JP4029054B2 - Liquid purification device - Google Patents

Liquid purification device Download PDF

Info

Publication number
JP4029054B2
JP4029054B2 JP2003038979A JP2003038979A JP4029054B2 JP 4029054 B2 JP4029054 B2 JP 4029054B2 JP 2003038979 A JP2003038979 A JP 2003038979A JP 2003038979 A JP2003038979 A JP 2003038979A JP 4029054 B2 JP4029054 B2 JP 4029054B2
Authority
JP
Japan
Prior art keywords
liquid
purified
magnesium
iron
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003038979A
Other languages
Japanese (ja)
Other versions
JP2004216352A (en
Inventor
勝之 白井
康嗣 鈴木
公彦 岡上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta DuPont Inc
Original Assignee
Nitta Haas Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Haas Inc filed Critical Nitta Haas Inc
Priority to JP2003038979A priority Critical patent/JP4029054B2/en
Publication of JP2004216352A publication Critical patent/JP2004216352A/en
Application granted granted Critical
Publication of JP4029054B2 publication Critical patent/JP4029054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
この発明は、例えば、シリコンを鏡面研磨する際に使用する研磨液の排水等を浄化する液体浄化装置に関するものである。
【0002】
現在、シリコンを鏡面研磨する際に使用する研磨液中には、コロイダルシリカ等の微小粒子が含まれている。その粒径は0.15μm程度であり、その浄化は、ポリ塩化アルミ等の凝集剤を投入し、巨大な沈殿槽であるシックナーにおいて2時間〜3時間靜置し、数センチの上澄み液を得て放流している。
【0003】
【発明が解決しようとする課題】
しかしながら、2004年度から稼動する次世代半導体では、配線材料がアルミから銅に変更され、かつ、配線幅が0.13μmから0.09μmに縮小される。これに伴い、砥粒であるコロイダルシリカの粒径は、50nm以下の超微小粒子が使用されるに至り、これまでの如き凝集剤を投入する処置では、凝集沈澱速度が極めて遅くなり対応できなくなった。
このため、中空糸+減圧蒸留法、UF膜・MF膜を用いた浸透濾過法、セラミックフイルタを用いた浸透濾過法等が検討されているが、中空糸+減圧蒸留法を用いた処理は、装置が膨大となり、また、それ以外の方法も装置が膨大、かつ、十分な精度が得られない課題があった。
さらに、排水中に混入する銅イオンが除去できない課題があった。
このため、簡易な方法で、次世代半導体用コロイダルシリカ排水を浄化し、銅イオンも併せて除去できる装置の開発が望まれていた。
【0004】
この発明は上記の如き従来の要求を満たすためになされたもので、
〔請求項1〕の発明は、第一の工程において、マグネシュウム添加手段によって、被浄化対象物を含有する被浄化液体中に、40ppm以上の塩化マグネシュウムもしくは硫酸マグネシュウムを添加し、第二の工程において、被浄化液体を、少なくとも塩基性硫酸マグネシュウムと水酸化マグネシュウムとの結晶状繊維を集合して顆粒状に構成された吸着剤の相互間隙に通過させ、被浄化対象物を凝集させ、第三の工程において、凝集された被浄化対象物を、沈殿槽で沈澱除去するか、または、目の粗いフィルタ、もしくは、遠心分離機で除去する液体浄化装置を提供することを目的とする。
〔請求項2〕の発明は、第一の工程に、マグネシュウムの添加前もしくは添加後の被浄化液体のPH値を、PH9以上にするPHアルカリ調整手段を備え、凝集効果を高めた液体浄化装置を提供することを目的とする。
〔請求項3〕の発明は、マグネシュウム添加手段によって、被浄化液体中に添加される塩化マグネシュウムもしくは硫酸マグネシュウムの添加量を、40ppm〜150ppmとして、より凝集効果を高めた液体浄化装置を提供することを目的とする。
〔請求項4〕の発明は、第一の工程を、被浄化液体のPH値をPH3以下にするPH酸性調整手段と、被浄化液体に硫酸鉄もしくは塩化鉄を添加する鉄イオン添加手段と、PH3以下にされ、かつ、鉄イオンが添加された被浄化液体のPH値を、PH9以上にするPHアルカリ調整手段とで構成し、被浄化液体中の重金属イオンも併せて除去するようにした液体浄化装置を提供することを目的とする。
〔請求項5〕の発明は、鉄イオン添加手段によって被浄化液体中に添加される鉄イオンの添加量を、被浄化液体中の重金属イオンの1/2以上とした液体浄化装置を提供することを目的とする。
〔請求項6〕の発明は、鉄イオン添加手段によって被浄化液体中に鉄イオンの添加後、気泡混入手段によって、被浄化液体中に空気または酸素もしくはオゾンの気泡を混入させ、被浄化液体中の重金属イオンの除去効率を高めるようにした液体浄化装置を提供することを目的とする。
【0005】
【発明を解決しょうとする手段】
〔請求項1〕の発明は、被浄化対象物を含有する被浄化液体中に、マグネシュウム添加手段によって40ppm以上の塩化マグネシュウムもしくは硫酸マグネシュウムを添加する第一の工程と、 第一の工程で塩化マグネシュウムもしくは硫酸マグネシュウムが添加された被浄化液体を、少なくとも塩基性硫酸マグネシュウムと水酸化マグネシュウムとの結晶状繊維を集合して顆粒状に構成された吸着剤の相互間隙に通過させ、被浄化対象物を凝集させる第二の工程と、第二の工程で凝集された被浄化対象物を、沈殿槽で沈澱除去するか、または、目の粗いフィルタ、もしくは、遠心分離機で除去する第三の工程とで実現した
〔請求項2〕の発明は、第一の工程に、マグネシュウムの添加前もしくは添加後の被浄化液体のPH値を、PH9以上にするPHアルカリ調整手段を備えて、凝集効率を高めた。
〔請求項3〕の発明は、マグネシュウム添加手段によって、被浄化液体中に添加される塩化マグネシュウムもしくは硫酸マグネシュウムの添加量を、40ppm〜150ppmとして実現した。
〔請求項4〕の発明は、第一の工程を、被浄化液体のPH値をPH3以下にするPH酸性調整手段と、被浄化液体に硫酸鉄もしくは塩化鉄を添加する鉄イオン添加手段と、PH3以下にされ、かつ、鉄イオンが添加された被浄化液体のPH値を、PH9以上にするPHアルカリ調整手段とで構成し、被浄化液体中の重金属イオンを除去出来るようにした。
〔請求項5〕の発明は、鉄イオンの添加量を、被浄化液体中の重金属イオンの1/2以上として実現した。
〔請求項6〕の発明は、硫酸鉄添加手段によって、被浄化液体に鉄イオンを添加後、気泡混入手段によって、被浄化液体中に空気または酸素もしくはオゾンの気泡を混入させ、被浄化液体中の重金属イオンの除去効率を高めた。
【0006】
【実施例】
以下この発明の一実施例を図について説明する。図1は、この発明の一実施例を示すブロック線図である。図において、第一の工程は、被浄化対象物を含有する被浄化液体1中に、マグネシュウム添加手段2によって、40ppm以上の塩化マグネシュウムもしくは硫酸マグネシュウムを添加する。第二の工程は、第一の工程で塩化マグネシュウムもしくは硫酸マグネシュウムが添加された被浄化液体1を、少なくとも塩基性硫酸マグネシュウムと水酸化マグネシュウムとの結晶状繊維を集合して顆粒状に構成された吸着剤3の相互間隙に通過させ、被浄化液体1中の、例えば、粒径30nmのコロイダルシリカである被浄化対象物を凝集させる。第三の工程は、第二の工程で凝集された例えばコロイダルシリカを沈殿槽4で沈澱除去するか、または、目の粗いフィルタ、もしくは、遠心分離機で除去する。
なお、顆粒状の吸着剤3は、図2に示す如く、例えば、直径:2mm、長さ:5mmの円柱状に構成され、容器5内にセットされた二重の金網6,7間に、厚み20mmで充填されている。
なお、金網6,7の代わりに、濾紙または多孔体あるいはフィルタを用いても良く、また金網6,7の代わりに、金網または濾紙もしくは多孔体あるいはフィルタを組み合わせて用いても良い。
【0007】
図3は粒径30nmのコロイダルシリカを13%と、1〜2%の有機物とを含有するスラリー:NP−6001を、30倍に希釈した液の写真、図4は図3の液に塩化マグネシュウムを40ppm添加し、半日靜置した状態の写真、図5は図3の液に塩化マグネシュウムを80ppm添加し、半日靜置した状態の写真、図6は図3の液に塩化マグネシュウムを150ppm添加し、半日靜置した状態の写真である。
図4の塩化マグネシュウムを40ppm添加したものは、沈澱量が少ないが透明な上澄み液が得られている。
また、図6の塩化マグネシュウムを150ppm添加したものは、沈澱量が多いが上澄みがやや白濁している。この白濁は、吸着剤3を通過させることにより凝集させることが出来る。
また、塩化マグネシュウムの変わりに硫酸マグネシュウムを添加しても同様の結果が得られた。
【0008】
なお、被浄化液体1中に塩化マグネシュウムを添加せず、吸着剤3として、図7に示す直径250μmの球形の粉末状を使用した場合、被浄化液体1を40Kg処理した時点で、処理後の液には沈殿物が認められなかった。
また、被浄化液体1中に塩化マグネシュウムを80ppm添加し、吸着剤3として、直径250μmの球形の粉末状を使用した場合、被浄化液体1を10Kg,20Kg,30Kgと順次浄化した時点で、浄化後の液は、図8,図9,図10の写真に示すように、2時間の靜置後、沈澱部と上澄み液との分離が徐々に悪くなった。
この場合、図11の写真に示すように、図7に示す粉末状の吸着剤3に、ひび割れが発生していた。これは、塩化マグネシュウムの添加により、被浄化液体1中に発生したスラリーによって、吸着剤3の相互間隙が目詰まりし、粉末状の吸着剤3にひび割れが発生し、このひび割れ部分を被浄化液体1が通過したためと考えられる。
【0009】
このため、吸着剤3を、図2に示す顆粒状、例えば、直径:2mm、長さ:5mmの円柱状に構成し、吸着剤3の相互間隙を広くしたところ、被浄化液体1を0.5t,1t,1.5t,2t,2.5tと順次浄化した液体は、図12,図13,図14,図15,図16の写真に示すように、それぞれ2時間の靜置後、沈澱部と上澄み液との分離は、ほぼ安定した。
【0010】
次に、顆粒状の吸着剤3を収納した容器5を、3個直列接続し、被浄化液体に塩化マグネシュウムを80ppm添加して、1日5t、5日間、25tを処理した結果、図17に示すように、1時間の靜置で、安定して沈澱部と透明な上澄み液部とに分離した。
【0011】
次に、顆粒状の吸着剤3を収納した容器5を、3個直列接続し、被浄化液体に塩化マグネシュウムを40ppm添加して、1日5tを処理した結果、図18に示すように、1時間の靜置で、安定して沈澱部と透明な上澄み液部とに分離した。
【0012】
次に、顆粒状の吸着剤3を収納した容器5を、2個直列接続し、被浄化液体に塩化マグネシュウムを40ppm添加して、1日5tを処理した結果、図19に示すように、1時間の靜置で、安定して沈澱部と透明な上澄み液部とに分離した。
【0013】
次に、顆粒状の吸着剤3を収納した容器5を、3個直列接続し、被浄化液体に塩化マグネシュウムを30ppm添加して、1日5tを処理した結果、図20に示すように、1時間の靜置で、沈澱部と透明な上澄み液部とには分離しなかった。
このため、マグネシュウムの添加量は40ppm〜150ppmが適量である。
【0014】
図21は、この発明の他の実施例を示すブロック線図である。図において、第一の工程は、水酸化カリュウムもしくは苛性ソーダ等を添加して、被浄化液体1のPH値をPH9以上にするPHアルカリ調整手段9を備えている。
即ち、浄化液体1のPH値をPH9以上、例えば、PH10.5にすることにより、コロイダルシリカの沈澱を、より安定にさせることが出来る。
【0015】
図22は、この発明のさらに他の実施例を示すブロック線図である。図において、第一の工程は、被浄化液体1のPH値をPH3以下にするPH酸性調整手段10と、被浄化液体1が含有する重金属イオンの重量の、1/2以上の重量の硫酸第二鉄等の硫酸鉄もしくは塩化鉄を添加する鉄イオン添加手段11と、PH3以下にされ、かつ、鉄イオンが添加された被浄化液体1に、空気、酸素、オゾン等の気泡を混入して攪拌する気泡混入手段12と、その後、PH値をPH9以上にするPHアルカリ調整手段9とを備えている。
なお、被浄化液体1のPH値をPH3以下にして後、鉄イオンを添加してもよく、また、被浄化液体1に鉄イオンを添加して後、PH値をPH3以下にしてもよい。
【0016】
また、気泡混入手段12は、容器13→第一のポンプ14→逆支弁15→第二のポンプ16→絞り弁17→容器13の閉ループと、逆支弁15と第二のポンプ16間に接続された、コンプレッサー18と逆支弁19とによって構成されている。
即ち、容器13内の液体を第一のポンプ14で汲み上げ、第二のポンプ16において、第一のポンプ14から送り込まれた液体と、コンプレッサー18からの圧縮空気とを攪拌して、容器13内に戻すように構成され、被浄化液体1中に含有されている例えばキレート剤により、錯体となっている銅イオンを、鉄イオン添加手段11によって添加された硫酸鉄と置換し、銅イオンの除去を可能とする。
【0017】
次世代半導体では配線として銅が使用される。このため被浄化液体1中には、銅イオンが30ppm程度混入している。また、被浄化液体1中はキレート剤が含有されており、このキレート剤を解離しない限り銅イオンを除去することが出来ない。
このため、第一工程のPH酸性調整手段9によって、被浄化液体1のPH値をPH3以下、例えば、PH2にし、鉄イオン添加手段11によって、例えば、被浄化液体1に混入している重金属イオンの濃度と、同一濃度の硫酸第二鉄等の鉄イオンを添加し、気泡混入手段12によって、被浄化液体1に空気、酸素、オゾン等の気泡を混入し、攪拌することにより、銅イオンと鉄イオンとの置換を促進し、その後、PHアルカリ調整手段8によって、被浄化液体1のPH値をPH9以上にする。
これにより、キレート剤と銅イオンとを解離させ、解離した銅イオンを吸着剤3の水酸基と結合せさて、銅イオンをフロック化し、このフロックを凝集させて後、除去することにより、銅イオンを30ppmから0.41ppmにすることができた。
【発明の効果】
以上のように、〔請求項1〕の発明によれば、第一の工程において、被浄化対象物を含有する被浄化液体中に、マグネシュウム添加手段によって40ppm以上の塩化マグネシュウムもしくは硫酸マグネシュウムを添加し、第二の工程において、被浄化液体を、少なくとも塩基性硫酸マグネシュウムと水酸化マグネシュウムとの結晶状繊維を集合して顆粒状に構成された吸着剤の相互間隙に通過させて、被浄化対象物を凝集させ、第三の工程において、凝集された被浄化対象物を、沈殿槽で沈澱除去するか、または、目の粗いフィルタ、もしくは、遠心分離機で除去する。
〔請求項2〕の発明によれば、第一の工程に、マグネシュウムの添加前もしくは添加後の被浄化液体のPH値を、PH9以上にするPHアルカリ調整手段を備えて、凝集効果を高める。
〔請求項3〕の発明によれば、マグネシュウム添加手段によって、被浄化液体中に添加される塩化マグネシュウムもしくは硫酸マグネシュウムの添加量を40ppm〜150ppmとすることにより、より凝集効果を高める。
〔請求項4〕の発明によれば、第一の工程を、被浄化液体のPH値をPH3以下にするPH酸性調整手段と、被浄化液体に硫酸鉄もしくは塩化鉄を添加する鉄イオン添加手段と、PH3以下にされ、かつ、鉄イオンが添加された被浄化液体のPH値を、PH9以上にするPHアルカリ調整手段とで構成し、被浄化液体中の重金属イオンも併せて除去する。
〔請求項5〕の発明によれば、鉄イオン添加手段によって被浄化液体中に添加される鉄イオンの添加量を、被浄化液体中の重金属イオンの1/2以上とすることにより、効果的に被浄化液体中の重金属イオンを除去する。
〔請求項6〕の発明によれば、鉄イオン添加手段によって被浄化液体中に鉄イオンを添加後、気泡混入装置によって被浄化液体中に空気または酸素もしくはオゾンの気泡を混入させ、より効果的に被浄化液体中の重金属イオンを除去する。
【図面の簡単な説明】
【図1】この発明に係る液体浄化装置の一実施例を示すブロック線図である。
【図2】図1に示す顆粒状の吸着剤を示す写真である。
【図3】スラリー:NP−6001を30倍に希釈した液の写真である。
【図4】図3の液に塩化マグネシュウムを40ppm添加し、半日、靜置した状態の写真である。
【図5】図3の液に塩化マグネシュウムを80ppm添加し、半日、靜置した状態の写真である。
【図6】図3の液に塩化マグネシュウムを120ppm添加し、半日、靜置した状態の写真である。
【図7】粉末状の吸着剤を示す写真である。
【図8】粉末状の吸着剤を用い、被浄化液体を10Kg浄化し、2時間靜置後の沈澱部と上澄み液との分離状態を示す写真である。
【図9】粉末状の吸着剤を用い、被浄化液体を20Kg浄化し、2時間靜置後の沈澱部と上澄み液との分離状態を示す写真である。
【図10】粉末状の吸着剤を用い、被浄化液体を30Kg浄化し、2時間靜置後の沈澱部と上澄み液との分離状態を示す写真である。
【図11】図8の処理後の粉末状吸着剤の外周表面を示す写真である。
【図12】顆粒状の吸着剤を用い、被浄化液体を500Kg浄化し、2時間靜置後の沈澱部と上澄み液との分離状態を示す写真である。
【図13】顆粒状の吸着剤を用い、被浄化液体を1000Kg浄化し、2時間靜置後の沈澱部と上澄み液との分離状態を示す写真である。
【図14】顆粒状の吸着剤を用い、被浄化液体を1500Kg浄化し、2時間靜置後の沈澱部と上澄み液との分離状態を示す写真である。
【図15】顆粒状の吸着剤を用い、被浄化液体を2000Kg浄化し、2時間靜置後の沈澱部と上澄み液との分離状態を示す写真である。
【図16】顆粒状の吸着剤を用い、被浄化液体を2500Kg浄化し、2時間靜置後の沈澱部と上澄み液との分離状態を示す写真である。
【図17】顆粒状の吸着剤を用い、被浄化液体にマグネシュウムを80ppm添加し、吸着剤を収納する容器を3個直列接続して、被浄化液体を25t、連続処理した結果を示す写真である。
【図18】顆粒状の吸着剤を用い、被浄化液体にマグネシュウムを40ppm添加し、吸着剤を収納する容器を3個直列接続して、被浄化液体を5t、連続処理した結果を示す写真である。
【図19】顆粒状の吸着剤を用い、被浄化液体にマグネシュウムを40ppm添加し、吸着剤を収納する容器を2個直列接続して、被浄化液体を5t、連続処理した結果を示す写真である。
【図20】顆粒状の吸着剤を用い、被浄化液体にマグネシュウムを30ppm添加し、吸着剤を収納する容器を3個直列接続して、被浄化液体を5t、連続処理した結果を示す写真である。
【図21】この発明の他の実施例を示すブロック線図である。
【図22】この発明のさらに他の実施例を示すブロック線図である。
【符号の説明】
1:被浄化液体
2:マグネシュウム添加手段
3:吸着剤
4:沈殿槽
9:PHアルカリ調整手段
10:PH酸性調整手段
11:鉄イオン添加手段
12:気泡混入手段
[0001]
The present invention relates to a liquid purification apparatus that purifies, for example, drainage of a polishing liquid used when mirror polishing silicon.
[0002]
Currently, fine particles such as colloidal silica are contained in the polishing liquid used when mirror-polishing silicon. The particle size is about 0.15 μm, and the purification is performed by adding a flocculant such as polyaluminum chloride and placing it in a thickener, a huge sedimentation tank, for 2 to 3 hours to obtain a supernatant of several centimeters. It is released.
[0003]
[Problems to be solved by the invention]
However, in the next-generation semiconductor that has been operating since FY 2004, the wiring material is changed from aluminum to copper, and the wiring width is reduced from 0.13 μm to 0.09 μm. Along with this, the particle size of colloidal silica, which is an abrasive grain, has come to be used with ultra-fine particles of 50 nm or less, and the treatment of adding a flocculant as in the past, the coagulation sedimentation rate becomes extremely slow and can be dealt with. lost.
For this reason, hollow fiber + vacuum distillation method, osmotic filtration method using UF membrane / MF membrane, osmotic filtration method using ceramic filter, etc. have been studied, but treatment using hollow fiber + vacuum distillation method, The apparatus becomes enormous, and other methods have problems that the apparatus is enormous and sufficient accuracy cannot be obtained.
Furthermore, there was a problem that copper ions mixed in the waste water could not be removed.
For this reason, development of the apparatus which purifies the colloidal silica waste water for next-generation semiconductors and can also remove a copper ion by a simple method has been desired.
[0004]
The present invention has been made to satisfy the conventional requirements as described above.
The invention of [Claim 1] is that in the first step, the magnesium addition means adds 40 ppm or more of magnesium chloride or magnesium sulfate into the liquid to be purified containing the object to be purified. The liquid to be purified is caused to pass through the intergranular gap between adsorbents composed of at least basic magnesium sulfate and magnesium hydroxide and are formed into granules, and the object to be purified is agglomerated, It is an object of the present invention to provide a liquid purification apparatus that removes agglomerated objects to be purified by a sedimentation tank, or removes them by a coarse filter or a centrifuge.
The invention of [Claim 2] is a liquid purification apparatus comprising a PH alkali adjusting means in the first step, wherein the pH value of the liquid to be purified before or after the addition of magnesium is PH9 or more, and the coagulation effect is enhanced. The purpose is to provide.
The invention of [Claim 3] provides a liquid purifier having a higher coagulation effect by setting the amount of magnesium chloride or magnesium sulfate added to the liquid to be purified to 40 ppm to 150 ppm by means of adding magnesium. With the goal.
In the invention of [Claim 4], the first step comprises a PH acidity adjusting means for setting the PH value of the liquid to be purified to PH3 or less, an iron ion adding means for adding iron sulfate or iron chloride to the liquid to be purified, A liquid composed of PH alkali adjusting means having a PH value of PH3 or less and having a PH value of the liquid to be purified to which iron ions are added, PH9 or more, and also removing heavy metal ions in the liquid to be purified An object is to provide a purification device.
The invention of [Claim 5] provides a liquid purification apparatus in which the amount of iron ions added to the liquid to be purified by the iron ion addition means is ½ or more of the heavy metal ions in the liquid to be purified. With the goal.
[Claim 6] In the invention, after adding iron ions into the liquid to be purified by the iron ion adding means, air or oxygen or ozone bubbles are mixed into the liquid to be purified by the bubble mixing means. It is an object of the present invention to provide a liquid purification apparatus that improves the removal efficiency of heavy metal ions.
[0005]
[Means to Solve the Invention]
The invention of [Claim 1] includes a first step of adding 40 ppm or more of magnesium chloride or magnesium sulfate to a liquid to be purified containing an object to be purified by means of magnesium addition means, and magnesium chloride in the first step. Alternatively, the liquid to be purified, to which magnesium sulfate has been added, is allowed to pass through the interstices of the adsorbent composed of at least the crystalline fibers of basic magnesium sulfate and magnesium hydroxide to form a granular shape, and the object to be purified is passed through. A second step of agglomeration, and a third step of removing the object to be purified, which has been agglomerated in the second step, by precipitation in a sedimentation tank, or by a coarse filter or centrifuge In the invention of [Claim 2] realized in the first step, the pH value of the liquid to be purified before or after addition of magnesium is set to PH9 or more in the first step. PH alkali adjusting means is provided to increase the coagulation efficiency.
The invention of [Claim 3] realizes the addition amount of magnesium chloride or magnesium sulfate added to the liquid to be purified by the means for adding magnesium to 40 ppm to 150 ppm.
In the invention of [Claim 4], the first step comprises a PH acidity adjusting means for setting the PH value of the liquid to be purified to PH3 or less, an iron ion adding means for adding iron sulfate or iron chloride to the liquid to be purified, The pH of the liquid to be purified, which has a pH of 3 or less and to which iron ions are added, is configured with PH alkali adjusting means for adjusting the PH value to PH9 or more so that heavy metal ions in the liquid to be purified can be removed.
The invention of [Claim 5] realizes the addition amount of iron ions to be 1/2 or more of heavy metal ions in the liquid to be purified.
In the invention of [Claim 6], after iron ions are added to the liquid to be purified by the iron sulfate addition means, air or oxygen or ozone bubbles are mixed into the liquid to be purified by the bubble mixing means. Increased removal efficiency of heavy metal ions.
[0006]
【Example】
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, in the first step, 40 ppm or more of magnesium chloride or magnesium sulfate is added to the liquid to be purified 1 containing the object to be purified by the magnesium addition means 2. In the second step, the liquid 1 to which magnesium chloride or magnesium sulfate was added in the first step was formed into a granular shape by assembling crystalline fibers of at least basic magnesium sulfate and magnesium hydroxide. For example, colloidal silica having a particle diameter of 30 nm in the liquid to be purified 1 is aggregated through the mutual gaps of the adsorbent 3. In the third step, for example, colloidal silica agglomerated in the second step is removed by precipitation in the precipitation tank 4, or removed by a coarse filter or a centrifuge.
In addition, as shown in FIG. 2, the granular adsorbent 3 is configured in a cylindrical shape having a diameter of 2 mm and a length of 5 mm, for example, between the double metal meshes 6 and 7 set in the container 5, It is filled with a thickness of 20 mm.
Instead of the metal meshes 6 and 7, a filter paper, a porous body, or a filter may be used. Instead of the metal meshes 6, 7, a metal mesh, a filter paper, a porous body, or a filter may be used in combination.
[0007]
FIG. 3 is a photograph of a slurry obtained by diluting 30-fold of NP-6001, a slurry containing 13% colloidal silica having a particle size of 30 nm and 1 to 2% organic matter, and FIG. 4 is a magnesium chloride solution in FIG. Fig. 5 shows a state in which 80 ppm of magnesium chloride was added to the solution shown in Fig. 3 and Fig. 6 shows a state in which the sample was left half-day. Fig. 6 shows that 150 ppm of magnesium chloride was added to the solution shown in Fig. 3. It is a photograph of the state that has been placed for half a day.
In the case of adding 40 ppm of magnesium chloride in FIG. 4, a clear supernatant liquid is obtained although the amount of precipitation is small.
In addition, when 150 ppm of magnesium chloride in FIG. 6 is added, the amount of precipitation is large, but the supernatant is slightly cloudy. This cloudiness can be agglomerated by allowing the adsorbent 3 to pass therethrough.
Similar results were obtained even when magnesium sulfate was added instead of magnesium chloride.
[0008]
In addition, when no powdered magnesium chloride is added to the liquid 1 to be purified and a spherical powder having a diameter of 250 μm shown in FIG. 7 is used as the adsorbent 3, the liquid 1 to be purified is treated at 40 kg after treatment. No precipitate was observed in the liquid.
Further, when 80 ppm of magnesium chloride is added to the liquid 1 to be purified and a spherical powder having a diameter of 250 μm is used as the adsorbent 3, the liquid 1 to be purified is purified when it is sequentially purified to 10 kg, 20 kg, and 30 kg. As shown in the photographs of FIGS. 8, 9, and 10, the later liquid gradually deteriorated the separation between the precipitate and the supernatant after 2 hours of incubation.
In this case, as shown in the photograph of FIG. 11, cracks occurred in the powdery adsorbent 3 shown in FIG. This is because, due to the addition of magnesium chloride, the slurry generated in the liquid 1 to be purified clogs the gap between the adsorbents 3, and cracks are generated in the powdered adsorbent 3. It is thought that 1 passed.
[0009]
For this reason, the adsorbent 3 is formed in the granular form shown in FIG. 2, for example, a cylindrical shape having a diameter of 2 mm and a length of 5 mm, and the mutual gap of the adsorbent 3 is widened. As shown in the photographs of FIG. 12, FIG. 13, FIG. 14, FIG. 15, and FIG. 16, the liquids purified in order of 5t, 1t, 1.5t, 2t, and 2.5t settled after being placed for 2 hours, respectively. The separation between the part and the supernatant was almost stable.
[0010]
Next, three containers 5 containing granular adsorbents 3 were connected in series, and 80 ppm of magnesium chloride was added to the liquid to be purified, and 25 t was processed for 5 to 5 days. As shown, it was separated into a sedimented portion and a transparent supernatant liquid portion in a stable manner for 1 hour.
[0011]
Next, three containers 5 containing granular adsorbents 3 were connected in series, 40 ppm of magnesium chloride was added to the liquid to be purified, and 5 t / day was processed. As a result, as shown in FIG. The precipitate was stably separated into a clear supernatant and a clear supernatant liquid over time.
[0012]
Next, two containers 5 containing granular adsorbents 3 were connected in series, 40 ppm of magnesium chloride was added to the liquid to be purified, and 5 t / day was processed. As a result, as shown in FIG. The precipitate was stably separated into a clear supernatant and a clear supernatant liquid over time.
[0013]
Next, three containers 5 containing the granular adsorbent 3 were connected in series, 30 ppm of magnesium chloride was added to the liquid to be purified, and 5 t / day was processed. As a result, as shown in FIG. The precipitate was not separated into a clear supernatant and a clear supernatant with time.
For this reason, 40 ppm-150 ppm is an appropriate amount for the addition amount of magnesium.
[0014]
FIG. 21 is a block diagram showing another embodiment of the present invention. In the figure, the first step includes a PH alkali adjusting means 9 for adding a potassium hydroxide, caustic soda or the like so that the pH value of the liquid 1 to be purified becomes PH9 or more.
That is, when the pH value of the purification liquid 1 is set to PH9 or more, for example, PH10.5, the colloidal silica can be more stably precipitated.
[0015]
FIG. 22 is a block diagram showing still another embodiment of the present invention. In the figure, the first step is a PH acidity adjusting means 10 for reducing the PH value of the liquid 1 to be purified to PH3 or less, and sulfuric acid having a weight of 1/2 or more of the weight of heavy metal ions contained in the liquid 1 to be purified. Air bubbles such as air, oxygen, and ozone are mixed into the iron ion addition means 11 for adding ferric sulfate or iron chloride such as ferric iron and the liquid to be purified 1 which is PH3 or less and to which iron ions are added. A bubble mixing means 12 for stirring and a PH alkali adjusting means 9 for setting the PH value to PH9 or higher are provided.
Note that the iron value may be added after the PH value of the liquid 1 to be purified is made PH3 or less, or the PH value may be made PH3 or less after the iron ion is added to the liquid 1 to be purified.
[0016]
Further, the bubble mixing means 12 is connected between the container 13 → the first pump 14 → the reverse support valve 15 → the second pump 16 → the throttle valve 17 → the closed loop of the container 13 and between the reverse support valve 15 and the second pump 16. In addition, the compressor 18 and the reversely supported valve 19 are configured.
That is, the liquid in the container 13 is pumped up by the first pump 14, and the liquid fed from the first pump 14 and the compressed air from the compressor 18 are stirred in the second pump 16, For example, a chelating agent contained in the liquid 1 to be purified is replaced with copper sulfate added by the iron ion adding means 11 to remove the copper ions. Is possible.
[0017]
In next-generation semiconductors, copper is used as the wiring. For this reason, about 30 ppm of copper ions are mixed in the liquid 1 to be purified. Moreover, the to-be-purified liquid 1 contains a chelating agent, and copper ions cannot be removed unless the chelating agent is dissociated.
For this reason, the pH value of the liquid 1 to be purified is set to PH3 or less, for example, PH2, by the PH acidity adjusting means 9 in the first step, and, for example, heavy metal ions mixed in the liquid 1 to be purified by the iron ion adding means 11 By adding iron ions such as ferric sulfate having the same concentration as that of ferric sulfate, mixing bubbles with air, oxygen, ozone or the like into the liquid 1 to be purified by the bubble mixing means 12, and stirring the copper ions. Substitution with iron ions is promoted, and then the pH value of the liquid 1 to be purified is set to PH9 or more by the PH alkali adjusting means 8.
As a result, the chelating agent and the copper ion are dissociated, the dissociated copper ion is bonded to the hydroxyl group of the adsorbent 3, the copper ion is flocculated, the floc is aggregated, and then removed to remove the copper ion. From 30 ppm to 0.41 ppm could be achieved.
【The invention's effect】
As described above, according to the invention of [Claim 1], in the first step, 40 ppm or more of magnesium chloride or magnesium sulfate is added to the liquid to be purified containing the object to be purified by means of adding magnesium. In the second step, the liquid to be purified is allowed to pass through the interstices of the adsorbent configured in a granular form by assembling crystalline fibers of at least basic magnesium sulfate and magnesium hydroxide. In the third step, the aggregated objects to be purified are removed by precipitation in a sedimentation tank, or removed by a coarse filter or a centrifuge.
According to the invention of [Claim 2], the first step is provided with PH alkali adjusting means for setting the PH value of the liquid to be purified before or after the addition of magnesium to PH9 or more, thereby enhancing the coagulation effect.
According to the invention of [Claim 3], the addition effect of magnesium chloride or magnesium sulfate added to the liquid to be purified is set to 40 ppm to 150 ppm by the magnesium addition means, thereby further enhancing the coagulation effect.
According to the invention of [Claim 4], the first step includes a PH acidity adjusting means for setting the PH value of the liquid to be purified to PH3 or less, and an iron ion adding means for adding iron sulfate or iron chloride to the liquid to be purified. And PH alkali adjusting means for adjusting the PH value of the liquid to be purified which is made PH3 or less and to which iron ions are added to PH9 or more, and also removes heavy metal ions in the liquid to be purified.
According to the invention of [Claim 5], the amount of iron ions added to the liquid to be purified by the iron ion adding means is more than 1/2 of the heavy metal ions in the liquid to be purified. The heavy metal ions in the liquid to be purified are removed.
According to the invention of [Claim 6], after iron ions are added to the liquid to be purified by the iron ion adding means, air or oxygen or ozone bubbles are mixed into the liquid to be purified by the bubble mixing device, and it is more effective. The heavy metal ions in the liquid to be purified are removed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a liquid purification apparatus according to the present invention.
FIG. 2 is a photograph showing the granular adsorbent shown in FIG.
FIG. 3 is a photograph of a solution obtained by diluting slurry NP-6001 30 times.
4 is a photograph of a state in which 40 ppm of magnesium chloride was added to the solution of FIG. 3 and placed for half a day.
FIG. 5 is a photograph of a state in which 80 ppm of magnesium chloride was added to the solution of FIG. 3 and placed for half a day.
6 is a photograph of a state in which 120 ppm of magnesium chloride was added to the solution of FIG. 3 and placed for half a day.
FIG. 7 is a photograph showing a powdery adsorbent.
FIG. 8 is a photograph showing the state of separation between the precipitate and the supernatant liquid after purifying 10 Kg of the liquid to be purified using a powdery adsorbent and incubating for 2 hours.
FIG. 9 is a photograph showing the state of separation between the precipitate and the supernatant after 2 K of purification of the liquid to be purified using a powdery adsorbent.
FIG. 10 is a photograph showing the state of separation between the precipitate and the supernatant liquid after purifying 30 Kg of the liquid to be purified using a powdery adsorbent and incubating for 2 hours.
FIG. 11 is a photograph showing the outer peripheral surface of the powdery adsorbent after the treatment of FIG.
FIG. 12 is a photograph showing the state of separation between the precipitate and the supernatant after purifying 500 Kg of the liquid to be purified using a granular adsorbent and incubating for 2 hours.
FIG. 13 is a photograph showing the state of separation between the precipitate and the supernatant after purifying the liquid to be purified by 1000 Kg using a granular adsorbent and incubating for 2 hours.
FIG. 14 is a photograph showing the state of separation between the precipitate and the supernatant after purifying 1500 Kg of the liquid to be purified using a granular adsorbent and incubating for 2 hours.
FIG. 15 is a photograph showing the state of separation between the precipitate and the supernatant after purifying 2000 Kg of the liquid to be purified using a granular adsorbent and incubating for 2 hours.
FIG. 16 is a photograph showing the state of separation between the precipitate and the supernatant after purifying 2500 Kg of the liquid to be purified using a granular adsorbent and incubating for 2 hours.
FIG. 17 is a photograph showing the result of continuous treatment of liquid to be purified for 25 tons using a granular adsorbent, adding 80 ppm of magnesium to the liquid to be purified, and connecting three containers containing the adsorbent in series. is there.
FIG. 18 is a photograph showing the result of continuous treatment of the liquid to be purified for 5 tons using a granular adsorbent, adding 40 ppm of magnesium to the liquid to be purified, and connecting three containers containing the adsorbent in series. is there.
FIG. 19 is a photograph showing the result of continuous processing of liquid to be purified for 5 tons using granular adsorbent, adding 40 ppm of magnesium to the liquid to be purified, and connecting two containers containing the adsorbent in series. is there.
FIG. 20 is a photograph showing the result of continuous processing of liquid to be purified for 5 tons using a granular adsorbent, adding 30 ppm of magnesium to the liquid to be purified, and connecting three containers containing the adsorbent in series. is there.
FIG. 21 is a block diagram showing another embodiment of the present invention.
FIG. 22 is a block diagram showing still another embodiment of the present invention.
[Explanation of symbols]
1: Purified liquid 2: Magnesium addition means 3: Adsorbent 4: Precipitation tank 9: PH alkali adjustment means 10: PH acidity adjustment means 11: Iron ion addition means 12: Bubble mixing means

Claims (6)

被浄化対象物を含有する被浄化液体中に、マグネシュウム添加手段によって、40ppm以上の塩化マグネシュウムもしくは硫酸マグネシュウムを添加する第一の工程と、
前記第一の工程で塩化マグネシュウムもしくは硫酸マグネシュウムが添加された被浄化液体を、少なくとも塩基性硫酸マグネシュウムと水酸化マグネシュウムとの結晶状繊維を集合して顆粒状に構成された吸着剤の相互間隙に通過させ、前記被浄化対象物を凝集させる第二の工程と、
及び、前記第二の工程で凝集された前記被浄化対象物を、沈殿槽で沈澱除去するか、または、目の粗いフィルタ、もしくは、遠心分離機で除去する第三の工程とを備えたことを特徴とする液体浄化装置。
A first step of adding 40 ppm or more of magnesium chloride or magnesium sulfate into the liquid to be purified containing the object to be purified by means of magnesium addition;
In the first step, the liquid to be purified to which magnesium chloride or magnesium sulfate has been added is placed in the gap between the adsorbents formed into a granular shape by assembling at least crystalline fibers of basic magnesium sulfate and magnesium hydroxide. A second step of passing and agglomerating the object to be purified;
And a third step of removing the object to be purified, which has been agglomerated in the second step, with a sedimentation tank, or with a coarse filter or a centrifuge. A liquid purification apparatus characterized by the above.
前記第一の工程は、マグネシュウムの添加前もしくは添加後の被浄化液体のPH値をPH9以上にするPHアルカリ調整手段を備えたことを特徴とする請求項1の液体浄化装置。2. The liquid purifying apparatus according to claim 1, wherein the first step includes a PH alkali adjusting means for adjusting the PH value of the liquid to be purified before or after the addition of magnesium to PH9 or more. 前記マグネシュウム添加手段によって添加される塩化マグネシュウムもしくは硫酸マグネシュウムの添加量を、40ppm〜150ppmとしたことを特徴とする請求項1もしくは2の液体浄化装置。The liquid purifier according to claim 1 or 2, wherein the addition amount of magnesium chloride or magnesium sulfate added by the magnesium addition means is 40 ppm to 150 ppm. 前記第一の工程は、被浄化液体のPH値をPH3以下にするPH酸性調整手段と、被浄化液体に硫酸鉄もしくは塩化鉄を添加する鉄イオン添加手段と、PH3以下にされ、かつ、鉄イオン化添加された被浄化液体のPH値を、PH9以上にするPHアルカリ調整手段とを備えたにしたことを特徴とする請求項1もしくは3の液体浄化装置。The first step includes a PH acidity adjusting means for reducing the PH value of the liquid to be purified to PH3 or less, an iron ion adding means for adding iron sulfate or iron chloride to the liquid to be purified, PH3 or less, and iron 4. The liquid purification apparatus according to claim 1, further comprising a PH alkali adjusting means for adjusting the pH value of the liquid to be purified which has been ionized and added to a pH of 9 or more. 前記鉄イオン添加手段によって被浄化液体に添加される鉄イオンの添加量を、被浄化液体中の重金属イオンの1/2以上にしたことを特徴とする請求項4の液体浄化装置。5. The liquid purification apparatus according to claim 4, wherein the amount of iron ions added to the liquid to be purified by the iron ion adding means is ½ or more of the heavy metal ions in the liquid to be purified. 前記鉄イオン添加手段によって鉄イオンが添加された被浄化液体に、気泡混入装置によって、空気または酸素もしくはオゾンの気泡を混入させるようにした請求項4もしくは5の液体浄化装置。6. The liquid purification apparatus according to claim 4, wherein air or oxygen or ozone bubbles are mixed into the liquid to be purified to which iron ions have been added by the iron ion adding means, using a bubble mixing apparatus.
JP2003038979A 2003-01-10 2003-01-10 Liquid purification device Expired - Fee Related JP4029054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038979A JP4029054B2 (en) 2003-01-10 2003-01-10 Liquid purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038979A JP4029054B2 (en) 2003-01-10 2003-01-10 Liquid purification device

Publications (2)

Publication Number Publication Date
JP2004216352A JP2004216352A (en) 2004-08-05
JP4029054B2 true JP4029054B2 (en) 2008-01-09

Family

ID=32905132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038979A Expired - Fee Related JP4029054B2 (en) 2003-01-10 2003-01-10 Liquid purification device

Country Status (1)

Country Link
JP (1) JP4029054B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923537B2 (en) * 2005-10-24 2012-04-25 公彦 岡上 Coagulation filtration device
MY158875A (en) * 2011-01-24 2016-11-30 Konica Minolta Inc Method for recovering abrasive component from used slurry of abrasive, and cerium oxide recovered through method

Also Published As

Publication number Publication date
JP2004216352A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
KR100985707B1 (en) Method and system for the treatment of liquid effluents containing pollutants in a suspension
JP2011230038A (en) Water treatment apparatus
WO2014136651A1 (en) Silica-containing water treatment apparatus, water treatment system, and method for treating silica-containing water
JP2007326077A (en) Treatment method of selenium-containing water
de Luna et al. Effect of EDTA and CH2O on copper recovery from simulated electroless copper plating spent rinse water by unseeded fluidized-bed granulation process
EP2792645A1 (en) Process for removing fluorides from water
JP6359257B2 (en) Method and apparatus for treating manganese-containing water
EP1375439A1 (en) Liquid treatment method and apparatus
JP4029054B2 (en) Liquid purification device
JPH1034161A (en) Treatment of silica-containing waste water
JP4821170B2 (en) Ultrapure water production equipment
JP2927255B2 (en) Treatment method for wastewater containing fluorine
JP4086297B2 (en) Boron-containing wastewater treatment method and chemicals used therefor
JP3262015B2 (en) Water treatment method
KR20200041881A (en) Treatment of liquid streams containing high concentrations of solids using ballast-type clarification
TW201500296A (en) Water treatment device and water treatment method
JP2003260472A (en) Treatment method for fluorine-containing water
CN109205829A (en) The method of film assisting crystallisation technique MAC selective removal and the copper in recycle-water
CN114988542B (en) Preparation method of magnetic flocculant for high-speed sedimentation of chemical mixed sludge
JPH1043770A (en) Treatment of waste water containing suspended particle
JP2005334856A (en) Method for treating waste water
CN108840422A (en) A kind of industrial sewage process method
JPS6336899A (en) Apparatus for producing pure water
WO2014017500A1 (en) Method for treating aqueous solution containing phosphoric acid ions
JP2007038049A (en) Method for treating fluorine in mixed acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4029054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees