JP3664585B2 - Fiber with excellent heat radiation - Google Patents

Fiber with excellent heat radiation Download PDF

Info

Publication number
JP3664585B2
JP3664585B2 JP09700798A JP9700798A JP3664585B2 JP 3664585 B2 JP3664585 B2 JP 3664585B2 JP 09700798 A JP09700798 A JP 09700798A JP 9700798 A JP9700798 A JP 9700798A JP 3664585 B2 JP3664585 B2 JP 3664585B2
Authority
JP
Japan
Prior art keywords
fiber
fine particles
silver
silica
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09700798A
Other languages
Japanese (ja)
Other versions
JPH11279830A (en
Inventor
洋文 佐野
和彦 田中
一正 楠戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP09700798A priority Critical patent/JP3664585B2/en
Publication of JPH11279830A publication Critical patent/JPH11279830A/en
Application granted granted Critical
Publication of JP3664585B2 publication Critical patent/JP3664585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は熱線の吸収・蓄積特性、再放射特性、および保温性に優れる熱線放射性繊維に関する。本発明の熱線放射性繊維は、その優れた熱線の吸収・蓄積特性、再放射特性、保温性を活かして、保温性が要求される防寒衣料、スポーツ衣料、レジャー用衣料、下着、寝具類、室内着、靴下、サポーターなどの種々の用途に有効に使用することができる。
【0002】
【従来の技術】
可視光線よりも波長が長く、マイクロ波よりも波長の短い電磁波である赤外線は、加熱作用を有することから熱線とも言われ、その波長の長さによって近赤外線、(普通)赤外線、遠赤外線に分けて取り扱われることが多い。遠赤外線などの熱線を用いて加熱すると、被加熱体の表面だけではなく内部まで直接かつ速やかに加熱されること、また遠赤外線などの熱線は有機ポリマーなどの有機物に対する加熱効率が高く、人体に対しても温和な加熱が可能であることが知られている。そのため、遠赤外線などの熱線のそのような特性を活かして、熱線の吸収・蓄積特性、再放射特性を有する物質を用いた製品の開発が、暖房、衣料、医療器具などの種々の分野で試みられている。
【0003】
遠赤外線などの熱線の放射特性を有する繊維としては、遠赤外線などの熱線放射特性を有する無機微粒子を含有させた繊維が従来から提案されており、そのような従来技術としては、(i)アルミナ、ジルコニア、マグネシアなどの無機化合物を芯部に有する遠赤外線放射性芯鞘型複合繊維(特開昭63−92720号公報)、 ii 遠赤外線放射特性を有するセラミック微粒子を含有した繊維(特開平1−314715号公報)、 iii 遠赤外線放射特性を有するセラミックス酸化物を含有するポリマーを鞘成分とし、ポリエステルを芯成分とする芯鞘型複合繊維であって繊維表面にシリコン成分を主体とする平滑性処理剤が付着している遠赤外線放射性複合繊維(特開平3−174071号公報)などを挙げることができる。
【0004】
熱線放射特性を有する無機微粒子を含有する繊維では、繊維中に含まれる該無機微粒子が、人体や他の熱源から放射される熱線を吸収・蓄積し、それを再度光エネルギーとして放射することにより保温が行われる。しかしながら、前記した従来の熱線放射性繊維(遠赤外線放射性繊維)では、その熱線放射特性が十分ではなく、そのため保温効果が低く、保温性を高めるためには熱線放射特性を有する無機粒子を多量に添加する必要があり、繊維強度などの繊維物性が低下するという問題がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、人体や他の熱源から放射される熱線を効率良く吸収・蓄積することができ、しかも吸収・蓄積した熱線を効率良く再放射することができ、それによって人体などの被加熱体が効率良く加熱されると共に繊維中に含まれている空気も効率良く加熱されて、全体として高い加熱、保温効果を達成することのできる繊維を提供することである。
【0006】
【課題を解決するための手段】
上記の目的を達成すべく本発明者らは色々検討を重ねてきた。その結果、表面を銀でメ ッキしたシリカ微粒子を用いると、人体や他の熱源から放射された熱線が、表面を銀でメッキしたシリカ微粒子によって一層効率よく吸収・蓄積されると共に、該吸収・蓄積された熱線が一層効率よく再放射され、人体などの被加熱体が効率良く加熱されると共に繊維中に含まれている空気も効率良く加熱されて、全体として高い加熱、保温効果を有する熱線放射性繊維が得られることを見出して本発明を完成した。
【0007】
したがって、本発明は、表面を銀でメッキしたシリカ微粒子(すなわち表面を銀でメッキしたSiO 2 微粒子)を繊維中に含有させるか又は繊維表面に付着させたことを特徴とする熱線放射性繊維である。
ここで、本発明で用いる「表面を銀でメッキしたシリカ微粒子」とは、シリカ微粒子の表面に銀メッキが直接施されていて且つ銀メッキ層が他の物質によって更に被覆されておらず表面に露出している銀メッキシリカ微粒子を意味する(以下、本発明で用いる「表面を銀でメッキしたシリカ微粒子」を「銀メッキシリカ微粒子」ということがある)。
なお、本明細書における“熱線”は、可視光線よりも波長が長くマイクロ波よりも波長の短い電磁波である広義の赤外線を意味し、近赤外線、普通赤外線および遠赤外線を包含する。
【0008】
【発明の実施の形態】
以下に本発明について詳細に説明する。
上述のように、本発明では、繊維に含有または付着させる熱線放射性特性を有する無機微粒子として、銀メッキシリカ微粒子を用いることが必要である。
0009
本発明では、表面に銀メッキ層が薄い層状で付着したシリカ微粒子を用いることによって、銀メッキシリカ微粒子の優れた熱線の吸収・蓄積特性および再放射特性によって、被加熱体および/または繊維に含まれる空気を暖める効果が高くなり、しかも銀メッキシリカ微粒子の少量の使用量で済むためコストの点でも優れている
0010
銀メッキシリカ微粒子では、シリカ微粒子の表面全体が銀メッキ層で覆われていても、または表面の一部が銀メッキ層で覆われていてもよいが、表面全体が覆われていることが好ましい。
0011
銀メッキシリカ微粒子におけるの含有量は、熱線の吸収・蓄積特性、再放射特性および保温特性、経済性、製糸性などの点から、を含有させる前のシリカ微粒子の重量に基づいて、1〜10重量%であることが好ましく、2〜8重量%であることがより好ましい。
0012
本発明で用いる、熱線の吸収・蓄積特性、再放射特性、ひいては保温特性に優れる銀メッキシリカ微粒子は、一般に7〜10μの波長域に吸収ピークを有している
0013
銀メッキシリカ微粒子の粒径は、紡糸、延伸などの繊維化工程時に支障を来さず、また繊維から脱落しにくい大きさであることが必要であり、一般的にはその平均粒径が10μ以下であることが好ましく、0.2〜5μであることがより好ましく、0.5〜2μであることがさらに好ましい。銀メッキシリカ微粒子の平均粒径が10μよりも大きいと、紡糸時にフィルターの目詰まりや断糸を生じて紡糸時の繊維化工程性が不良になり易い。一方、銀メッキシリカ微粒子の平均粒径があまりに小さ過ぎる場合(通常0.2μm未満の場合)も、粒子が二次凝集を起こして紡糸時のフィルターの目詰りや、繊維の延伸工程時の毛羽の発生などが生じ易くなり、しかも紡糸原料中に粒子が均一に混合、分散しにくくなる。
0014
