JPH1034161A - Treatment of silica-containing waste water - Google Patents

Treatment of silica-containing waste water

Info

Publication number
JPH1034161A
JPH1034161A JP20940996A JP20940996A JPH1034161A JP H1034161 A JPH1034161 A JP H1034161A JP 20940996 A JP20940996 A JP 20940996A JP 20940996 A JP20940996 A JP 20940996A JP H1034161 A JPH1034161 A JP H1034161A
Authority
JP
Japan
Prior art keywords
sio
waste water
membrane
sio2
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20940996A
Other languages
Japanese (ja)
Other versions
JP3340029B2 (en
Inventor
Takao Hagino
隆生 萩野
Norihiro Yaide
乃大 矢出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP20940996A priority Critical patent/JP3340029B2/en
Publication of JPH1034161A publication Critical patent/JPH1034161A/en
Application granted granted Critical
Publication of JP3340029B2 publication Critical patent/JP3340029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide treating SiO2 -containing waste water capable of efficiently removing SiO2 -containing waste water in cost lower than conventional cost. SOLUTION: In a method for treating SiO2 -containing waste water to separate SiO2 by flocculation, an aluminum compd. and sulfuric acid are added to waste water to hold the pH of waste water to 3.8-4.8 for several min to flocculate SiO2 particles so as to have a particle size of several-several ten μm. Next, an alkali agent is added to this waste water to adjust the pH thereof to 6-8 and, thereafter, flocculation sedimentation separation by the addition of a polymeric flocculant or solid-liquid separation using a membrane with a pore size of 1μm or less is performed. It is pref. to preliminarily add. fine particles with a particle size of 0.03-0.6μm to waste water to be treated as pretreatment and, as fine particles to be added, colloidal SiO2 is pref. and, when treated water by this method is further treated with an RO membrane and/or an ion exchange, SiO2 can be removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、SiO2 含有廃水
の処理方法に係り、特に、SiO2 を含有する地下水及
び産業廃水等から、SiO2 を効率よく凝集して分離除
去する方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a processing method of SiO 2 containing wastewater, in particular, from groundwater and industrial waste etc. containing SiO 2, relates to a method for separating and removing by agglomerating SiO 2 efficiently is there.

【0002】[0002]

【従来の技術】廃水中のSiO2 を除去する方法として
は、溶解性のSiO2 は、RO膜による膜分離除去とア
ニオン交換樹脂による吸着除去の2種類が一般的であ
り、コロイド状のSiO2 は、ポアサイズが0.01μ
m以下の限外ろ過膜(以下、UF膜とする)による固液
分離が一般的であった。上記の従来法の内、アニオン樹
脂による吸着では、溶解性SiO2 以外に他のイオン性
物質が吸着されてしまうため、これらの方法は純水製造
用として使用する場合には適しているが、溶解性SiO
2 のみを除去することが主目的である場合はあまり効率
的ではなく、場合によっては吸着された有用なイオンを
再度添加する必要が生じることもあった。また、溶解性
SiO2 が高濃度である場合は、必要樹脂容量が大き
い、再生頻度が多い、コスト高等の問題があった。RO
膜、UF膜では、SiO2 粒子が膜表面に徐々に堆積
し、緻密な層を形成してろ過効率を悪くするために、膜
ユニットを頻繁に交換する必要があり、コスト高である
上、膜の交換頻度を特定しにくい等のメンテナンス上の
問題があった。
2. Description of the Related Art As a method for removing SiO 2 from wastewater, two types of soluble SiO 2 are generally used, namely, membrane separation and removal using an RO membrane and adsorption and removal using an anion exchange resin. 2 has a pore size of 0.01μ
Solid-liquid separation with an ultrafiltration membrane (hereinafter referred to as a UF membrane) of m or less was common. Among the above conventional methods, in the case of adsorption by an anionic resin, other ionic substances besides soluble SiO 2 are adsorbed, so these methods are suitable when used for pure water production, Soluble SiO
When the main purpose was to remove only 2 , it was not very efficient, and in some cases, it was necessary to add the adsorbed useful ions again. Also, when the concentration of soluble SiO 2 is high, there are problems such as a large required resin capacity, frequent regeneration, and high cost. RO
In membranes and UF membranes, it is necessary to frequently replace the membrane unit in order to gradually deposit SiO 2 particles on the membrane surface and form a dense layer to deteriorate the filtration efficiency, which is costly. There was a problem in maintenance such as difficulty in specifying the frequency of replacing the membrane.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
従来技術の欠点に鑑み、SiO2 含有廃水を従来より低
コスト、且つ効率よく除去することを可能にした処理方
法を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the prior art, the present invention provides a treatment method capable of removing SiO 2 -containing wastewater at a lower cost and more efficiently. Make it an issue.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、SiO2 を含有する廃水からSiO2
を凝集して分離する処理方法において、該廃水に、アル
ミニウム化合物と硫酸を添加して、pHを3.8〜4.
8に数分間維持し、前記SiO2 粒子を粒径数〜数十μ
mに凝集させ、次に、アルカリ剤を添加しpH6〜8に
調整した後、高分子凝集剤を添加した凝集沈殿分離、又
は1μm以下のポアサイズの膜を使用した固液分離を行
うことを特徴とするSiO2 含有廃水の処理方法とした
ものである。前記処理方法において、膜を使用した固液
分離では、膜表面に形成されるケーキ層の厚さを1〜1
0mmに制御する機構を備えた膜分離装置を用いるのが
よい。また、前記処理方法で処理する廃水には、予かじ
め前処理として粒径0.03〜0.6μmの微粒子が添
加されているのがよく、該添加する微粒子はコロイド状
のSiO2 がよい。更に、本発明では、前記のSiO2
含有廃水の処理方法で処理した処理水を、更にRO膜及
び/又はイオン交換樹脂により処理することにより、S
iO2 を極微量まで除去することができる。
In order to solve the above problems SUMMARY OF THE INVENTION In the present invention, SiO 2 from the waste water containing SiO 2
In the treatment method of coagulating and separating the wastewater, an aluminum compound and sulfuric acid are added to the wastewater to adjust the pH to 3.8 to 4.
8 for several minutes to reduce the SiO 2 particles
m, then adjust the pH to 6 to 8 by adding an alkali agent, and then perform coagulation sedimentation separation using a polymer coagulant, or solid-liquid separation using a 1 μm or less pore size membrane. And a method for treating wastewater containing SiO 2 . In the treatment method, in the solid-liquid separation using the membrane, the thickness of the cake layer formed on the membrane surface is 1 to 1
It is preferable to use a membrane separation device provided with a mechanism for controlling the distance to 0 mm. Further, fine particles having a particle size of 0.03 to 0.6 μm are preferably added to the wastewater treated by the treatment method in advance as a pre-treatment, and the added fine particles are preferably colloidal SiO 2. . Further, in the present invention, the aforementioned SiO 2
The treated water treated by the treatment method for wastewater containing water is further treated with an RO membrane and / or an ion-exchange resin to obtain S
iO 2 can be removed to a trace amount.

【0005】[0005]

【発明の実施の形態】次に、本発明を詳細に説明する。
本発明で用いるSiO2 含有廃水に添加するアルミニウ
ム化合物としては、ポリ塩化アルミニウム、硫酸バンド
等が有効であり、その添加率はポリ塩化アルミニウムの
場合、溶液中のSiO2 に対してAl2 3 換算で0.
5〜3.0重量%が適正な範囲である。硫酸を添加して
pHを3.8〜4.8にした状態で、凝集体の粒子径は
数〜数十μmまで成長しているが、このままでは機械的
強度が小さく、大きい攪拌力で壊れやすい傾向がある。
また、pHが3.8以下になると、凝集体の粒径は再び
小さくなる傾向がある。
Next, the present invention will be described in detail.
The aluminum compound to be added to the SiO 2 containing waste water used in the present invention, poly aluminum chloride, is effective sulfate or the like, when the addition rate of the poly aluminum chloride, Al 2 O 3 with respect to SiO 2 in the solution 0 in conversion.
An appropriate range is 5 to 3.0% by weight. The aggregates have grown to a size of several to several tens of μm when sulfuric acid is added to adjust the pH to 3.8 to 4.8, but the mechanical strength is small and the aggregates are broken by a large stirring force. Tends to be easy.
When the pH becomes 3.8 or less, the particle size of the aggregate tends to decrease again.

【0006】アルカリ剤は、水酸化ナトリウム、水酸化
カルシウム、水酸化マグネシウム等いずれも有効であ
る。凝集体の強度から判断すると、水酸化マグネシウム
による凝集体が最も優れている。アルカリ剤を添加した
時点で、凝集体は攪拌機の攪拌力に壊れない程度の強度
を持ち、ろ過性に優れ、スケールを形成しにくい性質を
もった粒子に変化している。この凝集体を以下に凝集体
Aとする。凝集体Aは、高分子凝集剤により凝集沈殿が
可能である。特にアニオンポリマーによる凝集性能は高
く、0.2(%to−TS)の添加率で、フロック径;
10mm以上、沈降速度;100mm/min以上の凝
集フロックが形成される。また、凝集体Aは精密ろ過
法、ダイナミックろ過法、または真空ろ過による膜分離
が可能になる。特に、膜表面に堆積したケーキ層を一定
厚に制御する運転方式を行うことにより、ろ過効率の低
下を防ぎ長期間の連続運転が可能になる。
As the alkaline agent, sodium hydroxide, calcium hydroxide, magnesium hydroxide and the like are all effective. Judging from the strength of the aggregate, the aggregate made of magnesium hydroxide is the most excellent. At the time when the alkali agent is added, the aggregate has changed to particles having such a strength as not to be broken by the stirring force of the stirrer, having excellent filterability, and being difficult to form scale. This aggregate is hereinafter referred to as aggregate A. Aggregate A can be aggregated and precipitated by a polymer flocculant. In particular, the aggregation performance of the anionic polymer is high, and the addition rate of 0.2 (% to-TS),
Agglomerated flocs having a sedimentation speed of 10 mm or more and a sedimentation speed of 100 mm / min or more are formed. The aggregate A can be subjected to membrane separation by a microfiltration method, a dynamic filtration method, or vacuum filtration. In particular, by performing an operation method of controlling the cake layer deposited on the membrane surface to a constant thickness, a reduction in filtration efficiency is prevented, and a long-term continuous operation becomes possible.

【0007】また、廃液中のSiO2 が溶解性SiO2
のみであり、且つ高濃度である場合は、粒径0.03〜
0.6μmの微粒子を添加した後に上記の凝集操作を行
うことで、微粒子の表面に溶解性SiO2 の凝集が促進
され、処理効率が大きくなる。特に添加する微粒子とし
て0.1〜0.4μmのコロイド状のSiO2 を採用す
ると、SiO2 の凝集反応速度が大きくなり、且つ生成
された凝集体の粒子径が均一でろ過分離しやすい性質を
もつようになる。コロイド状のSiO2 の適正添加量の
範囲は、溶解性SiO2 の濃度によって異なる。溶解性
SiO2 が数十mg/リットルの場合は、その1/10
程度のコロイド状SiO2 を添加すると効果的である。
また、溶液中のSiO2 をppb以下の極微量なレベル
まで除去する場合は、RO膜や、アニオン交換樹脂を用
いる方法が一般的である。この場合においても、原液の
濃度が大きい場合は、上記の処理法を前処理として採用
することは有効である。
[0007] Further, SiO 2 in the waste liquid is soluble SiO 2
Only, and when the concentration is high, the particle size is from 0.03 to 0.03.
By performing the above aggregation operation after adding the 0.6 μm fine particles, the aggregation of the soluble SiO 2 on the surface of the fine particles is promoted, and the processing efficiency is increased. In particular, when 0.1 to 0.4 μm colloidal SiO 2 is used as the added fine particles, the agglutination reaction speed of SiO 2 is increased, and the particle diameter of the formed aggregate is uniform and the property of easy separation by filtration is obtained. I will have it. The range of the appropriate amount of colloidal SiO 2 varies depending on the concentration of soluble SiO 2 . When the soluble SiO 2 is several tens mg / liter, 1/10
It is effective to add a certain amount of colloidal SiO 2 .
When removing SiO 2 in a solution to a very small level of ppb or less, a method using an RO membrane or an anion exchange resin is generally used. Also in this case, when the concentration of the undiluted solution is high, it is effective to adopt the above-mentioned processing method as the pre-processing.

【0008】[0008]

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 従来法と実施例により、同一のSiO2 含有廃水の連続
処理を行った。コロイダルシリカが主成分である半導体
工場の廃水で、平均TS濃度が14.5g/リットル、
全蒸発残留物の中の0.4μm以下の粒径のコロイド状
SiO2 含有率が95%以上である溶液を原水とした。
処理速度は平均124リットル/hとし、30日間の連
続運転を行った。処理条件を表1に示す。
The present invention will be described below in more detail with reference to examples. Example 1 According to a conventional method and an example, the same continuous treatment of wastewater containing SiO 2 was performed. Colloidal silica-based semiconductor factory wastewater with an average TS concentration of 14.5 g / liter,
A solution in which the content of colloidal SiO 2 having a particle size of 0.4 μm or less in the total evaporation residue was 95% or more was used as raw water.
The processing speed was 124 liters / h on average, and continuous operation was performed for 30 days. Table 1 shows the processing conditions.

【0009】[0009]

【表1】 実施例1は、ポリ塩化アルミニウムを溶液中のSiO2
に対して、Al2 3換算で2.0重量%添加し、硫酸
によりpHを4.0に調製し、水酸化マグネシウムでp
H7.0にした後、回転平膜型MF膜を装填した濃縮機
に供給し、膜分離を行う方式とした。この装置は、膜表
面上に形成されるケーキ層の厚みを6mmに制御する機
構をもっている。従来例は、原水を無薬注でキャピラリ
ー型UF膜を装填した膜モジュールに供給し、濃縮水を
再び原水タンクにもどし、定期的に濃縮水の一部を排出
する方式とした。
[Table 1] In Example 1, polyaluminum chloride was prepared by using SiO 2 in a solution.
Was added at 2.0% by weight in terms of Al 2 O 3 , the pH was adjusted to 4.0 with sulfuric acid, and the pH was adjusted with magnesium hydroxide.
After adjusting to H7.0, the mixture was supplied to a concentrator loaded with a rotating flat membrane type MF membrane to perform membrane separation. This device has a mechanism for controlling the thickness of the cake layer formed on the film surface to 6 mm. In the conventional example, the raw water is supplied to the membrane module loaded with the capillary type UF membrane without chemical injection, the concentrated water is returned to the raw water tank again, and a part of the concentrated water is periodically discharged.

【0010】表2に処理結果を示す。表2において、処
理水の清澄性は、0.1μmフィルターによりろ過して
得た懸濁物質(以下SS0.1 とする)で、濃縮水の濃度
は、TS濃度でそれぞれ評価し、実施期間中の処理結果
の平均値を示す。
Table 2 shows the processing results. In Table 2, the clarity of the treated water is a suspended substance (hereinafter referred to as SS 0.1 ) obtained by filtration through a 0.1 μm filter, and the concentration of the concentrated water is evaluated by the TS concentration. Shows the average value of the processing results.

【表2】 [Table 2]

【0011】従来例では、処理水は清澄であるが、濃縮
濃度が大きくなると透過水量が小さくなり、キャピラリ
ー膜内部が目詰まりする傾向があった。処理速度を一定
に維持するためには、濃縮濃度を80g/リットル以上
にすることは困難であった。96時間の時点で処理量が
急激に減少し、連続運転を継続することができなかっ
た。実施例1では、処理水が清澄であるうえ、濃縮濃度
も従来例の約2倍の濃度まで濃縮可能であり、濃縮液T
S濃度は143.1g/リットルであった。700時間
以上の連続運転が可能であった。
In the conventional example, the treated water is clear, but as the concentration concentration increases, the amount of permeated water decreases, and the inside of the capillary membrane tends to be clogged. In order to maintain a constant processing speed, it was difficult to increase the concentration to 80 g / liter or more. At the time of 96 hours, the throughput decreased rapidly and continuous operation could not be continued. In the first embodiment, the treated water is clear and the concentration can be concentrated to about twice the concentration of the conventional example.
The S concentration was 143.1 g / liter. Continuous operation for 700 hours or more was possible.

【0012】実施例2 次に、高分子凝集剤を添加した凝集沈殿分離の実施例を
示す。実施例1と同じSiO2 含有廃水に対して、ポリ
塩化アルミニウム(PAC)をAl2 3 で2.0重量
%添加し、硫酸によりpHを4.0に調整し、水酸化マ
グネシウムでpH7.0にした後、アニオン系高分子凝
集剤を2.0mg/リットル添加して、凝集沈殿分離を
行った。沈殿槽の水面積負荷は2m/hとし、濃縮液は
連続的に排泥した。その処理結果の平均値を表3に示
す。
Example 2 Next, an example of coagulation precipitation separation to which a polymer coagulant is added will be described. To the same SiO 2 -containing wastewater as in Example 1, 2.0% by weight of polyaluminum chloride (PAC) was added with Al 2 O 3 , the pH was adjusted to 4.0 with sulfuric acid, and the pH was adjusted to 7.0 with magnesium hydroxide. After setting to 0, 2.0 mg / liter of an anionic polymer coagulant was added to perform coagulation sedimentation separation. The water area load of the settling tank was 2 m / h, and the concentrated liquid was continuously discharged. Table 3 shows the average value of the processing results.

【0013】[0013]

【表3】 本方式のような簡単な凝集沈殿分離装置により、約4倍
に濃縮でき、メンテナンスフリーで、従来例と比較して
もあまりそん色ない。
[Table 3] With a simple coagulation / sedimentation / separation apparatus such as this one, concentration can be made about 4-fold, maintenance-free, and not so bright compared to conventional examples.

【0014】[0014]

【発明の効果】以上説明したように、本発明では、コロ
イド状SiO2 を含有する廃水において、アルミニウム
化合物の添加と2度のpH制御により、コロイド状Si
2 を成長又は凝集させ、膜分離処理が容易な粒径及び
強度を持った凝集体に変えることが可能になり、しかも
この凝集体は高分子凝集剤により沈殿分離が可能にな
り、コロイド状SiO2 含有廃水を効率的に除去するこ
とができる。それにより従来方式の比較的透過水量の小
さいUF膜でなく、透過水量の大きいMF膜による固液
分離が可能になり、濃縮濃度が約2倍に増加するために
処理水の回収効率が高くなる。
As described above, according to the present invention, in the wastewater containing colloidal SiO 2 , the addition of an aluminum compound and the control of the pH twice allow the colloidal Si 2 to be added.
It is possible to grow or aggregate O 2 and convert it into an aggregate having a particle size and strength that facilitates membrane separation, and this aggregate can be precipitated and separated by a polymer flocculant and colloidal. SiO 2 -containing wastewater can be efficiently removed. As a result, solid-liquid separation can be performed by the MF membrane having a large permeated water amount, instead of the UF membrane having a relatively small permeated water amount in the conventional method, and the concentration of the concentrated water is increased by about two times, so that the recovery efficiency of the treated water is increased. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/44 ZAB C02F 1/44 ZABE 1/56 ZAB 1/56 ZABK ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location C02F 1/44 ZAB C02F 1/44 ZABE 1/56 ZAB 1/56 ZABK

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 SiO2 を含有する廃水からSiO2
凝集して分離する処理方法において、該廃水に、アルミ
ニウム化合物と硫酸を添加して、pHを3.8〜4.8
に数分間維持し、前記SiO2 粒子を粒径数〜数十μm
に凝集させ、次に、アルカリ剤を添加しpH6〜8に調
整した後、高分子凝集剤を添加した凝集沈殿分離、又は
1μm以下のポアサイズの膜を使用した固液分離を行う
ことを特徴とするSiO2 含有廃水の処理方法。
1. A processing method of separating from the waste water containing SiO 2 by agglomerating SiO 2, the waste water, an aluminum compound and sulfuric acid was added, the pH 3.8 to 4.8
For several minutes to reduce the size of the SiO 2 particles to several tens μm.
And then, after adjusting the pH to 6 to 8 by adding an alkali agent, performing coagulation sedimentation separation using a polymer coagulant, or solid-liquid separation using a membrane having a pore size of 1 μm or less. SiO 2 content processing method of wastewater.
【請求項2】 前記膜を使用した固液分離は、膜表面に
形成されるケーキ層の厚さを1〜10mmに制御する機
構を備えた膜分離装置を用いることを特徴とする請求項
1に記載のSiO2 含有廃水の処理方法。
2. The solid-liquid separation using the membrane, wherein a membrane separation device having a mechanism for controlling the thickness of a cake layer formed on the membrane surface to 1 to 10 mm is used. SiO 2 content processing method of waste water according to.
【請求項3】 前記処理する廃水は、予かじめ前処理と
して粒径0.03〜0.6μmの微粒子が添加されてい
ることを特徴とする請求項1に記載のSiO2 含有廃水
の処理方法。
3. The treatment of SiO 2 -containing waste water according to claim 1, wherein the waste water to be treated is added with fine particles having a particle size of 0.03 to 0.6 μm as pre-treatment. Method.
【請求項4】 前記添加する微粒子が、コロイド状のS
iO2 であることを特徴とする請求項3に記載のSiO
2 含有廃水の処理方法。
4. The method according to claim 1, wherein the fine particles to be added are colloidal S particles.
4. The SiO according to claim 3, wherein the SiO 2 is iO 2.
Processing method 2 containing wastewater.
【請求項5】 請求項1〜4のいずれか1項記載の方法
で処理した処理水を、更にRO膜及び/又はイオン交換
樹脂により処理することを特徴とするSiO2 含有廃水
の処理方法。
5. A method for treating wastewater containing SiO 2 , wherein the treated water treated by the method according to claim 1 is further treated with an RO membrane and / or an ion exchange resin.
JP20940996A 1996-07-22 1996-07-22 Method of treating wastewater containing SiO2 Expired - Fee Related JP3340029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20940996A JP3340029B2 (en) 1996-07-22 1996-07-22 Method of treating wastewater containing SiO2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20940996A JP3340029B2 (en) 1996-07-22 1996-07-22 Method of treating wastewater containing SiO2

Publications (2)

Publication Number Publication Date
JPH1034161A true JPH1034161A (en) 1998-02-10
JP3340029B2 JP3340029B2 (en) 2002-10-28

Family

ID=16572412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20940996A Expired - Fee Related JP3340029B2 (en) 1996-07-22 1996-07-22 Method of treating wastewater containing SiO2

Country Status (1)

Country Link
JP (1) JP3340029B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1042231A1 (en) * 1997-11-06 2000-10-11 Microbar Incorporated Process for removing silica from wastewater
FR2800367A1 (en) * 1999-11-03 2001-05-04 Air Liquide Electronics Sys PROCESS FOR REMOVING SOLID PARTICLES, IN PARTICULAR SILICA AND / OR ALUMINA FROM AQUEOUS EFFLUENTS
WO2001085619A1 (en) * 2000-05-10 2001-11-15 Infineon Technologies Ag Method for the purification of effluent water from chip production
KR100362066B1 (en) * 2000-08-16 2002-11-23 한국과학기술연구원 Treatment method for chemical mechanical polishing waste water
WO2007023872A1 (en) * 2005-08-24 2007-03-01 Tokuyama Corporation Method for processing waste water containing silicon powder
JP2007083226A (en) * 2005-08-24 2007-04-05 Tokuyama Corp Method for treatment of wastewater containing fumed silica
JP2007185647A (en) * 2005-08-24 2007-07-26 Tokuyama Corp Method of treating silicon powder-containing drainage
CN102126764A (en) * 2010-01-19 2011-07-20 栗田工业株式会社 Etching waste water processing method of silicon wafer and processing device
US7988866B2 (en) 2005-08-24 2011-08-02 Tokuyama Corporation Method of treating fumed silica-containing drainage water
KR101339304B1 (en) * 2011-11-15 2013-12-09 정재영 Through electric coagulation treatment of wastewater containing high concentrations of silica
JP2018034087A (en) * 2016-08-30 2018-03-08 株式会社東芝 Water treatment device and water treatment method
CN108128933A (en) * 2018-01-16 2018-06-08 四川大学 Silicon-containing wastewater treatment technology in a kind of silicon process

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1042231A1 (en) * 1997-11-06 2000-10-11 Microbar Incorporated Process for removing silica from wastewater
JP2001522720A (en) * 1997-11-06 2001-11-20 マイクロバー インコーポレイテッド How to remove silica from wastewater
EP1042231A4 (en) * 1997-11-06 2002-07-17 Microbar Inc Process for removing silica from wastewater
FR2800367A1 (en) * 1999-11-03 2001-05-04 Air Liquide Electronics Sys PROCESS FOR REMOVING SOLID PARTICLES, IN PARTICULAR SILICA AND / OR ALUMINA FROM AQUEOUS EFFLUENTS
EP1097906A1 (en) * 1999-11-03 2001-05-09 Air Liquide Electronics Systems Process for eliminating solid particles, especially silicon and /or aluminium particles, from aqueous effluents
WO2001085619A1 (en) * 2000-05-10 2001-11-15 Infineon Technologies Ag Method for the purification of effluent water from chip production
KR100362066B1 (en) * 2000-08-16 2002-11-23 한국과학기술연구원 Treatment method for chemical mechanical polishing waste water
JP2007083226A (en) * 2005-08-24 2007-04-05 Tokuyama Corp Method for treatment of wastewater containing fumed silica
WO2007023872A1 (en) * 2005-08-24 2007-03-01 Tokuyama Corporation Method for processing waste water containing silicon powder
JP2007185647A (en) * 2005-08-24 2007-07-26 Tokuyama Corp Method of treating silicon powder-containing drainage
JP4630240B2 (en) * 2005-08-24 2011-02-09 株式会社トクヤマ Treatment method for wastewater containing silicon powder
JP4644164B2 (en) * 2005-08-24 2011-03-02 株式会社トクヤマ Method of treating wastewater containing fumed silica
US7988867B2 (en) 2005-08-24 2011-08-02 Tokuyama Corporation Method of treating silicon powder-containing drainage water
US7988866B2 (en) 2005-08-24 2011-08-02 Tokuyama Corporation Method of treating fumed silica-containing drainage water
CN102126764A (en) * 2010-01-19 2011-07-20 栗田工业株式会社 Etching waste water processing method of silicon wafer and processing device
KR101339304B1 (en) * 2011-11-15 2013-12-09 정재영 Through electric coagulation treatment of wastewater containing high concentrations of silica
JP2018034087A (en) * 2016-08-30 2018-03-08 株式会社東芝 Water treatment device and water treatment method
CN108128933A (en) * 2018-01-16 2018-06-08 四川大学 Silicon-containing wastewater treatment technology in a kind of silicon process

Also Published As

Publication number Publication date
JP3340029B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
Feng et al. Coagulation performance and membrane fouling of different aluminum species during coagulation/ultrafiltration combined process
JP4880656B2 (en) Water treatment apparatus and water treatment method
JP3340029B2 (en) Method of treating wastewater containing SiO2
CN111268819A (en) Process and device for recycling reclaimed water in titanium dioxide acid wastewater
JPWO2008120704A1 (en) Fluorine-containing wastewater treatment apparatus and treatment method
JP4380825B2 (en) Fluorine-containing water treatment method
JP3409322B2 (en) Pure water production method
CN111233208A (en) Desulfurization waste water resource recovery system
WO2019208532A1 (en) Water treatment method and water treatment apparatus
JP2005118608A (en) Water treatment method
JP2009160513A (en) Method for charging flocculant in water purification
CN111559805A (en) Defluorination agent for pretreatment of reverse osmosis inlet water and preparation method thereof
CN211896410U (en) Desulfurization waste water resource recovery system
JP2003334566A (en) Method and device for treating drain containing fluorine
JPH10180008A (en) Membrane separation device
JP3262015B2 (en) Water treatment method
JP2003019404A (en) Arsenic adsorbent and removal treatment method for arsenic using the same
JPH1177062A (en) Flocculation-separation
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
CN111039480A (en) Method and device for reducing salt in mine water
JP4239326B2 (en) Insolubilized material separation method
CN1095446C (en) Chemical and method for treatment of waste water containing heavy metals
JP3172726B2 (en) Low pollution water treatment equipment
CN218879631U (en) Membrane filtration system
JPH1043770A (en) Treatment of waste water containing suspended particle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees