムを示すブロックフロー図。The block flow figure showing the phosphorus recovery system which is an embodiment of the present invention. 本発明の実施形態であるリン回収システムの一例を示す模式図。The schematic diagram which shows an example of the phosphorus collection | recovery system which is embodiment of this invention. 鉄鋼スラグ残渣回収率とリン沈降率との関係を示すグラフ。The graph which shows the relationship between a steel slag residue recovery rate and phosphorus sedimentation rate. 塩酸量と、鉄鋼スラグ当りのリン回収量、ク溶性リン含有率及び回収リン中のク溶性リン含有率との関係を示すグラフ。The graph which shows the relationship between the amount of hydrochloric acid, the amount of phosphorus collection | recovery per iron and steel slag, the amount of soluble phosphorus, and the amount of soluble phosphorus in recovered phosphorus. 塩酸水溶液濃度と、鉄鋼スラグ当りのリン回収量及びク溶性リン含有率との関係を示すグラフ。The graph which shows the relationship between hydrochloric acid aqueous solution concentration, the amount of phosphorus collection | recovery per steel slag, and a soluble phosphorus content rate. 鉄鋼スラグ中のカルシウム溶出反応時間とカルシウム溶出率との関係を示すグラフ。The graph which shows the relationship between the calcium elution reaction time in a steel slag, and a calcium elution rate. 鉄鋼スラグの粒径と、リン除去率、リン沈降率、リン回収率、ク溶性リン含有率及び上澄み液中スラグスラリーのリン濃度との関係を示すグラフ。The graph which shows the relationship between the particle size of steel slag, a phosphorus removal rate, a phosphorus sedimentation rate, a phosphorus recovery rate, a soluble phosphorus content rate, and the phosphorus concentration of the slag slurry in a supernatant liquid. 鉄鋼スラグから溶出したカルシウムと被処理水中のリンとのモル比(Ca/P)と、リン除去率及びク溶性リン含有率との関係を示すグラフ。The graph which shows the relationship between the molar ratio (Ca / P) of the calcium eluted from steel slag, and the phosphorus in to-be-processed water, a phosphorus removal rate, and a soluble phosphorus content rate. リン回収反応時間とリン除去率との関係を示すグラフ。The graph which shows the relationship between phosphorus collection | recovery reaction time and phosphorus removal rate. リン回収反応時のpHとリン回収率との関係を示すグラフ。The graph which shows the relationship between pH at the time of phosphorus collection | recovery reaction, and phosphorus collection | recovery rate. 実施例Aと比較例Bについて、被処理水中のリン濃度と撹拌反応時間との関係を示すグラフ。The graph which shows the relationship between the phosphorus density | concentration in to-be-processed water and stirring reaction time about Example A and Comparative Example B. FIG. 実施例Aと比較例Bについて、リン除去率と撹拌反応時間との関係を示すグラフ。The graph which shows the relationship between phosphorus removal rate and stirring reaction time about Example A and Comparative Example B. 実施例Aと比較例Bのリン沈降率の比較図。The comparison figure of the phosphorus sedimentation rate of Example A and Comparative Example B. 固形物の沈降時間と凝集物界面高さとの関係を示すグラフ。The graph which shows the relationship between the sedimentation time of a solid substance, and the aggregate interface height. リン酸水濃度と、リン除去率及びク溶性リン含有率との関係を示すグラフ。The graph which shows the relationship between phosphoric acid water concentration, phosphorus removal rate, and soluble phosphorus content rate. 鉄鋼スラグの種類と、リン除去率、リン沈降率及びク溶性リン含有率との関係を示すグラフ。The graph which shows the relationship between the kind of steel slag, phosphorus removal rate, phosphorus sedimentation rate, and soluble phosphorus content rate.
 以下、本発明による被処理水中のリンの回収システム及び被処理水中のリンの回収方法の一例として、反応生成物を反応装置内で沈降分離する方法について、図1及び図2にて説明する。 Hereinafter, as an example of a system for recovering phosphorus in water to be treated and a method for recovering phosphorus in water to be treated according to the present invention, a method for separating and separating reaction products in a reaction apparatus will be described with reference to FIGS.
 図1に示す本実施形態のリン回収システムは、カルシウム溶出反応装置101と、リン回収反応装置102と、固液分離装置103と、脱水装置104と、乾燥装置105とが備えられている。 1 is provided with a calcium elution reaction apparatus 101, a phosphorus recovery reaction apparatus 102, a solid-liquid separation apparatus 103, a dehydration apparatus 104, and a drying apparatus 105.
 カルシウム溶出反応装置101は鉄鋼スラグと酸と混合することでスラグスラリーを形成する。形成されたスラグスラリーは、リン回収反応装置102に送られる。リン回収反応装置102は、カルシウム溶出反応装置101から供給されたスラグスラリーと、外部から供給された被処理水とを混合することで、リンとカルシウムを含む化合物を形成する。この化合物は、鉄鋼スラグの残渣と凝集して固形物となる。この固形物を含む混合物は、固液分離装置103に送られる。 The calcium elution reaction apparatus 101 forms slag slurry by mixing steel slag and acid. The formed slag slurry is sent to the phosphorus recovery reactor 102. The phosphorus recovery reactor 102 forms a compound containing phosphorus and calcium by mixing the slag slurry supplied from the calcium elution reactor 101 and the water to be treated supplied from the outside. This compound aggregates with the residue of steel slag to form a solid. The mixture containing the solid is sent to the solid-liquid separator 103.
 固液分離装置103では、リン回収反応装置102において得られた混合物を受け入れ、この混合物中の固形物を凝集沈降させる。リンとカルシウムを含む化合物と、カルシウム溶出後のスラリー残渣とが凝集沈降されて固形物となり、これにより、固液分離が行われる。凝集沈降させた固形物は脱水装置104に送られ、固形物を分離後の水はリン除去水として排出される。 The solid-liquid separator 103 accepts the mixture obtained in the phosphorus recovery reactor 102 and agglomerates and settles the solid in the mixture. The compound containing phosphorus and calcium and the slurry residue after elution of calcium are agglomerated and precipitated to form a solid, whereby solid-liquid separation is performed. The coagulated and settled solid matter is sent to the dehydrator 104, and the water after separating the solid matter is discharged as phosphorus removal water.
 脱水装置104では、固液分離された固形物がさらに脱水される。リンは最終的に、高濃度のリンを含む固形物として回収される。脱水された固形物の一部はそのまま肥料に使われ、更に別の一部は乾燥装置105に送られる。また、脱水されて分離された水は、リン除去水として排出される。 In the dehydrating apparatus 104, the solid matter separated from the solid and liquid is further dehydrated. The phosphorus is finally recovered as a solid containing a high concentration of phosphorus. A part of the dehydrated solid is used as it is for the fertilizer, and another part is sent to the drying device 105. Further, the water that has been dehydrated and separated is discharged as phosphorus-removed water.
 乾燥装置105では、脱水装置104において脱水された固形物を更に乾燥する。乾燥された固形物は、高濃度のリンを含む肥料または肥料原料となる。 In the drying device 105, the solid matter dehydrated in the dehydrating device 104 is further dried. The dried solid becomes a fertilizer or a fertilizer raw material containing a high concentration of phosphorus.
 次に、図1に示すリン回収システムの具体例として、本実施形態のリン回収システムについて、図2を参照しつつ説明する。 Next, as a specific example of the phosphorus recovery system shown in FIG. 1, the phosphorus recovery system of this embodiment will be described with reference to FIG.
 図2に示すように、本実施形態の被処理水中のリンの回収システム(以下、単に本システムという)は、鉄鋼スラグ供給装置3と、酸供給装置4と、鉄鋼スラグ中のカルシウム分を溶出させるカルシウム溶出反応装置1(図1におけるカルシウム溶出反応装置101)と、被処理水中のリンを回収するリン回収反応装置2(図1におけるリン回収反応装置102及び固液分離装置103)と、リン回収反応装置2内のpHを調整するpH調整装置9と、リン回収反応装置2内で凝集沈降した固形物の水分含有率を低下させる脱水装置6(図1における脱水装置104)と、乾燥装置8(図1における乾燥装置105)と、リンを除去した後の処理水払出し装置7とからなる。 As shown in FIG. 2, the system for recovering phosphorus in the water to be treated according to the present embodiment (hereinafter simply referred to as the present system) elutes the calcium content in the steel slag supply device 3, the acid supply device 4, and the steel slag. A calcium elution reaction apparatus 1 (calcium elution reaction apparatus 101 in FIG. 1), a phosphorus recovery reaction apparatus 2 (phosphorus recovery reaction apparatus 102 and solid-liquid separation apparatus 103 in FIG. 1) for recovering phosphorus in the water to be treated, phosphorus A pH adjusting device 9 for adjusting the pH in the recovery reaction device 2, a dehydration device 6 (dehydration device 104 in FIG. 1) for reducing the water content of the solids coagulated and settled in the phosphorus recovery reaction device 2, and a drying device. 8 (drying device 105 in FIG. 1) and treated water discharging device 7 after removing phosphorus.
 カルシウム溶出反応装置1には、図示略の撹拌混合装置が備えられている。カルシウム溶出反応装置1には、スラグ供給ラインL1を介して鉄鋼スラグ貯槽2aと接続され、酸供給ラインL2を介して酸貯槽4aと接続されている。また、カルシウム溶出反応装置1は、スラグスラリーラインL3を介してリン回収反応装置2に接続されている。カルシウム溶出反応装置1においては、鉄鋼スラグ貯槽2aから鉄鋼スラグS1が投入され、酸貯槽4aから酸A1が投入され、これら鉄鋼スラグS1と酸A1とを所定時間撹拌混合させる。これにより、鉄鋼スラグS1中のカルシウムを溶出させたスラグスラリーSSが得られる。このスラグスラリーSSは、鉄鋼スラグS1から溶出したカルシウムを含む酸溶液と鉄鋼スラグ残渣とを含むものであり、スラグスラリーラインL3によって、リン回収反応装置2に供給される。 The calcium elution reaction apparatus 1 is equipped with a stirring and mixing apparatus (not shown). The calcium elution reaction apparatus 1 is connected to a steel slag storage tank 2a through a slag supply line L1, and is connected to an acid storage tank 4a through an acid supply line L2. The calcium elution reaction apparatus 1 is connected to the phosphorus recovery reaction apparatus 2 via a slag slurry line L3. In the calcium elution reaction apparatus 1, steel slag S1 is charged from the steel slag storage tank 2a, and acid A1 is charged from the acid storage tank 4a, and these steel slag S1 and acid A1 are stirred and mixed for a predetermined time. Thereby, the slag slurry SS which eluted calcium in steel slag S1 is obtained. This slag slurry SS contains an acid solution containing calcium eluted from the steel slag S1 and a steel slag residue, and is supplied to the phosphorus recovery reactor 2 by the slag slurry line L3.
 リン回収反応装置2には、苛性ソーダ供給ラインL5を介してpH調整装置9が接続され、被処理水供給ラインL4を介して被処理水供給装置5が接続されている。また、リン回収反応装置2は、凝集沈降物ラインL6を介して脱水装置6に接続され、処理水ラインL7を介して処理水払い出し装置7に接続されている。また、リン回収反応装置2には、図示略の撹拌混合装置が備えられている。リン回収反応装置2に、被処理水タンク5aから被処理水W1が投入され、カルシウム溶出反応装置1からスラグスラリーSSが投入され、更に苛性ソーダ貯槽9aから苛性ソーダA2が供給される。苛性ソーダA2により所定のpHになるように調整しつつこれらを撹拌混合させることで、被処理水W1中のリンとスラグスラリーSS中のカルシウムとを反応させる。反応によって生成した化合物はスラグスラリーSS中の鉄鋼スラグ残渣とともに速やかに固形物S2をつくる。 The phosphorus recovery reaction apparatus 2 is connected to a pH adjusting device 9 via a caustic soda supply line L5, and is connected to a treated water supply device 5 via a treated water supply line L4. Moreover, the phosphorus collection | recovery reaction apparatus 2 is connected to the dehydration apparatus 6 via the coagulation sediment line L6, and is connected to the treated water discharge apparatus 7 via the treated water line L7. Further, the phosphorus recovery reaction apparatus 2 is provided with a stirring and mixing apparatus (not shown). To-be-treated water W1 is fed from the treated water tank 5a to the phosphorus recovery reactor 2, slag slurry SS is fed from the calcium elution reactor 1, and caustic soda A2 is further fed from the caustic soda storage tank 9a. These are stirred and mixed while adjusting to a predetermined pH with the caustic soda A2, whereby the phosphorus in the water to be treated W1 and the calcium in the slag slurry SS are reacted. The compound produced | generated by reaction produces solid S2 rapidly with the steel slag residue in slag slurry SS.
 また、鉄鋼スラグ供給装置3は、鉄鋼スラグ貯槽2aと、鉄鋼スラグ貯槽2aとカルシウム溶出反応装置1とを接続する鉄鋼スラグ供給ラインL1からなる。鉄鋼スラグ供給装置3は、鉄鋼スラグ貯槽2aに貯留された鉄鋼スラグS1をカルシウム溶出反応装置1に供給できるようになっている。 The steel slag supply device 3 includes a steel slag storage tank 2a, and a steel slag supply line L1 that connects the steel slag storage tank 2a and the calcium elution reactor 1. The steel slag supply device 3 can supply the steel slag S1 stored in the steel slag storage tank 2a to the calcium elution reaction device 1.
 また、酸供給装置4は、酸貯槽4aと、酸貯槽4aからカルシウム溶出反応装置1に酸A1を供給する酸供給ラインL2からなる。酸供給装置4は、酸供給ラインL2を介して酸A1をカルシウム溶出反応装置1に供給できるようになっている。 The acid supply device 4 includes an acid storage tank 4a and an acid supply line L2 for supplying the acid A1 from the acid storage tank 4a to the calcium elution reaction apparatus 1. The acid supply device 4 can supply the acid A1 to the calcium elution reaction device 1 via the acid supply line L2.
 また、被処理水供給装置5は、被処理水タンク5aと、被処理水タンク5a及びリン回収反応装置2とを接続する被処理水供給ラインL4とからなる。被処理水供給装置5は、被処理水タンク5aに貯留した被処理水W1をリン回収反応装置2に供給できるようになっている。 The treated water supply apparatus 5 includes a treated water tank 5a and a treated water supply line L4 that connects the treated water tank 5a and the phosphorus recovery reactor 2. The treated water supply device 5 can supply the treated water W1 stored in the treated water tank 5a to the phosphorus recovery reactor 2.
 また、pH調整装置9は、苛性ソーダ貯槽9aと、苛性ソーダ貯槽9aとリン回収反応装置2とを接続する苛性ソーダ供給ラインL5からなる。pH調整装置9は、苛性ソーダ貯槽9aに貯槽した苛性ソーダA2をリン回収反応装置2に供給できるようになっている。 The pH adjusting device 9 includes a caustic soda storage tank 9a, and a caustic soda supply line L5 connecting the caustic soda storage tank 9a and the phosphorus recovery reactor 2. The pH adjusting device 9 can supply the caustic soda A2 stored in the caustic soda storage tank 9a to the phosphorus recovery reactor 2.
 また、処理水払出し装置7は、リン回収反応装置2において固形物S2を凝集沈降分離させた後の上澄みである脱リン処理上澄み液W2を受け入れる処理水ラインL7と、脱水装置6からの脱水水W3を受け入れる脱水水ラインL8と、処理水ラインL7、および脱水水ラインL8の先に接続した処理水タンク7aからなる。 Further, the treated water discharge device 7 includes a treated water line L7 that receives a dephosphorized supernatant W2 that is a supernatant after the solids S2 is coagulated and separated in the phosphorus recovery reaction device 2, and dehydrated water from the dehydrator 6. It consists of a dewatered water line L8 for receiving W3, a treated water line L7, and a treated water tank 7a connected to the tip of the dewatered water line L8.
 また、脱水装置6は、リン回収反応装置2内で凝集沈降分離された固形物S2を受け入れ、固形物S2を脱水させる装置である。脱水装置6には、固形物S2から脱水された脱水水W3を処理水タンク7aへ送る脱水水ラインL8と脱水物S3を外部に排出する脱水物ラインL9が接続されている。 Further, the dehydrating device 6 is a device that receives the solid matter S2 that has been coagulated and separated in the phosphorus recovery reaction device 2, and dehydrates the solid matter S2. The dehydrator 6 is connected to a dewatered water line L8 for sending dehydrated water W3 dehydrated from the solid S2 to the treated water tank 7a and a dehydrated line L9 for discharging the dehydrated S3 to the outside.
 脱水物S3はそのまま肥料として使用する場合と、さらに乾燥して肥料や肥料原料として使用する場合がある。脱水物S3をさらに乾燥する場合、脱水物S3は脱水物ラインL9の途中から乾燥装置8へ送り込まれる。 The dehydrated product S3 may be used as a fertilizer as it is, or may be further dried and used as a fertilizer or a fertilizer raw material. When the dehydrated product S3 is further dried, the dehydrated product S3 is fed into the drying device 8 from the middle of the dehydrated product line L9.
 次に、図2に示すリン回収システムを用いた被処理水中のリンの回収方法を説明する。以下に示す本実施形態のリン回収方法は、バッチ処理の例であるが、本発明のリン回収方法は、バッチ処理に限定されるものではなく、被処理水及びスラグスラリーを連続して流しながら処理してもよいことは勿論である。 Next, a method for recovering phosphorus in the water to be treated using the phosphorus recovery system shown in FIG. 2 will be described. The phosphorus recovery method of the present embodiment shown below is an example of batch processing, but the phosphorus recovery method of the present invention is not limited to batch processing, while continuously flowing water to be treated and slag slurry. Of course, it may be processed.
 まず、本実施形態のリンの回収方法において用いる鉄鋼スラグS1、被処理水W1及び酸A1について説明する。鉄鋼スラグS1は、図2に示すリン回収システムの鉄鋼スラグ貯槽2aに貯留される。本実施形態では、鉄鋼スラグS1として高炉スラグ、製鋼スラグのいずれも用いることができる。特に、塩基度(CaO/SiO(重量比))が1~7の範囲の鉄鋼スラグを用いることが好ましい。 First, steel slag S1, treated water W1, and acid A1 used in the phosphorus recovery method of the present embodiment will be described. The steel slag S1 is stored in the steel slag storage tank 2a of the phosphorus recovery system shown in FIG. In this embodiment, both blast furnace slag and steelmaking slag can be used as the steel slag S1. In particular, it is preferable to use steel slag having a basicity (CaO / SiO 2 (weight ratio)) in the range of 1 to 7.
 高炉には鉄鉱石とともに媒溶剤としてカルシウムを投入するため、高炉スラグにはカルシウムが比較的高濃度で含まれる。本実施形態のリン回収方法では、カルシウムとリンを反応させるため、カルシウムを比較的多く含む高炉スラグは本実施形態の鉄鋼スラグとして好適である。 Since blast furnace is charged with calcium ore as a solvent along with iron ore, blast furnace slag contains a relatively high concentration of calcium. In the phosphorus recovery method of this embodiment, since calcium and phosphorus are reacted, a blast furnace slag containing a relatively large amount of calcium is suitable as the steel slag of this embodiment.
 また、製鋼スラグには、溶銑脱硫や脱リン処理で発生する溶銑予備処理スラグ、転炉の脱炭精錬で発生する転炉スラグ、二次精錬で発生する鋳造スラグがあるが、いずれのスラグにおいても比較的高濃度のリンを含むものであるため、本実施形態のリン回収方法に好適に用いることができる。また、二次精錬では脱酸剤としてカルシウムが投入されることから、製鋼スラグにも比較的高い濃度のカルシウムが含まれる。製鋼スラグを用いることで、最終的にリンを多量に含む肥料若しくは肥料原料を得ることができる。 Steelmaking slag includes hot metal pretreatment slag generated by hot metal desulfurization and dephosphorization, converter slag generated by decarburization refining of the converter, and casting slag generated by secondary refining. Can also be suitably used in the phosphorus recovery method of the present embodiment because it contains a relatively high concentration of phosphorus. In addition, since calcium is added as a deoxidizer in the secondary refining, the steelmaking slag contains a relatively high concentration of calcium. By using steelmaking slag, a fertilizer or a fertilizer raw material that finally contains a large amount of phosphorus can be obtained.
 また、鉄鋼スラグS1の平均粒径は、0.3mm以下が好ましく、0.2mm以下がより好ましく、0.15mm以下が更に好ましい。ただし、鉄鋼スラグS1の平均粒径を粉砕により小さくするにしたがってコストが上昇するので、コストとの兼ね合いで最適な値を決めるとよい。また、粉砕しすぎると微細な残渣が多量に生成して、固液分離時に時間を要することになるので、鉄鋼スラグの粒径は固液分離が円滑に行える程度の平均粒径に留めるとよい。例えば0.01mm以上がよい。 Moreover, the average particle diameter of the steel slag S1 is preferably 0.3 mm or less, more preferably 0.2 mm or less, and further preferably 0.15 mm or less. However, since the cost increases as the average particle diameter of the steel slag S1 is reduced by pulverization, an optimal value may be determined in consideration of the cost. In addition, if pulverized too much, a large amount of fine residue is generated, and it takes time for solid-liquid separation. Therefore, the particle size of steel slag should be limited to an average particle size that allows smooth solid-liquid separation. . For example, 0.01 mm or more is preferable.
 また、塩酸添加前の鉄鋼スラグS1のカルシウム含有率は、15~55質量%の範囲であることが好ましく、25~55質量%の範囲がより好ましい。鉄鋼スラグS1中のカルシウム含有率が低すぎるとリンの回収率が低下するので好ましくない。反対にカルシウム含有率が高すぎると、カルシウム溶出後の鉄鋼スラグS1の残渣の量が少なくなる。なお、鉄鋼スラグS1の残渣の量が少なくなると、鉄鋼スラグ残渣回収率が低下し、リン沈降率が低下する。また、鉄鋼スラグ残渣回収率が大きい場合もリン沈降率が低下する。したがって、塩酸添加後の鉄鋼スラグ残渣回収率は、35~65%が好ましく、40~60%がより好ましく、45~55%が更に好ましい。このような残渣回収率が得られる鉄鋼スラグを選択するとよい。
 更に、本発明のリン回収システム及びリン回収方法においては、鉄鋼スラグの代わりに溶融スラグを用いてもよい。溶融スラグは、可燃ごみなどをガス化溶融炉により処理した後に得られるスラグである。
Further, the calcium content of the steel slag S1 before addition of hydrochloric acid is preferably in the range of 15 to 55% by mass, and more preferably in the range of 25 to 55% by mass. If the calcium content in the steel slag S1 is too low, the phosphorus recovery rate decreases, which is not preferable. On the other hand, if the calcium content is too high, the amount of iron slag S1 residue after elution of calcium decreases. In addition, when the quantity of the residue of steel slag S1 decreases, the steel slag residue recovery rate will fall and the phosphorus sedimentation rate will fall. Moreover, the phosphorus sedimentation rate also decreases when the steel slag residue recovery rate is large. Therefore, the steel slag residue recovery rate after addition of hydrochloric acid is preferably 35 to 65%, more preferably 40 to 60%, and even more preferably 45 to 55%. Steel slag that provides such a residue recovery rate may be selected.
Furthermore, in the phosphorus recovery system and phosphorus recovery method of the present invention, molten slag may be used instead of steel slag. Molten slag is slag obtained after processing combustible waste etc. with a gasification melting furnace.
 本実施形態のリン回収方法に適用可能な被処理水W1としては、リンを含むものであればよく、リンの濃度に特に制限はない。本実施形態の被処理水W1として、例えば、公共下水道から終末処理場に流入する下水が挙げられる。このような下水としては、主に市街地などから排出される都市排水が例示される。都市下水には、一般家庭から排出される生活排水や、店舗、その他の施設から排出される排水が含まれる。また、このような下水には、製鉄所等の金属精錬工場やその他の工場などから排出される産業排水が含まれる場合もある。特に、生活排水や産業排水には、リンが比較的多く含まれる場合がある。したがって、公共下水道の終末処理場で処理される下水は、本実施形態のリン回収方法における被処理水W1として好適に用いることができる、また、本発明のリン回収方法は、終末処理場においてリンを回収する際に適用してもよい。更に、本発明の被処理水は生活排水や産業排水に限られず、リンを含むものであれば適用可能である。 The water to be treated W1 applicable to the phosphorus recovery method of the present embodiment is not particularly limited as long as it contains phosphorus, and the concentration of phosphorus is not particularly limited. As the to-be-processed water W1 of this embodiment, the sewage which flows into a terminal treatment plant from a public sewer is mentioned, for example. Examples of such sewage include urban drainage mainly discharged from urban areas. Urban sewage includes domestic wastewater discharged from ordinary households and wastewater discharged from stores and other facilities. In addition, such sewage may include industrial wastewater discharged from metal refining factories such as steelworks and other factories. In particular, domestic wastewater and industrial wastewater may contain a relatively large amount of phosphorus. Therefore, the sewage treated at the final treatment plant of the public sewer can be suitably used as the treated water W1 in the phosphorus collection method of the present embodiment, and the phosphorus collection method of the present invention can be used at the final treatment plant. You may apply when collect | recovering. Furthermore, the water to be treated of the present invention is not limited to domestic wastewater and industrial wastewater, and any water containing phosphorus can be applied.
 また、本実施形態のリン回収方法に利用可能な酸A1としては、塩酸の水溶液が好ましい。塩酸の水溶液濃度は、取り扱いが容易であるとともにある程度の濃度が必要なことから、0.5~2.0Nが好ましく、0.7~1.6Nがより好ましく、0.9~1.2Nが更に好ましい。塩酸以外の酸として硫酸があるが、硫酸は、鉄鋼スラグから溶出したカルシウムと反応して石膏(CaSO4)を形成してしまうので好ましくない。また、硝酸は窒素を含むため、リン回収後の処理水W4を公共水域に放流した際に富栄養化の原因になるので好ましくない。 Moreover, as acid A1 which can be utilized for the phosphorus collection | recovery method of this embodiment, the aqueous solution of hydrochloric acid is preferable. The concentration of the aqueous hydrochloric acid solution is preferably 0.5 to 2.0N, more preferably 0.7 to 1.6N, and 0.9 to 1.2N because it is easy to handle and requires a certain level of concentration. Further preferred. Although there is sulfuric acid as an acid other than hydrochloric acid, sulfuric acid is not preferable because it reacts with calcium eluted from steel slag to form gypsum (CaSO 4 ). Moreover, since nitric acid contains nitrogen, it becomes unpleasant because it causes eutrophication when the treated water W4 after phosphorus recovery is discharged into public waters.
 本実施形態のリン回収方法は、鉄鋼スラグS1に酸A1を添加してスラグスラリーSSを得る段階と、リンを含む被処理水W1とスラグスラリーSSとを撹拌混合して静置することにより、リン及びカルシウムを含む化合物を形成させるとともに、形成した化合物を鉄鋼スラグS1の残渣とともに凝集沈降させる段階と、沈降させた固形物S2を脱水する段階と、を備える。また、本実施形態のリン回収システムでは、脱水物S3を更に乾燥させてもよい。以下、各段階について説明する。 In the phosphorus recovery method of the present embodiment, by adding acid A1 to steel slag S1 to obtain slag slurry SS, the water to be treated W1 containing phosphorus and slag slurry SS are stirred and mixed and allowed to stand, The method includes forming a compound containing phosphorus and calcium, coagulating and sedimenting the formed compound together with the residue of the steel slag S1, and dehydrating the settled solid matter S2. Further, in the phosphorus recovery system of the present embodiment, the dehydrated product S3 may be further dried. Hereinafter, each step will be described.
 まず、鉄鋼スラグS1に酸A1を添加してスラグスラリーSSを得る。図2のリン回収システムにおいては、鉄鋼スラグ供給装置3及び酸供給装置4からカルシウム溶出反応装置1に鉄鋼スラグS1及び酸A1を供給し、カルシウム溶出反応装置1において鉄鋼スラグS1と酸A1を撹拌混合してスラグスラリーSSとする。このとき、鉄鋼スラグS1に含まれるカルシウムが塩酸によって溶出される。カルシウムを十分に溶出させるためには、鉄鋼スラグS1と酸A1とを1分以上撹拌混合することが好ましく、2分以上がより好ましく、5分以上が更に好ましい。上限は、60分以下が好ましく、30分以下がより好ましく、20分以下が更に好ましく、10分以下が最も好ましい。鉄鋼スラグS1と酸A1の配合率は、鉄鋼スラグの種類にもよるが、例えば、鉄鋼スラグ1kgに対して0.5~2mol/Lの塩酸を10L程度添加するとよい。 First, acid A1 is added to steel slag S1 to obtain slag slurry SS. In the phosphorus recovery system of FIG. 2, the steel slag S1 and the acid A1 are supplied from the steel slag supply device 3 and the acid supply device 4 to the calcium elution reaction device 1, and the steel slag S1 and the acid A1 are stirred in the calcium elution reaction device 1. Mix to make slag slurry SS. At this time, calcium contained in the steel slag S1 is eluted by hydrochloric acid. In order to sufficiently dissolve calcium, the steel slag S1 and the acid A1 are preferably stirred and mixed for 1 minute or more, more preferably 2 minutes or more, and even more preferably 5 minutes or more. The upper limit is preferably 60 minutes or less, more preferably 30 minutes or less, still more preferably 20 minutes or less, and most preferably 10 minutes or less. The mixing ratio of the steel slag S1 and the acid A1 depends on the type of the steel slag, but, for example, about 10 L of 0.5 to 2 mol / L hydrochloric acid may be added to 1 kg of the steel slag.
 鉄鋼スラグに対して塩酸の量が多くなると、カルシウムの溶出量が多くなってリンを化合物として形成する際に有利になる一方で、鉄鋼スラグの残渣が減少し、形成した化合物を凝集沈降させる際に不利になる。カルシウムの溶出量は、被処理水W1とスラグスラリーSSとを混合した際に、鉄鋼スラグ中のカルシウム量と被処理水中のリン量とのモル比(Ca/P)が2~4の範囲になるように調整すればよい。より好ましくは、Ca/P比率が2.5~3.5の範囲が好ましい。Ca/P比率が2未満だと、リン除去率が低下してしまい、4以上だと、最終的に得られる乾燥物S4中のク溶性リン含有率が低下してしまう。ここで、ク溶性とは2%のクエン酸水溶液に溶解する性質をいう。また、ク溶性リンとは2%のクエン酸水溶液に溶解するリンをいう。
 このように、鉄鋼スラグS1に対する塩酸A1の添加量は重要なファクターになる。鉄鋼スラグS1の種類や鉄鋼スラグのカルシウム含有量にもよるが、例えば、鉄鋼スラグS1が1kgに対する塩酸A1のモル量を、5~20molの範囲にすることが好ましく、7~15molがより好ましく、8~12molが更に好ましい。
Increasing the amount of hydrochloric acid relative to steel slag increases the amount of calcium eluted, which is advantageous when forming phosphorus as a compound, while reducing the residue of steel slag and coagulating the formed compound. Disadvantageous. The amount of calcium elution is such that when the treated water W1 and the slag slurry SS are mixed, the molar ratio (Ca / P) between the amount of calcium in the steel slag and the amount of phosphorus in the treated water is in the range of 2-4. It may be adjusted so that More preferably, the Ca / P ratio is in the range of 2.5 to 3.5. When the Ca / P ratio is less than 2, the phosphorus removal rate decreases. When the Ca / P ratio is 4 or more, the soluble phosphorus content in the finally obtained dried product S4 decreases. Here, the term “soluble” refers to the property of being dissolved in a 2% aqueous citric acid solution. The term “soluble phosphorus” refers to phosphorus that is dissolved in a 2% aqueous citric acid solution.
Thus, the amount of hydrochloric acid A1 added to the steel slag S1 is an important factor. Depending on the type of the steel slag S1 and the calcium content of the steel slag, for example, the molar amount of hydrochloric acid A1 per 1 kg of the steel slag S1 is preferably in the range of 5 to 20 mol, more preferably 7 to 15 mol. 8 to 12 mol is more preferable.
 次に、リン回収反応装置2において、リンを含む被処理水W1とスラグスラリーSSとを撹拌混合し、その後、静置する。図2のリン回収反応装置2においては、被処理水供給装置5からリン回収反応装置2に被処理水W1を供給し、スラグスラリーSSと撹拌混合した後に静置する。鉄鋼スラグ中のカルシウム量と被処理水W1中のリン量との混合割合は、Ca/P比率が2~4の範囲になるように調整すればよい。Ca/P比率の調整は、スラグスラリーSSと被処理水W1の混合率、スラグスラリーSS形成時の塩酸の添加量等によって制御すればよい。また、Ca/P比率を調整するために、スラグスラリーSS中のカルシウム濃度と被処理水W1中のリン濃度は事前に計測しておくことが好ましい。 Next, in the phosphorus recovery reactor 2, the water to be treated W1 containing phosphorus and the slag slurry SS are stirred and mixed, and then allowed to stand. In the phosphorus recovery reactor 2 of FIG. 2, the water to be treated W1 is supplied from the water to be treated supply device 5 to the phosphorus recovery reactor 2, and after stirring and mixing with the slag slurry SS, it is allowed to stand. The mixing ratio of the calcium amount in the steel slag and the phosphorus amount in the treated water W1 may be adjusted so that the Ca / P ratio is in the range of 2-4. The adjustment of the Ca / P ratio may be controlled by the mixing ratio of the slag slurry SS and the water to be treated W1, the amount of hydrochloric acid added when forming the slag slurry SS, and the like. In order to adjust the Ca / P ratio, the calcium concentration in the slag slurry SS and the phosphorus concentration in the water to be treated W1 are preferably measured in advance.
被処理水W1中のリンとスラグスラリーSS中のカルシウムとを十分に反応させるためには、被処理水W1とスラグスラリーSSとの撹拌時間を、1分以上にすることが好ましく、5分以上がより好ましい。上限は、60分以下が好ましく、30分以下がより好ましく、20分以下が更に好ましい。撹拌時間が短すぎると、カルシウムとリンとの反応が十分に進まない可能性がある。また、撹拌時間が長すぎると、装置全体が大きくなり、設備コストが高くなる。したがって、撹拌時間は適度な時間に設定するとよい。 In order to sufficiently react phosphorus in the water to be treated W1 and calcium in the slag slurry SS, the stirring time of the water to be treated W1 and the slag slurry SS is preferably 1 minute or longer, and 5 minutes or longer. Is more preferable. The upper limit is preferably 60 minutes or less, more preferably 30 minutes or less, and even more preferably 20 minutes or less. If the stirring time is too short, the reaction between calcium and phosphorus may not proceed sufficiently. Moreover, when stirring time is too long, the whole apparatus will become large and an installation cost will become high. Therefore, the stirring time is preferably set to an appropriate time.
 被処理水W1とスラグスラリーSSとを撹拌混合することで、被処理水W1中に含まれるリンと、鉄鋼スラグから溶出されたスラグスラリーSS中のカルシウムとが反応して、リンとカルシウムを含む化合物が形成する。形成する化合物としては次のようなものが考えられる。被処理水W1中に含まれるリンの一部はリン酸水素イオン(HPO 2-)として存在しており、リン酸水素イオンとカルシウムイオンが反応してリン酸水素カルシウム(CaHPO)が形成されると推測する。また、このとき、リン酸水素カルシウムにカルシウムが更に結合してCaHPO 2+(トリプレット)も形成すると思われる。 By mixing the water to be treated W1 and the slag slurry SS with stirring, phosphorus contained in the water to be treated W1 reacts with calcium in the slag slurry SS eluted from the steel slag to contain phosphorus and calcium. A compound forms. The following compounds can be considered as the compound to be formed. Part of the phosphorus contained in the water to be treated W1 exists as hydrogen phosphate ions (HPO 4 2− ), and the hydrogen phosphate ions and calcium ions react to form calcium hydrogen phosphate (CaHPO 4 ). I guess it will be. At this time, it is considered that calcium is further bound to calcium hydrogen phosphate to form Ca 2 HPO 4 2+ (triplet).
 撹拌混合時に形成されるリン酸水素イオンを安定して存在させるためには、スラグスラリーSS混合後の被処理水W1のpHを7.7~9.0の範囲に調整することが好ましく、8.0~8.7の範囲がより好ましく、8.2~8.5の範囲が更に好ましい。pHが7.7未満になると、リン酸水素イオンよりもリン酸二水素イオンが多く存在することになる。リン酸二水素イオンとカルシウムイオンとの溶解度積は、リン酸水素イオンとカルシウムイオンとの溶解度積よりも大きいため、pHが7.7未満ではリン酸水素カルシウムの析出量が少なくなってリンの回収率が低下する可能性がある。また、pHが9を超えると、被処理水W1中に炭酸イオンが生成し、カルシウムが炭酸イオンと結合して炭酸カルシウムを析出させ、リンが析出しにくくなり、リンの回収率が低下してしまう。被処理水W1中のpHは、図2に示すpH調整装置9から、苛性ソーダ供給ラインL5を通じて苛性ソーダA2を供給して調整すればよい。 In order to make hydrogen phosphate ions formed at the time of stirring and mixing stably, the pH of the water W1 to be treated after mixing the slag slurry SS is preferably adjusted to a range of 7.7 to 9.0. The range of 0.0 to 8.7 is more preferable, and the range of 8.2 to 8.5 is still more preferable. When the pH is less than 7.7, more dihydrogen phosphate ions are present than hydrogen phosphate ions. Since the solubility product of dihydrogen phosphate ion and calcium ion is larger than the solubility product of hydrogen phosphate ion and calcium ion, when the pH is less than 7.7, the precipitated amount of calcium hydrogen phosphate decreases and the phosphorus Recovery may be reduced. Further, when the pH exceeds 9, carbonate ions are generated in the water to be treated W1, calcium binds to carbonate ions to precipitate calcium carbonate, phosphorus is difficult to precipitate, and phosphorus recovery rate decreases. End up. The pH in the water to be treated W1 may be adjusted by supplying the caustic soda A2 from the pH adjusting device 9 shown in FIG. 2 through the caustic soda supply line L5.
 また、リン及びカルシウムを含む化合物の形成と同時または形成後に、鉄鋼スラグS1の残渣を利用してこれら化合物を凝集沈降させる。鉄鋼スラグS1の残渣は、カルシウムが陽イオンとして溶出したものであるので、全体として負に帯電している。一方、リン酸水素カルシウム及びCaHPO 2+は、見かけ比重が小さい状態であるため、被処理水中に浮遊し、かつCaHPO 2+は正に帯電している。このように負に帯電した鉄鋼スラグS1の残渣と浮遊するリン酸水素カルシウム及びCaHPO 2+が共存することで、両者の間に静電的な相互作用が発生し、鉄鋼スラグS1の残渣に対してリン酸水素カルシウム並びにCaHPO 2+等の化合物が凝集し、ついには固形物S2として沈降する。以上のメカニズムにより凝集沈降が進むと考えられるため、固形物を沈降させる際に、凝集剤を添加する必要はない。 Further, at the same time as or after the formation of the compound containing phosphorus and calcium, these compounds are agglomerated and precipitated using the residue of the steel slag S1. The residue of the steel slag S1 is negatively charged as a whole because calcium is eluted as a cation. On the other hand, calcium hydrogen phosphate and Ca 2 HPO 4 2+ have a low apparent specific gravity, so that they float in the water to be treated, and Ca 2 HPO 4 2+ is positively charged. Thus, the negatively charged residue of the steel slag S1 and the floating calcium hydrogen phosphate and Ca 2 HPO 4 2+ coexist, thereby generating an electrostatic interaction between them, and the residue of the steel slag S1. In contrast, calcium hydrogen phosphate and compounds such as Ca 2 HPO 4 2+ aggregate and finally settle as solid S2. Since it is considered that coagulation sedimentation proceeds by the above mechanism, it is not necessary to add an aggregating agent when the solid matter is settled.
 沈降時間はリン回収反応装置2の大きさにもよるが、7分以上が好ましく、10分以上がより好ましく、30分以上が更に好ましい。上限は、60分以下が好ましく、50分以下がより好ましく、40分以下が更に好ましい。 Although the sedimentation time depends on the size of the phosphorus recovery reactor 2, it is preferably 7 minutes or longer, more preferably 10 minutes or longer, and even more preferably 30 minutes or longer. The upper limit is preferably 60 minutes or less, more preferably 50 minutes or less, and even more preferably 40 minutes or less.
 次に、リン回収反応装置2において固形物S2を沈降後の上澄みである脱リン処理上澄み液W2を、処理水排水ラインL7により処理水タンク7aに送る。その後、脱リン処理上澄み液W2は脱水装置6からの脱水水W3とともに脱リン水として、処理水タンク7aから処理水W4として公共水域に放流されるか、あるいは、別の水処理設備に送られる。 Next, a dephosphorization supernatant W2 that is a supernatant after sedimentation of the solid S2 in the phosphorus recovery reactor 2 is sent to the treated water tank 7a through the treated water drain line L7. Thereafter, the dephosphorization supernatant W2 is dephosphorized together with the dehydrated water W3 from the dehydrator 6 and discharged from the treated water tank 7a to the public water area as treated water W4 or sent to another water treatment facility. .
 一方、リン回収反応装置2の底に凝集沈降した固形物S2は、凝集沈降物ラインL6を介して脱水装置6に送られる。脱水装置6において固形物S2は脱水され、その際に分離された脱水水W3は脱水水ラインL8を経由して処理水払出し装置7へ送られる。また、脱水後の脱水物S3は、脱水物ラインL9によって肥料、または肥料原料として搬出される。または、乾燥装置8に送られて乾燥後、肥料、または肥料原料として搬出される。 On the other hand, the solid matter S2 that has aggregated and settled at the bottom of the phosphorus recovery reactor 2 is sent to the dehydrator 6 via the aggregated sediment line L6. The solid matter S2 is dehydrated in the dehydrating device 6, and the dewatered water W3 separated at that time is sent to the treated water discharging device 7 via the dehydrated water line L8. Further, the dehydrated product S3 after dehydration is carried out as a fertilizer or a fertilizer raw material by the dehydrated product line L9. Or it is sent to the drying apparatus 8 and is carried out as a fertilizer or a fertilizer raw material after drying.
 脱水装置6から脱水物ラインL9を経由して搬出される脱水物S3は、回収物をそのまま肥料用途に向けるための、ク溶性リン含有率の規格値である15質量%以上のク溶性リンを含んでおり、そのまま肥料として用いられる。 The dehydrated product S3 transported from the dehydrating device 6 via the dehydrated product line L9 is a solute-soluble phosphorus of 15% by mass or more, which is a standard value for the content of solute-soluble phosphorus, for directing the recovered material for fertilizer use. Contained and used as fertilizer as it is.
 また、乾燥装置8から搬出される乾燥物S4は、回収物をそのまま肥料用途に向けるための、ク溶性リン含有率の規格値である15質量%以上のク溶性リンを含んでおり、そのまま肥料として用いられるか、肥料原料として肥料の製造に利用されるか、あるいは黄リン原料として利用される。 Moreover, the dried material S4 carried out from the drying apparatus 8 contains 15% by mass or more of solute-soluble phosphorus, which is a standard value of the solute-soluble phosphorus content, in order to direct the recovered material for fertilizer use as it is. Used as a fertilizer raw material, or as a yellow phosphorus raw material.
 上述した本実施形態のリン回収方法は、バッチ処理によりリンを回収する例であるが、連続処理により本実施形態のリンの回収を行ってもよい。
 具体的には、リンを含む被処理水W1及びスラグスラリーSSを、リン回収反応装置2に連続的に投入する。リン回収反応装置2では、被処理水W1及びスラグスラリーSSとを撹拌混合してリンとカルシウムを含む化合物を形成させる段階と、形成した化合物を鉄鋼スラグS1の残渣とともに凝集沈降させる段階と、凝集沈降した固形物S2を回収する段階と、固形物S2を回収した際の上澄みである脱リン処理上澄み液W2を排出する段階と、固形物S2を脱水し、脱水物S3を得る段階と、固形物S2を脱水した際の脱水水W3を排出する段階とを、連続的に行う。更に、脱水物S3を乾燥させる段階を加えてもよい。
The phosphorus recovery method of the present embodiment described above is an example of recovering phosphorus by batch processing. However, the phosphorus recovery of the present embodiment may be performed by continuous processing.
Specifically, the water to be treated W1 containing phosphorus and the slag slurry SS are continuously charged into the phosphorus recovery reactor 2. In the phosphorus recovery reactor 2, the stage of mixing the water to be treated W1 and the slag slurry SS to form a compound containing phosphorus and calcium, the stage of coagulating and sedimenting the formed compound together with the residue of the steel slag S1, A step of recovering the precipitated solid S2, a step of discharging a dephosphorization supernatant W2 that is a supernatant when the solid S2 is recovered, a step of dehydrating the solid S2 to obtain a dehydrated S3, a solid The step of discharging the dewatered water W3 when the material S2 is dehydrated is continuously performed. Further, a step of drying the dehydrated product S3 may be added.
 以上説明したように、本実施形態の被処理水中のリンの回収方法及びリンの回収システムによれば、鉄鋼スラグからカルシウムを溶出させてこれを被処理水中のリン酸水素イオンと反応させてリン酸水素カルシウムとし、更に鉄鋼スラグからカルシウムを溶出した後の残渣を利用して、リン酸水素カルシウムを凝集沈降させるので、被処理水W1中のリンを高い収率で効率よく回収できる。 As described above, according to the phosphorus recovery method and phosphorus recovery system of the present embodiment, calcium is eluted from steel slag and reacted with hydrogen phosphate ions in the water to be treated. Since calcium hydrogen phosphate is agglomerated and precipitated by using calcium oxyhydrogen and the residue after elution of calcium from steel slag, phosphorus in water to be treated W1 can be efficiently recovered with high yield.
 特に、カルシウム溶出後の鉄鋼スラグの残渣を利用することで、短時間でリン酸水素カルシウムを凝集沈降させることができ、リンの回収効率を高めることができる。また、リン酸水素カルシウムを凝集させるための凝集剤を別途添加する必要がなく、凝集剤を添加するための設備も必要ない。更には、リン酸水素カルシウムの生成と凝集を同時に行うことができ、短時間でリンを回収できるとともに、リンを回収させる際に必要なリンを回収させる際に必要な反応槽が1つで済み、リン回収反応装置2を小型化できる。 In particular, by using the residue of steel slag after calcium elution, calcium hydrogen phosphate can be coagulated and settled in a short time, and the recovery efficiency of phosphorus can be increased. Further, it is not necessary to separately add a flocculant for aggregating calcium hydrogen phosphate, and there is no need for equipment for adding the flocculant. Furthermore, calcium hydrogen phosphate can be generated and aggregated at the same time, so that phosphorus can be recovered in a short time and only one reaction tank is required to recover the phosphorus necessary for recovering phosphorus. The phosphorus recovery reactor 2 can be downsized.
 また、本実施形態のリン回収方法によれば、スラグスラリーの形成や固形物の凝集沈降分離を短時間で行うことができ、被処理水及び鉄鋼スラグの処理効率を大幅に高めることができる。 Moreover, according to the phosphorus recovery method of the present embodiment, the formation of slag slurry and the coagulation sedimentation separation of solids can be performed in a short time, and the treatment efficiency of water to be treated and steel slag can be greatly increased.
 また、鉄鋼スラグには、製鉄所から排出されるリンが多く含まれているものがある。本実施形態によれば、この鉄鋼スラグ中のリンと被処理水中のリンとが一装置で同時に回収されるとともに、凝集沈降物中のリンの含有率を高めることができ、凝集沈降物を有用なリン資源として再活用できる。さらに、被処理水として終末処理場(下水処理場)で処理される下水を用いる場合、海や湖などの富栄養化の原因である下水中のリンを回収できる。したがって、本実施形態を下水中のリンの回収に適用することにより、リンの2大排出源である鉄鋼産業からのリン(日本で約8万t-P/Yの排出)と下水処理場からのリン(日本で約5万t-P/Yの排出)の両方のリンを同時に回収リサイクルすることが可能になる。 Also, some steel slag contains a lot of phosphorus discharged from steelworks. According to this embodiment, the phosphorus in the steel slag and the phosphorus in the water to be treated are simultaneously recovered with one apparatus, and the phosphorus content in the aggregated sediment can be increased, and the aggregated sediment is useful. Can be reused as a valuable phosphorus resource. Furthermore, when using sewage treated at a terminal treatment plant (sewage treatment plant) as treated water, phosphorus in sewage that is a cause of eutrophication of the sea or lake can be recovered. Therefore, by applying this embodiment to the recovery of phosphorus in sewage, phosphorus from the steel industry, which is the two largest sources of phosphorus, (from Japan, about 80,000 t-P / Y) and sewage treatment plants It is possible to collect and recycle both phosphorus at the same time (approximately 50,000 t-P / Y emissions in Japan).
 また、凝集沈降した固形物を脱水後に乾燥させることで、固形物の容積を減少できるとともに、凝集沈降した固形物の取り扱いが容易になる。 In addition, by drying the aggregated and settled solids after dehydration, the volume of the solids can be reduced, and handling of the aggregated and settled solids is facilitated.
 更に、回収された固形物は、リンを高濃度で含むため、リン資源として、肥料、肥料原料または黄リン原料等に用いることができる。
 また、本実施形態によれば、リンの回収に用いた鉄鋼スラグの全量を肥料または肥料原料として利用できるので、鉄鋼スラグを有効活用することができる。
Furthermore, since the collected solid substance contains phosphorus in a high concentration, it can be used as a fertilizer, a fertilizer raw material, a yellow phosphorus raw material, or the like as a phosphorus resource.
Moreover, according to this embodiment, since the whole amount of steel slag used for the recovery of phosphorus can be used as fertilizer or fertilizer raw material, steel slag can be effectively used.
 本発明の実施形態における、様々な因子の関係を調べるため行った実験例1~11、実施例A及び比較例Bについて以下に説明する。なお、被処理水として、660mg/LのKHPO、1.89g/LのNHClと、3.36g/LのNaHCO3とを含むモデル液を用意した。また、鉄鋼スラグは、粉砕機により粉砕し、ふるい分けにより粒径を調整した。電子顕微鏡付き蛍光X線分析によりカルシウム含有率を測定した。 Experimental Examples 1 to 11, Example A, and Comparative Example B conducted for examining the relationship between various factors in the embodiment of the present invention will be described below. A model liquid containing 660 mg / L KH 2 PO 4 , 1.89 g / L NH 4 Cl, and 3.36 g / L NaHCO 3 was prepared as the water to be treated. Steel slag was pulverized by a pulverizer, and the particle size was adjusted by sieving. The calcium content was measured by fluorescent X-ray analysis with an electron microscope.
(実験例1)
 鉄鋼スラグ残渣回収率とリン沈降率との関係を調べるため、以下に示す実験例1を行った。
 Pを4%含有し、カルシウム含有率が40%及び粒径0.125mmの鉄鋼スラグと、濃度が0.5N、1.0N及び2.0Nの塩酸とを、固液比(kg:L)が1:10となるように混合し、60分間撹拌した。スラグ中のカルシウム量と、リン濃度が150mg/Lのモデル液中のリン量とを、Ca/P比率が3.0となるように混合し、pHを8.5に調整し、60分間撹拌混合した後、5分間静置し、固形物を凝集沈降させた。凝集沈降した固形物を遠心分離して、100℃で乾燥させた後に回収し、スラグ残渣重量、上澄み液量及び上澄み液中全リン濃度を測定した。上澄み液中全リン濃度は、モリブデンブルー法により測定した。塩酸濃度と、スラグスラリーとモデル液の固液比を調整することで、鉄鋼スラグ残渣回収率を14~92%の範囲で9つのサンプルを用意した。
(Experimental example 1)
In order to investigate the relationship between the steel slag residue recovery rate and the phosphorus sedimentation rate, Experimental Example 1 shown below was performed.
A solid-liquid ratio (kg) of steel slag containing 4% P 2 O 5 and having a calcium content of 40% and a particle size of 0.125 mm and hydrochloric acid having concentrations of 0.5N, 1.0N and 2.0N : L) was mixed at 1:10 and stirred for 60 minutes. Mix the amount of calcium in the slag and the amount of phosphorus in the model solution with a phosphorus concentration of 150 mg / L so that the Ca / P ratio is 3.0, adjust the pH to 8.5, and stir for 60 minutes. After mixing, the mixture was allowed to stand for 5 minutes to coagulate and settle the solid matter. The coagulated and settled solid was centrifuged and collected after drying at 100 ° C., and the slag residue weight, the amount of the supernatant and the total phosphorus concentration in the supernatant were measured. The total phosphorus concentration in the supernatant was measured by the molybdenum blue method. By adjusting the hydrochloric acid concentration and the solid-liquid ratio of the slag slurry and model liquid, nine samples were prepared with a steel slag residue recovery rate ranging from 14 to 92%.
 下記式(1)によって求めた鉄鋼スラグ残渣回収率と、下記式(2)によって求めたリン沈降率との関係を図3に示す。図3によると、鉄鋼スラグ残渣回収率が50%付近でリン沈降率が最大となり、鉄鋼スラグ残渣回収率が35~65%の範囲では、リン沈降率が70%以上の値をとっている。また、鉄鋼スラグ残渣回収率が小さいと、リン沈降率が低下する。一方、鉄鋼スラグ残渣回収率が大きい場合もリン沈降率が低下することが分かる。 FIG. 3 shows the relationship between the steel slag residue recovery rate obtained by the following equation (1) and the phosphorus sedimentation rate obtained by the following equation (2). According to FIG. 3, the phosphorus sedimentation rate becomes maximum when the steel slag residue recovery rate is around 50%, and the phosphorus sedimentation rate is 70% or more when the steel slag residue recovery rate is in the range of 35 to 65%. Moreover, if the steel slag residue recovery rate is small, the phosphorus sedimentation rate is lowered. On the other hand, it can be seen that the phosphorus sedimentation rate also decreases when the steel slag residue recovery rate is large.
 鉄鋼スラグ残渣回収率=スラグ残渣重量/投入スラグ重量×100 …(1) Steel slag residue recovery rate = slag residue weight / input slag weight x 100 ... (1)
 リン沈降率=(モデル液中のリン濃度×モデル液量-上澄み中全リン濃度×上澄み液量)/(モデル液中のリン濃度×モデル液量)×100 …(2) Phosphorus sedimentation rate = (phosphorus concentration in model liquid × model liquid volume−total phosphorus concentration in supernatant × supernatant liquid volume) / (phosphorus concentration in model liquid × model liquid volume) × 100 (2)
 ただし、式(2)における上澄み中全リン濃度は以下の通りである。
 上澄み中全リン濃度=(水溶性リン量+スラグスラリー中のリン量)/上澄み液量
However, the total phosphorus concentration in the supernatant in the formula (2) is as follows.
Total phosphorus concentration in supernatant = (water-soluble phosphorus amount + phosphorus amount in slag slurry) / supernatant liquid amount
(実験例2)
 鉄鋼スラグ単位重量当りの塩酸量と、回収リン中のク溶性リン含有率、ク溶性リン含有率及び鉄鋼スラグ当たりのリン回収量との関係を調べるため、以下に示す実験例2を行った。
 Pを4%含有し、カルシウム含有率が40%及び粒径が0.125mmの鉄鋼スラグと、濃度が0.5N、1.0N及び2.0Nの塩酸とを、固液比(kg:L)が1:5、1:10及び1:20となるように混合し、60分間撹拌した。スラグ中のカルシウム量と、リン濃度が150mg/Lのモデル液中のリン量とを、Ca/P比率が3.0となるように混合し、pHを8.5に調整し、60分間撹拌混合した後、5分間静置し、固形物を凝集沈降させた。凝集沈降した固形物を回収し、回収した固形物の量、沈降後の含水固形物中のリン量及びク溶性リン量を測定した。サンプルは、鉄鋼スラグ単位重量当りの塩酸量を2.5~40mol/kgの範囲で5つのサンプルを用意した。
 沈降後の含水固形物中のリン量はモリブデンブルー法により測定した。ク溶性リン量は、2%クエン酸溶液によって固形物から抽出した抽出物の質量を測定し、この抽出物中に含まれるク溶性リン量を算出した。なお、ク溶性リン量の測定にあたっては「肥料等試験法(2013)独立行政法人農林水産消費安全技術センター(http://www.famic.go.jp/ffis/fert/bunseki/sub9_shiken2013.html)」に準じて行った。算出したク溶性リン量は、下記式(4)及び(5)において、ク溶性リン含有率及び回収リン中のク溶性リン含有率を求める際に用いた。
 また、以後の実験例においても上記と同様にして測定し、算出した。
(Experimental example 2)
In order to investigate the relationship between the amount of hydrochloric acid per unit weight of steel slag, the content of soluble phosphorus in the recovered phosphorus, the content of soluble phosphorus and the recovered amount of phosphorus per steel slag, Experimental Example 2 shown below was performed.
Solid-liquid ratio of steel slag containing 4% P 2 O 5 , calcium content 40% and particle size 0.125 mm, and hydrochloric acid having concentrations of 0.5N, 1.0N and 2.0N kg: L) were mixed at 1: 5, 1:10 and 1:20 and stirred for 60 minutes. Mix the amount of calcium in the slag and the amount of phosphorus in the model solution with a phosphorus concentration of 150 mg / L so that the Ca / P ratio is 3.0, adjust the pH to 8.5, and stir for 60 minutes. After mixing, the mixture was allowed to stand for 5 minutes to coagulate and settle the solid matter. The aggregated and settled solid was collected, and the amount of the collected solid, the amount of phosphorus in the hydrous solid after sedimentation, and the amount of soluble phosphorus were measured. Five samples were prepared in the range of 2.5 to 40 mol / kg of hydrochloric acid per unit weight of steel slag.
The amount of phosphorus in the water-containing solid after settling was measured by the molybdenum blue method. The amount of ku-soluble phosphorus was determined by measuring the mass of the extract extracted from the solid with a 2% citric acid solution and calculating the amount of ku-soluble phosphorus contained in the extract. In addition, in the measurement of the amount of soluble phosphorus, “Fertilizer test method (2013) National Agriculture, Forestry and Fisheries Consumption Safety Technology Center (http://www.famic.go.jp/ffis/fert/bunseki/sub9_shiken2013.html) It went according to. The calculated amount of soluble phosphorus was used in the following formulas (4) and (5) to obtain the soluble phosphorus content and the soluble phosphorus content in the recovered phosphorus.
In the following experimental examples, measurement and calculation were performed in the same manner as described above.
 鉄鋼スラグ単位重量当たりの塩酸量、下記式(3)によって求めた鉄鋼スラグ当りのリン回収量、下記式(5)によって求めたク溶性リン含有率及び下記式(6)によって求めた回収リン中のク溶性リン含有率の関係を図4に示す。図4によると、鉄鋼スラグ当たりのリン回収量及びク溶性リン含有率は、鉄鋼スラグ単位重量当たりの塩酸量の値が10mol/kg付近で最大となる。鉄鋼スラグ単位重量当たりの塩酸量が10mol/kgより小さくなると、リンの回収量、回収リン中のク溶性リン含有率及びク溶性リン含有率が低下する。また、鉄鋼スラグ単位重量当たりの塩酸量が10mol/Lより大きくなると、リンの回収量、回収リン中のク溶性リン含有率及びク溶性リン含有率が低下することが分かる。また、回収リン中のク溶性リン含有率は、鉄鋼スラグ単位重量当たりの塩酸量が10~25mol/Lの範囲でほぼ100%の値をとり、ク溶性リン含有率は、5~40mol/Lの範囲で15%以上の値をとっている。 The amount of hydrochloric acid per unit weight of steel slag, the amount of phosphorus recovered per steel slag determined by the following equation (3), the content of soluble phosphorus determined by the following equation (5), and the amount of phosphorus recovered by the following equation (6) FIG. 4 shows the relationship of the content of soluble phosphorus. According to FIG. 4, the amount of phosphorus recovered per steel slag and the soluble phosphorus content are maximum when the value of the amount of hydrochloric acid per unit weight of steel slag is around 10 mol / kg. If the amount of hydrochloric acid per unit weight of steel slag is less than 10 mol / kg, the recovered amount of phosphorus, the content of soluble phosphorus in the recovered phosphorus, and the content of soluble phosphorus will decrease. Moreover, when the amount of hydrochloric acid per steel slag unit weight becomes larger than 10 mol / L, it turns out that the collection | recovery amount of phosphorus, the soluble phosphorus content rate in a recovery phosphorus, and a soluble phosphorus content rate fall. Further, the content of the soluble phosphorus in the recovered phosphorus takes a value of almost 100% within the range of the amount of hydrochloric acid per unit weight of the steel slag of 10 to 25 mol / L, and the content of the soluble phosphorus is 5 to 40 mol / L. In the range of 15% or more.
 鉄鋼スラグ当りのリン回収量=リン回収量/投入スラグ量 …(3) ・ Phosphorus recovery amount per steel slag = Phosphorus recovery amount / Input slag amount (3)
 ただし、式(3)におけるリン回収量は、回収した沈降後の含水固形物中のリン量である。 However, the phosphorus recovery amount in the formula (3) is the phosphorus amount in the recovered water-containing solid material after settling.
 ク溶性リン含有率=ク溶性リン量/回収した固形物の量×100 …(4) Ku-soluble phosphorus content = ku-soluble phosphorus amount / amount of collected solid x 100 (4)
 回収リン中のク溶性リン含有率=ク溶性リン量/回収した全リン量×100 …(5) Quantitative phosphorus content in recovered phosphorus = amount of soluble phosphorus / total amount of recovered phosphorus x 100 ... (5)
(実験例3)
 次に、塩酸水溶液濃度と、鉄鋼スラグ当りのリン回収量及びク溶性リン含有率との関係を調べるため、以下の実験例3を行った。
 Pを4%含有し、カルシウム含有率が40%及び粒径が0.125mmの鉄鋼スラグと、濃度が0.5N、1.0N及び2.0Nの塩酸とを、固液比(kg:L)が1:5、1:10及び1:20となるように混合し、60分間撹拌混合した。スラグ中のカルシウム量と、リン濃度が150mg/Lのモデル液中のリン量とを、Ca/P比率が3.0となるように混合し、pHを8.5に調整し、60分間撹拌混合した後、5分間静置し、固形物を凝集沈降させた。凝集沈降した固形物を回収し、実験例2と同様にして、沈降後の含水固形物中のリン量及びク溶性リン量を測定した。
(Experimental example 3)
Next, in order to investigate the relationship between the concentration of aqueous hydrochloric acid, the amount of phosphorus recovered per steel slag, and the content of soluble phosphorus, the following Experimental Example 3 was performed.
Solid-liquid ratio of steel slag containing 4% P 2 O 5 , calcium content 40% and particle size 0.125 mm, and hydrochloric acid having concentrations of 0.5N, 1.0N and 2.0N kg: L) were mixed at 1: 5, 1:10 and 1:20, and stirred and mixed for 60 minutes. Mix the amount of calcium in the slag and the amount of phosphorus in the model solution with a phosphorus concentration of 150 mg / L so that the Ca / P ratio is 3.0, adjust the pH to 8.5, and stir for 60 minutes. After mixing, the mixture was allowed to stand for 5 minutes to coagulate and settle the solid matter. The coagulated and settled solid was collected, and the amount of phosphorus and the amount of soluble phosphorus in the hydrous solid after sedimentation were measured in the same manner as in Experimental Example 2.
 塩酸水溶液濃度と、前記式(3)によって求めた鉄鋼スラグ当りのリン回収量及び前記式(4)によって求めたク溶性リン含有率との関係を図5に示す。図5によると塩酸水溶液濃度が1N付近でリン回収量及びク溶性リン含有率が最大となる。塩酸水溶液濃度が1Nより大きいと、リン回収量及びク溶性リン含有率が徐々に低下していくのに対し、塩酸水溶液濃度が1Nより小さいと、リン回収量及びク溶性リン含有率が急速に低下している。実用化する場合は、回収したリンの価値、スラグや塩酸の調達費等を総合的に勘案して最適な値を決めることになる。 FIG. 5 shows the relationship between the concentration of the hydrochloric acid aqueous solution, the amount of phosphorus recovered per steel slag determined by the equation (3), and the content of soluble phosphorus determined by the equation (4). According to FIG. 5, the phosphorus recovery amount and the soluble phosphorus content are maximized when the hydrochloric acid aqueous solution concentration is around 1N. When the hydrochloric acid aqueous solution concentration is higher than 1N, the phosphorus recovery amount and the soluble phosphorus content gradually decrease, whereas when the hydrochloric acid aqueous solution concentration is lower than 1N, the phosphorus recovered amount and the soluble phosphorus content rapidly increase. It is falling. In practical use, the optimum value is determined by comprehensively considering the value of the collected phosphorus, the procurement cost of slag and hydrochloric acid, etc.
(実験例4)
 鉄鋼スラグと塩酸とを撹拌混合する際の、カルシウム溶出反応時間とカルシウム溶出率との関係を調べるため、以下に示す実験例4を行った。
 Pを4%含有し、カルシウム含有率が40%及び粒径が0.125mmの鉄鋼スラグと、濃度が1.0Nの塩酸とを、固液比が1:10となるように混合し、60分間撹拌し、各時間におけるカルシウム溶出量を測定した。
(Experimental example 4)
In order to investigate the relationship between the calcium elution reaction time and the calcium elution rate when stirring and mixing steel slag and hydrochloric acid, Experimental Example 4 shown below was performed.
Mixing steel slag containing 4% P 2 O 5 with a calcium content of 40% and a particle size of 0.125 mm, and hydrochloric acid with a concentration of 1.0 N so that the solid-liquid ratio is 1:10. The mixture was stirred for 60 minutes, and the amount of calcium elution at each time was measured.
 カルシウム溶出反応時間とカルシウム溶出率との関係を図6に示す。前記実験例2で示したスラグ単位重量当たりの塩酸量の最適値(10mol/kg)と、前記実験例3で示した塩酸水溶液濃度の最適値(1N)によるカルシウムの溶出は速やかに進行し、2分程度でほぼカルシウム溶出率は飽和し、5分後には完全に飽和している。従って、鉄鋼スラグと塩酸との混合時間は、混合比や塩酸濃度にもよるが、1分以上が好ましく、2分以上がより好ましく、5分以上であれば充分であることがわかる。 The relationship between calcium elution reaction time and calcium elution rate is shown in FIG. Calcium elution rapidly proceeds with the optimum value (10 mol / kg) of the amount of hydrochloric acid per unit weight of slag shown in Experimental Example 2 and the optimal value (1N) of the aqueous hydrochloric acid concentration shown in Experimental Example 3; The calcium elution rate is almost saturated in about 2 minutes, and is completely saturated in 5 minutes. Therefore, the mixing time of the steel slag and hydrochloric acid depends on the mixing ratio and hydrochloric acid concentration, but is preferably 1 minute or longer, more preferably 2 minutes or longer, and 5 minutes or longer is sufficient.
(実験例5)
 次に、鉄鋼スラグの粒径と、リン除去率、リン沈降率、リン回収率、ク溶性リン含有率及び上澄み液スラグスラリー中のリン濃度との関係を調べるため、以下に示す実験例5を行った。
 Pを4%含有し、カルシウム含有率が40%及び粒径が0.125mm、0.3mm、0.5mmの鉄鋼スラグと、濃度が0.5N、1.0N及び2.0Nの塩酸とを、固液比が1:10となるように混合し、60分間撹拌した。スラグ中のカルシウム量と、リン濃度が150mg/Lのモデル液中のリン量とを、Ca/P比率が3.0となるように混合し、pHを8.5に調整し、60分間撹拌混合した後、5分間静置し、固形物を凝集沈降させた。上澄み液中水溶性リン濃度を測定した。また、実験例2と同様にして、回収した固形物中のリン量及び固形物中のク溶性リン量を測定した。
(Experimental example 5)
Next, in order to investigate the relationship between the particle size of steel slag, the phosphorus removal rate, the phosphorus sedimentation rate, the phosphorus recovery rate, the soluble phosphorus content, and the phosphorus concentration in the supernatant liquid slag slurry, Experimental Example 5 shown below is performed. went.
Steel slag containing 4% P 2 O 5 with a calcium content of 40% and particle sizes of 0.125 mm, 0.3 mm, and 0.5 mm, and concentrations of 0.5 N, 1.0 N, and 2.0 N Hydrochloric acid was mixed at a solid-liquid ratio of 1:10 and stirred for 60 minutes. Mix the amount of calcium in the slag and the amount of phosphorus in the model solution with a phosphorus concentration of 150 mg / L so that the Ca / P ratio is 3.0, adjust the pH to 8.5, and stir for 60 minutes. After mixing, the mixture was allowed to stand for 5 minutes to coagulate and settle the solid matter. The water-soluble phosphorus concentration in the supernatant was measured. Further, in the same manner as in Experimental Example 2, the amount of phosphorus in the collected solid and the amount of soluble phosphorus in the solid were measured.
 鉄鋼スラグの粒径と、下記式(6)によって求めたリン除去率、前記式(2)によって求めたリン沈降率、下記式(7)によって求めたリン回収率、前記式(4)によって求めたク溶性リン含有率及び上澄みスラグスラリー中のリン濃度との関係を図7に示す。図7によると、リン除去率はスラグ粒径に依らないが、スラグ粒径が0.3mmより小さくなると、リン沈降率及びリン回収率が急激に高くなり、上澄み液スラグスラリー中のリン濃度は急激に低くなる(すなわち沈降しやすくなる)。また、0.3mmより大きくなると、比較的緩やかにリン沈降率及びリン回収率が低くなり、上澄み液スラグスラリー中のリン濃度は緩やかに高くなる。固形物中のク溶性リン含有率は、スラグ粒径が小さくなるに従って減少しているが、いずれの粒径においても、そのまま肥料として使用する場合の規格値であるク溶性リン含有率15質量%以上の数値を示している。したがって、除去したリンを沈降させて効率よく回収するには、スラグ粒径を0.3mm以下に細かく粉砕することが好ましいことがわかる。 The particle size of steel slag, the phosphorus removal rate determined by the following equation (6), the phosphorus sedimentation rate determined by the above equation (2), the phosphorus recovery rate determined by the following equation (7), and the above equation (4) FIG. 7 shows the relationship between the soluble phosphorus content and the phosphorus concentration in the supernatant slag slurry. According to FIG. 7, the phosphorus removal rate does not depend on the slag particle size, but when the slag particle size is smaller than 0.3 mm, the phosphorus sedimentation rate and the phosphorus recovery rate increase rapidly, and the phosphorus concentration in the supernatant liquid slag slurry is It drops rapidly (ie, it tends to settle). On the other hand, when it is larger than 0.3 mm, the phosphorus sedimentation rate and the phosphorus recovery rate are relatively slowly lowered, and the phosphorus concentration in the supernatant liquid slag slurry is gradually increased. The soluble phosphorus content in solids decreases as the slag particle size decreases, but at any particle size, the soluble phosphorus content is 15% by mass, which is the standard value when used as a fertilizer as it is. The above numerical values are shown. Therefore, it is found that it is preferable to finely pulverize the slag particle size to 0.3 mm or less in order to allow the removed phosphorus to settle and recover efficiently.
 リン除去率=(モデル液中のリン濃度-上澄み液中水溶性リン濃度)/モデル液中のリン濃度×100 …(6) Phosphorus removal rate = (Phosphorus concentration in model solution−Water-soluble phosphorus concentration in supernatant) / Phosphorus concentration in model solution × 100 (6)
 リン回収率=沈降後の含水固形物中の全リン量/(モデル液中のリン濃度×モデル液量+投入スラグ中のリン量)×100 …(7) Phosphorus recovery rate = total phosphorus amount in hydrous solids after settling / (phosphorus concentration in model liquid x model liquid amount + phosphorus amount in input slag) x 100 ... (7)
(実験例6)
 次に、Ca/P比率と、リン除去率及びク溶性リン含有率との関係を調べるため、以下の実験例6を行った。
 Pを4%含有し、カルシウム含有率が40%及び粒径が0.125mmの鉄鋼スラグと、濃度が1Nの塩酸とを固液比が1:10となるように混合し、60分間撹拌した。スラグ中のカルシウム量と、リン濃度が150mg/Lのモデル液中のリン量とを、Ca/P比率が2.0、2.5、3.0、3.5及び4.0となるように混合し、pHを8.5に調整し、60分間撹拌混合した後、5分間静置し、固形物を凝集沈降させた。他の実験例と同様にして、凝集沈降した固形物の量、ク溶性リン量及び上澄み液中水溶性リン濃度を測定した。モデル液中のリン濃度を固定し、使用スラグ量と使用塩酸量を調整し、Ca/P比率を変化させた。
(Experimental example 6)
Next, in order to investigate the relationship between the Ca / P ratio, the phosphorus removal rate, and the soluble phosphorus content, Experimental Example 6 below was performed.
Steel slag containing 4% P 2 O 5 and having a calcium content of 40% and a particle size of 0.125 mm was mixed with hydrochloric acid having a concentration of 1N so that the solid-liquid ratio was 1:10. Stir for minutes. The amount of calcium in the slag and the amount of phosphorus in the model solution having a phosphorus concentration of 150 mg / L so that the Ca / P ratio is 2.0, 2.5, 3.0, 3.5, and 4.0. After adjusting the pH to 8.5, stirring and mixing for 60 minutes, the mixture was allowed to stand for 5 minutes to coagulate and settle the solid matter. In the same manner as in the other experimental examples, the amount of solid matter that was coagulated and precipitated, the amount of soluble phosphorus, and the concentration of water-soluble phosphorus in the supernatant were measured. The phosphorus concentration in the model solution was fixed, the amount of slag used and the amount of hydrochloric acid used were adjusted, and the Ca / P ratio was changed.
 Ca/P比率と、前記式(6)によって求めたリン除去率及び前記式(4)によって求めたク溶性リン含有率との関係を図8に示す。Ca/P比率の増加に伴いリンの除去率は上昇する一方、ク溶性リン含有率は減少する。Ca/P比率は2~4の範囲が好ましいことがわかる。また、回収物をそのまま肥料用途に向けるには、ク溶性リン含有率が15質量%以上必要であること及びリン除去率確保のため、Ca/P比率は3程度が好ましいことがわかる。 FIG. 8 shows the relationship between the Ca / P ratio, the phosphorus removal rate determined by the equation (6), and the soluble phosphorus content determined by the equation (4). As the Ca / P ratio increases, the phosphorus removal rate increases while the soluble phosphorus content decreases. It can be seen that the Ca / P ratio is preferably in the range of 2-4. Moreover, in order to direct the recovered material for fertilizer use as it is, it is understood that the soluble phosphorus content is required to be 15% by mass or more and that the Ca / P ratio is preferably about 3 in order to secure the phosphorus removal rate.
(実験例7)
 次に、リン回収反応時間とリン除去率との関係を調べるため、以下に示す実験例7を行った。
 Pを4%含有し、カルシウム含有率が40%及び粒径が0.125mmの鉄鋼スラグと、濃度が1Nの塩酸とを、固液比が1:10となるように混合し、60分間撹拌した。スラグ中のカルシウム量と、リン濃度が150mg/Lのモデル液中のリン量とを、Ca/P比率が3.0となるように混合し、pHを8.5に調整し、60分間撹拌混合した後、5分間静置し、各時間における上澄み液を回収し、上澄み液中水溶性リン濃度を測定した。
(Experimental example 7)
Next, in order to examine the relationship between the phosphorus recovery reaction time and the phosphorus removal rate, Experimental Example 7 shown below was performed.
Steel slag containing 4% P 2 O 5 and having a calcium content of 40% and a particle size of 0.125 mm and hydrochloric acid having a concentration of 1N are mixed so that the solid-liquid ratio is 1:10. Stir for 60 minutes. Mix the amount of calcium in the slag and the amount of phosphorus in the model solution with a phosphorus concentration of 150 mg / L so that the Ca / P ratio is 3.0, adjust the pH to 8.5, and stir for 60 minutes. After mixing, the mixture was allowed to stand for 5 minutes, the supernatant liquid at each time was collected, and the water-soluble phosphorus concentration in the supernatant liquid was measured.
 リン回収反応時間と、前記式(6)によって求めたリン除去率との関係を図9に示す。モデル液中のリンはスラグスラリーと速やかに反応し、5分の反応でリン除去率が85%以上に到達し、20分の反応でリンの除去率は最大値に達することが分かる。したがって撹拌時間は、5分以上が好ましいことがわかる。 FIG. 9 shows the relationship between the phosphorus recovery reaction time and the phosphorus removal rate determined by the above equation (6). It can be seen that phosphorus in the model solution reacts quickly with the slag slurry, the phosphorus removal rate reaches 85% or more after 5 minutes reaction, and the phosphorus removal rate reaches the maximum value after 20 minutes reaction. Therefore, it can be seen that the stirring time is preferably 5 minutes or more.
(実験例8)
 次に、スラグスラリーとモデル液とを撹拌混合する際のpHと、リン回収率との関係を調べるため、以下に示す実験例8を行った。
 Pを4%含有し、カルシウム含有率が40%及び粒径が0.125mmの鉄鋼スラグと、塩酸濃度が1Nの塩酸とを固液比が1:10となるように混合し、60分間撹拌した。スラグ中のカルシウム量と、リン濃度が150mg/Lのモデル液中のリン量とを、Ca/P比率が3.0となるように混合し、pHを未調整の7.4から8.0、8.5及び9.0に調整し、60分間撹拌混合した後、5分間静置し、固形物を凝集沈降させた。撹拌混合時のpHは、5mol/LのNaOH水溶液を添加し、変化させた。凝集沈降した固形物を回収し、固形物中のリン量を測定した。
(Experimental example 8)
Next, Experimental Example 8 shown below was performed in order to investigate the relationship between the pH at the time of stirring and mixing the slag slurry and the model liquid and the phosphorus recovery rate.
Steel slag containing 4% of P 2 O 5 , calcium content of 40% and particle size of 0.125 mm, and hydrochloric acid having a hydrochloric acid concentration of 1N are mixed so that the solid-liquid ratio is 1:10. Stir for 60 minutes. The amount of calcium in the slag and the amount of phosphorus in the model solution having a phosphorus concentration of 150 mg / L are mixed so that the Ca / P ratio is 3.0, and the pH is not adjusted from 7.4 to 8.0. 8.5 and 9.0, and after stirring and mixing for 60 minutes, the mixture was allowed to stand for 5 minutes to coagulate and settle the solid matter. The pH at the time of stirring and mixing was changed by adding a 5 mol / L NaOH aqueous solution. The coagulated and settled solid was collected and the amount of phosphorus in the solid was measured.
 pH及び前記式(7)によって求めたリン回収率の関係を図10に示す。pHが8.4付近にリン回収率の最大値がある。pHが7.7~9.0の範囲では、リン回収率が70%より大きくなり、8.0~8.7の範囲では、リン回収率が80%より大きくなることが分かる。 FIG. 10 shows the relationship between the pH and the phosphorus recovery rate determined by the equation (7). There is a maximum value of phosphorus recovery near pH 8.4. It can be seen that when the pH is in the range of 7.7 to 9.0, the phosphorus recovery rate is greater than 70%, and in the range of 8.0 to 8.7, the phosphorus recovery rate is greater than 80%.
 次に、鉄鋼スラグの残渣が凝集沈降に寄与していることを調べるため、以下の実施例A及び比較例Bを行った。
(実施例A)
 質量%でPを4%含み、カルシウム含有率が40%であり、粒径が0.125mmの鉄鋼スラグ0.5gに1.3mol/Lの塩酸水溶液を5ml添加し、常温で60分間激しく撹拌することで、鉄鋼スラグ中のカルシウムが溶出されたスラグスラリーを得た。スラグスラリーには、鉄鋼スラグの残渣が含まれていた。
 次いで、モデル液として、KHPOを392mg/Lの濃度で含み、NHClを1.86g/Lの濃度で含み、NaHCOを3.36g/Lの濃度で含むモデル液を用意した。
 このモデル液500mlに、先に調製したスラグスラリーの全量を添加し、添加直後に1mol/LのNaOH水溶液を用いてpHを8.5に調整し、0分、5分、20分及び60分の水準で撹拌し、各撹拌時間において液を2mlサンプリングし、孔径0.22μmのシリンジフィルターでろ過した。ろ過後のろ液中の水溶性リン濃度を、モリブデンブルー法により測定した。そして、ろ液中の水溶性リン濃度から、下記式(8)によってリン除去率を求めた。結果を表1、図11及び図12に示す。
Next, in order to investigate whether the residue of steel slag contributed to coagulation sedimentation, the following Example A and Comparative Example B were performed.
(Example A)
5 % of a 1.3 mol / L hydrochloric acid aqueous solution was added to 0.5 g of steel slag having a mass percentage of 4% P 2 O 5 , a calcium content of 40%, and a particle size of 0.125 mm. By vigorously stirring for a minute, a slag slurry from which calcium in the steel slag was eluted was obtained. The slag slurry contained steel slag residues.
Then, as a model solution, a model solution containing KH 2 PO 4 at a concentration of 392 mg / L, NH 4 Cl at a concentration of 1.86 g / L, and NaHCO 3 at a concentration of 3.36 g / L was prepared. .
To 500 ml of this model solution, the entire amount of the slag slurry prepared above is added, and immediately after the addition, the pH is adjusted to 8.5 using a 1 mol / L NaOH aqueous solution, and 0 minutes, 5 minutes, 20 minutes and 60 minutes. In each stirring time, 2 ml of the liquid was sampled and filtered through a syringe filter having a pore size of 0.22 μm. The water-soluble phosphorus concentration in the filtrate after filtration was measured by the molybdenum blue method. And the phosphorus removal rate was calculated | required by following formula (8) from the water-soluble phosphorus density | concentration in a filtrate. The results are shown in Table 1, FIG. 11 and FIG.
 リン除去率(%)={(PO-P)-(PO-P)}/(PO-P)×100 …(8) Phosphorus removal rate (%) = {(PO 4 −P) 0 − (PO 4 −P) x } / (PO 4 −P) 0 × 100 (8)
ただし、式(8)における(PO-P)及び(PO-P)は以下の通りである。
(PO-P):撹拌0分のろ液中の水溶性リン濃度
(PO-P):撹拌時間x分のろ液中の水溶性リン濃度(ただし、xは5分、20分、60分)
However, (PO 4 -P) 0 and (PO 4 -P) x in the formula (8) are as follows.
(PO 4 -P) 0 : Concentration of water-soluble phosphorus in the filtrate with stirring 0 minutes (PO 4 -P) x : Concentration of water-soluble phosphorus in the filtrate with stirring time x minutes (where x is 5 minutes, 20 Min, 60 min)
 また、60分間撹拌した撹拌液の全量(約500ml)をメスシリンダーに素早く移し、5分間凝集沈降させた後、上澄み液400mlをサイフォンで取り出した。取り出した上澄み液中の全リン量を測定した。そして、モデル液中のリン量から上澄み液中のリン量を差し引くことで、メスシリンダー中に残された沈降物を含む残液100ml中のリン量を算出した。更に、下記式(9)に基づきリンの沈降率を求めた。結果を表2及び図13に示す。 Further, the entire amount (about 500 ml) of the stirring liquid stirred for 60 minutes was quickly transferred to a graduated cylinder and coagulated and settled for 5 minutes, and then 400 ml of the supernatant liquid was taken out by siphon. The total phosphorus amount in the removed supernatant was measured. Then, by subtracting the phosphorus amount in the supernatant liquid from the phosphorus amount in the model liquid, the phosphorus amount in 100 ml of the residual liquid containing the sediment left in the graduated cylinder was calculated. Furthermore, the precipitation rate of phosphorus was calculated | required based on following formula (9). The results are shown in Table 2 and FIG.
 リン沈降率(%)=残液100ml中のリン量/モデル液中のリン量×100 …(9) Phosphorus sedimentation rate (%) = phosphorus amount in 100 ml of residual liquid / phosphorus amount in model solution × 100 (9)
(比較例B)
 実施例Aと同様にして、鉄鋼スラグ中のカルシウムが溶出されたスラグスラリーとし、このスラグスラリーから鉄鋼スラグの残渣を除去して上澄み液を得た。
 また、実施例Aと同様にして、モデル液を用意した。
 このモデル液500mlに、先に調製したスラリーの上澄み液を添加し、添加直後に1mol/LのNaOH水溶液を用いてpHを8.5に調整し、0分、5分、20分及び60分の水準で撹拌した。以後、実施例Aと同様にして、リン濃度、リン除去率及びリン沈降率を求めた。結果を表1、表2及び図11~13に示す。
(Comparative Example B)
In the same manner as in Example A, a slag slurry from which calcium in the steel slag was eluted was obtained, and the residue of the steel slag was removed from the slag slurry to obtain a supernatant.
A model solution was prepared in the same manner as in Example A.
To the 500 ml of this model solution, the supernatant of the slurry prepared previously is added, and immediately after the addition, the pH is adjusted to 8.5 using a 1 mol / L NaOH aqueous solution, and 0 minutes, 5 minutes, 20 minutes and 60 minutes. Stir at the level of. Thereafter, in the same manner as in Example A, the phosphorus concentration, phosphorus removal rate, and phosphorus precipitation rate were determined. The results are shown in Tables 1 and 2 and FIGS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、図11~図13に示すように、実施例Aは比較例Bに比べて、リンの除去率が高くなっていることがわかる。これは、実施例Aでは、鉄鋼スラグの残渣が含まれていたため、リン酸カルシウムの凝集沈降が効率よく行われたためである。また、表2及び図13に示すように、比較例Bでは、リンの沈降率が39%程度であったのに対し、実施例Aではリン沈降率が69%に達した。このように、実施例Aでは、リンを比較的短時間で凝集沈降できていることがわかる。 As shown in Table 1 and FIGS. 11 to 13, it can be seen that Example A has a higher phosphorus removal rate than Comparative Example B. This is because in Example A, the residue of iron and steel slag was contained, so that the calcium phosphate coagulation sedimentation was performed efficiently. Further, as shown in Table 2 and FIG. 13, in Comparative Example B, the phosphorus precipitation rate was about 39%, whereas in Example A, the phosphorus precipitation rate reached 69%. Thus, in Example A, it can be seen that phosphorus can be coagulated and settled in a relatively short time.
(実験例9)
 次に、固形物の沈降時間と固形物界面高さとの関係を調べるため、実験例9を行った。
 Pを4%含有し、カルシウム含有率が40%及び粒径が0.125mmの鉄鋼スラグと、濃度が1Nの塩酸とを固液比が1:10となるように混合し、60分間撹拌した。スラグ中のカルシウム量と、リン濃度が150mg/Lのモデル液中のリン量とを、Ca/P比率が3.0となるように混合し、pHを8.5に調整し、内径が64mmの1000mLメスシリンダー内で60分間撹拌混合し、静置した。凝集した固形物の界面高さを3水準とり、各水準の界面高さを一分ごとに測定した。結果を図14に示す。
(Experimental example 9)
Next, Experimental Example 9 was performed in order to investigate the relationship between the solid sedimentation time and the solid interface height.
Steel slag containing 4% P 2 O 5 and having a calcium content of 40% and a particle size of 0.125 mm was mixed with hydrochloric acid having a concentration of 1N so that the solid-liquid ratio was 1:10. Stir for minutes. The amount of calcium in the slag and the amount of phosphorus in the model solution having a phosphorus concentration of 150 mg / L are mixed so that the Ca / P ratio is 3.0, the pH is adjusted to 8.5, and the inner diameter is 64 mm. The mixture was stirred and mixed in a 1000 mL graduated cylinder for 60 minutes and allowed to stand. The interface height of the aggregated solid was taken at three levels, and the interface height at each level was measured every minute. The results are shown in FIG.
 図14によると、いずれの水準においても凝集物は速やかに沈降し、7分前後で沈降が完了している。実機での沈降時間は、リン回収反応装置2の大きさにもよるが、30分以上であれば十分と考える。 According to FIG. 14, the aggregates settled rapidly at any level, and the sedimentation was completed in about 7 minutes. Although the sedimentation time in the actual machine depends on the size of the phosphorus recovery reactor 2, 30 minutes or more is considered sufficient.
(実験例10)
 次に、リン濃度と、リン除去率及びク溶性リン含有率との関係を調べるため、以下に示す実験例10を行った。
 Pを4%含有し、カルシウム含有率が40%及び粒径が0.125mm以下の鉄鋼スラグと、濃度が1Nの塩酸とを、固液比が1:10となるように混合し、60分間撹拌した。スラグ中のカルシウム量と、リン濃度が50mg/L、150mg/L、300mg/L及び600mg/Lの合成リン酸水中のリン量とを、Ca/P比率が3.0となるように混合し、pHを8.5に調整し、60分間撹拌混合した後、5分間静置し、固形物を凝集沈降させた。上澄み液中水溶性リン濃度及び回収した固形物中のク溶性リン量を測定した。また、被処理水として実際の下水を用いて同様の実験も行った。リン濃度が、109mg/L及び291mg/Lの下水を用いた。
(Experimental example 10)
Next, in order to investigate the relationship between phosphorus concentration, phosphorus removal rate, and soluble phosphorus content, Experimental Example 10 shown below was performed.
Mix steel slag containing 4% P 2 O 5 with a calcium content of 40% and a particle size of 0.125 mm or less, and hydrochloric acid with a concentration of 1 N so that the solid-liquid ratio is 1:10. For 60 minutes. The amount of calcium in the slag and the amount of phosphorus in the synthetic phosphoric acid water with the phosphorus concentrations of 50 mg / L, 150 mg / L, 300 mg / L and 600 mg / L are mixed so that the Ca / P ratio is 3.0. The pH was adjusted to 8.5, and the mixture was stirred and mixed for 60 minutes, and then allowed to stand for 5 minutes to coagulate and sediment the solid matter. The water-soluble phosphorus concentration in the supernatant and the amount of soluble phosphorus in the collected solid were measured. A similar experiment was also conducted using actual sewage as the treated water. Sewage with phosphorus concentrations of 109 mg / L and 291 mg / L was used.
 リン濃度と、前記式(6)によって求めたリン除去率及び前記式(4)によって求めたク溶性リン含有率との関係を図15に示す。リン濃度が50~600mg/Lにおいて、ク溶性リン含有率が15質量%以上を示している。凝集沈降した固形物をそのまま肥料として使用する場合の、ク溶性リン含有率の規格値は15質量%以上であることから、本実施例で使用したいずれのリン濃度でも有効であることが分かる。さらに、実際の下水を用いた実験の結果をみると、リン除去率及びク溶性リン含有率ともに、モデル液の結果と近い値であることから、被処理水は下水処理場内の幅広い下水に有効であると考える。 FIG. 15 shows the relationship between the phosphorus concentration, the phosphorus removal rate determined by the equation (6), and the soluble phosphorus content determined by the equation (4). When the phosphorus concentration is 50 to 600 mg / L, the soluble phosphorus content is 15% by mass or more. Since the standard value of the content of soluble phosphorus when using the coagulated and settled solid as it is as a fertilizer is 15% by mass or more, it is understood that any phosphorus concentration used in this example is effective. Furthermore, looking at the results of experiments using actual sewage, both the phosphorus removal rate and the soluble phosphorus content are close to the results of the model solution, so the treated water is effective for a wide range of sewage in the sewage treatment plant. I believe that.
(実験例11)
 前記実験例1~10、実施例A及び比較例Bでは、鉄鋼スラグとして、質量%でPを4%含み、カルシウム含有率が40%である鉄鋼スラグを用いた例である。そこで、化学成分の異なる鉄鋼スラグを用いて、リン除去率、リン沈降率及びク溶性リン含有率との関係を調べるため、以下に示す実験例11を行った。又、ごみ溶融炉スラグでも実験を行った。
 実験例11において使用した鉄鋼スラグは以下の通りである。これらは、製鉄所において副生する鉄鋼スラグとして代表的なものである。また、溶融スラグは可燃ごみなどをガス化溶融炉により処理した後に得られるスラグである。
(Experimental example 11)
In Experimental Examples 1 to 10, Example A and Comparative Example B, steel slag containing 4% by mass of P 2 O 5 and having a calcium content of 40% is used as the steel slag. Then, in order to investigate the relationship between phosphorus removal rate, phosphorus sedimentation rate, and soluble phosphorus content using steel slag having different chemical components, Experimental Example 11 shown below was performed. The experiment was also conducted in the waste melting furnace slag.
The steel slag used in Experimental Example 11 is as follows. These are typical steel slag by-produced in steelworks. Moreover, molten slag is slag obtained after processing combustible waste etc. with a gasification melting furnace.
 質量%でPを0%含み、カルシウム含有率が42%であり、塩基度が1.8であり、粒径0.125mmである鉄鋼スラグA。
 質量%でPを0%含み、カルシウム含有率が28%であり、塩基度が5.6であり、粒径0.125mmである鉄鋼スラグB。
 質量%でPを4%含み、カルシウム含有率が40%であり、塩基度が2.0であり、粒径0.125mmである鉄鋼スラグC。
 質量%でPを2%含み、カルシウム含有率が50%であり、塩基度が3.8であり、粒径0.125mmである鉄鋼スラグD。
 質量%でPを0%含み、カルシウム含有率が33%であり、塩基度が6.6であり、粒径0.125mmである鉄鋼スラグE。
 質量%でPを0%含み、カルシウム含有率が37%であり、塩基度が1.2であり、粒径0.125mmである溶融スラグ。
Steel slag A containing 0% P 2 O 5 by mass%, a calcium content of 42%, a basicity of 1.8, and a particle size of 0.125 mm.
Steel slag B containing 0% P 2 O 5 by mass%, a calcium content of 28%, a basicity of 5.6, and a particle size of 0.125 mm.
Steel slag C containing 4% P 2 O 5 by mass%, having a calcium content of 40%, a basicity of 2.0, and a particle size of 0.125 mm.
Steel slag D containing 2% P 2 O 5 by mass%, having a calcium content of 50%, a basicity of 3.8, and a particle size of 0.125 mm.
Steel slag E containing 0% P 2 O 5 by mass%, a calcium content of 33%, a basicity of 6.6, and a particle size of 0.125 mm.
A molten slag containing 0% P 2 O 5 by mass%, a calcium content of 37%, a basicity of 1.2, and a particle size of 0.125 mm.
 これら鉄鋼スラグと、濃度が1Nの塩酸とを固液比が1:10となるように混合し、60分間撹拌した。スラグ中のカルシウム量と、リン濃度が150mg/Lのモデル液中のリン量とを、Ca/P比率が3.0となるように混合し、pHを8.5に調整し、60分間撹拌混合した後、5分間静置し、固形物を凝集沈降させた。上澄み液中リン濃度及び凝集沈降した固形物中のリン量を測定した。各鉄鋼スラグのリン除去率、リン沈降率及びク溶性リン含有率を図16に示す。 These steel slag and hydrochloric acid having a concentration of 1N were mixed at a solid-liquid ratio of 1:10 and stirred for 60 minutes. Mix the amount of calcium in the slag and the amount of phosphorus in the model solution with a phosphorus concentration of 150 mg / L so that the Ca / P ratio is 3.0, adjust the pH to 8.5, and stir for 60 minutes. After mixing, the mixture was allowed to stand for 5 minutes to coagulate and settle the solid matter. The phosphorus concentration in the supernatant and the amount of phosphorus in the coagulated sediment were measured. FIG. 16 shows the phosphorus removal rate, phosphorus sedimentation rate, and soluble phosphorus content of each steel slag.
 実験例11で使用したいずれの鉄鋼スラグにおいても、リン除去率は85%以上を示していることから、製鉄所において副生する鉄鋼スラグはいずれも本システムに適用可能であることがわかる。また、リン除去率について本システムは有効であると考える。また、ク溶性リン含有率が15質量%以上を満足すれば、回収物をそのまま肥料用途に向けることができ、ク溶性リン含有率が15質量%未満のものも、配合肥料等で利用ができる。すなわち、回収物をそのまま肥料として使用する場合は、適用箇所、回収したリンの価値、鉄鋼スラグや塩酸の調達費等を総合的に勘案して決定すればよい。 In any steel slag used in Experimental Example 11, the phosphorus removal rate is 85% or more, which indicates that any steel slag by-produced in the steelworks can be applied to this system. In addition, this system is considered effective for phosphorus removal rate. In addition, if the content of soluble phosphorus satisfies 15% by mass or more, the recovered product can be directly used for fertilizer, and those having a soluble phosphorus content of less than 15% by mass can also be used in blended fertilizers and the like. . That is, when the collected material is used as it is as a fertilizer, it may be determined by comprehensively considering the application location, the value of collected phosphorus, the procurement cost of steel slag and hydrochloric acid, and the like.
 本発明によれば、リンを含む被処理水からリンを効率よく回収できる。
 すなわち、被処理水中に含まれていたリンは、酸によるカルシウム溶出後の鉄鋼スラグの残渣とともに凝集沈降して固形物として回収されるので、リンの効率的な回収が可能になる。ここで、例えばリンを含む鉄鋼スラグを使用する場合は、被処理水中のリンと鉄鋼スラグ中のリンを同時に回収できることから、リンが高い濃度で含まれているので、肥料、肥料原料または黄リン原料として好適に用いることができる。
According to the present invention, phosphorus can be efficiently recovered from water to be treated containing phosphorus.
That is, the phosphorus contained in the water to be treated is coagulated and settled together with the residue of the steel slag after the elution of calcium by the acid and recovered as a solid matter, so that the phosphorus can be efficiently recovered. Here, for example, when using steel slag containing phosphorus, since phosphorus in steel to be treated and phosphorus in steel slag can be recovered at the same time, since phosphorus is contained in a high concentration, fertilizer, fertilizer raw material or yellow phosphorus It can be suitably used as a raw material.
1  カルシウム溶出反応装置
2  リン回収反応装置
3  鉄鋼スラグ供給装置
4  酸供給装置
5  被処理水供給装置
6  脱水装置
7  処理水払出し装置
8  乾燥装置
9  pH調整装置
DESCRIPTION OF SYMBOLS 1 Calcium elution reaction apparatus 2 Phosphorus recovery reaction apparatus 3 Steel slag supply apparatus 4 Acid supply apparatus 5 To-be-processed water supply apparatus 6 Dehydration apparatus 7 Treated water discharge apparatus 8 Drying apparatus 9 pH adjustment apparatus

Claims (18)

  1.  酸と鉄鋼スラグとを混合し、前記鉄鋼スラグ中のカルシウムが溶出したスラグスラリーを調製するカルシウム溶出反応装置と、
     前記カルシウム溶出反応装置に前記鉄鋼スラグを供給する鉄鋼スラグ供給装置と、
     前記カルシウム溶出反応装置に前記酸を供給する酸供給装置と、
     前記スラグスラリーとリンを含む被処理水とを混合し、前記スラグスラリー中のカルシウムと前記被処理水中のリンとを反応させて、リン及びカルシウムを含む固形物を得るリン回収反応装置と、
     前記リン回収反応装置に前記被処理水を供給する被処理水供給装置と、
     前記被処理水供給後に前記リン回収反応装置内において生成した前記固形物を脱水する脱水装置と、
     前記被処理水供給後の前記リン回収反応装置内の上澄み水を系外に送り出す処理水払出し装置と、
     が備えられた被処理水中のリンの回収システム。
    A calcium elution reaction apparatus that mixes an acid and steel slag, and prepares a slag slurry from which calcium in the steel slag is eluted;
    A steel slag supply device for supplying the steel slag to the calcium elution reaction device;
    An acid supply device for supplying the acid to the calcium elution reaction device;
    A phosphorus recovery reaction device that mixes the slag slurry and water to be treated containing phosphorus, reacts calcium in the slag slurry with phosphorus in the water to be treated, and obtains a solid matter containing phosphorus and calcium;
    A treated water supply device for supplying the treated water to the phosphorus recovery reactor;
    A dehydrator for dehydrating the solid matter produced in the phosphorus recovery reactor after supplying the water to be treated;
    A treated water discharge device for sending the supernatant water in the phosphorus recovery reactor after supplying the treated water to the outside of the system;
    A system for recovering phosphorus in water to be treated.
  2.  前記脱水装置において脱水された前記固形物を乾燥させる乾燥装置が備えられた請求項1に記載の被処理水中のリンの回収システム。 The system for recovering phosphorus in water to be treated according to claim 1, further comprising a drying device for drying the solid matter dehydrated in the dehydrating device.
  3.  前記鉄鋼スラグに代えて、溶融スラグを用いる請求項1または請求項2に記載の被処理水中のリンの回収システム。 The system for recovering phosphorus in water to be treated according to claim 1 or 2, wherein molten slag is used in place of the steel slag.
  4.  鉄鋼スラグに酸を撹拌混合して、前記鉄鋼スラグ中のカルシウムを溶出させつつスラグスラリーを得る段階と、
     前記スラグスラリーにリンを含む被処理水を撹拌混合してから静置することにより、リンとカルシウムを含む化合物を形成させ、前記化合物を前記鉄鋼スラグの残渣とともに固形物として凝集沈降させる段階と、
     沈降させた前記固形物を回収する段階と、を備えた被処理水中のリンの回収方法。
    A step of stirring and mixing an acid with steel slag to obtain a slag slurry while eluting calcium in the steel slag;
    Stirring and mixing the water to be treated containing phosphorus in the slag slurry, and allowing to stand, thereby forming a compound containing phosphorus and calcium, and coagulating and precipitating the compound as a solid together with the steel slag residue;
    A step of recovering the solid matter settled, and a method of recovering phosphorus in the water to be treated.
  5.  沈降させた前記固形物を乾燥させる請求項4記載の被処理水中のリンの回収方法。 The method for recovering phosphorus in water to be treated according to claim 4, wherein the precipitated solid matter is dried.
  6.  前記鉄鋼スラグの塩基度が1~7の範囲である請求項4または請求項5記載の被処理水中のリンの回収方法。 The method for recovering phosphorus in water to be treated according to claim 4 or 5, wherein the basicity of the steel slag is in the range of 1 to 7.
  7.  塩酸添加前の前記鉄鋼スラグのカルシウム含有率が15~55質量%の範囲である請求項4乃至請求項6の何れか一項に記載の被処理水中のリンの回収方法。 The method for recovering phosphorus in water to be treated according to any one of claims 4 to 6, wherein a calcium content of the steel slag before addition of hydrochloric acid is in the range of 15 to 55 mass%.
  8.  塩酸添加前の鉄鋼スラグの平均粒径が0.3mm以下である請求項4乃至請求項7の何れか一項に記載の被処理水中のリンの回収方法。 The method for recovering phosphorus in water to be treated according to any one of claims 4 to 7, wherein an average particle diameter of the steel slag before addition of hydrochloric acid is 0.3 mm or less.
  9.  前記被処理水と前記スラグスラリーとを混合する際に、混合液のpHを7.7~9.0に調整する請求項4乃至請求項8の何れか一項に記載の被処理水中のリンの回収方法。 The phosphorus in the water to be treated according to any one of claims 4 to 8, wherein the pH of the liquid mixture is adjusted to 7.7 to 9.0 when the water to be treated and the slag slurry are mixed. Recovery method.
  10.  前記被処理水と前記スラグスラリーとを混合する際に、前記鉄鋼スラグ中のカルシウム量と前記被処理水中のリン量のモル比(Ca/P)が2以上4以下になるように調整する請求項4乃至請求項9の何れか一項に記載の被処理水中のリンの回収方法。 When mixing the water to be treated and the slag slurry, the molar ratio (Ca / P) of the amount of calcium in the steel slag and the amount of phosphorus in the water to be treated is adjusted to 2 or more and 4 or less. The method for recovering phosphorus in the water to be treated according to any one of claims 4 to 9.
  11.  前記鉄鋼スラグに前記塩酸を添加して前記スラグスラリーを得る際に、濃度が0.5N以上2.0N以下に調整された塩酸水溶液を用いる請求項4乃至請求項10の何れか一項に記載の被処理水中のリンの回収方法。 11. The aqueous hydrochloric acid solution having a concentration adjusted to 0.5 N or more and 2.0 N or less is used when the hydrochloric acid is added to the steel slag to obtain the slag slurry. To recover phosphorus in water to be treated.
  12.  前記鉄鋼スラグに前記塩酸を添加して前記スラグスラリーを得る際に、混合時間を30分以下とする請求項4乃至請求項11の何れか一項に記載の被処理水中のリンの回収方法。 The method for recovering phosphorus in water to be treated according to any one of claims 4 to 11, wherein when the hydrochloric acid is added to the steel slag to obtain the slag slurry, the mixing time is 30 minutes or less.
  13.  前記被処理水と前記スラグスラリーとの撹拌混合時間を5分以上とする請求項4乃至請求項12の何れか一項に記載の被処理水中のリンの回収方法。 The method for recovering phosphorus in water to be treated according to any one of claims 4 to 12, wherein a stirring and mixing time of the water to be treated and the slag slurry is 5 minutes or more.
  14.  前記リンを含む被処理水が生活排水または産業排水のうちの何れか一方または両方を含む請求項4乃至請求項13の何れか一項に記載の被処理水中のリンの回収方法。 The method for recovering phosphorus in water to be treated according to any one of claims 4 to 13, wherein the water to be treated containing phosphorus includes one or both of domestic wastewater and industrial wastewater.
  15.  前記鉄鋼スラグに代えて、溶融スラグを用いる請求項4乃至請求項14の何れか一項に記載の被処理水中のリンの回収方法。 The method for recovering phosphorus in water to be treated according to any one of claims 4 to 14, wherein molten slag is used in place of the steel slag.
  16.  請求項4乃至請求項15の何れか一項に記載の被処理水中のリンの回収方法によって得られた前記固形物を含むものである、肥料。 A fertilizer containing the solid matter obtained by the method for recovering phosphorus in water to be treated according to any one of claims 4 to 15.
  17.  請求項4乃至請求項15の何れか一項に記載の被処理水中のリンの回収方法によって得られた前記固形物を含むものである、肥料原料。 A fertilizer raw material containing the solid matter obtained by the method for recovering phosphorus in water to be treated according to any one of claims 4 to 15.
  18.  請求項4乃至請求項15の何れか一項に記載の被処理水中のリンの回収方法によって得られた前記固形物を含むものである、黄リン原料。 The yellow phosphorus raw material which contains the said solid substance obtained by the collection | recovery method of the phosphorus in the to-be-processed water as described in any one of Claims 4 thru | or 15.
PCT/JP2016/067383 2015-06-11 2016-06-10 System for recovering phosphorus from raw water to be treated, method for recovering phosphorus from raw water to be treated, fertilizer, raw material for fertilizer, and raw material for yellow phosphorus WO2016199896A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680033222.0A CN107683262A (en) 2015-06-11 2016-06-10 Recovery method, fertilizer and the fertilizer material and yellow phosphorus raw material of the recovery system of phosphorus in processed water, the phosphorus in processed water
JP2016541446A JP6060320B1 (en) 2015-06-11 2016-06-10 System for recovering phosphorus in treated water and method for collecting phosphorus in treated water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-118263 2015-06-11
JP2015118263 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016199896A1 true WO2016199896A1 (en) 2016-12-15

Family

ID=57503604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067383 WO2016199896A1 (en) 2015-06-11 2016-06-10 System for recovering phosphorus from raw water to be treated, method for recovering phosphorus from raw water to be treated, fertilizer, raw material for fertilizer, and raw material for yellow phosphorus

Country Status (3)

Country Link
JP (1) JP6060320B1 (en)
CN (2) CN107683262A (en)
WO (1) WO2016199896A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110375A1 (en) * 2016-12-14 2018-06-21 新日鉄住金エンジニアリング株式会社 Method for recovering phosphorus in water being treated
JP2020132445A (en) * 2019-02-14 2020-08-31 太平洋セメント株式会社 Method of producing nutrient supplying material
CN114684967A (en) * 2022-04-06 2022-07-01 深圳大学 Synergistic treatment method for calcareous solid waste and phosphorus-containing waste liquid and application of product thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110902663A (en) * 2019-10-31 2020-03-24 云南晋宁黄磷有限公司 Special equipment for refining yellow phosphorus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109191A (en) * 1981-12-23 1983-06-29 Nippon Kokan Kk <Nkk> Treatment for waste water containing phosphoric acid
JPH0417088B2 (en) * 1982-06-02 1992-03-25 Nippon Jiryoku Senko
JPH0891971A (en) * 1994-07-29 1996-04-09 Miyama Kk Manufacture of fertilizer
JP2002086139A (en) * 2000-09-13 2002-03-26 Kanta Ishii Water treating method, water treating agent and regenerating method of water treating agent
JP2003053379A (en) * 2001-06-05 2003-02-25 Nkk Corp Method of cleaning water and recovering underwater component
JP2003290783A (en) * 2002-04-01 2003-10-14 Sumitomo Osaka Cement Co Ltd Phosphoric acid removing agent and method for manufacturing the same, and method for removing phosphoric acid
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
JP2010104869A (en) * 2008-10-28 2010-05-13 Japan Organo Co Ltd Apparatus and method for treating phosphoric acid-containing water
JP2010270378A (en) * 2009-05-22 2010-12-02 Kobelco Eco-Solutions Co Ltd Method for recovering phosphorus from steelmaking slag
JP2012245474A (en) * 2011-05-27 2012-12-13 Metawater Co Ltd Method for recovering phosphorus from incinerated ash
JP2013006733A (en) * 2011-06-24 2013-01-10 Taiheiyo Cement Corp Method for recovery of phosphorus and using the phosphorus as fertilizer
JP2013027865A (en) * 2011-06-24 2013-02-07 Taiheiyo Cement Corp Method for recovering phosphorus and making fertilizer from phosphorus
JP2015091566A (en) * 2013-11-08 2015-05-14 太平洋セメント株式会社 Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341226A (en) * 2005-06-10 2006-12-21 Nippon Steel Corp Method for removing phosphorus from water
CN101239721B (en) * 2007-02-08 2010-11-03 朱成林 Method for preparing polysilicon ferric sulfate water purifying agent from steel slag and water slag
JP5594183B2 (en) * 2010-03-12 2014-09-24 Jfeスチール株式会社 Method for recovering iron and phosphorus from steelmaking slag and raw material for phosphate fertilizer
WO2012176579A1 (en) * 2011-06-24 2012-12-27 太平洋セメント株式会社 Method for recovering phosphorus and using same as fertilizer
EP2725001B1 (en) * 2011-06-27 2019-10-02 Taiheiyo Cement Corporation Phosphate fertilizer, and method for producing phosphate fertilizer

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109191A (en) * 1981-12-23 1983-06-29 Nippon Kokan Kk <Nkk> Treatment for waste water containing phosphoric acid
JPH0417088B2 (en) * 1982-06-02 1992-03-25 Nippon Jiryoku Senko
JPH0891971A (en) * 1994-07-29 1996-04-09 Miyama Kk Manufacture of fertilizer
JP2002086139A (en) * 2000-09-13 2002-03-26 Kanta Ishii Water treating method, water treating agent and regenerating method of water treating agent
JP2003053379A (en) * 2001-06-05 2003-02-25 Nkk Corp Method of cleaning water and recovering underwater component
JP2003290783A (en) * 2002-04-01 2003-10-14 Sumitomo Osaka Cement Co Ltd Phosphoric acid removing agent and method for manufacturing the same, and method for removing phosphoric acid
JP2009285636A (en) * 2008-05-30 2009-12-10 Onoda Chemical Industry Co Ltd Phosphorus recovery material, method of manufacturing the same, and phosphorus recovery method
JP2010104869A (en) * 2008-10-28 2010-05-13 Japan Organo Co Ltd Apparatus and method for treating phosphoric acid-containing water
JP2010270378A (en) * 2009-05-22 2010-12-02 Kobelco Eco-Solutions Co Ltd Method for recovering phosphorus from steelmaking slag
JP2012245474A (en) * 2011-05-27 2012-12-13 Metawater Co Ltd Method for recovering phosphorus from incinerated ash
JP2013006733A (en) * 2011-06-24 2013-01-10 Taiheiyo Cement Corp Method for recovery of phosphorus and using the phosphorus as fertilizer
JP2013027865A (en) * 2011-06-24 2013-02-07 Taiheiyo Cement Corp Method for recovering phosphorus and making fertilizer from phosphorus
JP2015091566A (en) * 2013-11-08 2015-05-14 太平洋セメント株式会社 Slurry for recovering phosphorus, method for preparing the slurry, and method for recovering phosphorus from phosphorus-containing waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110375A1 (en) * 2016-12-14 2018-06-21 新日鉄住金エンジニアリング株式会社 Method for recovering phosphorus in water being treated
JP2020132445A (en) * 2019-02-14 2020-08-31 太平洋セメント株式会社 Method of producing nutrient supplying material
JP7260320B2 (en) 2019-02-14 2023-04-18 太平洋セメント株式会社 Method for producing material for supplying nutrients to algae
CN114684967A (en) * 2022-04-06 2022-07-01 深圳大学 Synergistic treatment method for calcareous solid waste and phosphorus-containing waste liquid and application of product thereof

Also Published As

Publication number Publication date
JP6060320B1 (en) 2017-01-11
CN114014423A (en) 2022-02-08
CN107683262A (en) 2018-02-09
JPWO2016199896A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
US9561973B2 (en) Phosphate recovery from wastewater
JP6060320B1 (en) System for recovering phosphorus in treated water and method for collecting phosphorus in treated water
JP5201454B2 (en) Phosphorus recovery material and phosphorus recovery method
WO2012176579A1 (en) Method for recovering phosphorus and using same as fertilizer
EP3458412A1 (en) Production of a phosphate containing fertilizer
JP5930535B2 (en) Phosphorus recovery and fertilizer method
US20100284881A1 (en) Dephosphorization material, dephosphorization apparatus, and dephosphorization by-product
JP6376951B2 (en) Phosphorus recovery equipment and phosphorus recovery method
CN101774669A (en) Composite dephosphorizing agent for treating acidic wastewater containing phosphorus and preparation and application methods thereof
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP2019217423A (en) System of treating effluent or sludge containing high-concentration suspended matter
US8013204B2 (en) Use of partly prehydrated lime for separating a solid matter/liquid mixture, method for treating sludge and purified sludge obtained by said method
JPH09276604A (en) Flocculant
JP5997145B2 (en) Method and apparatus for treating organic wastewater and organic sludge
JP2009011914A (en) Selenium-containing wastewater treatment method and apparatus
JP2001347104A (en) Powdery decontaminant and method of decontaminating clean water and waste water
JP6197095B1 (en) Method for recovering phosphorus in treated water
JP4368159B2 (en) Method for treating wastewater containing phosphate
JP6406981B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JP7275618B2 (en) Method for treating slurry containing heavy metals
JP2015196146A (en) Phosphorus recovery material for phosphorus-containing water and phosphorus recovery method using the phosphorus recovery material
EP4299533A1 (en) A method for treating wastewaters from anaerobic digestion, a system for treating wastewaters, use of dry lime composition and a fertilizer product
JP2013000718A (en) Method and equipment for treating organic waste water and sludge
JP2005028246A (en) Treatment method for heavy metal-containing wastewater
JP2002086139A (en) Water treating method, water treating agent and regenerating method of water treating agent

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016541446

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807601

Country of ref document: EP

Kind code of ref document: A1