JP5985041B2 - Thermal insulation fiber and its fabric - Google Patents

Thermal insulation fiber and its fabric Download PDF

Info

Publication number
JP5985041B2
JP5985041B2 JP2015503746A JP2015503746A JP5985041B2 JP 5985041 B2 JP5985041 B2 JP 5985041B2 JP 2015503746 A JP2015503746 A JP 2015503746A JP 2015503746 A JP2015503746 A JP 2015503746A JP 5985041 B2 JP5985041 B2 JP 5985041B2
Authority
JP
Japan
Prior art keywords
weight
heat
fiber
parts
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015503746A
Other languages
Japanese (ja)
Other versions
JP2015518527A (en
Inventor
毛盈▲軍▼
Original Assignee
毛盈▲軍▼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 毛盈▲軍▼ filed Critical 毛盈▲軍▼
Publication of JP2015518527A publication Critical patent/JP2015518527A/en
Application granted granted Critical
Publication of JP5985041B2 publication Critical patent/JP5985041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath
    • D01F2/10Addition to the spinning solution or spinning bath of substances which exert their effect equally well in either

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Description

本発明は、繊維及びその織物、特に、保温断熱の繊維及びその織物に関する。   The present invention relates to a fiber and a woven fabric thereof, and more particularly, to a heat insulating fiber and a woven fabric thereof.

従来技術では、ほとんどの織物や繊維の断熱性能を向上させるために、繊維の量を増やして、紡織品の厚さと重量を向上させている。例えば、現在市販されている主流の保温下着は、重量が大きく、厚さも大きいという問題がある。このため、着用の快適さの面で、取り返しのつかない欠陥がある。   In the prior art, in order to improve the thermal insulation performance of most fabrics and fibers, the amount of fibers is increased to improve the thickness and weight of the textile. For example, the mainstream thermal insulation underwear currently on the market has a problem that it is heavy and thick. For this reason, there is an irreparable defect in terms of wearing comfort.

また、一部の従来技術では繊維や織物の保温性を向上させるために蓄熱材が使用されている。蓄熱材とは、蓄熱することができる新たな化学物質である。それは、特定の温度で物相が変化することに伴って熱を吸収又は放出するため、周囲環境の温度変化の制御に用いることができ、また熱を蓄積するのに用いることができる。その原理と技術案は、保温断熱材料と明らかに異なる。例えば、吸湿発熱の繊維は、蓄熱材の一種である。吸湿発熱の繊維は、優れた吸湿性を持ち、人体から排出された水分子の動能を熱能に転化して、体感温度を高めることができる。また、温度を高めているため、排出された水分が蒸発しやすいことになる。   Further, in some conventional techniques, a heat storage material is used in order to improve the heat retaining property of the fiber or the fabric. A heat storage material is a new chemical substance that can store heat. It absorbs or releases heat as the phase changes at a particular temperature, so it can be used to control temperature changes in the surrounding environment and can be used to store heat. The principle and technical plan are clearly different from those of thermal insulation materials. For example, hygroscopic heat-generating fibers are a kind of heat storage material. The hygroscopic exothermic fiber has excellent hygroscopicity, and can convert the dynamics of water molecules discharged from the human body into heat and increase the temperature of the body. Further, since the temperature is increased, the discharged water is likely to evaporate.

しかし、吸湿発熱の繊維及びその織物による紡織品の保温性の改善には限界があり、また、繊維のコストも高価である。   However, there is a limit to the improvement of the heat retention of the textile by the hygroscopic heat-generating fiber and its fabric, and the cost of the fiber is also expensive.

本発明の目的は、保温機能がよく、製造が簡単で、コストが低く、産業化を実施しやすい保温断熱の繊維及びその織物を提供することである。   An object of the present invention is to provide a heat-insulating and heat-insulating fiber and a woven fabric thereof that have a good heat-retaining function, are easy to manufacture, are low in cost, and can be easily industrialized.

上記目的を実現するために、本発明は、通常の織物繊維と、0.1〜3重量%のナノ構造体とを含み、前記ナノ構造体が、300〜8000nmの微粒子を含有し、前記微粒子が、Al、Zn、Sb、Na、Fe、及びSiから選択される2種以上の混合物を含有する保温断熱の繊維を提供する。   In order to achieve the above object, the present invention includes a normal woven fiber and 0.1 to 3% by weight of a nanostructure, and the nanostructure includes microparticles of 300 to 8000 nm, and the microparticles Provides a heat-insulating fiber containing a mixture of two or more selected from Al, Zn, Sb, Na, Fe, and Si.

好ましくは、前記通常の織物繊維は化学繊維を含み、前記化学繊維が人工繊維及び/又は合成繊維を含む。   Preferably, the normal textile fibers include chemical fibers, and the chemical fibers include artificial fibers and / or synthetic fibers.

より好ましくは、総重量の1.5〜3重量%を占める300〜4000nmの微粒子を含有する。
更に好ましくは、前記ナノ構造体において、前記微粒子が300〜500重量部のAlと30〜100重量部のNa、30〜500重量部のSbと10〜500重量部のFe、及び100〜1000重量部のZnと50〜3000重量部のSiの混合物から選択される少なくとも1種を含有する。
More preferably, it contains fine particles of 300 to 4000 nm occupying 1.5 to 3% by weight of the total weight.
More preferably, in the nanostructure, the fine particles are 300 to 500 parts by weight of Al and 30 to 100 parts by weight of Na, 30 to 500 parts by weight of Sb, 10 to 500 parts by weight of Fe, and 100 to 1000 parts by weight. Containing at least one selected from a mixture of parts Zn and 50-3000 parts by weight Si.

また、総重量の0.1〜1.5重量%を占める4000〜8000nmの微粒子を含有することが好ましい。
前記ナノ構造体において、前記微粒子が300〜500重量部のAlと10〜500重量部のFe、100〜1000重量部のZnと30〜100重量部のNa、及び30〜500重量部のSbと50〜3000重量部のSiの混合物から選択される少なくとも1種を含有することが更に好ましい。
Moreover, it is preferable to contain the fine particle of 4000-8000 nm which occupies 0.1 to 1.5 weight% of the total weight.
In the nanostructure, the fine particles include 300 to 500 parts by weight of Al, 10 to 500 parts by weight of Fe, 100 to 1000 parts by weight of Zn, 30 to 100 parts by weight of Na, and 30 to 500 parts by weight of Sb. More preferably, it contains at least one selected from a mixture of 50 to 3000 parts by weight of Si.

また、前記ナノ構造体において、前記微粒子が更に50〜100重量部のK、100〜500重量部のSn、及び50〜100重量部のSを含有することが更に好ましい。   In the nanostructure, the fine particles further preferably contain 50 to 100 parts by weight of K, 100 to 500 parts by weight of Sn, and 50 to 100 parts by weight of S.

本発明のもう1つの目的としては、保温断熱の織物を提供し、該保温断熱の織物は、前記保温断熱の繊維を少なくとも部分的に含有する。   Another object of the present invention is to provide a heat insulating and heat insulating fabric, the heat insulating and heat insulating fabric at least partially containing the heat insulating and heat insulating fibers.

本発明の更にもう1つの目的としては、ナノ構造体を含有する繊維の保暖織物の製造における応用を提供し、前記ナノ構造体を含有する繊維は前記保温断熱の繊維である。   Yet another object of the present invention is to provide an application in the production of a warm woven fabric of fibers containing nanostructures, wherein the fibers containing the nanostructures are fibers of the thermal insulation.

上記の技術案によれば、本発明のメリットとしては、次の通りである。
本発明は、通常の織物繊維に一定比率の300〜8000nmの微粒子であるナノ構造体を加えたため、同様のグラム重量とテクスチャーによる従来の織物と較べて、本発明の繊維が、織物の保温性とCLO値を大幅に高める効果を有する。そして、本発明は、先行技術の保温繊維と比べて、製造コストが低く、製造工程が簡単で、工業的生産が容易等のメリットを有する。
本発明の付加した方面と利点は、以下の記載において一部説明し、一部は以下の記載において一層明らかになり、或いは本発明の実践により分かる。
According to the above technical solution, the merits of the present invention are as follows.
In the present invention, since a nanostructure which is a fine particle of 300 to 8000 nm in a certain ratio is added to a normal fabric fiber, the fiber of the present invention has a heat retention property of the fabric as compared with a conventional fabric having a similar gram weight and texture. And has the effect of significantly increasing the CLO value. In addition, the present invention has advantages such as a low manufacturing cost, a simple manufacturing process, and easy industrial production as compared with the prior art heat insulation fiber.
Additional aspects and advantages of the present invention will be set forth in part in the description which follows, and in part will become more apparent in the description, or may be learned by practice of the invention.

本発明の付加した方面と利点は、以下の記載において一部説明し、一部は以下の記載において一層明らかになり、或いは本発明の実践により分かる。
図1は、本発明の実施例1における保温率の測定結果の比較図である。
Additional aspects and advantages of the present invention will be set forth in part in the description which follows, and in part will become more apparent in the description, or may be learned by practice of the invention.
FIG. 1 is a comparison diagram of the measurement results of the heat retention rate in Example 1 of the present invention.

以下、本発明の実施例について詳細に説明する。以下に記載した実施例は例示であり、本発明を解釈することだけに使われており、本発明に対する限定と理解してはいけない。実施例において、特定の技術又は条件が記載されていない場合、当分野の文献に記載の技術又は条件で、あるいは製品説明書に従って作製する。試薬や機器についてメーカーを指定されない場合、すべて商業的に入手できる通常のものである。   Examples of the present invention will be described in detail below. The examples described below are illustrative and are used only to interpret the present invention and should not be construed as limitations on the present invention. In the examples, when a specific technique or condition is not described, the technique or condition is described in literatures in the field or according to product instructions. Unless a manufacturer is specified for reagents and equipment, all are commercially available.

[実施例1]
図1と表1では、本発明の1種類の保温断熱の化学繊維の保温効果を測定した実施例を示す。
(1)測定項目:保温性実験
(2)実験の目的:繊維製品及び生地の保温性についてテストする。製品及び生地の保温性を高めるため、繊維の間に伝熱し難い空気を入り込ませることによって、散熱を抑える。
(3)測定方法:JIS L1096 織物及びニットの生地の実験方法に従って実験する。保温性試験機を用いて、所定温度(36℃±0.5℃)のホットプレートと試験片を一組としてセットし、2時間後に、試験片からの散熱量aと、ホットプレートにセットしなかった試験片からの散熱量bと、を計算し、下記の式から保温率(%)を求める。
保温率(%)=(1−a/b)×100
(4)測定単位:日本一般財団法人BOKEN品質評価機構近畿事業所
(5)測定サンプル
5.1本発明の繊維サンプル
本発明の繊維は、通常の化学繊維に、約2.9重量%のナノ構造体を加えた化学繊維であり、該ナノ構造体の微粒子の大きさは約300nmである。前記微粒子は、500重量部のAlと30重量部のNa、及び先行技術により添加することができるその他の微量元素を含有する。
前記ナノ構造体は、従来の繊維の製造技術におけるいずれの方法で添加してもよい。
本発明に用いられる製造方法としては、A)天然のポリマー又は無機材料(例えば、ビスコース繊維)、合成の高分子材料又は無機材料(例えば、ナイロン又はアクリル)を紡糸原液又は溶液にする工程と;B)前記紡糸原液又は溶液に上記のナノ構造体Al及びNaを添加する工程と;C)紡績機から押し出して、繊維に作製する工程とを含む。その他の工程は先行技術と同様であるため、説明を省略する。
[Example 1]
In FIG. 1 and Table 1, the Example which measured the heat retention effect of the chemical fiber of one type of heat insulation of this invention is shown.
(1) Measurement item: heat insulation experiment (2) Purpose of experiment: Test for heat insulation of textiles and fabrics. In order to improve the heat retention of the product and the fabric, the heat dissipation is suppressed by introducing air that is difficult to transfer heat between the fibers.
(3) Measurement method: JIS L1096 Experiments are conducted according to the woven fabric and knit fabric experimental methods. Using a heat retention tester, set a hot plate and a test piece at a predetermined temperature (36 ° C ± 0.5 ° C) as a set, and after 2 hours, set the heat dissipation amount a from the test piece and the hot plate. The amount of heat dissipated b from the test piece that did not exist is calculated, and the heat retention rate (%) is obtained from the following equation.
Thermal insulation rate (%) = (1−a / b) × 100
(4) Unit of measurement: BOKEN Quality Evaluation Organization Kinki Plant (5) Measurement sample 5.1 Fiber sample of the present invention The fiber of the present invention is about 2.9% by weight of nanofibers of ordinary chemical fiber. A chemical fiber to which a structure is added, and the size of fine particles of the nanostructure is about 300 nm. The microparticles contain 500 parts by weight of Al and 30 parts by weight of Na and other trace elements that can be added according to the prior art.
The nanostructure may be added by any method in the conventional fiber manufacturing technology.
The production method used in the present invention includes: A) a step of making a natural polymer or inorganic material (for example, viscose fiber), a synthetic polymer material or an inorganic material (for example, nylon or acrylic) into a spinning dope or solution; B) adding the nanostructured Al and Na to the spinning dope or solution; and C) extruding from a spinning machine to make a fiber. Since other processes are the same as those of the prior art, description thereof is omitted.

なお、上記ナノ構造体AlとNaの重量比率は、その他の重量比率であってもよい。本発明者らは、大量の試験を行って、各種の比率が繊維製品の良好な保温性に用いられることもでき、本実施例は、単に大量の試験データから一組の試験データを選択し説明するものである(以下、同様である)。
また、前記微粒子は、常温状態下の酸化物あるいは窒化物であってもよく、安定して存在できるその他のもの、例えば、化合物又は単体であってもよい。
なお、本発明においては、用語“重量部”が“μg/kg”の重量比であることが好ましいが、実際の要求に応じてその他の重量比に基づいて量ってもよい。
The weight ratio of the nanostructures Al and Na may be other weight ratios. The inventors can perform a large amount of testing and various ratios can be used for good thermal insulation of the textile product, and this example simply selects a set of test data from a large amount of test data. This will be explained (the same applies hereinafter).
The fine particles may be oxides or nitrides at room temperature, or may be other things that can exist stably, for example, compounds or simple substances.
In the present invention, the term “parts by weight” is preferably a weight ratio of “μg / kg”, but may be measured based on other weight ratios according to actual requirements.

比較試験
比較例1:イーオン社製の吸湿発熱の下着である。測定方法は、上記実施例1と同様である。
比較例2:ユニクロ社製の吸湿発熱の下着である。測定方法は、上記実施例1と同様である。
比較例3:シマラ社製の吸湿発熱の下着である。測定方法は、上記実施例1と同様である。
比較例4:イトーヨーカドー社製のウェル下着である。測定方法は、上記実施例1と同様である。
比較例5:ユニクロ社製の100%カシミヤのセーターである。測定方法は、上記実施例1と同様である。
Comparative Test Comparative Example 1: An undergarment made by AEON Co., Ltd. that absorbs moisture. The measurement method is the same as in Example 1 above.
Comparative Example 2: Underwear from hygroscopic heat generation manufactured by UNIQLO. The measurement method is the same as in Example 1 above.
Comparative Example 3: An undergarment made by Shimara. The measurement method is the same as in Example 1 above.
Comparative Example 4: Well underwear manufactured by Ito-Yokado. The measurement method is the same as in Example 1 above.
Comparative Example 5: A 100% cashmere sweater manufactured by UNIQLO. The measurement method is the same as in Example 1 above.

(6)測定結果
保温性測定データ
(6) Measurement results Thermal insulation measurement data

上記測定結果の保温率の比較図を図1に示す。実施例1と比較例1、2、3の測定結果から分かるように、同じグラム重量の場合、本発明の繊維からなる織物の保温率は、その他の市販品の吸湿発熱の下着の2倍になる。なお、“グラム重量”は繊維製品評価に慣用される単位であり、平方メートル当たりの重量を意味し、その単位は、“g/m”である。グラム重量は、織物の重要なテクニカル指標である。
なお、比較例1、2、3中の織物の保温率は、既に市販の普通の下着の保温率より大幅に高くなっている。
A comparison diagram of the heat retention rates of the measurement results is shown in FIG. As can be seen from the measurement results of Example 1 and Comparative Examples 1, 2, and 3, in the case of the same gram weight, the heat retention rate of the fabric made of the fiber of the present invention is twice that of the underwear of hygroscopic heat generation of other commercially available products. Become. Note that “gram weight” is a unit commonly used for evaluating textile products, and means a weight per square meter, and the unit is “g / m 2 ”. Gram weight is an important technical indicator for fabrics.
In addition, the heat retention rate of the fabric in Comparative Examples 1, 2, and 3 is significantly higher than the heat retention rate of commercially available ordinary underwear.

中国の標準「FZ/T 73022−2044 ニット保温下着」の規定によれば、保温下着製品のパッケージングには保温率、含有量などの指標を明記すべきであり、また、“保温率”は、30%以下になってはならない。現実では、ほとんどのいわゆる保温下着が、グラム重量を増加する(即ち、厚さや重量を増やす)ことによって保温率を高めている。
本発明の保温断熱の繊維からなる織物は、通常のグラム重量で、普通の保温下着の保温率より大幅に超える保温率を有し、予想外の技術効果が得られる。
According to the provisions of the Chinese standard “FZ / T 73022-2044 knit insulation underwear”, the packaging of insulation underwear products should clearly specify indicators such as insulation rate, content, etc. 30% or less. In reality, most so-called thermal underwear increase the thermal insulation rate by increasing gram weight (ie, increasing thickness or weight).
The woven fabric comprising the heat insulating and heat insulating fibers of the present invention has a heat retention rate that is much higher than the heat retention rate of ordinary heat retaining underwear at a normal gram weight, and an unexpected technical effect is obtained.

なお、本発明に用いられる用語“保温断熱”は、先行技術中の用語“蓄熱保温”とは異なる。“蓄熱”とは、外部熱源(又は、内部の熱を発生する物質)から蓄熱製品に熱を提供し、蓄熱製品がその提供される熱を蓄える。一方、本発明の保温断熱の繊維は、人体からの熱をナノ構造体を介してできるだけ多めに人体に反射し、外部から隔離する。また、本発明の上記試験は、下着製品に対する保温性試験であり、外部熱源(例えば、太陽など光源)からのエネルギー補充や供給はないので、本発明は、ナノ構造体を含有する繊維の保暖織物の製造における応用でもある。   The term “heat insulation” used in the present invention is different from the term “heat storage insulation” in the prior art. “Heat storage” means that heat is supplied from an external heat source (or a substance that generates internal heat) to the heat storage product, and the heat storage product stores the provided heat. On the other hand, the heat insulating and heat insulating fiber of the present invention reflects heat from the human body as much as possible through the nanostructure to the human body and isolates it from the outside. Further, the above test of the present invention is a heat retention test for an underwear product, and there is no energy supplement or supply from an external heat source (for example, a light source such as the sun). It is also an application in the production of textiles.

[実施例2]
本実施例と上記実施例との差異点としては、本実施例の測定サンプルは、通常の織物繊維に総重量の0.2重量%のナノ構造体を添加した繊維であって、当該ナノ構造体が約8000nmの微粒子である。前記微粒子は、300重量部のAl、100重量部のNa、100重量部のK、100重量部のSn及び100重量部のSを含有し、本発明のナノ構造体は、従来技術にあるいずれか1種を採用して繊維の製造工程中において添加してもよい。
本実施例の測定結果は、下記のとおりである。本発明の保温断熱の繊維を含有するグラム重量150g/mの織物は、その保温率が43.2%であった。その他の結果は、実施例1と同様であるため、詳しい説明を省略する。
本実施例の測定結果の保温率の比較図:省略する
[Example 2]
The difference between this example and the above example is that the measurement sample of this example is a fiber obtained by adding a nanostructure of 0.2% by weight of the total weight to a normal textile fiber, and the nanostructure The body is a fine particle of about 8000 nm. The fine particles contain 300 parts by weight of Al, 100 parts by weight of Na, 100 parts by weight of K, 100 parts by weight of Sn, and 100 parts by weight of S, and the nanostructure of the present invention is a conventional one. One kind may be adopted and added during the fiber production process.
The measurement results of this example are as follows. The woven fabric having a gram weight of 150 g / m 2 containing the heat insulating and heat insulating fibers of the present invention had a heat retention rate of 43.2%. The other results are the same as in Example 1, and detailed description thereof is omitted.
Comparison chart of heat retention rate of measurement results of this example: omitted

[実施例3]
本実施例と上記実施例との差異点としては、本実施例の測定サンプルは、通常の織物繊維に総重量の1.5重量%のナノ構造体を添加した繊維であって、当該ナノ構造体が約4000nmの微粒子である。前記微粒子は、500重量部のSb、及び10重量部のFeを含有し、本発明で用いるナノ構造体は、従来技術にあるいずれか1種を採用して繊維の製造工程中に添加してもよい。
本実施例の測定結果は、下記のとおりである。本発明の保温断熱の繊維を含有するグラム重量150g/mの織物は、その保温率が43.5%であった。その他の結果は、実施例1と同様であるため、詳しい説明を省略する。
本実施例の測定結果の保温率の比較図:省略する
[Example 3]
The difference between this example and the above example is that the measurement sample of this example is a fiber in which 1.5% by weight of the nanostructure of the total weight is added to a normal textile fiber, and the nanostructure The body is a fine particle of about 4000 nm. The fine particles contain 500 parts by weight of Sb and 10 parts by weight of Fe, and the nanostructures used in the present invention are added during the fiber manufacturing process using any one of the conventional techniques. Also good.
The measurement results of this example are as follows. The woven fabric having a gram weight of 150 g / m 2 containing the fibers for heat insulation of the present invention had a heat retention rate of 43.5%. The other results are the same as in Example 1, and detailed description thereof is omitted.
Comparison chart of heat retention rate of measurement results of this example: omitted

[実施例4]
本実施例と上記実施例との差異点としては、本実施例の測定サンプルは、通常の織物繊維に総重量の1.6重量%のナノ構造体を添加した繊維であって、当該ナノ構造体が約5000nmの微粒子である。前記微粒子は、30重量部のSb、500重量部のFe、80重量部のK、300重量部のSn及び70重量部のSを含有し、本発明で用いるナノ構造体は、従来技術にあるいずれか1種を採用して繊維の製造工程中に添加してもよい。
本実施例の測定結果は、下記のとおりである。本発明の保温断熱の繊維を含有するグラム重量150g/mの織物は、その保温率が43.1%であった。その他の結果は、実施例1と同様であるため、詳しい説明を省略する。
本実施例の測定結果の保温率の比較図:省略する
また、本発明は、紡績繊維マスターバッチの準備工程を有する保温断熱の繊維の製造方法を採用した。当該紡績繊維マスターバッチを準備する工程において、上記ナノ構造体を添加した。その後、当該紡績繊維マスターバッチから保温断熱の繊維を作製する。その他の工程は従来の繊維の製造方法と同様であるため、ここでの説明を省略する。
[Example 4]
The difference between this example and the above example is that the measurement sample of this example is a fiber in which 1.6% by weight of the nanostructure is added to a normal fabric fiber, and the nanostructure The body is a fine particle of about 5000 nm. The fine particles contain 30 parts by weight of Sb, 500 parts by weight of Fe, 80 parts by weight of K, 300 parts by weight of Sn and 70 parts by weight of S, and the nanostructure used in the present invention is in the prior art. Any one of them may be adopted and added during the fiber production process.
The measurement results of this example are as follows. The woven fabric having a gram weight of 150 g / m 2 containing the fibers for heat insulation of the present invention had a heat retention rate of 43.1%. The other results are the same as in Example 1, and detailed description thereof is omitted.
Comparison diagram of heat retention rate of measurement results of this example: omitted In addition, the present invention employs a method of manufacturing a heat insulating fiber having a preparation step of a spun fiber masterbatch. In the step of preparing the spun fiber master batch, the nanostructure was added. Then, the heat insulation heat insulation fiber is produced from the spun fiber masterbatch. Since other processes are the same as those of the conventional fiber manufacturing method, description thereof is omitted here.

[実施例5]
本実施例と上記実施例との差異点としては、本実施例の測定サンプルは、通常の織物繊維に総重量の1.8重量%のナノ構造体を添加した繊維であって、当該ナノ構造体が約3000nmの微粒子である。前記微粒子は、1000重量部のZn、50重量部のSi、400重量部のAl、50重量部のNa、300重量部のSb、50重量部のK、500重量部のSn及び50重量部のSを含有し、本発明で用いるナノ構造体は、従来技術にあるいずれか1種を採用して繊維の製造工程中に添加してもよい。
本実施例の測定結果は、下記のとおりである。本発明の保温断熱の繊維を含有するグラム重量150g/mの織物は、その保温率が43.7%であった。その他の結果は、実施例1と同様であるため、詳しい説明を省略する。
本実施例の測定結果の保温率の比較図:省略する。
[Example 5]
The difference between this example and the above example is that the measurement sample of this example is a fiber in which a nanostructure of 1.8% by weight of the total weight is added to a normal fabric fiber, and the nanostructure The body is a fine particle of about 3000 nm. The fine particles include 1000 parts by weight Zn, 50 parts by weight Si, 400 parts by weight Al, 50 parts by weight Na, 300 parts by weight Sb, 50 parts by weight K, 500 parts by weight Sn and 50 parts by weight. The nanostructure containing S and used in the present invention may be added during the fiber manufacturing process by adopting any one of the conventional techniques.
The measurement results of this example are as follows. The woven fabric having a gram weight of 150 g / m 2 containing the fibers for heat insulation of the present invention had a heat retention rate of 43.7%. The other results are the same as in Example 1, and detailed description thereof is omitted.
Comparison diagram of heat retention rate of measurement results of this example: omitted.

その他の実施例
本発明者らは、上記実施例の試験方法に従って、以下の組み合わせについて試験を行った。
300〜500重量部のAlと10〜500重量部のFeのナノ構造体の組み合わせ;
100〜1000重量部のZnと30〜100重量部のNaのナノ構造体の組み合わせ;
30〜500重量部のSbと50〜3000重量部のSiのナノ構造体の組み合わせ。
また、上記ナノ構造体を3種以上含む組み合わせについても、同様な試験を行った結果、本発明の保温断熱の繊維を含有するグラム重量150g/mの織物は、その保温率が40.2%〜43.7%であった。実験データが大量であるため、ここで列挙することを省略する。また、その他の結果は、実施例1と同様であるため、詳しい説明を省略する。
Other Examples The inventors tested the following combinations according to the test methods of the above examples.
A combination of 300-500 parts by weight of Al and 10-500 parts by weight of Fe nanostructure;
A combination of 100-1000 parts by weight of Zn and 30-100 parts by weight of Na nanostructures;
Combination of 30 to 500 parts by weight of Sb and 50 to 3000 parts by weight of Si nanostructure.
Further, as a result of conducting a similar test on a combination including three or more kinds of the above nanostructures, the woven fabric having a gram weight of 150 g / m 2 containing the heat insulating and heat insulating fibers of the present invention has a heat retention rate of 40.2. % To 43.7%. Since there is a large amount of experimental data, listing here is omitted. The other results are the same as in Example 1, and thus detailed description thereof is omitted.

また、本発明のもう1つの目的としては、保温断熱の織物、例えば、ニット又は編み物を提供することにある、当該織物において、少なくとも部分的に前記化学繊維を含有し、当然、全てに本発明の保温断熱の化学繊維を用いて製造してもよい。
当然ながら、当業者は、本発明の保温断熱の繊維及び当該繊維からなる織物に基づいて、各種類の繊維、織物及びその製造方法を構成することができる。
Another object of the present invention is to provide a heat insulating and heat insulating fabric, for example, a knit or knitted fabric. You may manufacture using the chemical fiber of the heat insulation of this.
Of course, those skilled in the art can configure each type of fiber, woven fabric, and manufacturing method thereof based on the heat-insulating and heat-insulating fiber of the present invention and the woven fabric made of the fiber.

本発明の保温断熱の繊維及びその製造方法によれば、優れた新型の保温断熱の織物を効率的に製造することができ、低温環境に応用することができる。また、本発明の保温断熱の繊維は、先行技術の発熱繊維に対して、保温性に優れ、製造コストが低く、製造工程が簡単で、工業的生産が容易等のメリットを有し、品質のよい保温断熱の織物の製造に効果的に利用できる。   According to the heat insulating and heat insulating fiber of the present invention and the method for manufacturing the same, an excellent new type of heat insulating and heat insulating fabric can be efficiently manufactured and applied to a low temperature environment. In addition, the heat insulating and heat insulating fiber of the present invention has advantages such as superior heat retention, low manufacturing cost, simple manufacturing process, easy industrial production, etc. It can be effectively used for the production of fabric with good heat insulation.

以上、本発明の実施例を例示し説明したが、本業者にとって、本発明の原理と主旨を脱しない範囲内でこれらの実施例に対して各種の変更、修正、切り替えと変形を加えることができ、本発明の範囲は請求項及びその同等的なものに限定されるものである。
本明細書の記述において、参考用語の「1つの実施例」、「一部の実施例」、「例示的実施例」、「例示」、「具体的例示」、或いは「一部の例示」などの記述とは、当該実施例又は例示に基づいて記述した具体的特徴、構造、材料又は特長が本発明の少なくとも1つの実施例又は例示に含まれていることを指す。本明細書において、上記用語の概略的記述は必ずしも同一の実施例又は例示を指すとは限らない。また、記述された具体的特徴、構造、材料又は特長をいずれか1つ又は複数の実施例或いは例示において適宜な方式で結合することができる。

Although the embodiments of the present invention have been illustrated and described above, various changes, modifications, changes, and modifications may be made to these embodiments without departing from the principle and spirit of the present invention. It is intended that the scope of the invention be limited only by the claims and equivalents thereof.
In the description of this specification, the reference terms “one example”, “some examples”, “exemplary examples”, “exemplary”, “specific examples”, “partial examples”, etc. The description means that the specific feature, structure, material, or feature described based on the embodiment or illustration is included in at least one embodiment or illustration of the present invention. In this specification, the general description of the terms does not necessarily refer to the same embodiment or example. In addition, the specific features, structures, materials, or features described can be combined in any suitable manner in any one or more of the examples or examples.

Claims (10)

通常の織物繊維と、0.1〜3重量%のナノ構造体とを含み、
前記ナノ構造体が、300〜8000nmの微粒子を含有し、
前記微粒子が、ZnとSiとAlとNaとSbとKとSnとSを含む混合物、SbとSiとKとSnとSを含む混合物、及びSbとSiを含む混合物から選択される少なくとも1種の混合物を含有することを特徴とする保温断熱の繊維。
Including normal textile fibers and 0.1 to 3 wt% nanostructures,
The nanostructure contains fine particles of 300 to 8000 nm,
The fine particles, mixed-containing Z n Si and Al, Na and Sb and K, Sn, and S, mixed-containing S b Si and K and Sn and S, and mixed-containing Sb and Si A heat insulating and heat insulating fiber characterized by containing at least one mixture selected from materials.
前記通常の織物繊維が化学繊維を含み、前記化学繊維が人工繊維及び/又は合成繊維を含む請求項1に記載の保温断熱の繊維。   The heat-insulating and heat-insulating fiber according to claim 1, wherein the normal textile fiber includes a chemical fiber, and the chemical fiber includes an artificial fiber and / or a synthetic fiber. 総重量の1.5〜3重量%を占める300〜4000nmの微粒子を含有する請求項2に記載の保温断熱の繊維。   The heat insulating and heat insulating fiber according to claim 2, comprising fine particles of 300 to 4000 nm occupying 1.5 to 3% by weight of the total weight. 前記ナノ構造体において、前記微粒子が、重量比率で30〜500重量部のSbと10〜500重量部のFeを含む混合物を含有する請求項3に記載の保温断熱の繊維。 The heat insulating and heat insulating fiber according to claim 3, wherein in the nanostructure, the fine particles contain a mixture containing 30 to 500 parts by weight of Sb and 10 to 500 parts by weight of Fe in a weight ratio. 総重量の0.1〜1.5重量%を占める4000〜8000nmの微粒子を含有する請求項2に記載の保温断熱の繊維。The heat insulating and heat insulating fiber according to claim 2, comprising fine particles of 4000 to 8000 nm occupying 0.1 to 1.5% by weight of the total weight. 前記ナノ構造体において、前記微粒子が、重量比率で30〜500重量部のSbと50〜3000重量部のSiを含む混合物を含有する請求項5に記載の保温断熱の繊維。6. The heat insulating and heat insulating fiber according to claim 5, wherein in the nanostructure, the fine particles contain a mixture containing 30 to 500 parts by weight of Sb and 50 to 3000 parts by weight of Si in a weight ratio. 通常の織物繊維と、0.1〜3重量%のナノ構造体とを含み、Including normal textile fibers and 0.1 to 3 wt% nanostructures,
前記ナノ構造体が、総重量の1.5〜3重量%を占める300〜4000nmの微粒子を含有し、The nanostructure contains 300 to 4000 nm fine particles occupying 1.5 to 3% by weight of the total weight,
前記微粒子が、重量比率で100〜1000重量部のZnと50〜3000重量部のSiを含む混合物を含有することを特徴とする保温断熱の繊維。The heat insulating and heat insulating fiber, wherein the fine particles contain a mixture containing 100 to 1000 parts by weight of Zn and 50 to 3000 parts by weight of Si in a weight ratio.
前記ナノ構造体において、前記微粒子が、更に、重量比率で50〜100重量部のK、重量比率で100〜500重量部のSn、及び重量比率で50〜100重量部のSを含有する請求項4、6及び7のいずれかに記載の保温断熱の繊維。In the nanostructure, the fine particles further contain 50 to 100 parts by weight of K, 100 to 500 parts by weight of Sn, and 50 to 100 parts by weight of S by weight. A heat insulating fiber according to any one of 4, 6, and 7. 請求項1から8のいずれかに記載の保温断熱の繊維を少なくとも部分的に含有することを特徴とする保温断熱の織物。A heat-insulating and heat-insulating woven fabric comprising at least a part of the heat-insulating and heat-insulating fibers according to any one of claims 1 to 8. 請求項1から8のいずれかに記載の保温断熱の繊維であるナノ構造体を含有する繊維の保暖織物の製造における応用。The application in manufacture of the heat-insulating textile of the fiber containing the nanostructure which is a fiber of the heat insulating heat insulation in any one of Claim 1 to 8.
JP2015503746A 2013-03-05 2013-04-11 Thermal insulation fiber and its fabric Expired - Fee Related JP5985041B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310069899.8 2013-03-05
CN201310069899.8A CN103160943B (en) 2013-03-05 2013-03-05 Insulation and heat insulation fiber and textile prepared by fiber thereof
PCT/CN2013/074112 WO2014134856A1 (en) 2013-03-05 2013-04-11 Thermal insulation fibre and textile made therefrom

Publications (2)

Publication Number Publication Date
JP2015518527A JP2015518527A (en) 2015-07-02
JP5985041B2 true JP5985041B2 (en) 2016-09-06

Family

ID=48584462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015503746A Expired - Fee Related JP5985041B2 (en) 2013-03-05 2013-04-11 Thermal insulation fiber and its fabric

Country Status (3)

Country Link
JP (1) JP5985041B2 (en)
CN (1) CN103160943B (en)
WO (1) WO2014134856A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147143B (en) * 2013-03-05 2014-12-17 毛盈军 Heat-insulation fiber and textile produced by same
CN104664635A (en) * 2015-03-03 2015-06-03 北京厚文知识产权顾问有限公司 Health-care underwear with local heating and warming functions
CN104664634A (en) * 2015-03-03 2015-06-03 北京厚文知识产权顾问有限公司 Health-care underwear with local heating and warming functions
CN105463667B (en) * 2016-01-06 2017-10-10 绍兴柯桥东进纺织有限公司 A kind of weaving face fabric
CN105648560B (en) * 2016-01-06 2017-12-08 江苏智光创业投资有限公司 fabric
CN106319662A (en) * 2016-11-15 2017-01-11 李光武 Heat insulation and preservation fiber, and preparation method and application thereof
JP6464245B1 (en) * 2017-09-20 2019-02-06 ▲緑▼能奈米科技有限公司 Underwear to enhance the masculine function of far-infrared fibers
TWI698563B (en) * 2018-12-25 2020-07-11 南亞塑膠工業股份有限公司 Heat-insulating dark-cooling fiber and textiles made therefrom

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252712A (en) * 1984-05-28 1985-12-13 Teijin Ltd Fiber for heat-insulation material
JPH0424236A (en) * 1990-05-14 1992-01-28 Kuraray Co Ltd Conjugate yarn
JP3077549B2 (en) * 1995-01-26 2000-08-14 東レ株式会社 Fabric for wetsuit
JPH09275824A (en) * 1996-04-11 1997-10-28 Japan Exlan Co Ltd Victoria lawn
JP3664585B2 (en) * 1998-03-26 2005-06-29 株式会社クラレ Fiber with excellent heat radiation
DE10115941B4 (en) * 2000-04-04 2006-07-27 Mi Soo Seok Process for the production of fibers with functional mineral powder and fibers made therefrom
JP2004169240A (en) * 2002-11-22 2004-06-17 Toray Ind Inc Fiber structure
CN1515633A (en) * 2003-01-06 2004-07-28 马承银 Heat-isolating coating capable of reflecting solar heat ray
JP3883007B2 (en) * 2003-06-19 2007-02-21 住友金属鉱山株式会社 Boride fine particle-containing fiber and fiber product using the same
CN100552102C (en) * 2004-07-15 2009-10-21 住友金属矿山株式会社 Contain the fiber of boride microparticle and the fibre of this fiber of use
JP2008045240A (en) * 2006-08-17 2008-02-28 Shiontekku:Kk Functional fiber and method for producing the same, and textile product
CN101121858B (en) * 2007-09-29 2010-05-26 湖南涂喜乐新材料科技有限公司 Heat insulation coating capable of reflecting solar heat rays
CN101560343B (en) * 2009-05-19 2011-11-30 上海师范大学 Heat-reflecting heat-insulating inorganic material, preparation method and application thereof
CN101629032B (en) * 2009-08-19 2012-06-06 上海师范大学 Heat reflective heat insulating composite coating preparation method
CN101709511B (en) * 2009-11-26 2012-05-23 毛盈军 Chemical fiber capable of rapidly heating up when meeting light and textile containing same
CN102465453A (en) * 2010-11-16 2012-05-23 晓健科技(大连)有限公司 Radiation-proof thermal carbon fiber and manufacturing method thereof
CN102514294B (en) * 2011-11-24 2014-04-16 天津摩根坤德高新科技发展有限公司 Multilayer reflection heat insulation composite board and manufacturing method thereof
CN102747449B (en) * 2012-05-14 2014-10-22 毛盈军 Warming and heat-storing fiber, preparation method thereof, and textile product thereof
CN102747440B (en) * 2012-05-14 2014-10-22 毛盈军 Fibers with characteristics of temperature increasing and heat storage, preparation method and textile thereof
CN102747445B (en) * 2012-05-14 2014-11-26 毛盈军 Cooling and chilling fiber, preparation method thereof, and textile product thereof
CN102677204A (en) * 2012-05-14 2012-09-19 毛盈军 Fibers capable of warming to emit heat naturally under humid condition, preparation method and fabrics
CN102747446B (en) * 2012-05-14 2014-12-17 毛盈军 Cooling and chilling fiber, preparation method thereof, and textile product thereof
CN102747448B (en) * 2012-05-14 2014-11-05 毛盈军 Naturally warming and heating fiber under humid condition, preparation method thereof, and textile product thereof
CN102747443B (en) * 2012-05-14 2014-10-22 毛盈军 Fibers with characteristics of temperature increasing and heat storage, preparation method and textile thereof
CN102766943A (en) * 2012-06-27 2012-11-07 吴江亚太化纺有限公司 Spinning process for far-infrared nylon fiber

Also Published As

Publication number Publication date
CN103160943B (en) 2015-05-20
WO2014134856A1 (en) 2014-09-12
JP2015518527A (en) 2015-07-02
CN103160943A (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5985041B2 (en) Thermal insulation fiber and its fabric
TW200844282A (en) Conjugate fibers excellent in antistatic property, water absorption and cool feeling by contact
JP5245013B2 (en) Cooling and cooling chemical fiber and fabric containing the fiber
JP2009001927A (en) Blended yarn for converting light into heat and exothermic fabric using the same
CN106827730A (en) A kind of double-deck one-way wet-guide fabric and its application
CN105401302A (en) Mint fiber, cotton fiber, and polyester fiber blended fabric
CN107034536A (en) A kind of preparation method with graphene cotton fiber
CN103147143B (en) Heat-insulation fiber and textile produced by same
CN207130418U (en) One kind is using mixed yarn as the woven Multifunctional yarn fabric of raw material
Zhou et al. Evaluation of luster, hand feel and comfort properties of modified polyester woven fabrics
BR112019021956B1 (en) TEXTILE COATED WITH PATTERN FOR ACTIVE COOLING
Zeighampour et al. Innovative flexible thermal storage textile using nanocomposite shape-stabilized phase change materials
JP3189049U (en) Temperature drop fabric
CN211921835U (en) One-way moisture-conducting, moisture-absorbing and heating fabric and clothing
CN203222639U (en) Cooling yarn with cool sense and fiber product prepared thereby
TW201346085A (en) A temperature-reducing and cooling fiber, a method for preparing the same, and a fabric containing the same
Patel et al. Silica particles can improve electrical conductivity of polyester and cotton
CN102747443B (en) Fibers with characteristics of temperature increasing and heat storage, preparation method and textile thereof
TW201346083A (en) A heat storage fiber with rapid temperature-rising effect, a method for preparing the same, and a fabric containing the same
US20240271334A1 (en) Methods and compositions for sustainable textile materials
Shang et al. A study of wearabilities of softwarm heating warm fiber fabric
TW201346090A (en) A temperature-reducing and cooling fiber, a method for preparing the same, and a fabric containing the same
KR102446659B1 (en) A heating and heat-storage fabrics having permanent antibacterial property
CN202658331U (en) Cool fabric
CN102747448B (en) Naturally warming and heating fiber under humid condition, preparation method thereof, and textile product thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5985041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees