JP5981097B2 - Al alloy bearing and manufacturing method of Al alloy bearing - Google Patents

Al alloy bearing and manufacturing method of Al alloy bearing Download PDF

Info

Publication number
JP5981097B2
JP5981097B2 JP2011116871A JP2011116871A JP5981097B2 JP 5981097 B2 JP5981097 B2 JP 5981097B2 JP 2011116871 A JP2011116871 A JP 2011116871A JP 2011116871 A JP2011116871 A JP 2011116871A JP 5981097 B2 JP5981097 B2 JP 5981097B2
Authority
JP
Japan
Prior art keywords
phase
surface layer
layer
alloy
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011116871A
Other languages
Japanese (ja)
Other versions
JP2012246945A (en
Inventor
茂 稲見
茂 稲見
直久 川上
直久 川上
覚 栗本
覚 栗本
和昭 戸田
和昭 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2011116871A priority Critical patent/JP5981097B2/en
Priority to DE102012208528.9A priority patent/DE102012208528B4/en
Priority to KR1020120054696A priority patent/KR101302041B1/en
Priority to GB1209314.2A priority patent/GB2491268B/en
Publication of JP2012246945A publication Critical patent/JP2012246945A/en
Application granted granted Critical
Publication of JP5981097B2 publication Critical patent/JP5981097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/124Details of overlays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/24Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • F16C2204/22Alloys based on aluminium with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/60Shaping by removing material, e.g. machining
    • F16C2220/70Shaping by removing material, e.g. machining by grinding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/46Coating surfaces by welding, e.g. by using a laser to build a layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/80Coating surfaces by powder coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/48Particle sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

本発明は、Snを含むAl基軸受合金層を備えるAl合金軸受及びAl合金軸受の製造方法に関する。 The present invention relates to an Al alloy bearing provided with an Al-based bearing alloy layer containing Sn and a method for manufacturing the Al alloy bearing .

ホワイトメタルやAl−Sn合金などの軟質金属は、内燃機関の軸受などに使用されている。
また、例えば特許文献1には、軟質金属の疲労強度の向上を図るために、軟質金属をレーザの照射によって再溶融させて軟質金属中の鋳造欠陥を消滅させ、さらに、再溶融している軟質金属を速く冷却して組織の粗大化を抑制し、均質微細組織を形成させることが開示されている。
Soft metals such as white metal and Al—Sn alloy are used for bearings of internal combustion engines.
Further, for example, in Patent Document 1, in order to improve the fatigue strength of a soft metal, the soft metal is remelted by laser irradiation to eliminate casting defects in the soft metal, and further, the soft metal that is remelted is used. It is disclosed that metal is cooled rapidly to suppress coarsening of the structure and form a homogeneous microstructure.

特開平9−10918号公報JP-A-9-10918

例えばSnを含むAl基軸受合金層を備えるAl合金軸受において、内燃機関の更なる高性能化を図ろうとすると、Al合金軸受にとってはより過酷な状況に曝されることになる。この場合、上述した疲労強度を向上させる方法では、Al合金軸受の非焼付性の向上は不十分であると考えられる。   For example, in an Al alloy bearing including an Al-based bearing alloy layer containing Sn, if an attempt is made to further improve the performance of the internal combustion engine, the Al alloy bearing will be exposed to a more severe situation. In this case, it is considered that the above-described method for improving the fatigue strength is insufficient in improving the non-seizure property of the Al alloy bearing.

本発明は上述した事情に鑑みてなされたものであり、その目的は、Snを含むAl基軸受合金層を備え、非焼付性に優れるAl合金軸受及びAl合金軸受の製造方法を提供することである。
This invention is made | formed in view of the situation mentioned above, The objective is provided with the Al base bearing alloy layer containing Sn, and providing the manufacturing method of Al alloy bearing which is excellent in non-seizure property, and Al alloy bearing. is there.

本発明の一実施形態のAl合金軸受は、基材上にAl基軸受合金層を備えるものであって、Al基軸受合金層が摺動表面側にAlと30〜70質量%のSnとを含む表面層を有している。そして、表面層は、AlからなるAl相とSnからなるSn相とを有し、隣り合うSn相同士の相間距離の平均値が10μm以下であり、かつSn相のアスペクト比の平均値が4以上であり、該Sn相の長軸が摺動表面に交わる向きとなっていることを特徴としている。
An Al alloy bearing according to an embodiment of the present invention includes an Al-based bearing alloy layer on a base material, and the Al-based bearing alloy layer contains Al and 30 to 70% by mass of Sn on the sliding surface side. It has a surface layer containing. The surface layer has an Al phase composed of Al and a Sn phase composed of Sn, the average value of the interphase distance between adjacent Sn phases is 10 μm or less, and the average value of the aspect ratio of the Sn phase is 4 Ri der above, is characterized in that the long axis of the Sn phase has a direction intersecting the sliding surface.

基材は、Al基軸受合金層を設けるための構成物のことである。例えば、裏金層とAl基軸受合金層との間に中間層が設けられている場合は、裏金層と中間層とが基材である。また、裏金層上にAl基軸受合金層が設けられている場合は、裏金層が基材である。
中間層が設けられている場合、中間層は純AlまたはAl合金で形成されている。Al合金としては、JIS1000〜3000番のAl合金などがある。
The base material is a component for providing an Al-based bearing alloy layer. For example, when an intermediate layer is provided between the back metal layer and the Al-based bearing alloy layer, the back metal layer and the intermediate layer are base materials. Further, when the Al-based bearing alloy layer is provided on the back metal layer, the back metal layer is the base material.
When the intermediate layer is provided, the intermediate layer is formed of pure Al or an Al alloy. Examples of the Al alloy include JIS 1000-3000 Al alloy.

Al基軸受合金層は、AlとSnとを含む層が複数積み重なった構成であり、摺動表面側に表面層を有し、基材側に反表面層を有している。反表面層の基材側は、基材に中間層が設けられている場合には中間層に接し、基材に中間層が設けられていない場合には裏金層に接している。Al基軸受合金層は、表面層と反表面層との間にAlを主成分とする層を1層以上有していてもよい。   The Al-based bearing alloy layer has a structure in which a plurality of layers containing Al and Sn are stacked, has a surface layer on the sliding surface side, and an anti-surface layer on the base material side. The substrate side of the anti-surface layer is in contact with the intermediate layer when the intermediate layer is provided on the substrate, and is in contact with the back metal layer when the intermediate layer is not provided on the substrate. The Al-based bearing alloy layer may have one or more layers mainly composed of Al between the surface layer and the anti-surface layer.

表面層は、Alと30〜70質量%のSnとを含み、AlからなるAl相と、SnからなるSn相とを有している。Al相とはAl原子の集合体のことであり、Sn相とはSn原子の集合体のことである。なお、それらの相には、他の原子が固溶していてもよい。また、表面層には、それらの相以外にも他の原子からなる相を含んでいてもよい。   The surface layer contains Al and 30 to 70% by mass of Sn, and has an Al phase made of Al and an Sn phase made of Sn. The Al phase is an aggregate of Al atoms, and the Sn phase is an aggregate of Sn atoms. In addition, other atoms may be dissolved in these phases. The surface layer may contain a phase composed of other atoms in addition to those phases.

表面層は、Sn相のアスペクト比の平均値が4以上、より好ましくは6以上に調整されている。表面層に分布しているSn相のアスペクト比は、図2に示すように、Sn相1の外縁に接する最小の楕円を描いたときのその楕円の長軸の長さLと、その楕円の短軸の長さLとの比の値L/Lとして求められる。なお、図2において、マトリクス2を示すととともに、後述の説明に用いるSn相1の重心をGとして示す。 In the surface layer, the average value of the aspect ratio of the Sn phase is adjusted to 4 or more, more preferably 6 or more. As shown in FIG. 2, the aspect ratio of the Sn phase distributed in the surface layer is the length L 1 of the major axis of the ellipse when the smallest ellipse in contact with the outer edge of the Sn phase 1 is drawn, and the ellipse of the minor axis of the sought as a value L 1 / L 2 of the ratio of the length L 2. In FIG. 2, the matrix 2 is shown, and the center of gravity of the Sn phase 1 used for the description to be described later is shown as G.

Sn相のアスペクト比の平均値は、次のようにして求められる。まず、測定視野内に分布しているそれぞれのSn相の像から、測定視野内のSn相の総面積とそれぞれのSn相のアスペクト比とを求める。
次に、アスペクト比が大きいSn相から順にSn相の面積を累積していき、累積した面積がSn相の総面積の50%に達するまでのアスペクト比の大きいSn相を、アスペクト比の平均値を求めるSn相の対象としている。そして、Sn相のアスペクト比の平均値は、この対象としているSn相のアスペクト比から平均値を求めている。
The average aspect ratio of the Sn phase is obtained as follows. First, the total area of the Sn phase in the measurement visual field and the aspect ratio of each Sn phase are determined from the images of the respective Sn phases distributed in the measurement visual field.
Next, the area of the Sn phase is accumulated in order from the Sn phase having the largest aspect ratio, and the Sn phase having a large aspect ratio until the accumulated area reaches 50% of the total area of the Sn phase is averaged for the aspect ratio. Is the target of the Sn phase for which And the average value of the aspect ratio of Sn phase has calculated | required the average value from the aspect ratio of Sn phase made into this object.

表面層に分布しているSn相のアスペクト比の関係を、図3を用いて説明する。図3に、アスペクト比の異なる形状のSn相3,4と、例えばAl相からなるマトリクス5,6とを模式的に示す。図3(a)はアスペクト比の大きいSn相3と、マトリクス5との断面形状の一例を示すものであり、摺動表面28でのSn相3の面積をSとして示す。また、図3(b)はSn相3よりもアスペクト比の小さいSn相4と、マトリクス6との断面形状の一例を示すものであり、摺動表面28でのSn相4の面積をSとして示す。
図3に示すように、Sn相のアスペクト比の平均値が大きいほど、細長い形状のSn相3が多数分布した構成となる。また、Sn相3の断面積S11とSn相4の断面積S12が同じとすると、摺動表面28でのSn相3,4の摺動表面での面積の大きさはS<Sとなる。
The relationship of the aspect ratio of the Sn phase distributed in the surface layer will be described with reference to FIG. FIG. 3 schematically shows Sn phases 3 and 4 having different aspect ratios and matrices 5 and 6 made of, for example, an Al phase. And FIGS. 3 (a) is greater Sn phase 3 aspect ratio, showing an example of the cross-sectional shape of the matrix 5, showing the area of the Sn phase 3 of the sliding surface 28 as S 1. FIG. 3B shows an example of a cross-sectional shape of the Sn phase 4 having a smaller aspect ratio than the Sn phase 3 and the matrix 6, and the area of the Sn phase 4 on the sliding surface 28 is represented by S 2. As shown.
As shown in FIG. 3, the larger the average value of the Sn phase aspect ratio is, the larger the number of elongated Sn phases 3 is. Further, when the cross-sectional area S 12 of the cross-sectional area S 11 and Sn phase 4 of the Sn phase 3 is the same, the size of the area of the sliding surface of the Sn phase 3 and 4 in the sliding surface 28 S 1 <S 2 .

上記構成によれば、相手部材の荷重は、表面層を形成するAl相、Sn相などによって受けられる構成となる。なお、図3において、この相手部材の荷重をFで示す。
ここで、SnはAlよりも融点が低いため、Sn相は、相手部材が表面層の摺動表面上で摺動する際に生じる摩擦熱によってAl相よりも容易に軟化して、塑性流動しやすくなる。したがって、相手部材からの荷重を受けているAl相は、軟化したSn相を摺動表面上に押し出す方向に圧力を生じさせるようになる。なお、図3(a)に示すSn相3を押し出す圧力をPで、図3(b)に示すSn相4を押し出す圧力をPで概念的に示す。
According to the above configuration, the load of the mating member is received by the Al phase, Sn phase, etc. that form the surface layer. In FIG. 3, showing the load of the mating member at F 1.
Here, since Sn has a lower melting point than Al, the Sn phase softens more easily than the Al phase due to frictional heat generated when the counterpart member slides on the sliding surface of the surface layer, and plastically flows. It becomes easy. Therefore, the Al phase receiving the load from the mating member generates pressure in the direction of pushing the softened Sn phase onto the sliding surface. Incidentally, the pressure to push the Sn phase 3 shown in FIG. 3 (a) at P 1, schematically showing a pressure pushing the Sn phase 4 shown in FIG. 3 (b) at P 2.

そして、表面層に分布しているSn相のアスペクト比の平均値が大きいほど、具体的には、そのアスペクト比の平均値が4以上である場合、上述したように、Sn相は、摺動表面での面積が小さいため、Al相からの圧力によって表面層の内部から摺動表面上に容易に押し出されやすくなる。この場合、図3において、Al相がSn相を押し出す圧力は、P>Pとなる。 As the average value of the aspect ratio of the Sn phase distributed in the surface layer is larger, specifically, when the average value of the aspect ratio is 4 or more, the Sn phase is slid as described above. Since the area on the surface is small, it is easily pushed out from the inside of the surface layer onto the sliding surface by the pressure from the Al phase. In this case, in FIG. 3, the pressure at which the Al phase pushes out the Sn phase is P 1 > P 2 .

さらに、摺動表面上に押し出されたSn相は、軟化して塑性流動しやすい状態となっているため、摺動表面上に広がりやすい。言い換えると、摺動表面に分布しているAl相は、摺動表面上に押し出されたSn相によって容易に覆われるようになる。その結果、相手部材はSn相よりも硬いAl相に直接当たりにくくなる。これにより、表面層の非焼付性を向上させることができ、Al合金軸受の非焼付性を向上させることができる。
さらに、表面層においてSn相のアスペクト比の平均値が6以上である場合、摺動表面に分布しているAl相が摺動表面上に押し出されたSn相により一層覆われやすくなるため、上述の非焼付性の効果がより一層得られやすくなる。
Furthermore, since the Sn phase extruded onto the sliding surface is in a state of being softened and easily plastically flowing, it is likely to spread on the sliding surface. In other words, the Al phase distributed on the sliding surface is easily covered with the Sn phase extruded on the sliding surface. As a result, the counterpart member is less likely to directly hit the Al phase, which is harder than the Sn phase. Thereby, the non-seizure property of the surface layer can be improved, and the non-seizure property of the Al alloy bearing can be improved.
Furthermore, when the average aspect ratio of the Sn phase is 6 or more in the surface layer, the Al phase distributed on the sliding surface is more easily covered with the Sn phase extruded onto the sliding surface. The non-seizure effect is more easily obtained.

表面層は、隣り合うSn相同士の相間距離の平均値が10μm以下、より好ましくは7μm以下に調整されている。隣り合うSn相同士の相間距離とは、あるSn相の重心と、そのSn相と隣り合うSn相の重心との間の距離、いわゆる重心間距離のことである。図2に、隣り合うSn相同士の相間距離の一例をLとして示す。 In the surface layer, the average value of the interphase distance between adjacent Sn phases is adjusted to 10 μm or less, more preferably 7 μm or less. The interphase distance between adjacent Sn phases is a distance between the center of gravity of a certain Sn phase and the center of gravity of the Sn phase adjacent to the Sn phase, so-called distance between the centers of gravity. 2 shows an example of a phase distance Sn phase adjacent as L 3.

表面層に分布しているSn相において隣り合うSn相同士の相間距離の平均値が10μm以下である場合、摺動表面のうちSn相間に分布しているAl相は、摺動表面上に押し出されたSn相によって一層覆われやすくなる。これにより、表面層の非焼付性を一層向上させることができ、Al合金軸受の非焼付性を一層向上させることができる。
さらに、表面層において隣り合うSn相同士の相間距離の平均値が7μm以下である場合、摺動表面に分布しているAl相がSn相によってより一層覆われやすくなり、上述の非焼付性の効果がより一層得られやすくなる。
したがって、この表面層において、Snを30〜70質量%含ませ、隣り合うSn相同士の相間距離の平均値を10μm以下にし、かつ、Sn相のアスペクト比の平均値を4以上とすることにより、上述の非焼付性の効果を得ることができる。
When the average value of the interphase distance between adjacent Sn phases in the Sn phase distributed in the surface layer is 10 μm or less, the Al phase distributed between the Sn phases in the sliding surface is extruded onto the sliding surface. It becomes easier to cover with the Sn phase. Thereby, the non-seizure property of the surface layer can be further improved, and the non-seizure property of the Al alloy bearing can be further improved.
Furthermore, when the average value of the interphase distance between adjacent Sn phases in the surface layer is 7 μm or less, the Al phase distributed on the sliding surface is more easily covered with the Sn phase, and the non-seizure property described above is obtained. It becomes easier to obtain the effect.
Therefore, in this surface layer, Sn is included in an amount of 30 to 70% by mass, the average value of the interphase distance between adjacent Sn phases is 10 μm or less, and the average value of the aspect ratio of the Sn phase is 4 or more. The above-mentioned non-seizure effect can be obtained.

表面層の厚さ寸法の平均値は、50μm以上であることが好ましい。表面層の厚さ寸法が平均値で50μm以上である場合、表面層の厚さ方向に延びて分布するSn相の個数を多くさせやすい。したがって、表面層のSn相はAl相からの圧力によって摺動表面上に一層押し出されやすくなり、摺動表面に分布しているAl相はこのSn相によって一層覆れやすくなる。これにより、表面層の非焼付性を一層向上させることができ、Al合金軸受の非焼付性を一層向上させることができる。   The average value of the thickness dimension of the surface layer is preferably 50 μm or more. When the average thickness of the surface layer is 50 μm or more, the number of Sn phases extending and distributed in the thickness direction of the surface layer can be easily increased. Therefore, the Sn phase of the surface layer is more easily pushed onto the sliding surface by the pressure from the Al phase, and the Al phase distributed on the sliding surface is more easily covered with this Sn phase. Thereby, the non-seizure property of the surface layer can be further improved, and the non-seizure property of the Al alloy bearing can be further improved.

反表面層は、Alと30〜50質量%のSnとを含み、AlからなるAl相と、SnからなるSn相とを有し、隣り合うSn相同士の相間距離の平均値が10μm以上であることが好ましい。反表面層での隣り合うSn相同士の相間距離の平均値も、表面層において隣り合うSn相同士の相間距離の平均値の求め方と同様に、隣り合うSn相同士の重心間距離に基づいて求められる。   The anti-surface layer contains Al and 30 to 50% by mass of Sn, has an Al phase made of Al, and an Sn phase made of Sn, and an average interphase distance between adjacent Sn phases is 10 μm or more. Preferably there is. The average value of the interphase distance between adjacent Sn phases in the anti-surface layer is also based on the distance between the centroids of adjacent Sn phases in the same manner as the average value of the interphase distance between adjacent Sn phases in the surface layer. Is required.

反表面層における隣り合うSn相同士の相間距離の関係を、図4を用いて説明する。図4に、反表面層において、測定視野でのSn相の面積率が同じではあるが隣り合うSn相同士の相間距離の平均値が異なるSn相7,8の分布と形状、およびマトリクス9,10の形状を模式的に示す。図4(a)は相間距離の平均値の大きい複数個のSn相7とマトリクス9の一例を示すものであり、Sn相7がすべて同一形状で等間隔に配置されていると仮定したものである。この場合、測定視野での各Sn相7の面積をSとして示す。図4(b)はSn相7での場合よりも相間距離の平均値の小さい複数個のSn相8とマトリクス10の一例を示すものであり、Sn相8がすべて同一形状で等間隔に配置されていると仮定したものである。この場合、測定視野での各Sn相8の面積をSとして示す。
図4に示すように、反表面層における隣り合うSn相同士の相間距離の平均値が大きいほど、測定視野内に分布しているSn相の個数は少なくなり、1個当たりのSn相の面積は大きくなり、その結果、測定視野内においてAl相とSn相との接している境界の総長は短くなる。
The relationship of the interphase distance between adjacent Sn phases in the anti-surface layer will be described with reference to FIG. FIG. 4 shows the distribution and shape of the Sn phases 7 and 8 having the same area ratio of the Sn phase in the measurement field of view but different average values of the interphase distances between the adjacent Sn phases in the anti-surface layer. 10 shapes are schematically shown. FIG. 4A shows an example of a plurality of Sn phases 7 and a matrix 9 having a large average interphase distance, and it is assumed that the Sn phases 7 are all arranged at equal intervals in the same shape. is there. In this case, indicating the area of each Sn phase 7 of the measurement visual field as S 3. FIG. 4B shows an example of a plurality of Sn phases 8 and a matrix 10 having an average interphase distance smaller than that in the case of the Sn phase 7, and the Sn phases 8 are all the same shape and arranged at equal intervals. It is assumed that In this case, indicating the area of each Sn phase 8 of the measurement field as S 4.
As shown in FIG. 4, the larger the average value of the interphase distances between adjacent Sn phases in the anti-surface layer, the smaller the number of Sn phases distributed in the measurement field of view, and the area of the Sn phase per piece. As a result, the total length of the boundary between the Al phase and the Sn phase in the measurement field of view decreases.

上記総長が短い、すなわち、Al相とSn相とが接する界面の総面積が小さいほど、Al相とSn相との間での接着不良となり得る起点の合計面積も小さくなる。そして、この起点の合計面積が小さくなるほど、反表面層と基材との間において上述の起点が存在する可能性が少なくなり、反表面層が基材に強固に接着された構成となる。よって、反表面層において隣り合うSn相同士の相間距離を大きく、例えば隣り合うSn相同士の相間距離の平均値を10μm以上とすることにより、非焼付性に優れるAl基軸受合金層を基材上に強固に接着することができる。   The shorter the total length, that is, the smaller the total area of the interface where the Al phase and Sn phase are in contact with each other, the smaller the total area of the starting points that can cause poor adhesion between the Al phase and the Sn phase. Then, as the total area of the starting points becomes smaller, the possibility that the above-described starting points exist between the anti-surface layer and the base material is reduced, and the anti-surface layer is firmly bonded to the base material. Therefore, an Al-based bearing alloy layer having excellent non-seizure properties is obtained by increasing the interphase distance between adjacent Sn phases in the anti-surface layer, for example, by setting the average value of interphase distances between adjacent Sn phases to 10 μm or more. It can be firmly bonded on top.

したがって、この反表面層において、Snを30〜50質量%含ませ、隣り合うSn相同士の相間距離の平均値を10μm以上にすることにより、Sn相よりも高い強度を有するAl相を反表面層中に適度に分布させて反表面層全体の強度を高めながら良好なクッション性を持たせることができ、さらに、基材とAl基軸受合金層との接着性を高めることができる。そのため、このようなAl合金軸受は、非焼付性に非常に優れる。
また、反表面層での隣り合うSn相同士の相間距離の平均値を、表面層でのそれよりも大きくするのが、Al合金軸受の非焼付性と疲労強度とを向上させる面で好ましい。
Therefore, in this anti-surface layer, 30-50 mass% of Sn is included, and the average value of the interphase distance between adjacent Sn phases is 10 μm or more, so that the Al phase having higher strength than the Sn phase is anti-surface. A good cushioning property can be imparted while increasing the strength of the entire anti-surface layer by appropriately distributing in the layer, and the adhesion between the base material and the Al-based bearing alloy layer can be enhanced. Therefore, such an Al alloy bearing is extremely excellent in non-seizure properties.
Moreover, it is preferable in terms of improving the non-seizure property and fatigue strength of the Al alloy bearing that the average value of the interphase distance between adjacent Sn phases in the anti-surface layer is larger than that in the surface layer.

表面層において隣り合うSn相同士の相間距離の平均値をAとし、反表面層において隣り合うSn相同士の相間距離の平均値をAとすると、比の値A/Aは3以上であることが好ましい。Aの値が小さいほど表面層の非焼付性は向上し、Aの値が大きいほど基材とAl基軸受合金層との接着性が向上してAl基軸受合金層を基材上に強固に接着させることができる。比の値A/Aが3以上である場合、Al合金軸受全体としての非焼付性をより一層向上させることができる。 The average value of the phase distance Sn phase adjacent the surface layer and A 1, when the average value of the phase distance Sn phase adjacent the reaction surface layer and A 2, the value A 2 / A 1 ratio is 3 The above is preferable. Anti-seizure property of the larger the value of A 1 is small surface layer is improved, the Al-base bearing alloy layer and improve the adhesion between the larger the value of A 2 is greater substrate and the Al-base bearing alloy layer on a substrate It can be firmly bonded. When the ratio value A 2 / A 1 is 3 or more, the non-seizure property of the entire Al alloy bearing can be further improved.

上述した本発明の一実施形態のAl合金軸受に、焼鈍処理を行ってもよい。本発明の一実施形態のAl合金軸受に焼鈍処理を行っても、焼鈍処理を行う前のAl合金軸受と同等以上の非焼付性の効果を奏する。
また、上述したように、Al合金軸受を焼鈍することにより、図5に模式的に示すように、表面層に分布しているSn相11の多くが他のSn相11と繋がり、Al相12を囲う環状Sn相13が形成される。図5(a)は焼鈍前の表面層を示す図であり、図5(b)は焼鈍後の表面層を示す図である。
You may anneal-treat to the Al alloy bearing of one Embodiment of this invention mentioned above. Even if the Al alloy bearing of one embodiment of the present invention is annealed, the non-seizure effect equal to or higher than that of the Al alloy bearing before the annealing treatment is obtained.
Further, as described above, by annealing the Al alloy bearing, as schematically shown in FIG. 5, many of the Sn phases 11 distributed in the surface layer are connected to the other Sn phases 11, and the Al phase 12 An annular Sn phase 13 is formed to surround. Fig.5 (a) is a figure which shows the surface layer before annealing, FIG.5 (b) is a figure which shows the surface layer after annealing.

環状Sn相の周囲方向長さlの平均値をL、環状Sn相の幅方向長さdの平均値をDとすると、比の値L/Dが10以上であることが好ましい。
図5に示すように模式的に捉えると、環状Sn相13の周囲方向長さlは、測定視野に分布しているAl相12を同面積の円とみなし、Al相12を囲うSn相を円環状とした場合において、円とみなしたAl相12の直径hと円環状のSn相(環状Sn相13)の幅長さdを足したものを直径として形成される円の周長さである。
When the average value of the circumferential length l of the annular Sn phase is L and the average value of the width d of the annular Sn phase is D, the ratio value L / D is preferably 10 or more.
As schematically shown in FIG. 5, the circumferential length l of the annular Sn phase 13 is such that the Al phase 12 distributed in the measurement visual field is regarded as a circle of the same area, and the Sn phase surrounding the Al phase 12 is In the case of an annular shape, the circumference of a circle formed as a diameter is obtained by adding the diameter h of the Al phase 12 regarded as a circle and the width d of the annular Sn phase (annular Sn phase 13). is there.

ここで、焼鈍後のAl相の平均直径Hおよび環状Sn相の幅方向長さの平均値Dは、次のようにして求められる。
環状Sn相に囲われるAl相の平均直径Hは、図5に示すように、測定視野の組成画像に例えば縦方向に延びる線(点線)Lpを引いた場合の、環状Sn相13に囲われているAl相12に線Lpが重なっている部分の一箇所当たり長さの平均値とする。
Here, the average diameter H of the Al phase after annealing and the average value D of the length in the width direction of the annular Sn phase are obtained as follows.
As shown in FIG. 5, the average diameter H of the Al phase surrounded by the annular Sn phase is surrounded by the annular Sn phase 13 when, for example, a line (dotted line) Lp extending in the vertical direction is drawn on the composition image of the measurement visual field. It is set as the average value of the length per one part where the line Lp has overlapped with the Al phase 12 which is.

環状Sn相の幅方向長さの平均値Dは、次のようにして求められる。まず、上述と同様に、測定視野の組成画像に線Lpを引き、線Lpが環状Sn相に重なっている部分の一箇所当たり長さの平均値を求める。この一箇所当たり長さは、隣り合うAl相の外周部分同士の最短距離、すなわち隣り合う2個の環状Sn相の幅方向長さと仮定できるため、この一箇所当たり長さの平均値を2で割ることにより、1個当たりの環状Sn相の幅方向長さの平均値Dが求められる。   The average value D of the lengths in the width direction of the annular Sn phase is obtained as follows. First, in the same manner as described above, a line Lp is drawn on the composition image of the measurement visual field, and the average value of the length per part where the line Lp overlaps the annular Sn phase is obtained. Since the length per location can be assumed to be the shortest distance between the outer peripheral portions of adjacent Al phases, that is, the length in the width direction of two adjacent annular Sn phases, the average value of the length per location is 2. By dividing, an average value D of the lengths in the width direction of one annular Sn phase is obtained.

ここで、比の値L/Dが10以上である場合、上述したSn相のアスペクト比の平均値が4以上である場合と同様に、環状Sn相は細長い形状であり、摺動表面での環状Sn相の面積が小さい。したがって、環状Sn相は、Al相からの圧力によって表面層の内部から摺動表面上に容易に押し出されやすい。その結果、摺動表面に分布しているAl相は、摺動表面上に押し出された環状Sn相によって容易に覆われるようになり、相手部材が環状Sn相よりも硬いAl相に直接当たりにくくなる。これにより、本発明の一実施形態の構成によれば、表面層の非焼付性を一層向上させることができ、Al合金軸受の非焼付性を一層向上させることができる。   Here, when the ratio value L / D is 10 or more, as in the case where the average value of the aspect ratio of the Sn phase is 4 or more, the annular Sn phase has an elongated shape, The area of the annular Sn phase is small. Therefore, the cyclic Sn phase is easily pushed out from the inside of the surface layer onto the sliding surface by the pressure from the Al phase. As a result, the Al phase distributed on the sliding surface is easily covered by the annular Sn phase extruded on the sliding surface, and the counterpart member is less likely to directly hit the Al phase that is harder than the annular Sn phase. Become. Thereby, according to the structure of one Embodiment of this invention, the non-seizure property of a surface layer can be improved further, and the non-seizure property of an Al alloy bearing can be improved further.

また、表面層に分布している環状Sn相に囲われるAl相の平均直径は、10μm以下であることが好ましい。環状Sn相に囲われているAl相の平均直径が10μm以下である場合、環状Sn相に囲われているAl相は、摺動表面上に押し出された環状Sn相によって覆われやすくなる。これにより、表面層の非焼付性を一層向上させることができ、Al合金軸受の非焼付性を一層向上させることができる。   The average diameter of the Al phase surrounded by the cyclic Sn phase distributed in the surface layer is preferably 10 μm or less. When the average diameter of the Al phase surrounded by the cyclic Sn phase is 10 μm or less, the Al phase surrounded by the cyclic Sn phase is likely to be covered by the cyclic Sn phase extruded on the sliding surface. Thereby, the non-seizure property of the surface layer can be further improved, and the non-seizure property of the Al alloy bearing can be further improved.

Al軸受合金層の摺動表面側に表面層を形成する方法としては、例えば下記がある。なお、Al基軸受合金層において表面層を形成する前のAlを主成分とする層を、Al基層と称する。
表面層を形成する1つ目としては、所定量のAlとSnとを含むAl基層の表面にレーザ処理および冷却処理を行って、Al基層の摺動表面側に表面層を形成する方法である。その場合、Al基層のうち基材側が反表面層となる。
この表面層の形成方法でのレーザ処理では、Al基層の表面にレーザを照射し、当該Al基層の表面をAlおよびSnの両方が溶融するまで加熱する処理が行われる。
Examples of the method for forming the surface layer on the sliding surface side of the Al bearing alloy layer include the following. In addition, the layer which has Al as a main component before forming a surface layer in an Al base bearing alloy layer is called an Al base layer.
The first method of forming the surface layer is to form a surface layer on the sliding surface side of the Al base layer by performing laser treatment and cooling treatment on the surface of the Al base layer containing a predetermined amount of Al and Sn. . In that case, the substrate side of the Al base layer is the anti-surface layer.
In the laser treatment in this surface layer forming method, a treatment is performed in which the surface of the Al base layer is irradiated with laser and the surface of the Al base layer is heated until both Al and Sn are melted.

また、この表面層の形成方法での冷却処理では、第1の冷却処理と第2の冷却処理との2段階の処理が行われる。第1の冷却処理では、上記のレーザ処理で溶融しているAl基層の表面を、Snが液体、Alが液体と固体との両方で存在する温度、具体的には350〜500℃になるまで冷却し、この温度で所定時間保持して、Al相を必要量晶出させる。ここで晶出している固相のAl相の量(体積割合)は、例えば保持する温度および時間を変更することによって調整する。続く第2の冷却処理では、第1の冷却処理後にAl基層の表面を冷却してSn相を晶出させる処理が行われる。このとき、Sn相は第1の冷却によって晶出したAl相同士の隙間に晶出し、また、第1の冷却処後に液体で残存していたAl相も第2の冷却処理の際に晶出する。
このように、レーザ処理後に冷却処理として第1の冷却処理および第2の冷却処理を行うことにより、Al相同士の隙間を制御できるため、Sn相のアスペクト比を大きくすることができる。
In the cooling process using the surface layer forming method, a two-stage process including a first cooling process and a second cooling process is performed. In the first cooling treatment, the surface of the Al base layer melted by the laser treatment is heated to a temperature at which Sn is liquid and Al is both liquid and solid, specifically 350 to 500 ° C. Cool and hold at this temperature for a predetermined time to crystallize the required amount of Al phase. The amount (volume ratio) of the solid phase Al phase crystallized here is adjusted, for example, by changing the holding temperature and time. In the subsequent second cooling process, a process of cooling the surface of the Al base layer to crystallize the Sn phase after the first cooling process is performed. At this time, the Sn phase is crystallized in the gap between the Al phases crystallized by the first cooling, and the Al phase remaining in the liquid after the first cooling treatment is also crystallized during the second cooling treatment. To do.
Thus, by performing the first cooling process and the second cooling process as the cooling process after the laser process, the gap between the Al phases can be controlled, so that the aspect ratio of the Sn phase can be increased.

表面層を形成する2つ目としては、Al基層上に供給したSn粉末および当該Al基層の表面に、上述と同様のレーザ処理および冷却処理を行って、Al基層の摺動表面側に表面層を形成する方法である。すなわち、レーザ処理では、Al基層の表面に、Sn粉末を供給し、Sn粉末およびAl基層の表面にレーザを照射し、当該Sn粉末およびAl基層の表面が溶融するまで加熱する処理が行われる。このとき、レーザの照射によってAl基層の表面も溶融しているため、この溶融しているAl基層の一部のAlが、表面層のAl相を形成する。   Second, the surface layer is formed by applying the same laser treatment and cooling treatment to the Sn powder supplied on the Al base layer and the surface of the Al base layer as described above, and forming the surface layer on the sliding surface side of the Al base layer. It is a method of forming. That is, in the laser processing, Sn powder is supplied to the surface of the Al base layer, laser is applied to the surfaces of the Sn powder and the Al base layer, and heating is performed until the surfaces of the Sn powder and the Al base layer are melted. At this time, since the surface of the Al base layer is also melted by the laser irradiation, a part of the molten Al base layer forms an Al phase of the surface layer.

また、この表面層の形成方法での冷却処理でも、上述と同様に、第1の冷却処理によって表面層にAl相を必要量晶出させる処理が行われ、第2の冷却処理によってSn相をAl相同士の隙間に晶出させる処理が行われる。なお、Sn粉末の代わりに、Al−Sn合金粉末を用いてもよい。
表面層のAlとSnとの質量比は、例えばSn粉末の量、Al基層に含まれるAlおよびSnの質量比を変更することによって調整される。
Also, in the cooling process in this surface layer forming method, a process for crystallizing a necessary amount of Al phase on the surface layer is performed by the first cooling process, and the Sn phase is converted by the second cooling process. Processing to crystallize in the gap between the Al phases is performed. In place of Sn powder, Al—Sn alloy powder may be used.
The mass ratio of Al and Sn in the surface layer is adjusted, for example, by changing the amount of Sn powder and the mass ratio of Al and Sn contained in the Al base layer.

なお、レーザ処理の条件、冷却処理の条件は、Al基軸受合金層の表面層に含まれるAlおよびSnの質量などによって異なる。
また、表面層を形成する方法は上述した方法に限られない。
The laser processing conditions and cooling processing conditions vary depending on the mass of Al and Sn contained in the surface layer of the Al-based bearing alloy layer.
Further, the method of forming the surface layer is not limited to the method described above.

本発明の一実施形態のAl合金軸受を模式的に示す断面図Sectional drawing which shows typically the Al alloy bearing of one Embodiment of this invention アスペクト比を説明するための概念図Conceptual diagram for explaining aspect ratio アスペクト比の異なるSn相の形状を模式的に示す表面層の断面図Cross-sectional view of the surface layer schematically showing the shape of the Sn phase with different aspect ratios 反表面層におけるSn相間距離とSn相の大きさの関係を模式的に示す図The figure which shows typically the relationship between the distance between Sn phases and the magnitude | size of Sn phase in an anti-surface layer 焼鈍前後の表面層の状態を模式的に示す図The figure which shows the state of the surface layer before and after annealing typically 焼鈍処理を行った後の表面層の状態を示す図The figure which shows the state of the surface layer after performing annealing treatment

Al合金軸受の一実施形態の断面を、図1に示す。図1に示すAl合金軸受21は、例えば産業用機械の内燃機関に使用される軸受であり、基材22と、基材22上に設けられたAl基軸受合金層23とを備えている。基材22は、裏金層24と、裏金層24上に設けられた中間層25とを有している。Al基軸受合金層23は、中間層25と接する反表面層26と、反表面層26上に設けられた表面層27とを有する2層構造である。
このAl合金軸受21に焼鈍処理を行った後のAl合金軸受の表面層の状態を、図6に示す。
A cross section of an embodiment of an Al alloy bearing is shown in FIG. An Al alloy bearing 21 shown in FIG. 1 is a bearing used in, for example, an internal combustion engine of an industrial machine, and includes a base material 22 and an Al-based bearing alloy layer 23 provided on the base material 22. The base material 22 includes a back metal layer 24 and an intermediate layer 25 provided on the back metal layer 24. The Al-based bearing alloy layer 23 has a two-layer structure having an anti-surface layer 26 in contact with the intermediate layer 25 and a surface layer 27 provided on the anti-surface layer 26.
The state of the surface layer of the Al alloy bearing after annealing the Al alloy bearing 21 is shown in FIG.

次に、本実施形態のAl合金軸受21の効果を確認した試験について説明する。
本実施形態のAl合金軸受21と同様の構成の実施例品1〜10は、次のようにして得た。まず、必要に応じて表1に示す組成に調整されたAl基軸受合金の板材を鋳造によって製造した。その後、この鋳造されたAl基軸受合金に、Alからなる中間層を構成する薄い板材を圧接して複層アルミニウム合金板を製造し、この複層アルミニウム合金板を、裏金層を構成する鋼板に圧接、および焼鈍して軸受形成用板材、いわゆるバイメタルを製造した。
Next, the test which confirmed the effect of the Al alloy bearing 21 of this embodiment is demonstrated.
Example products 1 to 10 having the same configuration as that of the Al alloy bearing 21 of the present embodiment were obtained as follows. First, a plate material of an Al-based bearing alloy adjusted to the composition shown in Table 1 as necessary was produced by casting. After that, a thin plate material constituting the intermediate layer made of Al is pressed against the cast Al-based bearing alloy to produce a multilayer aluminum alloy plate, and this multilayer aluminum alloy plate is used as a steel plate constituting the back metal layer. The plate for bearing formation, so-called bimetal was manufactured by pressure welding and annealing.

次に、実施例品1,3〜6では、バイメタルのAl基層の表面にレーザを照射して、そのAl基軸受合金の表面を溶融させるレーザ処理を行った。次に、溶融しているAl基軸受合金の表面を、350〜500℃まで冷却して所定時間保持する第1の冷却処理を行った。そして、第1の冷却処理後に、Al基軸受合金の表面をさらに冷却してSn相を晶出させる第2の冷却処理を行った。これにより、Al基軸受合金層23の摺動表面側に表面層27を有する実施例品1,3〜6を得た。   Next, in the example products 1, 3 to 6, laser processing was performed by irradiating the surface of the bimetallic Al base layer with laser to melt the surface of the Al base bearing alloy. Next, the 1st cooling process which cools the surface of the molten Al base bearing alloy to 350-500 degreeC, and hold | maintains for a predetermined time was performed. Then, after the first cooling process, a second cooling process for further cooling the surface of the Al-based bearing alloy to crystallize the Sn phase was performed. As a result, Example products 1, 3 to 6 having the surface layer 27 on the sliding surface side of the Al-based bearing alloy layer 23 were obtained.

実施例品2,7では、バイメタルのAl基層の表面にSn粉末を散布した後に、レーザ処理を行って、そのAl基軸受合金の表面及びSn粉末を溶融させた。次に、溶融しているSn粉末およびAl基軸受合金の表面について、上述と同様の第1の冷却処理および第2の冷却処理を行い、Al相を晶出させた後にSn相を晶出させた。これにより、Al基軸受合金層23の摺動表面に表面層27を有する実施例品2,7を得た。
実施例品8〜10は、実施例品6を、250〜350℃で4〜6時間焼鈍して得た。
In Example products 2 and 7, Sn powder was sprayed on the surface of the bimetallic Al base layer, and then laser treatment was performed to melt the surface of the Al base bearing alloy and the Sn powder. Next, the first cooling treatment and the second cooling treatment similar to those described above are performed on the surface of the molten Sn powder and the Al-based bearing alloy, and after the Al phase is crystallized, the Sn phase is crystallized. It was. Thereby, Example products 2 and 7 having the surface layer 27 on the sliding surface of the Al-based bearing alloy layer 23 were obtained.
Example products 8 to 10 were obtained by annealing Example product 6 at 250 to 350 ° C. for 4 to 6 hours.

比較例品1のバイメタルの表面は、Al基軸受合金からなるものであり、レーザ処理およびレーザ処理後の冷却処理を行っていないものである。
比較例品2,3は、冷却処理の工程が実施例品の製造方法と異なるものであり、実施例品1〜7と同様のレーザ処理を行った後に、実施例品1〜7で行った第1の冷却処理および第2の冷却処理を行なわずに、表面層を溶融状態から凝固状態まで連続的に冷却してAl相およびSn相を晶出させて得た。
The surface of the bimetal of Comparative Example Product 1 is made of an Al-based bearing alloy, and is not subjected to laser treatment and cooling treatment after laser treatment.
The comparative example products 2 and 3 are different from the manufacturing method of the example product in the process of cooling treatment, and after performing the same laser treatment as the example products 1 to 7, the example products 1 to 7 were performed. Without performing the first cooling treatment and the second cooling treatment, the surface layer was continuously cooled from the molten state to the solidified state to obtain an Al phase and an Sn phase.

上述の製造方法によって得た実施例品1〜10および比較例品1〜3の特性を表1に示す。表1の「表面層」の「Sn相の相間距離」、「Sn相のアスペクト比」、「Al相の平均直径」、「比L/D」および「厚さ」は、バイメタルのAl基軸受合金を形成する組成、Sn粉末の散布量、レーザの照射の強さおよび照射時間などを適宜変更することによって調整し、さらに、実施例品1〜10および比較例品2,3においては第1の冷却処理におけるSn相の晶出の温度および時間などを適宜変更することによっても調整した。   Table 1 shows the characteristics of Examples 1 to 10 and Comparative Examples 1 to 3 obtained by the above-described manufacturing method. In Table 1, “Surface distance”, “Sn phase aspect ratio”, “Al phase average diameter”, “R / D” and “Thickness” are bimetallic Al base bearings. It adjusts by changing suitably the composition which forms an alloy, the application | coating amount of Sn powder, the intensity | strength of laser irradiation, irradiation time, etc. Furthermore, in Example goods 1-10 and comparative example goods 2 and 3, it is 1st. It was also adjusted by appropriately changing the temperature and time of Sn phase crystallization in the cooling treatment.

上述の実施例品1〜10および比較例品1〜3の試料について、表2に示す条件で焼付試験を行った。その試験結果を、表1に示す。なお、焼付試験に用いるオイルは、試験前に摺動表面上に塗布した。   For the samples of Examples 1 to 10 and Comparative Examples 1 to 3 described above, a seizure test was performed under the conditions shown in Table 2. The test results are shown in Table 1. The oil used for the seizure test was applied on the sliding surface before the test.

Figure 0005981097
Figure 0005981097

Figure 0005981097
Figure 0005981097

表1の「Al」および「Sn」は、表面層および反表面層に含まれる組成の質量%濃度を示している。これらの質量%濃度は、蛍光X線装置を用いて得た値である。
表1の「表面層」の「Sn相の相間距離」は表面層の隣り合うSn相同士の相間距離の平均値を示し、「表面層」の「Sn相のアスペクト比」は表面層のSn相のアスペクト比の平均値を示している。また、これらの値および表1の「焼鈍後」の「Al相の平均直径」および「比L/D」は、表面層の摺動表面から基材側に向かって研磨でAl基軸受合金層を削っていき、表面層の摺動表面の最も窪んだ所から深さ20μmの位置で、摺動表面に平行な面での測定視野150μm×150μmにおいて測定して得た値である。
“Al” and “Sn” in Table 1 indicate mass% concentrations of compositions contained in the surface layer and the anti-surface layer. These mass% concentrations are values obtained using a fluorescent X-ray apparatus.
“Sn-phase interphase distance” of “surface layer” in Table 1 indicates an average value of inter-phase distances between adjacent Sn phases of the surface layer, and “Sn-phase aspect ratio” of “surface layer” is Sn of the surface layer. The average aspect ratio of the phases is shown. In addition, these values and “average diameter of Al phase” and “ratio L / D” of “after annealing” in Table 1 indicate that the Al-based bearing alloy layer is polished from the sliding surface of the surface layer toward the substrate side. This is a value obtained by measuring at a position 20 μm deep from the most depressed portion of the sliding surface of the surface layer and measuring in a measurement visual field of 150 μm × 150 μm parallel to the sliding surface.

この場合、表面層の隣り合うSn相同士の相間距離の平均値は、電子顕微鏡で得られた測定視野の組成画像を、解析ソフト(株式会社プラネトロン社製「Image−Pro Plus(Version4.5)」)を用いて求めた。また、この表面層の隣り合うSn相同士の相間距離の平均値をAとする。
なお、表面層の隣り合うSn相同士の相間距離の平均値を求めるにあたって、解析ソフトの検出の下限(0.07μm)以上の面積のSn相を対象とした。
In this case, the average value of the interphase distance between adjacent Sn phases of the surface layer is obtained by analyzing the composition image of the measurement visual field obtained with an electron microscope ("Image-Pro Plus (Version 4.5) manufactured by Planetron Co., Ltd.)" )). Further, the average value of the phase distance Sn phase adjacent the surface layer A 1.
In addition, when calculating | requiring the average value of the interphase distance of adjacent Sn phases of a surface layer, Sn phase of the area more than the minimum (0.07 micrometer < 2 >) of detection of analysis software was made into object.

表面層のSn相のアスペクト比の平均値は、上述の解析ソフトを用い、次のようにして求めた。まず、測定視野内に分布している0.07μm以上のすべてのSn相の面積から測定視野内のSn相の総面積を求めると共に、これらのSn相のそれぞれについてアスペクト比を求めた。次に、アスペクト比が大きいSn相から順にSn相の面積を累積していき、累積した面積がSn相の総面積の50%に達するまでのアスペクト比の大きいSn相を、アスペクト比の平均値を求めるSn相の対象とした。そして、表面層のSn相のアスペクト比の平均値は、この対象としたSn相のアスペクト比を平均して求めた値である。 The average value of the aspect ratio of the Sn phase of the surface layer was determined as follows using the analysis software described above. First, the total area of the Sn phase in the measurement visual field was determined from the areas of all Sn phases of 0.07 μm 2 or more distributed in the measurement visual field, and the aspect ratio was determined for each of these Sn phases. Next, the area of the Sn phase is accumulated in order from the Sn phase having the largest aspect ratio, and the Sn phase having a large aspect ratio until the accumulated area reaches 50% of the total area of the Sn phase is averaged for the aspect ratio. It was set as the object of Sn phase which asks for. The average value of the aspect ratio of the Sn phase of the surface layer is a value obtained by averaging the aspect ratio of the Sn phase as the target.

表1の「焼鈍後」の「Al相の平均直径」は、測定視野の組成画像に例えば図6に示すように縦方向に延びる線Lpを10μmの間隔で線を引き、同じくその組成画像に横方向に延びる線Lqを10μmの間隔で線を引き、これらの各線と環状Sn相13に囲われているAl相12とが重なっている部分の一箇所当たり長さ(Al相擬似直径長さ)を平均して求めた値である。なお、このAl相の平均直径の測定において、測定視野において環状Sn相13に囲われていないAl相については、測定の対象外とした。また、環状Sn相13に囲われているAl相12内にSn相11が点在し、そのSn相11が上述の各線と重なっている場合、そのSn相11は存在しないものとして、Al相の平均直径を求めた。   The “average diameter of Al phase” in “after annealing” in Table 1 is obtained by drawing lines Lp extending in the vertical direction at intervals of 10 μm in the composition image of the measurement visual field, for example, as shown in FIG. The lines Lq extending in the lateral direction are drawn at intervals of 10 μm, and the length per one part where the respective Al lines 12 are overlapped with the respective lines and the Al phase 12 surrounded by the annular Sn phase 13 (Al phase pseudo-diameter length). ) Is an average value. In the measurement of the average diameter of the Al phase, the Al phase not surrounded by the annular Sn phase 13 in the measurement visual field was excluded from the measurement. In addition, when the Sn phase 11 is scattered in the Al phase 12 surrounded by the annular Sn phase 13 and the Sn phase 11 overlaps the above-described lines, the Sn phase 11 is assumed not to exist, and the Al phase The average diameter was determined.

表1の「焼鈍後」の「比L/D」のDは、環状Sn相の幅方向長さの平均値Dである。このDの値は、Al相の平均直径で用いた各線と環状Sn相13とが重なっている部分の一箇所当たり長さの平均値を2で割って求めた値である。なお、このDの測定において、環状になっていないSn相11については、測定の対象外とした。
表1の「焼鈍後」の「比L/D」のLは、環状Sn相の周囲方向長さの平均値Lである。このLの値は、上述のAl相擬似直径長さと環状Sn相の幅方向長さとの和が直径となる仮想の円の周長さを平均して求めた値である。
表1の「比L/D」は、比の値L/Dであり、上述のLをDで割って求めた値である。
表1の「表面層」の「厚さ」の値は、表面層の断面写真から、表面層の複数箇所で膜厚を測定し、それを平均して求めた値である。
D of “ratio L / D” of “after annealing” in Table 1 is an average value D of the lengths in the width direction of the annular Sn phase. The value of D is a value obtained by dividing the average value of the length per part where each line used for the average diameter of the Al phase and the annular Sn phase 13 overlap by 2. In addition, in the measurement of D, the Sn phase 11 that was not in a ring shape was not measured.
L in “Ratio L / D” of “After annealing” in Table 1 is an average value L of the circumferential length of the annular Sn phase. The value of L is a value obtained by averaging the circumferential length of a virtual circle whose diameter is the sum of the Al phase pseudo-diameter length and the width direction length of the annular Sn phase.
“Ratio L / D” in Table 1 is the ratio value L / D, which is obtained by dividing the above-mentioned L by D.
The value of “thickness” of “surface layer” in Table 1 is a value obtained by measuring film thicknesses at a plurality of locations on the surface layer from a cross-sectional photograph of the surface layer and averaging them.

表1の「反表面層」の「Sn相の相間距離」は反表面層の隣り合うSn相同士の相間距離の平均値を示している。この値は、表面層の摺動表面から基材側に向かって研磨でAl基軸受合金層を削っていき、基材の最もAl基軸受合金層側に位置する所から高さ20μmの位置で、摺動表面に平行な面での測定視野150μm×150μmにおいて測定して得た値である。
この場合、反表面層の隣り合うSn相同士の相間距離の平均値も、反表面層での隣り合うSn相同士の重心間距離であり、上述の表面層の隣り合うSn相同士の相間距離の平均値の求め方と同様に、上述の解析ソフトを用いて求めた値である。この反表面層の隣り合うSn相同士の相間距離の平均値をAとする。
表1の「比A/A」は、比の値A/Aであり、上述のAをAで割って求めた値である。
“Sn-phase interphase distance” of “anti-surface layer” in Table 1 indicates an average value of inter-phase distances between adjacent Sn phases of the anti-surface layer. This value is obtained by grinding the Al-base bearing alloy layer by polishing from the sliding surface of the surface layer toward the base material, and at a position 20 μm in height from the position closest to the Al-base bearing alloy layer of the base material. The value obtained by measurement in a measurement visual field of 150 μm × 150 μm on a plane parallel to the sliding surface.
In this case, the average value of the interphase distance between adjacent Sn phases in the anti-surface layer is also the distance between the centers of gravity of adjacent Sn phases in the anti-surface layer, and the inter-phase distance between adjacent Sn phases in the above-described surface layer. This is a value obtained by using the above-described analysis software, in the same manner as the method for obtaining the average value. The average value of the phase distance Sn phase adjacent the anti-surface layer and A 2.
“Ratio A 2 / A 1 ” in Table 1 is a ratio value A 2 / A 1, which is a value obtained by dividing the above-mentioned A 2 by A 1 .

次に、焼付試験の結果について解析する。
実施例品1〜7と比較例品1〜3との対比から、実施例品1〜7は、表面層において隣り合うSn相同士の相間距離の平均値が10μm以下であり、かつSn相のアスペクト比の平均値が4以上であるため、比較例品1〜3よりも、非焼付性が優れていることが理解できる。
Next, the results of the seizure test are analyzed.
From comparison between the example products 1 to 7 and the comparative example products 1 to 3, in the example products 1 to 7, the average value of the interphase distance between adjacent Sn phases in the surface layer is 10 μm or less, and the Sn phase Since the average value of the aspect ratio is 4 or more, it can be understood that the non-seizure property is superior to Comparative Examples 1 to 3.

実施例品1と実施例品2〜7との対比から、実施例品2〜7は、表面層の厚さ寸法の平均値が50μm以上であるため、実施例品1よりも非焼付性がより一層優れていることが理解できる。
実施例品1,2と実施例品3〜7との対比から、実施例品3〜7は、反表面層において隣り合うSn相同士の相間距離の平均値が10μm以上であるため、実施例品1,2よりも非焼付性がより一層優れていることが理解できる。
From comparison between the example product 1 and the example products 2 to 7, the example product 2 to 7 has an average value of the thickness dimension of the surface layer of 50 μm or more. It can be understood that it is even better.
From comparison between the example products 1 and 2 and the example products 3 to 7, the example products 3 to 7 have an average interphase distance between adjacent Sn phases in the anti-surface layer of 10 μm or more. It can be understood that the non-seizure property is much better than the products 1 and 2.

実施例品1〜3と実施例品4〜7との対比から、実施例品4〜7は、比の値A/Aが3以上であるため、実施例品1〜3よりも非焼付性がより一層優れていることが理解できる。
実施例品1〜4と実施例品5〜7との対比から、実施例品5〜7は、表面層において隣り合うSn相同士の相間距離の平均値が7μm以下であり、かつSn相のアスペクト比の平均値が6以上であるため、実施例品1〜4よりも非焼付性がより一層優れていることが理解できる。
From comparison between the example products 1 to 3 and the example products 4 to 7, the example products 4 to 7 have a ratio value A 2 / A 1 of 3 or more. It can be understood that the seizure property is even better.
From comparison between the example products 1 to 4 and the example products 5 to 7, in the example products 5 to 7, the average value of the interphase distance between adjacent Sn phases in the surface layer is 7 μm or less, and the Sn phase Since the average value of the aspect ratio is 6 or more, it can be understood that the non-seizure property is more excellent than the examples 1 to 4.

実施例品6と実施例品8〜10との対比から、実施例品8〜10は、焼鈍を行う前の実施例品6と同等以上の非焼付性が得られることが理解できる。
実施例品8と実施例品9,10との対比から、実施例品9,10は、表面層において比の値L/Dが10以上であるため、実施例品8よりも非焼付性がより一層優れていることが理解できる。
実施例品8,9と実施例品10との対比から、実施例品10は、表面層において環状Sn相に囲われるAl相の平均直径が10μm以下であるため、実施例品8,9よりも非焼付性がより一層優れていることが理解できる。
From the comparison between the example product 6 and the example products 8 to 10, it can be understood that the example product 8 to 10 has a non-seizure property equal to or higher than that of the example product 6 before annealing.
From comparison between the example product 8 and the example products 9 and 10, the example product 9 and 10 have a non-seizure property than the example product 8 because the ratio value L / D is 10 or more in the surface layer. It can be understood that it is even better.
From comparison between the example products 8 and 9 and the example product 10, since the average diameter of the Al phase surrounded by the annular Sn phase in the surface layer of the example product 10 is 10 μm or less, from the example products 8 and 9 It can be understood that the non-seizure property is even better.

本実施形態は、要旨を逸脱しない範囲内で適宜変更して実施し得る。
不可避的不純物については説明を省略し、各組成には不可避的不純物が含まれ得る。
Al基軸受合金層、中間層には、本発明の効果を妨げない範囲でAlおよびSn以外の元素、例えばCu,Si,Mn,Zr,Feなどや、硬質粒子や個体潤滑剤などの添加物を加えてもよい。
The present embodiment can be implemented with appropriate modifications within a range not departing from the gist.
Description of inevitable impurities is omitted, and each composition may contain inevitable impurities.
In the Al-based bearing alloy layer and the intermediate layer, additives other than Al and Sn, for example, Cu, Si, Mn, Zr, Fe, etc., additives such as hard particles and solid lubricants, etc., as long as the effects of the present invention are not impaired May be added.

図面中、1,3,7,11はSn相、2,5,9,12はマトリクス(Al相)、13は環状Sn相、21はAl合金軸受、22は基材、23はAl基軸受合金層、24は裏金層、25は中間層、26は反表面層、27は表面層、28は摺動表面を示す。   In the drawings, 1, 3, 7, and 11 are Sn phases, 2, 5, 9, and 12 are matrices (Al phases), 13 is an annular Sn phase, 21 is an Al alloy bearing, 22 is a base material, and 23 is an Al base bearing. An alloy layer, 24 is a back metal layer, 25 is an intermediate layer, 26 is an anti-surface layer, 27 is a surface layer, and 28 is a sliding surface.

Claims (8)

基材上にAl基軸受合金層を備え、
前記Al基軸受合金層は、摺動表面側にAlと30〜70質量%のSnとを含む表面層を有し、
前記表面層は、前記AlからなるAl相と前記SnからなるSn相とを有し、隣り合う前記Sn相同士の相間距離の平均値が10μm以下であり、かつ前記Sn相のアスペクト比の平均値が4以上であり、該Sn相の長軸が摺動表面に交わる向きとなっていることを特徴とするAl合金軸受。
An Al-based bearing alloy layer is provided on the substrate,
The Al-based bearing alloy layer has a surface layer containing Al and 30 to 70% by mass of Sn on the sliding surface side,
The surface layer has an Al phase composed of Al and a Sn phase composed of Sn, an average value of an interphase distance between adjacent Sn phases is 10 μm or less, and an average aspect ratio of the Sn phase An Al alloy bearing having a value of 4 or more and an orientation in which the long axis of the Sn phase intersects the sliding surface.
前記表面層の厚さ寸法の平均値が50μm以上であることを特徴とする請求項1記載のAl合金軸受。   2. The Al alloy bearing according to claim 1, wherein an average value of thickness dimensions of the surface layer is 50 [mu] m or more. 前記基材は、裏金層と、その裏金層と前記Al基軸受合金層との間に設けられる中間層とを有し、
前記Al基軸受合金層は、前記中間層に接する反表面層を有し、
前記反表面層は、Alと30〜50質量%のSnとを含み、前記AlからなるAl相と前記SnからなるSn相とを有し、隣り合う前記Sn相同士の相間距離の平均値が10μm以上であることを特徴とする請求項1または2記載のAl合金軸受。
The base material has a back metal layer, and an intermediate layer provided between the back metal layer and the Al-based bearing alloy layer,
The Al-based bearing alloy layer has an anti-surface layer in contact with the intermediate layer,
The anti-surface layer includes Al and 30 to 50% by mass of Sn, has an Al phase composed of Al and a Sn phase composed of Sn, and an average value of an interphase distance between adjacent Sn phases is The Al alloy bearing according to claim 1, wherein the Al alloy bearing is 10 μm or more.
前記表面層において隣り合う前記Sn相同士の相間距離の平均値Aと、前記反表面層において隣り合う前記Sn相同士の相間距離の平均値Aとの比の値A/Aが3以上であることを特徴とする請求項3記載のAl合金軸受。 A ratio value A 2 / A 1 of the average value A 1 of the interphase distance between the Sn phases adjacent in the surface layer and the average value A 2 of the interphase distance between the Sn phases adjacent in the anti-surface layer is The Al alloy bearing according to claim 3, wherein the number is 3 or more. 前記表面層において、隣り合う前記Sn相同士の相間距離の平均値が7μm以下であり、かつ前記Sn相のアスペクト比の平均値が6以上であることを特徴とする請求項1から4のいずれか一項記載のAl合金軸受。   5. The average value of the interphase distance between the adjacent Sn phases in the surface layer is 7 μm or less, and the average value of the aspect ratio of the Sn phase is 6 or more. An Al alloy bearing according to claim 1. 基材上にAl基軸受合金層を備え、
前記Al基軸受合金層は、摺動表面側にAlと30〜70質量%のSnとを含む表面層を有し、
前記表面層は、前記AlからなるAl相と前記SnからなるSn相とを有し、
前記Sn相は、隣り合う前記Sn相同士の相間距離の平均値が10μm以下であり、かつ前記Sn相のアスペクト比の平均値が4以上であり、該Sn相の長軸が摺動表面に交わる向きとなっているSn相同士が、環状につながった形態で、前記Al相を囲う環状Sn相とされており、
前記環状Sn相の周囲方向長さの平均値Lと前記環状Sn相の幅方向長さの平均値Dとの比の値L/Dが10以上である、Al合金軸受。
An Al-based bearing alloy layer is provided on the substrate,
The Al-based bearing alloy layer has a surface layer containing Al and 30 to 70% by mass of Sn on the sliding surface side,
The surface layer has an Al phase made of Al and an Sn phase made of Sn,
The Sn phase has an average interphase distance between adjacent Sn phases of 10 μm or less, an average aspect ratio of the Sn phase of 4 or more, and the long axis of the Sn phase is on the sliding surface. The Sn phases that are in a crossing direction are connected in a ring shape, and the annular Sn phase surrounds the Al phase,
An Al alloy bearing in which a ratio L / D of an average value L of the circumferential direction length of the annular Sn phase and an average value D of the width direction length of the annular Sn phase is 10 or more.
前記表面層は、前記環状Sn相に囲われる前記Al相の平均直径が10μm以下である、請求項6記載のAl合金軸受。 The Al alloy bearing according to claim 6 , wherein the surface layer has an average diameter of the Al phase surrounded by the annular Sn phase of 10 μm or less. 請求項6又は7記載のAl合金軸受を製造するための方法であって、
請求項1から5のいずれか一項記載のAl合金軸受を焼鈍して形成する、Al合金軸受の製造方法。
A method for producing an Al alloy bearing according to claim 6 or 7, comprising:
The manufacturing method of the Al alloy bearing which anneals and forms the Al alloy bearing as described in any one of Claim 1 to 5.
JP2011116871A 2011-05-25 2011-05-25 Al alloy bearing and manufacturing method of Al alloy bearing Active JP5981097B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011116871A JP5981097B2 (en) 2011-05-25 2011-05-25 Al alloy bearing and manufacturing method of Al alloy bearing
DE102012208528.9A DE102012208528B4 (en) 2011-05-25 2012-05-22 Bearing made of aluminum alloy
KR1020120054696A KR101302041B1 (en) 2011-05-25 2012-05-23 Aluminum alloy bearing
GB1209314.2A GB2491268B (en) 2011-05-25 2012-05-23 Aluminium alloy bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011116871A JP5981097B2 (en) 2011-05-25 2011-05-25 Al alloy bearing and manufacturing method of Al alloy bearing

Publications (2)

Publication Number Publication Date
JP2012246945A JP2012246945A (en) 2012-12-13
JP5981097B2 true JP5981097B2 (en) 2016-08-31

Family

ID=46546721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011116871A Active JP5981097B2 (en) 2011-05-25 2011-05-25 Al alloy bearing and manufacturing method of Al alloy bearing

Country Status (4)

Country Link
JP (1) JP5981097B2 (en)
KR (1) KR101302041B1 (en)
DE (1) DE102012208528B4 (en)
GB (1) GB2491268B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016114602A1 (en) 2016-08-05 2018-02-08 Thyssenkrupp Ag Cylinder head cover module and method for its production
KR102197090B1 (en) * 2019-05-29 2020-12-31 동양메탈공업 주식회사 Copper-Chromium Journal Bearing Manufacturing Method Using Centrifugal Casting and Journal Bearing Manufactured Using It
CN111088469B (en) * 2019-12-31 2021-06-18 江苏大学 Method for regulating and controlling toughness of aluminum alloy surface
CN112610608B (en) * 2020-11-26 2022-07-15 东南大学 Wide-temperature-range self-lubricating bearing and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA945602A (en) * 1968-02-12 1974-04-16 Gould Inc. Fine dispersion aluminum base bearing and method for making same
JPS5212131B1 (en) * 1970-11-28 1977-04-05
JPS4953110A (en) * 1972-09-26 1974-05-23
JPS52136818A (en) * 1976-05-13 1977-11-15 Daido Metal Co Ltd Bearing metal for large size engine
JPS5238414A (en) * 1976-08-23 1977-03-25 Shippo Metal Kogyo Kk Aluminium-tin bearing alloy
JPS55110750A (en) * 1979-02-20 1980-08-26 Daido Metal Kogyo Kk Bearing metal for large engine
GB8318156D0 (en) * 1983-07-05 1983-08-03 Ae Plc Aluminium based bearing alloys
JPH01162782A (en) * 1987-12-19 1989-06-27 Toyota Motor Corp Aluminum-based sliding member
JP2601555B2 (en) * 1989-11-20 1997-04-16 大同メタル工業 株式会社 Multi-layer slide bearing material
JPH0693360A (en) * 1992-09-10 1994-04-05 Ndc Co Ltd Al-sn bearing alloy material
GB9503815D0 (en) * 1995-02-25 1995-04-19 Glacier Vandervell Ltd Plain bearing with overlay
JPH0910918A (en) 1995-06-30 1997-01-14 Mitsubishi Heavy Ind Ltd Manufacture of bearing metal
JP4211045B2 (en) * 2002-07-25 2009-01-21 三菱マテリアルPmg株式会社 Manufacturing method of sliding parts
GB2415753B (en) * 2003-04-17 2006-09-13 Daido Metal Co Sliding member
JP3958719B2 (en) 2003-06-30 2007-08-15 大同メタル工業株式会社 Sliding member
JP4583750B2 (en) 2003-12-25 2010-11-17 大豊工業株式会社 Sliding material

Also Published As

Publication number Publication date
JP2012246945A (en) 2012-12-13
DE102012208528B4 (en) 2015-03-19
GB201209314D0 (en) 2012-07-04
KR20120132369A (en) 2012-12-05
KR101302041B1 (en) 2013-09-05
GB2491268A (en) 2012-11-28
DE102012208528A1 (en) 2012-11-29
GB2491268B (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP7187686B2 (en) Highly corrosion-resistant plated steel sheet with excellent resistance to weld liquefaction embrittlement and excellent plating adhesion
JP5981097B2 (en) Al alloy bearing and manufacturing method of Al alloy bearing
JP5399645B2 (en) Aluminum base bearing alloy
JP2019519678A (en) Lead-free high tension brass alloy and high tension brass alloy products
CN103443306A (en) Sliding bearing composite material
US20120064365A1 (en) Slide member
JP4072132B2 (en) Sliding bearing manufacturing method
TWI605139B (en) A copper alloy sheet for a heat radiating component and a heat radiating component
JP6574302B2 (en) Multi-layer plain bearing element
JP6722981B2 (en) Aluminum alloy clad material
Chen et al. Interfacial reaction in twin-roll cast AA1100/409L clad sheet during different sequence of cold rolling and annealing
WO2014157650A1 (en) Aluminum alloy, slide bearing, and slide bearing manufacturing method
EP4019163A1 (en) Powdered aluminium material
JP6026431B2 (en) Lead-free rolled aluminum plain bearing
JP5437703B2 (en) Al-based sliding alloy
TW201736611A (en) Copper alloy plate for heat-dissipation component
JP5453532B2 (en) Sliding member
WO2011111603A1 (en) Al-based bearing alloy
Gençer et al. Effect of the surface nanocrystallization on tribological behavior of the Cu based bimetallic materials (CuPbSn)
JP2016108627A (en) Slide member
JP2012179632A (en) Zn-Al-Cu ALLOY ROLLED MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2012180557A (en) Zinc alloy cast ingot having excellent workability and method for producing the zinc alloy cast ingot
JP2020100881A (en) Aluminum alloy clad material for heat exchanger, and heat exchanger
JP7227099B2 (en) sliding member
JP7105909B2 (en) Thermal spray coating for sliding member and sliding device provided with thermal spray coating for sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160728

R150 Certificate of patent or registration of utility model

Ref document number: 5981097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250