本発明の繊維では、銀メッキシリカ微粒子を、繊維中に含有していてもまたは繊維表面に脱落しないようにして結合剤などを用いて付着させておいてもよい。銀メッキシリカ微粒子を含有させようとする繊維が、木綿、麻、羊毛、絹などのような天然繊維である場合は、結合剤を用いて繊維の表面に付着させる方法を用いるとよい。また、銀メッキシリカ微粒子を含有させようとする繊維が、合成繊維、半合成繊維または再生繊維である場合は、繊維形成性重合体からなる紡糸原料に銀メッキシリカ微粒子を添加して紡糸を行うことによって、銀メッキシリカ微粒子を繊維中に含有する繊維を製造することができる。しかしながら、合成繊維、半合成繊維または再生繊維の場合にも、紡糸して得られた繊維の表面に結合剤などを用いて銀メッキシリカ微粒子を付着させてもよい。銀メッキシリカ微粒子を繊維表面に結合剤などを用いて付着させる場合は、繊維の風合、耐久性などが損なわれないように注意する必要がある。
0015
そのうちでも、本発明の繊維は、銀メッキシリカ微粒子を紡糸原料(紡糸原液や紡糸に用いるポリマーなど)に添加し、それを用いて紡糸を行って得られる合成繊維、半合成繊維または再生繊維、特に合成繊維であることが好ましい。これらの繊維では、銀メッキシリカ微粒子が、繊維中に強固に保持されていて脱落しないので、その優れた熱線の吸収・蓄積特性、再放射特性、それに伴う保温特性を長期に亙って安定して維持することができる。
0016
銀メッキシリカ微粒子を繊維中に含有する上記した合成繊維、半合成繊維または再生繊維では、繊維中における銀メッキシリカ微粒子の存在形態は特に制限されず、種々の形態で存在させることができる。
例えば、(1)銀メッキシリカ微粒子を繊維全体に均一に分散させておいてもよいし;(2)繊維断面の中央部または表面部とで銀メッキシリカ微粒子の含有量(分布)が異なっていてもよいし(例えば芯鞘型複合繊維の芯または鞘の一方のみに銀メッキシリカ微粒子を含有させるか又は芯と鞘とで銀メッキシリカ微粒子の含有量を異ならせておく);(3)銀メッキシリカ微粒子を海島状で繊維中に分布させてもよいし(例えば海島型複合繊維の海または島の一方のみに銀メッキシリカ微粒子を含有させるか又は海と島とで銀メッキシリカ微粒子の含有量を異ならせておく);(4)銀メッキシリカ微粒子をサイドバイサイド状に繊維中に分布させてもよいし(例えばサイドバイサイド型複合繊維の一方の成分のみに銀メッキシリカ微粒子を含有させるか又は一方の成分と他方の成分とで銀メッキシリカ微粒子の含有量を異ならせておく);或いは(5)銀メッキシリカ微粒子を繊維断面中にランダムに含有させてもよい。
0017
銀メッキシリカ微粒子を含有する繊維の製造する際の紡糸原料(紡糸原液や紡糸に用いるポリマーなど)への銀メッキシリカ微粒子の添加方法は特に制限されず、繊維の種類などに応じて適当な方法を採用することができる。何ら限定されるものではないが、例えば、(i)繊維形成性重合体の重合時または重合直後に銀メッキシリカ微粒子を添加する方法;(ii)既に製造されている繊維形成性重合体に銀メッキシリカ微粒子を高濃度で添加してマスターバッチをつくり、そのマスターバッチと繊維形成性重合体を混合して紡糸原液を調製する方法;(iii)繊維形成性重合体が紡糸口金から紡出されるまでの任意の段階(例えば重合体のペレットを製造する段階、紡糸段階など)で銀メッキシリカ微粒子を重合体に添加する方法などを挙げることができる。
0018
銀メッキシリカ微粒子の繊維での含有量(付着量)は、繊維の種類や用途などに応じて調節することができるが、一般には、銀メッキシリカ微粒子を含有させる前の繊維の重量に基づいて2〜10重量%であることが好ましく、3〜7重量%であることがより好ましい。銀メッキシリカ微粒子の含有量が2重量%未満であると、繊維に十分な熱線の吸収・蓄積特性および再放射特性を付与しにくくなる。一方、銀メッキシリカ微粒子の含有量が10重量%を超えると紡糸を行う際のフィルターの目詰まりや紡糸時や延伸時の単糸切れなどのトラブルを生じて、繊維製造時の工程性が不良になったり、繊維強度の低下などの繊維物性の低下が生じ易くなる。
0019
本発明では、繊維の種類は何ら制限されず、合成繊維、半合成繊維、再生繊維、天然繊維、無機繊維などのいずれであってもよく、そのうちでも合成繊維であることが、銀メッキシリカ微粒子を容易に繊維内に含有させることができ、しかも保温耐久性に優れる繊維とすることができるので好ましい。
0020
本発明の繊維が合成繊維である場合は、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、その他のポリエステルからなるポリエステル繊維;ナイロン6、ナイロン66、ナイロン11、ナイロン610、ナイロン612などのような脂肪族ポリアミド繊維;脂環族ポリアミド繊維;芳香族ジアミンおよび/または芳香族ジカルボン酸またはこれらの誘導体を用いて形成された芳香族ポリアミド繊維(例えばポリフェニレンイソフタルアミド繊維、ポリヘキサメチレンテレフタルアミド繊維、p−フェニレンテレフタルアミド繊維など);ポリエチレンやポリプロピレンなどのようなポリオレフィン繊維;ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−アクリロニトリル共重合体などのような塩化ビニル系重合体からなる繊維;ポリ塩化ビニデン、塩化ビニリデン−塩化ビニル共重合体、塩化ビニリデン−酢酸ビニル共重合体などのような塩化ビニリデン系重合体からなる繊維;ポリウレタン繊維;ポリアクリロニトリル、アクリロニトリル−塩化ビニル共重合体などのようなアクリル系繊維;ポリビニルアルコール系繊維;エチレン−ビニルアルコール系共重合体繊維;ポリクラール繊維;フッ素含有重合体系繊維;蛋白−アクリロニトリル共重合体繊維;ポリグリコール繊維;ポリフェノール樹脂繊維などを挙げることができる。
0021
本発明の繊維が半合成繊維である場合は、例えばアセテート繊維などを挙げることができ、また再生繊維である場合は、例えばレーヨン、キュプラ、リヨセルなどを挙げることができる。また、本発明の繊維が天然繊維である場合は、例えば、木綿、麻、羊毛、絹などを挙げることができる。
0022
上記したうちでも、本発明の繊維は、ポリエステル繊維、ポリアミド繊維、ポリビニルアルコール繊維、ポリウレタン繊維、アクリル繊維などの合成繊維であることが好ましい。
0023
本発明の繊維の断面形状や構造は何ら制限されない。本発明の繊維の断面形状は、例えば、丸型、中空状、偏平状、楕円形、3〜14葉型、T字型、V字型、3〜6角形、ドッグボーン型などのようないずれの形状であってもよい。また、本発明の繊維は複合繊維、混合繊維などであってもよく、複合繊維である場合は、例えば芯鞘型複合繊維、海島型複合繊維、サイドバイサイド型複合繊維、それらの混在型複合繊維、ランダム複合型繊維などであることができる。
0024
本発明の繊維の太さは特に制限されないが、一般的にはその単繊維繊度が0.5〜50 デニール程度であることが好ましい。また、本発明の繊維は、長さ方向にほぼ同じ直径を有する繊維であっても、長さ方向に異なる直径を有する太細繊維であっても、またはそれ以外の繊維であってもよい。さらに、本発明の繊維は、短繊維であっても、または長繊維であってもであってもいずれでもよい。
また、本発明の繊維を用いて、紡績糸、フィラメント糸、短繊維と長繊維との複合糸、仮撚加工糸、エアー交絡糸、捲縮加工糸などのような種々の糸を形成することができる。
0025
本発明の繊維は、銀メッキシリカ微粒子とともに、必要に応じて、例えば、酸化防止剤、難燃剤、帯電防止剤、着色剤、滑剤、抗菌剤、防虫剤、防ダニ剤、消臭剤、紫外線吸収剤、つや消し剤、蓄熱剤などの添加剤の1種または2種以上を含有していてもよい。
0026
本発明の繊維は、強度や伸度などの基本的な繊維物性が銀メッキシリカ微粒子を含有していない通常の繊維と殆ど同じであって力学的特性において何ら遜色がなく、しかも銀メッキシリカ微粒子を含有していることによって熱線の吸収・蓄積特性、再放射特性、ひいては保温特性に優れ、しかもそれらの特性を長期に亙って維持することができる。そのため、本発明の繊維は、そのような優れた特性を活かして、保温性が要求される防寒用衣料、スポーツ用の中衣や下着、靴下、ストッキング、各種レジャー用外衣や内衣、サポーター、各種下着類、寝具類(パジャマ、毛布、シーツ、布団綿、布団側)、室内着、キルティング中綿、不織布などの種々の用途に有効に使用することができる。
0027
【実施例】
以下に本発明を実施例などにより具体的に説明するが、本発明はそれにより何ら限定されない。また、以下の例における各種物性[ヤーン(マルチフィラメント糸)の引張強度と引張伸度、繊維製品(メリヤス編地)における平均表面温度差(△T)、および保温率]は次のようにして求めた。
0028
(1)ヤーン(マルチフィラメント糸)の引張強度および引張伸度:
(a) JIS−L1013に準じて、ヤーン(マルチフィラメント糸)に予め80回/mの撚りをかけ、20℃、65%RHの条件下に24時間放置した後、20℃、65%RHの標準状態で試料長さ20cm、引張速度10cm/分、初荷重1/20g/dの条件下にインストロン4301型エアー式コード用グリップを用いて、切断強力および切断伸度を測定した。
(b) 上記(a)で用いたのと同じ80回/mの撚りをかけたヤーン(マルチフィラメント糸)を使用して、1/20g/dの張力下で90m長のかせ巻をつくり、重量測定によりヤーンデニールを算出し、上記(a)で得られた切断強力を前記で得られたヤーンデニールで除して、ヤーン(マルチフィラメント糸)の引張強度(g/d)を求めた。いずれも、同じ実験を10回行って平均値を採った。
0029
(2)繊維製品(メリヤス編地)の平均表面温度差(△T):
本発明者らの開発した特開平9−5170号公報に記載されている方法によって平均表面温度差(△T)測定した。
すなわち、雰囲気温度20±1.0℃および湿度50±10%RHに保たれている実験室内に試料台を配置し、その試料台の試料載置部を10度に傾斜させ、その上面に測定試料[熱線放射性無機微粒子を含有する繊維製の紡績糸または混紡糸を用いて製造したメリヤス編地;寸法=30cm×30cm]と、対照試料[銀メッキシリカ微粒子等の無機微粒子を含有しない繊維製の紡績糸または混紡糸を用いて製造したメリヤス編地;寸法=30cm×30cm]を載置した。該試料台の上部に該試料台とほぼ平行にヒーター(90℃±1℃)を配置し、該ヒーターで測定試料と対照試料の両方を加熱して、サーモグラフィカメラと画像BOX処理装置からなるサーモビュアー装置(日本電子株式会社製「JTG−5200型」、検出波長8〜13μ)により、加熱15秒、30秒、60秒、180秒および600秒後の両試料の平均表面温度を求め、各経過時間毎で両試料間の温度差を算出した。さらに、試料の左右位置を変更して同様の操作を繰り返し、全データ(温度差)の平均値を採って、平均表面温度差(△T)(℃)とした。
0030
(3)保温率:
JIS−L1096A法(恒温法、ASTM法)に準じて、雰囲気温度20±1.0℃、湿度65±2%RHおよび風速0.1m/秒以下に保たれている実験室内に試料載置台を配置した。試料載置台上に試料(寸法=30cm×30cmのメリヤス編地)を載置して、試料載置台の上部からヒーター(10W;寸法=20cm×20cm)で加熱し、2時間の加熱時間中に該ヒーターが試料載置台に載置した試料の表面を36℃の温度に保つのに要した電力量(W1)(ワット)を測定した。また、試料載置台上に試料を載置せずに同様の加熱試験を行って、2時間の加熱時間中に該ヒーターが試料載置台の載置面の表面温度を36℃の温度に保つのに要した電力量(W0)(ワット)を測定した。そして前記で測定された電力量(W1)と(W0)の値から、下記の数式にしたがって保温率(%)を求めた。
0031
【数1】
保温率(%)=(1−W1/W0)×100
0032
《実施例1〜3》
(1) 表面を銀でメッキしたシリカ微粒子(シリカの平均粒径0.9μm;銀の含有量=シリカ重量の2.5重量%;銀メッキしたシリカの吸収ピーク波長=7〜10μ)を、ポリエチレンテレフタレート(極限粘度=0.63)に20重量%の割合で添加し、2軸混練機により混合分散させた後、押出し、ペレット化してマスターバッチペレットを製造した。
(2) 上記(1)で得られたマスターバッチペレットと、銀メッキシリカ微粒子等の無機微粒子無添加の上記と同じポリエチレンテレフタレートよりなるペレットを、銀メッキシリカ微粒子の含有量がそれぞれ3重量%(実施例1)、5重量%(実施例2)および8重量%(実施例3)になるようにして混合し、それを用いて常法にしたがって紡糸・延伸を行って、150d/48fのポリエステルマルチフィラメント糸を製造した。これにより得られたポリエステルマルチフィラメント糸(ヤーン)の引張強度および引張伸度を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 上記(2)で得られたポリエステルマルチフィラメント糸を繊維長51mmに切断してポリエステル短繊維をつくり、このポリエステル短繊維を単独で用いて常法にしたがって紡績糸(30番手)を製造した。この紡績糸を用いて常法にしたがって下着用のメリヤス編地(目付170g/m2、厚さ0.57mm)を製造した。
(4) 上記(3)で得られたメリヤス編地から所定寸法の試験片(試料)を切り出し、それを用いて上記した方法で平均表面温度差(△T)および保温率を求めたところ、下記の表1に示すとおりであった。
0033
《比較例1(対照)》
(1) 実施例1で用いたのと同じポリエチレンテレフタレートペレットのみを用いて、実施例1と同様にしてポリエステルマルチフィラメント糸(ヤーン)を製造し、その引張強度および引張伸度を上記した方法で測定したところ、下記の表1に示すとおりであった。
(2) 上記(1)で得られたポリエステルマルチフィラメント糸を切断して繊維長51mmの短繊維をつくり、以下実施例1と同様にして紡績糸、次いでメリヤス編地を製造し、それにより得られたメリヤス編地から所定寸法の試験片(試料)を切り出して、上記した方法で保温率を求めたところ、下記の表1に示すとおりであった。
なお、上述のように、上記した実施例1〜3および下記の比較例2〜3における試験片(メリヤス編地)の平均表面温度差(△T)の測定は、この比較例1で得られた試験片(メリヤス編地)を対照として測定した。
0034
《比較例2》
(1) 表面を金属(銀)で被覆してないシリカ微粒子(平均粒径0.9μm;シリカの吸収ピーク=7〜10μ)を、ポリエチレンテレフタレート(極限粘度=0.63)に20重量%の割合で添加し、2軸混練機により混合分散させた後、押出し、ペレット化してマスターバッチペレットを製造した。
(2) 上記(1)で得られたマスターバッチペレットと、無機微粒子無添加の上記と同じポリエチレンテレフタレートよりなるペレットを、シリカの含有量が5重量%になるようにして混合し、それを用いて常法にしたがって紡糸・延伸を行って、150d/48fのポリエステルマルチフィラメント糸(ヤーン)を製造した。これにより得られたポリエステルマルチフィラメント糸(ヤーン)の引張強度および引張伸度を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 上記(2)で得られたポリエステルマルチフィラメント糸を切断して繊維長51mmの短繊維をつくり、以下実施例1と同様にして紡績糸、およびメリヤス編地を順次製造し、それにより得られたメリヤス編地から所定寸法の試験片(試料)を切り出して、それを用いて上記した方法で平均表面温度差(△T)および保温率を求めたところ、下記の表1に示すとおりであった。
0035
《比較例3》
(1) 表面を亜鉛でメッキしたシリカ微粒子(シリカの平均粒径0.9μm;亜鉛の含有量=シリカ重量の2.5重量%;亜鉛メッキしたシリカの吸収ピーク波長=7〜10μ)を、ポリエチレンテレフタレート(極限粘度=0.63)に20重量%の割合で添加し、2軸混練機により混合分散させた後、押出し、ペレット化してマスターバッチペレットを製造した。
(2) 上記(1)で得られたマスターバッチペレットと、微粒子無添加の上記と同じポリエチレンテレフタレートよりなるペレットを、亜鉛メッキしたシリカの含有量が5重量%になるようにして混合し、それを用いて常法にしたがって紡糸・延伸して、150d/48fのポリエステルマルチフィラメント糸(ヤーン)を製造した。これにより得られたポリエステルマルチフィラメント糸(ヤーン)の引張強度および引張伸度を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 上記(2)で得られたポリエステルマルチフィラメント糸を切断して繊維長51mmの短繊維をつくり、以下実施例1と同様にして紡績糸、およびメリヤス編地を順次製造し、それにより得られたメリヤス編地から所定寸法の試験片(試料)を切り出して、それを用いて上記した方法で平均表面温度差(△T)および保温率を求めたところ、下記の表1に示すとおりであった。
0036
【表1】

Figure 0003664585
0037
上記の表1における実施例1〜3および比較例1(対照)の結果を対比すると、銀メッキシリカ微粒子を含有する実施例1〜3のポリエステル繊維は、熱線の吸収・蓄積特性および再放射特性に優れており、実施例1〜3のポリエステル繊維から製造したメリヤス編地は、銀メッキシリカ微粒子を含有しないポリエステル繊維から製造した比較例1(対照)のメリヤス編地に比べて、その表面温度が平均で0.4℃以上も高くなり、保温性に優れることがわかる。
また、上記の表1における実施例2の結果を、比較例2および比較例3の結果と対比すると、メッキシリカ微粒子を5重量%の割合で含有する実施例2のポリエステル繊維から得られたメリヤス編地は、比較例2のポリエステル繊維(メッキをしていないシリカを同じ5重量%の割合で含有するポリエステル繊維)から得られたメリヤス編地、および比較例3のポリエステル繊維(鉛でメッキしたシリカ微粒子を同じ5重量%の割合で含有するポリエステル繊維)から得られたメリヤス編地に比べて、試験片(メリヤス編地)の平均表面温度差△Tの値が高く且つ保温率の値も高く、熱線の吸収・蓄積特性、再放射特性に優れていて良好な保温性を有していることがわかる。
0038
《実施例4》
(1) 実施例2の(1)〜(2)と同じ工程を行って、銀メッキシリカ微粒子を5重量%の割合で含有するポリエステルマルチフィラメント糸を製造した。
(2) 上記(1)で得られたポリエステルマルチフィラメント糸を繊維長51mmに切断してポリエステル短繊維をつくり、このポリエステル短繊維と綿を50/50の割合で混紡して常法にしたがって混紡糸(25番手)を製造した。この混紡糸を用いて常法にしたがって下着用のメリヤス編地(目付210g/m2、厚さ0.71mm)を製造した。
(3) 上記(3)で得られたメリヤス編地から所定寸法の試験片(試料)を切り出し、それを用いて上記した方法で平均表面温度差(△T)および保温率を求めたところ、下記の表2に示すとおりであった。
0039
《比較例4(対照)》
(1) 比較例1の(1)と同様の工程を行って、シリカ微粒子を含有していないポリエステルマルチフィラメント糸を製造した。
(2) 上記(1)で得られたポリエステルマルチフィラメント糸を繊維長51mmに切断してポリエステル短繊維をつくり、このポリエステル短繊維と綿を50/50の割合で混紡して常法にしたがって混紡糸(25番手)を製造した。この混紡糸を用いて常法にしたがって下着用のメリヤス編地(目付210g/m2、厚さ0.71mm)を製造した。
(3) 上記(3)で得られたメリヤス編地から所定寸法の試験片(試料)を切り出し、それを用いて上記した方法で平均表面温度差(△T)および保温率を求めたところ、下記の表2に示すとおりであった。
0040
【表2】
Figure 0003664585
0041
上記の表2の結果から、銀メッキシリカ微粒子を含有するポリエステル繊維と綿との混紡糸を用いて製造した実施例4の試験片(メリヤス編地)は、熱線の吸収・蓄積特性および再放射特性に優れており、該無機微粒子を含有しないポリエステル繊維と綿との混紡糸を用いて製造した比較例4の試験片(メリヤス編地)に比べて、熱線を照射したときにその平均表面温度が高く、且つ保温率の値が高く、保温性に優れていることがわかる。
0042
【発明の効果】
銀メッキシリカ微粒子を含有する本発明の繊維は、人体や他の熱源から放射される熱線を効率良く吸収・蓄積することができ、しかも吸収・蓄積した熱線を効率良く再放射することができ、それによって人体などの被加熱体を効率良く加熱すると共に繊維中に含まれている空気をも効率良く加熱するので、全体として高い加熱、保温効果を達成することができる。
そのため、本発明の繊維は前記した優れた特性を活かして、保温性が要求される種々の用途、例えば、防寒衣料、スポーツ衣料、レジャー用衣料、下着、寝具類、室内着、靴下、サポーターなどの種々の用途に有効に使用することができる。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a heat-radiating fiber excellent in heat ray absorption / accumulation characteristics, re-radiation characteristics, and heat retention. The heat-radiating fiber of the present invention utilizes its excellent heat-ray absorption / accumulation properties, re-radiation properties, and heat retention properties to provide warm clothing that requires heat insulation, sports clothing, leisure clothing, underwear, bedding, indoors It can be effectively used in various applications such as clothes, socks and supporters.
[0002]
[Prior art]
  Infrared rays, which are electromagnetic waves with longer wavelengths than visible light and shorter wavelengths than microwaves, are also called heat rays because of their heating action, and are divided into near-infrared, (normal) infrared, and far-infrared depending on the length of the wavelength. Are often handled. When heated using heat rays such as far-infrared rays, not only the surface of the object to be heated but also the inside is directly and quickly heated, and the heat rays such as far-infrared rays are highly effective for heating organic substances such as organic polymers. It is known that mild heating is possible. Therefore, taking advantage of such characteristics of heat rays such as far-infrared rays, development of products using materials that have absorption / accumulation characteristics and re-radiation characteristics of heat rays has been attempted in various fields such as heating, clothing, and medical equipment. It has been.
[0003]
  As a fiber having radiation characteristics of heat rays such as far infrared rays, fibers containing inorganic fine particles having heat radiation properties such as far infrared rays have been proposed, and as such conventional technology,(I)Far-infrared radiation core-sheath type composite fiber having an inorganic compound such as alumina, zirconia, and magnesia in the core (Japanese Patent Laid-Open No. 63-92720),( ii )A fiber containing ceramic fine particles having far-infrared radiation characteristics (JP-A-1-314715),( iii )A core-sheath type composite fiber having a ceramic component containing a ceramic oxide having far-infrared radiation characteristics as a sheath component and polyester as a core component, and a smoothness treatment agent mainly composed of a silicon component adhering to the fiber surface Examples include far-infrared radioactive composite fibers (Japanese Patent Laid-Open No. 3-174071).
[0004]
  In fibers containing inorganic fine particles having heat radiation characteristics, the inorganic fine particles contained in the fibers absorb and accumulate heat rays emitted from the human body and other heat sources, and radiate them as light energy again to maintain heat. Is done. However, the conventional heat ray radiating fibers (far-infrared ray radiating fibers) described above do not have sufficient heat ray radiating properties, so that the heat retention effect is low, and a large amount of inorganic particles having heat ray radiating properties are added to increase the heat retention properties There is a problem that fiber properties such as fiber strength are lowered.
[0005]
[Problems to be solved by the invention]
  The object of the present invention is to efficiently absorb and accumulate heat rays emitted from the human body and other heat sources, and to efficiently re-radiate the absorbed and accumulated heat rays, thereby heating the human body and the like. The body is efficiently heated and the air contained in the fiber is also efficiently heated to provide a fiber that can achieve a high heating and heat retaining effect as a whole.
[0006]
[Means for Solving the Problems]
  In order to achieve the above object, the present inventors have made various studies. as a result,Silver surface When using fine silica particles, The heat rays emitted from the human body and other heat sources, Silica fine particles plated with silverIs absorbed and accumulated more efficiently, and the absorbed and accumulated heat rays are re-radiated more efficiently, so that the heated object such as the human body is efficiently heated and the air contained in the fiber is also efficiently Heated as a whole, high heating and warming effectHeat ray radioactive fiber havingAs a result, the present invention was completed.
[0007]
  Therefore, the present inventionSilica fine particles with silver-plated surface (ie, SiO with silver-plated surface) 2 Fine particles) were included in the fiber or adhered to the fiber surfaceIt is a heat ray radioactive fiber characterized by this.
  Here, the term “silica fine particles having a surface plated with silver” used in the present invention means that the surface of the silica fine particles is directly plated with silver and the silver plated layer is not further covered with another substance on the surface. It means silver-plated silica fine particles that are exposed (hereinafter, “silica fine particles whose surface is plated with silver” used in the present invention may be referred to as “silver-plated silica fine particles”).
  Note that “heat rays” in the present specification means infrared rays in a broad sense, which are electromagnetic waves having wavelengths longer than visible rays and shorter than microwaves, and include near infrared rays, normal infrared rays, and far infrared rays.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention is described in detail below.
  As mentioned above, in the present invention, contained in the fiberOr adhereInorganic fine particles with heat radiation propertiesWith childdo it,Silver plated silica fine particlesMust be used.
[0009]
  In the present invention, by using silica fine particles having a thin silver plating layer adhering to the surface, the heat-absorbing / accumulating characteristics and re-radiation characteristics of the silver-plated silica fine particles are included in the heated object and / or fiber. The effect of warming the air that is generated is high, and because only a small amount of silver-plated silica particles is used, the cost is excellent..
[0010]
  Silver plated silica fine particlesThensilicaThe entire surface of the fine particlesSilver plating layerOr part of the surface is covered withSilver plating layerAlthough it may be covered with, it is preferable that the whole surface is covered.
[0011]
  Silver plated silica fine particlesInSilverIn terms of heat ray absorption / accumulation characteristics, re-radiation characteristics and heat retention characteristics, economy, yarn-making properties,SilverBefore containingsilicaBased on the weight of the fine particles, it is preferably 1 to 10% by weight, and more preferably 2 to 8% by weight.
[0012]
  In the present inventionUseExcellent heat absorption / accumulation characteristics, re-radiation characteristics, and heat retention characteristicsSilver-plated silica particles are generally 7-10μHas an absorption peak in the wavelength range ofHave.
[0013]
  Silver-plated silicaThe particle size of the fine particles needs to be a size that does not interfere with the fiberizing process such as spinning and drawing, and is difficult to fall off from the fiber, and generally has an average particle size of 10 μm or less. Is preferably 0.2 to 5 μm, more preferably 0.5 to 2 μm.Silver-plated silicaWhen the average particle size of the fine particles is larger than 10 μm, filter clogging or breakage occurs during spinning, and the fiber forming processability during spinning tends to be poor. on the other hand,Silver-plated silicaIf the average particle size of the fine particles is too small (usually less than 0.2 μm), the particles will cause secondary aggregation, resulting in clogging of the filter during spinning and generation of fluff during the fiber drawing process. In addition, the particles are less likely to be uniformly mixed and dispersed in the spinning raw material.
[0014]
  In the fiber of the present invention,Silver-plated silicaThe fine particles may be contained in the fiber or may be attached using a binder or the like so as not to fall off the fiber surface.Silver-plated silicaWhen the fiber to be included in the fine particles is a natural fiber such as cotton, hemp, wool, silk, etc., a method of attaching to the surface of the fiber using a binder may be used. Also,Silver-plated silicaWhen the fiber to be included in the fine particles is a synthetic fiber, a semi-synthetic fiber, or a regenerated fiber, the spinning raw material made of a fiber-forming polymerSilver-plated silicaBy adding fine particles and spinning,Silver-plated silicaA fiber containing fine particles in the fiber can be produced. However, in the case of synthetic fiber, semi-synthetic fiber or regenerated fiber, a binder is used on the surface of the fiber obtained by spinning.Silver-plated silicaFine particles may be attached.Silver-plated silicaWhen the fine particles are adhered to the fiber surface using a binder or the like, care must be taken not to impair the texture and durability of the fiber.
[0015]
  Among them, the fiber of the present invention isSilver-plated silicaSynthetic fibers, semi-synthetic fibers or regenerated fibers, particularly synthetic fibers, obtained by adding fine particles to a spinning raw material (such as a spinning solution or a polymer used for spinning) and spinning using the same are preferable. In these fibers,Silver-plated silicaSince the fine particles are firmly held in the fiber and do not fall off, the excellent heat ray absorption / accumulation characteristics, re-radiation characteristics, and accompanying heat retention characteristics can be stably maintained over a long period of time.
[0016]
  Silver-plated silicaIn the above-mentioned synthetic fiber, semi-synthetic fiber or regenerated fiber containing fine particles in the fiber,Silver-plated silicaThe presence form of the fine particles is not particularly limited, and can be present in various forms.
  For example, (1)Silver-plated silicaFine particles may be uniformly dispersed throughout the fiber; (2) at the center or surface of the fiber cross sectionSilver-plated silicaThe content (distribution) of the fine particles may be different (for example, only one of the core or the sheath of the core-sheath type composite fiber)Silver-plated silicaWith fine particles or with core and sheathSilver-plated silica(Various content of fine particles); (3)Silver-plated silicaFine particles may be distributed in the fiber in the form of sea islands (for example, only on the sea or island of sea-island type composite fiber)Silver-plated silicaContain fine particles or at sea and islandsSilver-plated silicaThe content of fine particles is varied); (4)Silver-plated silicaFine particles may be distributed in the fiber side-by-side (for example, only on one component of the side-by-side type composite fiber)Silver-plated silicaContain fine particles or one component and the otherSilver-plated silicaThe content of fine particles is varied); or (5)Silver-plated silicaFine particles may be included randomly in the fiber cross section.
[0017]
  Silver-plated silicaTo spinning raw materials (spinning stock solution and polymers used for spinning) when manufacturing fibers containing fine particlesSilver-plated silicaThe method for adding the fine particles is not particularly limited, and an appropriate method can be adopted depending on the type of fiber. Although not limited at all, for example, (i) at the time of polymerization of the fiber-forming polymer or immediately after the polymerizationSilver-plated silicaA method of adding fine particles; (ii) to an already produced fiber-forming polymer;Silver-plated silicaA method of preparing a master batch by adding fine particles at a high concentration and mixing the master batch and the fiber-forming polymer to prepare a spinning dope; (iii) until the fiber-forming polymer is spun from the spinneret At any stage (eg, polymer pellets, spinning, etc.)Silver-plated silicaExamples thereof include a method of adding fine particles to a polymer.
[0018]
  Silver-plated silicaThe content (adhesion amount) of fine particles in the fiber can be adjusted according to the type and use of the fiber.Silver-plated silicaIt is preferably 2 to 10% by weight, more preferably 3 to 7% by weight, based on the weight of the fiber before containing the fine particles.Silver-plated silicaWhen the content of the fine particles is less than 2% by weight, it becomes difficult to impart sufficient absorption and accumulation characteristics of heat rays and re-radiation characteristics to the fibers. on the other hand,Silver-plated silicaIf the content of fine particles exceeds 10% by weight, problems such as clogging of the filter during spinning, breakage of single yarn during spinning and drawing, etc., resulting in poor processability during fiber production, A decrease in fiber properties such as a decrease in strength is likely to occur.
[0019]
  In the present invention, the type of fiber is not limited at all, and may be any of synthetic fiber, semi-synthetic fiber, regenerated fiber, natural fiber, inorganic fiber, and among them, it is a synthetic fiber.Silver-plated silicaFine particles can be easily contained in the fiber, and it is possible to obtain a fiber excellent in heat retention durability, which is preferable.
[0020]
  When the fiber of the present invention is a synthetic fiber, for example, a polyester fiber made of polyethylene terephthalate, polybutylene terephthalate, or other polyester; an aliphatic polyamide such as nylon 6, nylon 66, nylon 11, nylon 610, nylon 612 or the like. Fiber; alicyclic polyamide fiber; aromatic polyamide fiber formed by using aromatic diamine and / or aromatic dicarboxylic acid or derivatives thereof (for example, polyphenylene isophthalamide fiber, polyhexamethylene terephthalamide fiber, p-phenylene terephthale) Amide fibers); Polyolefin fibers such as polyethylene and polypropylene; Vinyl chlorides such as polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, vinyl chloride-acrylonitrile copolymers, etc. Fiber made of a polymer; Fiber made of a vinylidene chloride polymer such as polyvinylidene chloride, vinylidene chloride-vinyl chloride copolymer, vinylidene chloride-vinyl acetate copolymer, etc .; Polyurethane fiber; Polyacrylonitrile, acrylonitrile-chloride Acrylic fiber such as vinyl copolymer; polyvinyl alcohol fiber; ethylene-vinyl alcohol copolymer fiber; polyclar fiber; fluorine-containing polymer fiber; protein-acrylonitrile copolymer fiber; polyglycol fiber; A fiber etc. can be mentioned.
[0021]
  When the fiber of the present invention is a semi-synthetic fiber, for example, an acetate fiber can be exemplified, and when it is a regenerated fiber, for example, rayon, cupra, lyocell and the like can be exemplified. Moreover, when the fiber of this invention is a natural fiber, cotton, hemp, wool, silk etc. can be mentioned, for example.
[0022]
  Among the above, the fibers of the present invention are preferably synthetic fibers such as polyester fibers, polyamide fibers, polyvinyl alcohol fibers, polyurethane fibers, and acrylic fibers.
[0023]
  The cross-sectional shape and structure of the fiber of the present invention are not limited at all. The cross-sectional shape of the fiber of the present invention may be any of round shape, hollow shape, flat shape, elliptical shape, 3-14 leaf shape, T shape, V shape, 3-6 hexagon shape, dog bone shape, etc. The shape may also be Further, the fiber of the present invention may be a composite fiber, a mixed fiber, etc., and in the case of a composite fiber, for example, a core-sheath type composite fiber, a sea-island type composite fiber, a side-by-side type composite fiber, a mixed type composite fiber thereof, It can be a random composite fiber or the like.
[0024]
  The thickness of the fiber of the present invention is not particularly limited, but generally the single fiber fineness is preferably about 0.5 to 50 denier. The fibers of the present invention may be fibers having substantially the same diameter in the length direction, thick fibers having different diameters in the length direction, or other fibers. Furthermore, the fibers of the present invention may be either short fibers or long fibers.
  Moreover, various yarns such as spun yarn, filament yarn, composite yarn of short fiber and long fiber, false twisted yarn, air entangled yarn, crimped yarn, etc. are formed using the fiber of the present invention. Can do.
[0025]
  The fiber of the present invention isSilver-plated silicaAlong with fine particles, for example, antioxidants, flame retardants, antistatic agents, coloring agents, lubricants, antibacterial agents, insecticides, acaricides, deodorants, ultraviolet absorbers, matting agents, heat storage agents, etc. One or two or more of these additives may be contained.
[0026]
  The fiber of the present invention has basic fiber properties such as strength and elongation.Silver-plated silicaIt is almost the same as a normal fiber that does not contain fine particles, has no inferior mechanical properties, andSilver-plated silicaBy containing fine particles, heat ray absorption / accumulation characteristics, re-radiation characteristics, and thus heat insulation characteristics are excellent, and these characteristics can be maintained over a long period of time. Therefore, the fibers of the present invention make use of such excellent characteristics, such as cold protection garments that require heat retention, sports garments and underwear, socks, stockings, various leisure outer garments and inner garments, supporters, various It can be effectively used for various uses such as underwear, bedding (pajamas, blankets, sheets, futon cotton, futon side), indoor clothes, quilted batting, and non-woven fabrics.
[0027]
【Example】
  Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, various physical properties in the following examples [tensile strength and tensile elongation of yarn (multifilament yarn), average surface temperature difference (ΔT), and heat retention rate in textile products (knitted fabric)] are as follows. Asked.
[0028]
(1) Tensile strength and tensile elongation of yarn (multifilament yarn):
(A) In accordance with JIS-L1013, the yarn (multifilament yarn) was pre-twisted 80 times / m and left under conditions of 20 ° C. and 65% RH for 24 hours, and then 20 ° C. and 65% RH. Cutting strength and elongation were measured using an Instron 4301 type pneumatic cord grip under the conditions of a sample length of 20 cm, a tensile speed of 10 cm / min, and an initial load of 1/20 g / d in the standard state.
(B) Using the same yarn (multifilament yarn) twisted at 80 turns / m as used in (a) above, make a skein of 90 m length under a tension of 1/20 g / d, The yarn denier was calculated by weight measurement, and the tensile strength (g / d) of the yarn (multifilament yarn) was obtained by dividing the cutting strength obtained in (a) above by the yarn denier obtained above. In all cases, the same experiment was performed 10 times and the average value was taken.
[0029]
(2) Mean surface temperature difference (ΔT) of textile product (knitted fabric):
  The average surface temperature difference (ΔT) was measured by the method described in JP-A-9-5170 developed by the present inventors.
  In other words, a sample stage is placed in a laboratory maintained at an atmospheric temperature of 20 ± 1.0 ° C. and a humidity of 50 ± 10% RH, and the sample mounting portion of the sample stage is inclined by 10 degrees, and measurement is performed on the upper surface. Sample [knit fabric manufactured using spun yarn or mixed yarn made of fiber containing heat-radiating inorganic fine particles; dimension = 30 cm × 30 cm] and control sample [Such as silver-plated silica particlesA knitted fabric manufactured using a spun yarn or a blended yarn made of fiber not containing inorganic fine particles; dimensions = 30 cm × 30 cm] was placed. A heater (90 ° C. ± 1 ° C.) is arranged on the upper part of the sample table, and both the measurement sample and the control sample are heated by the heater, and a thermography composed of a thermography camera and an image BOX processing device. The average surface temperature of both samples after heating 15 seconds, 30 seconds, 60 seconds, 180 seconds and 600 seconds was obtained by a viewer device (“JTG-5200 type” manufactured by JEOL Ltd., detection wavelength 8 to 13 μm). The temperature difference between both samples was calculated for each elapsed time. Further, the same operation was repeated by changing the left and right positions of the sample, and an average value of all data (temperature difference) was taken to obtain an average surface temperature difference (ΔT) (° C.).
[0030]
(3) Thermal insulation rate:
  In accordance with JIS-L1096A method (constant temperature method, ASTM method), a sample mounting table is placed in a laboratory maintained at an atmospheric temperature of 20 ± 1.0 ° C., a humidity of 65 ± 2% RH, and a wind speed of 0.1 m / second or less. Arranged. A sample (dimension = 30 cm × 30 cm knitted fabric) is placed on the sample mounting table, and heated by a heater (10 W; size = 20 cm × 20 cm) from the top of the sample mounting table, during a heating time of 2 hours. The amount of electric power (W1) (watts) required for the heater to maintain the surface of the sample placed on the sample placing table at a temperature of 36 ° C. was measured. Also, the same heating test is performed without placing the sample on the sample mounting table, and the heater keeps the surface temperature of the mounting surface of the sample mounting table at 36 ° C. during the heating time of 2 hours. The electric energy (W0) (Watt) required for the measurement was measured. And the heat retention rate (%) was calculated | required according to the following numerical formula from the electric energy (W1) and the value of (W0) measured above.
[0031]
[Expression 1]
        Thermal insulation rate (%) = (1-W1/ W0) × 100
[0032]
<< Examples 1-3 >>
(1) The surface is silverInClean silicaFine particles(Average silica particle size 0.9 μm; silver content = 2.5% by weight of silica weight; absorption peak wavelength of silver-plated silica = 7 to 10 μ) into polyethylene terephthalate (intrinsic viscosity = 0.63) After adding 20% by weight and mixing and dispersing with a twin-screw kneader, the mixture was extruded and pelletized to produce master batch pellets.
(2) The master batch pellet obtained in (1) above,Such as silver-plated silica particlesPellets made of the same polyethylene terephthalate without addition of inorganic fine particles are silver-plated.KisiiRicaFine particlesAre mixed in such a manner that their contents are 3% by weight (Example 1), 5% by weight (Example 2) and 8% by weight (Example 3), respectively, and spinning and stretching are carried out in accordance with a conventional method. The polyester multifilament yarn of 150d / 48f was manufactured. The tensile strength and tensile elongation of the polyester multifilament yarn (yarn) thus obtained were measured by the methods described above, and as shown in Table 1 below.
(3) The polyester multifilament yarn obtained in (2) above is cut into a fiber length of 51 mm to produce a polyester short fiber, and this polyester short fiber is used alone to produce a spun yarn (No. 30). did. Using this spun yarn, knitted fabric (under 170 g / m)2, Thickness 0.57 mm).
(4) When a test piece (sample) having a predetermined size was cut out from the knitted fabric obtained in (3) above, the average surface temperature difference (ΔT) and the heat retention rate were determined by the above-described method, It was as shown in Table 1 below.
[0033]
<< Comparative Example 1 (Control) >>
(1) Using only the same polyethylene terephthalate pellets used in Example 1, a polyester multifilament yarn (yarn) was produced in the same manner as in Example 1, and the tensile strength and tensile elongation were as described above. When measured, it was as shown in Table 1 below.
(2) The polyester multifilament yarn obtained in the above (1) is cut to produce a short fiber having a fiber length of 51 mm, and a spun yarn and then a knitted fabric are produced in the same manner as in Example 1 and thereby obtained. A test piece (sample) having a predetermined size was cut out from the obtained knitted fabric, and the heat retention rate was determined by the above-described method, and as shown in Table 1 below.
  As described above, the measurement of the average surface temperature difference (ΔT) of the test pieces (knitted fabrics) in Examples 1 to 3 and Comparative Examples 2 to 3 described below was obtained in Comparative Example 1. The test piece (knitted fabric) was measured as a control.
[0034]
<< Comparative Example 2 >>
(1) Metal surface(Silver)Silica not coated withFine particles(Average particle size 0.9 μm; absorption peak of silica = 7 to 10 μ) was added to polyethylene terephthalate (intrinsic viscosity = 0.63) at a ratio of 20% by weight and mixed and dispersed by a biaxial kneader. Extruded and pelletized to produce master batch pellets.
(2) The master batch pellet obtained in (1) above and the pellet made of the same polyethylene terephthalate without addition of inorganic fine particles are mixed so that the silica content is 5% by weight, and used. Then, spinning and drawing were performed according to a conventional method to produce a 150 d / 48 f polyester multifilament yarn (yarn). The tensile strength and tensile elongation of the polyester multifilament yarn (yarn) thus obtained were measured by the methods described above, and as shown in Table 1 below.
(3) The polyester multifilament yarn obtained in the above (2) is cut to produce a short fiber having a fiber length of 51 mm, and a spun yarn and a knitted fabric are sequentially manufactured in the same manner as in Example 1, thereby A test piece (sample) having a predetermined size was cut out from the obtained knitted fabric, and the average surface temperature difference (ΔT) and the heat retention rate were determined by the above-described method using the test piece (sample), as shown in Table 1 below. Met.
[0035]
<< Comparative Example 3 >>
(1) SubsurfaceWith leadPlated silicaFine particles(Average silica particle size 0.9 μm; zinc content = 2.5 wt% of silica weight; absorption peak wavelength of galvanized silica = 7 to 10 μ) into polyethylene terephthalate (intrinsic viscosity = 0.63) After adding 20% by weight and mixing and dispersing with a twin-screw kneader, the mixture was extruded and pelletized to produce master batch pellets.
(2) The master batch pellet obtained in the above (1) and the pellet made of the same polyethylene terephthalate without addition of fine particles are mixed so that the content of galvanized silica becomes 5% by weight, The polyester multifilament yarn (yarn) of 150d / 48f was manufactured by spinning and drawing according to a conventional method. The tensile strength and tensile elongation of the polyester multifilament yarn (yarn) thus obtained were measured by the methods described above, and as shown in Table 1 below.
(3) The polyester multifilament yarn obtained in the above (2) is cut to produce a short fiber having a fiber length of 51 mm, and a spun yarn and a knitted fabric are sequentially manufactured in the same manner as in Example 1, thereby A test piece (sample) having a predetermined size was cut out from the obtained knitted fabric, and the average surface temperature difference (ΔT) and the heat retention rate were determined by the above-described method using the test piece (sample), as shown in Table 1 below. Met.
[0036]
[Table 1]
Figure 0003664585
[0037]
  When comparing the results of Examples 1 to 3 and Comparative Example 1 (control) in Table 1 above,Silver platingsilicaFine particlesThe polyester fibers of Examples 1 to 3 containing the heat ray are excellent in heat ray absorption / accumulation characteristics and re-radiation characteristics, and the knitted fabrics produced from the polyester fibers of Examples 1 to 3 are:Silver-plated silicaAs compared with the knitted fabric of Comparative Example 1 (control) produced from polyester fibers not containing fine particles, the surface temperature is higher by 0.4 ° C. or more on average, indicating excellent heat retention.
  Further, when the results of Example 2 in Table 1 above are compared with the results of Comparative Example 2 and Comparative Example 3,SilverMeKisiiRicaFine particlesKnitted fabric obtained from the polyester fiber of Example 2 containing 5% by weight of polyester fiber of Comparative Example 2 (SilverKnitted fabric obtained from the same 5% by weight of unplated silica) and the polyester fiber of Comparative Example 3AsiaSilica plated with leadFine particlesCompared to a knitted fabric obtained from the same 5% by weight polyester fiber), the average surface temperature difference ΔT of the test piece (knitted fabric) is high and the heat retention rate is also high, It can be seen that it has excellent heat retention and heat radiation absorption / accumulation characteristics and re-radiation characteristics.
[0038]
Example 4
(1) Perform the same process as (1) to (2) in Example 2 toKisiiRicaFine particlesA polyester multifilament yarn containing 5% by weight was produced.
(2) The polyester multifilament yarn obtained in the above (1) is cut into a fiber length of 51 mm to produce a polyester short fiber, and the polyester short fiber and cotton are blended at a ratio of 50/50 and blended according to a conventional method. A yarn (25th) was produced. Using this blended yarn, underwear knit fabric (210 g / m per unit area)2, Thickness 0.71 mm).
(3) When a test piece (sample) having a predetermined size was cut out from the knitted fabric obtained in (3) above, the average surface temperature difference (ΔT) and the heat retention rate were determined by the above-described method, It was as shown in Table 2 below.
[0039]
<< Comparative Example 4 (Control) >>
(1) The same process as (1) of Comparative Example 1 is carried out to obtain silica.Fine particlesPolyester multifilament yarns containing no lacquer were produced.
(2) The polyester multifilament yarn obtained in the above (1) is cut into a fiber length of 51 mm to produce a polyester short fiber, and the polyester short fiber and cotton are blended at a ratio of 50/50 and blended according to a conventional method. A yarn (25th) was produced. Using this blended yarn, underwear knit fabric (210 g / m per unit area)2, Thickness 0.71 mm).
(3) A test piece (sample) having a predetermined size was cut out from the knitted fabric obtained in (3) above, and the average surface temperature difference (ΔT) and the heat retention rate were determined by the above-described method using it. It was as shown in Table 2 below.
[0040]
[Table 2]
Figure 0003664585
[0041]
  From the results in Table 2 above,Silver plated silica fine particlesThe test piece (knitted fabric) of Example 4 manufactured using a blended yarn of polyester fiber containing cotton and cotton has excellent heat ray absorption / accumulation characteristics and re-radiation characteristics, and does not contain the inorganic fine particles. Compared with the test piece (knitted fabric) of Comparative Example 4 manufactured using a blended yarn of polyester fiber and cotton, the average surface temperature is high when irradiated with heat rays, and the value of the heat retention rate is high. It turns out that it is excellent in property.
[0042]
【The invention's effect】
  Silver-plated silicaThe fiber of the present invention containing fine particles can efficiently absorb and accumulate heat rays emitted from the human body and other heat sources, and can efficiently re-radiate the absorbed and accumulated heat rays. Since the object to be heated such as the above is efficiently heated and the air contained in the fiber is also efficiently heated, high heating and heat retention effects can be achieved as a whole.
  Therefore, the fiber of the present invention makes use of the above-described excellent characteristics and various uses for which heat insulation is required, for example, cold clothing, sports clothing, leisure clothing, underwear, bedding, indoor clothing, socks, supporters, etc. It can be effectively used for various applications.

Claims (2)

表面を銀でメッキしたシリカ微粒子を繊維中に含有させるか又は繊維表面に付着させたことを特徴とする熱線放射性繊維。A heat-radiating fiber characterized in that silica fine particles whose surface is plated with silver are contained in a fiber or adhered to the fiber surface . 表面を銀でメッキしたシリカ微粒子を合成繊維中に含有させてなる請求項1に記載の熱線放射性繊維。The heat-radiating fiber according to claim 1 , wherein the synthetic fiber contains silica fine particles plated with silver on the surface .
JP09700798A 1998-03-26 1998-03-26 Fiber with excellent heat radiation Expired - Fee Related JP3664585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09700798A JP3664585B2 (en) 1998-03-26 1998-03-26 Fiber with excellent heat radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09700798A JP3664585B2 (en) 1998-03-26 1998-03-26 Fiber with excellent heat radiation

Publications (2)

Publication Number Publication Date
JPH11279830A JPH11279830A (en) 1999-10-12
JP3664585B2 true JP3664585B2 (en) 2005-06-29

Family

ID=14180212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09700798A Expired - Fee Related JP3664585B2 (en) 1998-03-26 1998-03-26 Fiber with excellent heat radiation

Country Status (1)

Country Link
JP (1) JP3664585B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747444A (en) * 2012-05-14 2012-10-24 毛盈军 Fibers with characteristics of temperature reducing and cooling, preparation method and textile thereof
CN102747446A (en) * 2012-05-14 2012-10-24 毛盈军 Cooling and chilling fiber, preparation method thereof, and textile product thereof

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217456B1 (en) * 2000-07-25 2007-05-15 Malden Mills Industries, Inc. Plaited double-knit fabric with moisture management and improved thermal insulation
JP2002327301A (en) * 2001-05-02 2002-11-15 Wacoal Corp Garment with warmth-retainable part
JP5177931B2 (en) * 2002-01-24 2013-04-10 東レ株式会社 Aliphatic polyester resin composition and molded article comprising the same
US20070218280A1 (en) * 2004-07-15 2007-09-20 Sumitomo Metal Mining Co.,Ltd Boride Nanoparticle-Containing Fiber and Textile Product That Uses the Same
JP4355945B2 (en) 2004-11-08 2009-11-04 住友金属鉱山株式会社 Near-infrared absorbing fiber and fiber product using the same
JP2007186811A (en) * 2006-01-12 2007-07-26 Teijin Fibers Ltd Thermal-storage interlining cloth
CN101709511B (en) * 2009-11-26 2012-05-23 毛盈军 Chemical fiber quickly increasing temperature and heating when encountering light and textile containing fiber
CN101929065B (en) * 2010-07-30 2012-05-23 毛盈军 Chemical fibres capable of quickly cooling in wind and textile containing same
JP5768253B2 (en) * 2010-12-28 2015-08-26 平岡織染株式会社 Variable heat shielding daylighting sheet
JP2013040423A (en) * 2011-08-18 2013-02-28 Nippon Ester Co Ltd Modified cross-section polyester core-sheath conjugate fiber
JP2013040426A (en) * 2011-08-18 2013-02-28 Nippon Ester Co Ltd Modified cross-section polyester core-sheath conjugate fiber
JP2013047401A (en) * 2011-08-29 2013-03-07 Nippon Ester Co Ltd Modified cross-section polyester core-sheath conjugate fiber
JP2013067880A (en) * 2011-09-21 2013-04-18 Nippon Ester Co Ltd Polyester modified cross-section core-sheath conjugate fiber
CN102747445B (en) * 2012-05-14 2014-11-26 毛盈军 Cooling and chilling fiber, preparation method thereof, and textile product thereof
CN102747443B (en) * 2012-05-14 2014-10-22 毛盈军 Fibers with characteristics of temperature increasing and heat storage, preparation method and textile thereof
CN102677203B (en) * 2012-05-14 2015-01-21 毛盈军 Heating thermal storage fiber and preparation method as well as textile thereof
CN102747447A (en) * 2012-05-14 2012-10-24 毛盈军 Cooling and chilling fiber, preparation method thereof, and textile product thereof
CN102747441B (en) * 2012-05-14 2014-12-17 毛盈军 Fibers with characteristics of temperature reducing and cooling, preparation method and textile thereof
CN102747448B (en) * 2012-05-14 2014-11-05 毛盈军 Naturally warming and heating fiber under humid condition, preparation method thereof, and textile product thereof
CN102747440B (en) * 2012-05-14 2014-10-22 毛盈军 Fibers with characteristics of temperature increasing and heat storage, preparation method and textile thereof
CN102912466B (en) * 2012-05-14 2014-12-17 毛盈军 Fiber for warming and heat accumulation and preparation method of fiber and textile
CN102747449B (en) * 2012-05-14 2014-10-22 毛盈军 Warming and heat-storing fiber, preparation method thereof, and textile product thereof
CN102758265B (en) * 2012-05-14 2014-11-26 毛盈军 Cooling and chilling fiber, preparation method and textile product
CN102747442A (en) * 2012-05-14 2012-10-24 毛盈军 Fibers with characteristics of temperature reducing and cooling, preparation method and textile thereof
KR101354261B1 (en) * 2012-11-01 2014-02-05 (주) 나노비젼텍 Preparation method of functional polyester fiber and functional polyester fiber prepared thereby
CN103160943B (en) * 2013-03-05 2015-05-20 毛盈军 Insulation and heat insulation fiber and textile prepared by fiber thereof
JP2016027212A (en) * 2014-06-27 2016-02-18 日本エステル株式会社 Functional fiber
JP6464245B1 (en) * 2017-09-20 2019-02-06 ▲緑▼能奈米科技有限公司 Underwear to enhance the masculine function of far-infrared fibers
CN110924144A (en) * 2019-12-10 2020-03-27 界首市苏澳纺织科技有限公司 Method for improving heat preservation performance of kapok fiber
EP4324963A1 (en) 2021-04-16 2024-02-21 Sumitomo Metal Mining Co., Ltd. Infrared absorbing fiber and fiber product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747444A (en) * 2012-05-14 2012-10-24 毛盈军 Fibers with characteristics of temperature reducing and cooling, preparation method and textile thereof
CN102747446A (en) * 2012-05-14 2012-10-24 毛盈军 Cooling and chilling fiber, preparation method thereof, and textile product thereof
CN102747446B (en) * 2012-05-14 2014-12-17 毛盈军 Cooling and chilling fiber, preparation method thereof, and textile product thereof
CN102747444B (en) * 2012-05-14 2014-12-17 毛盈军 Fibers with characteristics of temperature reducing and cooling, preparation method and textile thereof

Also Published As

Publication number Publication date
JPH11279830A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP3664585B2 (en) Fiber with excellent heat radiation
US4420534A (en) Conductive composite filaments and methods for producing said composite filaments
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
EP3247826B1 (en) Migration resistant batting with stretch and methods of making and articles comprising the same
JP6360319B2 (en) Long / short composite spun yarn and fabric using the same
EP2501846A2 (en) Fibers and articles having combined fire resistance and enhanced reversible thermal properties
WO2014017690A1 (en) Method for preparing antibacterial thermal storage fiber, fiber prepared thereby, and fabrics using same
JP6106487B2 (en) Functional fiber
JP2014079367A (en) Inner cotton and fiber product
WO2016104968A1 (en) Heat-storing and warmth-retaining fleece and method for manufacturing same
JP4832709B2 (en) Poly (trimethylene terephthalate) 4-channel cross-section staple fiber
WO2016121643A1 (en) Polyester hollow fiber spherical material
JPH11337681A (en) Radiation protective cloth and radiation protection product
Kim Wear comfort of heat storage/release fabrics containing Al2O3/graphite yarns
JPH0359134A (en) Core-sheath type composite yarn
JPH03227408A (en) Conjugate fiber of core-sheath type
JP6360318B2 (en) Composite-bound spun yarn and fabric using the same
JP2933327B2 (en) Core / sheath composite yarn
JP2015105444A (en) Functional composite yarn
JP2000154419A (en) Fiber having excellent heat ray-radiating property
JP2016160564A (en) Short fiber for granulated wool and granulated wool, and wadding product using the same
JP3059203B2 (en) Method for producing heat insulating composite structural yarn
US20190360137A1 (en) Insulation with reactive flaps
JP2766704B2 (en) Raw fiber for water-repellent fiber and water-repellent nonwoven fabric
JP2015094034A (en) Heat-retaining cloth

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees