JP5979436B2 - Manufacturing method of fiber reinforced plastic - Google Patents

Manufacturing method of fiber reinforced plastic Download PDF

Info

Publication number
JP5979436B2
JP5979436B2 JP2012238472A JP2012238472A JP5979436B2 JP 5979436 B2 JP5979436 B2 JP 5979436B2 JP 2012238472 A JP2012238472 A JP 2012238472A JP 2012238472 A JP2012238472 A JP 2012238472A JP 5979436 B2 JP5979436 B2 JP 5979436B2
Authority
JP
Japan
Prior art keywords
prepreg
cut
mold
molded product
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012238472A
Other languages
Japanese (ja)
Other versions
JP2014088487A (en
Inventor
佳秀 柿本
佳秀 柿本
高野 恒男
恒男 高野
和久 池田
和久 池田
康 渡辺
康 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2012238472A priority Critical patent/JP5979436B2/en
Publication of JP2014088487A publication Critical patent/JP2014088487A/en
Application granted granted Critical
Publication of JP5979436B2 publication Critical patent/JP5979436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明は、プリプレグを用いた繊維強化プラスチック(FRP;Fiber Reinforced Plastics)の製造方法に関する。   The present invention relates to a method for producing fiber reinforced plastic (FRP) using prepreg.

繊維強化プラスチックの成形体は、航空機の胴体や翼のような大型の成形体から、自転車のフレーム、テニスラケット、釣竿やゴルフシャフト等の小型の成形体まで幅広く利用されている。また、開断面を有する繊維強化プラスチックの成型体は、ヘルメットなどに幅広く利用されている。   Fiber reinforced plastic moldings are widely used from large molded bodies such as aircraft fuselages and wings to small molded bodies such as bicycle frames, tennis rackets, fishing rods and golf shafts. Further, a fiber-reinforced plastic molded body having an open cross section is widely used for helmets and the like.

繊維強化プラスチックの製造方法としては、プリプレグの中央側から外側へ伸ばしつつ固定型に押し付けながら、雄型と雌型との勘合によりプリプレグを所望の形状に賦形させること(特許文献1)が知られている。   As a manufacturing method of fiber reinforced plastic, it is known that a prepreg is shaped into a desired shape by fitting a male mold and a female mold while being pressed against a fixed mold while extending outward from the center side of the prepreg (Patent Document 1). It has been.

しかしながら、外周コーナーのようなプリプレグが余るように賦形される箇所は、テンションを掛けることによりプリプレグをバイアス方向に伸ばしつつ固定型に押し付けることでシワを取り除くことは可能であるが、内周コーナーのようなプリプレグが不足するように賦形される箇所は、突っ張りが発生し賦形することが困難であった。   However, it is possible to remove wrinkles by pressing the prepreg against the fixed mold while applying tension to the place where the prepreg is left over, such as the outer corner. Such a portion that is shaped so that the prepreg is insufficient is stretched and it is difficult to shape.

そのため、特許文献2には、プリプレグを複数に分割して固定型に押し付けることによって、内周コーナーのような部分でも突っ張りを生じることなく賦形可能な技術が開示されている。しかしながら、このようなプリプレグを複数に分割して固定型に押し付ける方法では、分割部分で強度が低下する問題があり、強度低下回避のために積層層ごとに分割位置をずらす必要があり、作業効率が低下する問題があった。   For this reason, Patent Document 2 discloses a technique capable of forming a prepreg by dividing it into a plurality of parts and pressing it against a fixed mold without causing tension even at a portion such as an inner peripheral corner. However, in the method of dividing such a prepreg into a plurality of parts and pressing them to the fixed mold, there is a problem that the strength is lowered at the divided portion, and it is necessary to shift the division position for each laminated layer in order to avoid strength reduction, and work efficiency There was a problem that decreased.

また、特許文献3には、プリプレグに切り込みを施す技術が記載されているが、賦形時に外周全てが固定されているため、所望の形状を得るためには、大部分の領域に切り込みを設ける必要があるため、得られた成形品は十分な物性を持つものではなかった。   In addition, Patent Document 3 describes a technique for cutting a prepreg. However, since the entire outer periphery is fixed at the time of shaping, in order to obtain a desired shape, a cut is provided in most areas. Since it was necessary, the obtained molded product did not have sufficient physical properties.

特開2011−110899号公報JP 2011-110899 A 特開2009−119619号公報JP 2009-119619 A 特開2008−279753号公報JP 2008-297754 A

プリプレグの中央側から外側へ伸ばしつつ固定型に押し付けながら、雄型と雌型との勘合によりプリプレグを所望の形状に賦形させる成形方法において、成形品の物性を維持できる成形方法に関する。   The present invention relates to a molding method capable of maintaining the physical properties of a molded product in a molding method in which a prepreg is shaped into a desired shape by fitting a male mold and a female mold while being pressed to a fixed mold while extending outward from the center side of the prepreg.

本発明は、強化繊維と熱硬化性樹脂組成物とを含むプリプレグを、雄型と雌型との勘合によりプリプレグを賦形させる成形品の製造方法において、非線形解析ソフトを用いた賦形性シミュレーションによって算出される応力値(Von Mises Stress)が100MPa以上となるプリプレグの場所に、切れ目作成手段により切れ目を施してから、雄型と雌型との勘合によりプリプレグを賦形する成形品の製造方法である。   The present invention relates to a shaping property simulation using non-linear analysis software in a manufacturing method of a molded product in which a prepreg containing a reinforcing fiber and a thermosetting resin composition is shaped by fitting a male die and a female die. A method for producing a molded product in which a prepreg is cut by a cut creating means at a location of a prepreg where the stress value (Von Miss Stress) calculated by the above is 100 MPa or more, and then the prepreg is shaped by fitting between a male mold and a female mold It is.

本願発明によれば、プリプレグが不足するように賦形される箇所であっても、賦形の際に突っ張りの発生を防止でき、また、強度低下回避のために積層層ごとに分割位置をずらす必要がなく、それゆえ、作業性が良く、さらに、切れ目が必要な箇所を最低限に抑止できるため、成形品の物性を維持できる製造方法である。   According to the present invention, even if it is a part that is shaped so that the prepreg is insufficient, it is possible to prevent the occurrence of stretching during shaping, and the division position is shifted for each laminated layer in order to avoid strength reduction. This is a manufacturing method that can maintain the physical properties of the molded product because it is not necessary, and therefore, the workability is good, and further, the portion where the cut is necessary can be suppressed to the minimum.

本発明の成形品の製造方法に用いることができる雌型の一例である。It is an example of the female type | mold which can be used for the manufacturing method of the molded article of this invention. 本発明の成形品の製造方法に用いることができる雄型の一例である。It is an example of the male type | mold which can be used for the manufacturing method of the molded article of this invention. 本発明の成形品の製造方法において、雄型に押し付ける工程を含む場合の製造方法の一例である。In the manufacturing method of the molded article of this invention, it is an example of the manufacturing method in the case of including the process pressed on a male type | mold. 本発明の成形品の製造方法において、切れ目作成手段により切れ目を施す場合の製造方法の一例である。In the manufacturing method of the molded article of this invention, it is an example of the manufacturing method in the case of giving a cut by a cut preparation means.

(プリプレグ)
本発明の成形品の製造方法に用いることができる強化繊維としては、特には限定されないが、炭素繊維が好ましく用いられる。望ましくはPAN系炭素繊維である。炭素繊維は、同じプリプレグについて1種類のものを使用しても良いし、複数種類のものを規則的に、または不規則に並べて使用してもかまわない。通常、特定方向に比強度、比弾性率が高いことを要求される用途には単一方向プリプレグが最も適しているが、あらかじめ長繊維マットや織物などのシート形態に加工したものを使用することも可能である。
(Prepreg)
Although it does not specifically limit as a reinforced fiber which can be used for the manufacturing method of the molded article of this invention, A carbon fiber is used preferably. Desirably, PAN-based carbon fiber is used. One type of carbon fiber may be used for the same prepreg, or a plurality of types may be used regularly or irregularly. In general, unidirectional prepreg is most suitable for applications that require high specific strength and specific modulus in a specific direction, but it should be pre-processed into sheet form such as long fiber mat or woven fabric. Is also possible.

本発明の成形品の製造方法に用いることができる熱硬化性樹脂組成物は、特には限定されないが、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、マレイミド樹脂、アセチレン末端を有する樹脂、ビニル末端を有する樹脂、シアン酸エステル末端を有する樹脂等を含む樹脂組成物が挙げられる。望ましくはエポキシ樹脂を含む樹脂組成物である。   The thermosetting resin composition that can be used in the method for producing a molded article of the present invention is not particularly limited, but is an epoxy resin, a polyester resin, a phenol resin, a polyimide resin, a maleimide resin, a resin having an acetylene terminal, a vinyl terminal And a resin composition containing a resin having a cyanate ester terminal and the like. A resin composition containing an epoxy resin is desirable.

(成形品の製造方法)
本発明の成形品の製造方法では、プリプレグを、プリプレグの中央部から外側へ伸ばしつつ、雄型と雌型とを有する一対の型に押し付けることが、プリプレグの切れ目部分を延伸させる点で必要である。プリプレグの中央部から外側へ伸ばす際の張力としては、10.00N〜50.00Nの範囲であることが好ましい。
(Method for manufacturing molded products)
In the method for producing a molded article according to the present invention, it is necessary to press the prepreg against a pair of dies having a male mold and a female mold while extending the prepreg outward from the center of the prepreg in terms of stretching the cut portion of the prepreg. is there. The tension at the time of extending outward from the center of the prepreg is preferably in the range of 10.00N to 50.00N.

また、プリプレグの中央部から外側へ伸ばす際に、予めプリプレグを加熱することで、プリプレグ中の樹脂組成物を軟化させておくことが好ましい。   Moreover, it is preferable to soften the resin composition in a prepreg by heating a prepreg beforehand, when extending outside from the center part of a prepreg.

本発明の成形品の製造方法では、前記型にプリプレグを押し付ける工程に引き続き、雄型と雌型との勘合によりプリプレグを賦形させることが必要である。プリプレグを賦形する際の温度については、40〜80℃であることが好ましく、さらに50〜70℃であることが好ましい。プリプレグを賦形する際の温度を40℃以上にすれば、所定の形状に容易に賦形でき、80℃以下にすれば、熱硬化性樹脂組成物の硬化を防ぐことができるので好ましい。   In the method for producing a molded product of the present invention, it is necessary to shape the prepreg by fitting the male mold and the female mold, following the step of pressing the prepreg against the mold. About the temperature at the time of shaping a prepreg, it is preferable that it is 40-80 degreeC, and it is more preferable that it is 50-70 degreeC. If the temperature at the time of shaping the prepreg is 40 ° C. or higher, it can be easily shaped into a predetermined shape, and if it is 80 ° C. or lower, the thermosetting resin composition can be prevented from curing, which is preferable.

またプリプレグを賦形する際の圧力については、0.01〜0.1MPaであることが好ましい。圧力を0.01MPa以上にすれば、所定の形状に容易に賦形でき、0.1MPa以下であれば、賦形するための装置を簡易することができるので好ましい。   Moreover, it is preferable that it is 0.01-0.1 MPa about the pressure at the time of shaping a prepreg. If the pressure is 0.01 MPa or more, it can be easily shaped into a predetermined shape, and if it is 0.1 MPa or less, the apparatus for shaping can be simplified, which is preferable.

(切れ目)
本発明の成形品の製造方法では、非線形解析ソフト(Livermore Software Technology Corporation社製、製品名:LS−DYNA)による賦形性シミュレーションによって算出された応力値(Von Mises Stress)が100MPa以上となった箇所に、切れ目作成手段により切れ目を施してから、雄型と雌型との勘合によりプリプレグを賦形することが必要である。
本発明の成形品の製造方法で用いる賦形性シミュレーションは、賦形させたい3次元CADデータに対して、非線形解析ソフト(Livermore Software Technology Corporation社製、製品名:LS−DYNA)を用いた賦形性シミュレーションを行い、当該シミュレーションによって算出される応力値(Von Mises Stress)が100MPa以上となる箇所を特定した。
また、当該シミュレーションを行うにあたり、プリプレグの特性を定義するために使用した入力値を表1に記載する。入力値の算出方法に関しては、以下に記載する。
(Cut)
In the method for producing a molded article according to the present invention, the stress value (Von Miss Stress) calculated by the formability simulation by the nonlinear analysis software (product name: LS-DYNA, manufactured by Liverware Technology Corporation) is 100 MPa or more. It is necessary to shape the prepreg by fitting the male mold and the female mold after making a cut at the place by the cut creating means.
In the shaping simulation used in the method for producing a molded article of the present invention, non-linear analysis software (manufactured by Livermore Technology Corporation, product name: LS-DYNA) is used for three-dimensional CAD data to be shaped. A shape simulation was performed, and a location where a stress value (Von Miss Stress) calculated by the simulation was 100 MPa or more was specified.
In addition, Table 1 shows the input values used to define the characteristics of the prepreg when performing the simulation. The method for calculating the input value will be described below.

(弾性率とポアソン比)
一方向プリプレグシート(三菱レイヨン社製、製品名:TR391E125S)を同一方向に10枚積層してプリプレグ積層体を得た後、その積層体を測定したい繊維方向が長手方向となるよう、カッターにて幅20mm×長さ200mmに切り出した。その切り出し品を万能試験機(インストロン社製)にて、引張方向に荷重を負荷し、それぞれの方向での弾性率とポアソン比を求めた。
(Elastic modulus and Poisson's ratio)
10 sheets of unidirectional prepreg sheets (Mitsubishi Rayon Co., Ltd., product name: TR391E125S) are laminated in the same direction to obtain a prepreg laminate, and then a cutter is used so that the fiber direction to be measured is the longitudinal direction. Cut into a width of 20 mm and a length of 200 mm. The cut product was loaded with a universal testing machine (Instron) in the tensile direction, and the elastic modulus and Poisson's ratio in each direction were determined.

(せん断弾性率)
一方向プリプレグシート(三菱レイヨン社製、製品名:TR391E125S)を45°、−45°方向に交互に10枚積層してプリプレグ積層体を得た後、その積層体をカッターにて幅20mm×長さ200mmに切り出した。万能試験機(インストロン社製)を用いて、引張方向に荷重を負荷し、切り出し品のせん断弾性率を求めた。
(Shear modulus)
10 unidirectional prepreg sheets (Mitsubishi Rayon Co., Ltd., product name: TR391E125S) were laminated alternately in 45 ° and -45 ° directions to obtain a prepreg laminate, and the laminate was 20 mm wide by a cutter. Cut to 200 mm. Using a universal testing machine (Instron), a load was applied in the tensile direction, and the shear modulus of the cut product was determined.

特定した領域の外周部分に相当する座標をテキストファイルにて出力し、当該ファイルをエクセルファイルに変換した後、3次元CADソフト(Siemens PLM Software社製、製品名:NX)へ入力させて、賦形させたい3次元CADデータへ反映させる。   The coordinates corresponding to the outer periphery of the specified area are output as a text file, converted to an Excel file, and then input to 3D CAD software (product name: NX, manufactured by Siemens PLM Software). Reflect to the 3D CAD data you want to shape.

前記反映された3次元CADデータを、賦形性解析ソフト(Vistagy社製、製品名:FiberSim)を用いて賦形時に使用する2次元パターンへ展開させ、切れ目を設ける箇所を特定した。   The reflected three-dimensional CAD data was developed into a two-dimensional pattern to be used at the time of shaping using shapeability analysis software (product name: FiberSim, manufactured by Vistagy), and a location where a cut was to be provided was specified.

(切れ目作成手段)
本発明の成形品の製造方法で用いることができる切れ目作成手段としては、カッターを用いての手作業や裁断機により切れ目を入れる方法、あるいはプリプレグの製造工程において所定の位置に刃を配置した回転ローラーを連続的に押し当てたり、多層にプリプレグを重ねて所定の位置に刃を配置した型で押し切ったりするなどの方法、さらにカッター等の刃物に替えて、レーザー照射装置を用いる方法があり、必要に応じていずれの手段を用いても良いが、なかでも、切れ目作成手段にレーザー照射を用いた場合には、レーザー照射位置を移動させることで、切れ目形状を複雑な形状とすることが可能となり、さらに、刃物の磨耗による切れ目が不均一になる問題や、刃物の破片の混入等の問題が生じないことから、特に好ましい。
(Means for creating breaks)
As the cut creating means that can be used in the method for producing a molded article of the present invention, a method of making a cut by a manual operation using a cutter or a cutting machine, or a rotation in which a blade is arranged at a predetermined position in a prepreg manufacturing process There are methods such as pressing the rollers continuously, or plunging prepregs in multiple layers and pressing them with a mold with blades in place, and using a laser irradiation device instead of a blade such as a cutter. Any means may be used as necessary, but in particular, when laser irradiation is used as the cut creation means, the cut shape can be made complex by moving the laser irradiation position. Further, this is particularly preferable because there is no problem of non-uniform cuts due to wear of the blade and no problem of contamination of the blade.

本発明の成形品の製造方法で用いることができるレーザー照射装置としては、例えば炭酸ガスレーザーやエキシマレーザーなどの気体レーザー、YAGレーザーやYVO4レーザーなどの固体レーザー及びファイバーレーザーなどが使用できるが、短時間の照射で帯状物を良好に切断できる点では、YAGレーザー及びYVO4レーザーなどの固体レーザー及びファイバーレーザーが好ましい。また、レーザー出力、発振モード、走査する速度、パルス幅、パルス周波数などをプリプレグの材質、厚み、供給される速度、厚み方向の切断の度合いに応じて設定することが好ましい。   As a laser irradiation apparatus that can be used in the method for producing a molded article of the present invention, for example, a gas laser such as a carbon dioxide laser or an excimer laser, a solid laser such as a YAG laser or a YVO4 laser, and a fiber laser can be used. A solid laser and a fiber laser such as a YAG laser and a YVO4 laser are preferable in that the band can be cut well by irradiation with time. Further, it is preferable to set the laser output, the oscillation mode, the scanning speed, the pulse width, the pulse frequency, and the like according to the material of the prepreg, the thickness, the supplied speed, and the degree of cutting in the thickness direction.

本発明の成形品の製造方法で用いることができるプリプレグには、切れ目があることが必要である。ここでいう、切れ目とは、プリプレグを部分的に切断する部分のことをいい、切れ目により、プリプレグを構成する強化繊維が切断されていることで、成形中の変形が容易になる。切れ目を入れる際には、前記切れ目を施した箇所の強化繊維の長さが、15〜30mmとなるように切れ目を入れることが成形品の強度と賦形性の点で好ましい。さらに好ましくは、20〜25mmである。   The prepreg that can be used in the method for producing a molded article of the present invention needs to have a break. As used herein, the term “cut” refers to a portion that partially cuts the prepreg, and the reinforcing fibers constituting the prepreg are cut by the cut, thereby facilitating deformation during molding. When making a cut, it is preferable from the viewpoint of the strength and formability of the molded product to make a cut so that the length of the reinforcing fiber at the cut portion is 15 to 30 mm. More preferably, it is 20-25 mm.

本発明の成形品の製造方法で用いることができるプリプレグに切れ目を入れる際には、それぞれの切れ目箇所の幅が、0.1〜0.4mmとなるように切れ目を入れることが成形品の強度と賦形性の点で好ましい。さらに好ましくは、0.2〜0.3mmである。   When making a cut in the prepreg that can be used in the method for producing a molded product of the present invention, the strength of the molded product is to make a cut so that the width of each cut is 0.1 to 0.4 mm. And preferred in terms of formability. More preferably, it is 0.2-0.3 mm.

一方向に引き揃えた炭素繊維にエポキシ樹脂組成物を含浸したプリプレグシート(三菱レイヨン社製、製品名:TR391E125S)4枚を用いて、1枚ずつ所望の形状に裁断した。
裁断後の各プリプレグシートに対して、非線形解析ソフト(Livermore Software Technology Corporation社製、製品名:LS−DYNA)による賦形性シミュレーションによって算出された応力値(Von Mises Stress)が100.0MPa以上となった箇所に、レーザーマーカー(パナソニック電工サンクス社製、製品名:LPS−500)を用いて、強化繊維の長さが25mm、切れ目箇所の幅が0.2mm、切れ目箇所のどうしの間隔が0.4mmとなるようにレーザーを照射して、プリプレグに切れ目を設けた。
切れ目を設けた4枚のプリプレグを、0/90/90/0となるように積層して、プリプレグ積層体を得た。
Using four prepreg sheets (product name: TR391E125S manufactured by Mitsubishi Rayon Co., Ltd.) in which carbon fibers aligned in one direction were impregnated with an epoxy resin composition, the sheets were cut one by one into a desired shape.
For each prepreg sheet after cutting, the stress value (Von Miss Stress) calculated by the shaping simulation by the nonlinear analysis software (Product name: LS-DYNA, manufactured by Liverware Technology Corporation) is 100.0 MPa or more. Using a laser marker (product name: LPS-500, manufactured by Panasonic Electric Works, Inc.), the length of the reinforcing fiber is 25 mm, the width of the cut portion is 0.2 mm, and the interval between the cut portions is 0. The prepreg was cut by irradiating the laser so that the thickness was 4 mm.
Four prepregs with cuts were laminated so as to be 0/90/90/0 to obtain a prepreg laminate.

前記プリプレグ積層体を下型にセットし、プリプレグ積層体の外周部4箇所を引張バネ(初期加重12.75N、バネ定数0.79N/mm)を配置したクランプでチャックすることで、バイアス方向にテンションを付与した。テンション付与後のプリプレグ積層体を赤外線ヒーターを用いて、所定時間加熱し、プリプレグ積層体を軟化させた。
プリプレグ積層体を軟化させた後、上型を下降させたところ、切れ目部分が延伸されたことで、所望の形状に賦形させたプリプレグが得られた。
賦形させた後にプリプレグの余剰部分をトリミングした後、賦形品を圧縮成形用の下型にセットして、加熱加圧成形を実施し、最終成形品を得た。得られた成形品の物性は良好であった。
The prepreg laminate is set in a lower mold, and the outer periphery of the prepreg laminate is chucked at four locations with a clamp provided with a tension spring (initial load 12.75 N, spring constant 0.79 N / mm) in the bias direction. Tension was applied. The prepreg laminate after application of tension was heated for a predetermined time using an infrared heater to soften the prepreg laminate.
After the prepreg laminate was softened, the upper mold was lowered, and the cut portion was stretched to obtain a prepreg shaped into a desired shape.
After shaping, the surplus portion of the prepreg was trimmed, and then the shaped product was set in a lower mold for compression molding and subjected to heat and pressure molding to obtain a final molded product. The physical properties of the obtained molded product were good.

賦形させたい3次元CADデータに対して、非線形解析ソフト(製品名:LS−DYNA)による賦形性シミュレーションを行い、当該シミュレーションによって応力値(Von Mises Stress)が100.0MPa以上となる箇所を求めた。その際、プリプレグの特性を定義するために使用した入力値を表1に記載する。
特定した領域の外周部分に相当する座標をテキストファイルにて出力し、当該ファイルをエクセルファイルに変換した後、3次元CADソフト(Siemens PLM Software社製、製品名:NX)へ入力し、賦形させたい3次元CADデータへ反映させる。 3次元CADデータを、賦形性解析ソフト(Vistagy社製、製品名:Fiber Sim)を用いて賦形時に使用する2次元パターンへ展開させ、切れ目を設ける箇所の情報を得た。
A 3D CAD data to be shaped is subjected to a formability simulation using non-linear analysis software (product name: LS-DYNA), and a point where a stress value (Von Miss Stress) becomes 100.0 MPa or more by the simulation. Asked. In this case, the input values used to define the characteristics of the prepreg are listed in Table 1.
Output the coordinates corresponding to the outer periphery of the specified area as a text file, convert the file to an Excel file, and then input it into 3D CAD software (product name: NX, manufactured by Siemens PLM Software) It is reflected in the desired 3D CAD data. The three-dimensional CAD data was developed into a two-dimensional pattern to be used at the time of shaping using shapeability analysis software (product name: Fiber Sim, manufactured by Vistagy), and information on the location where the cuts were to be obtained was obtained.

(比較例1)
プリプレグに切れ目を設けないこと以外は、実施例と同様にプリプレグを賦形した。その結果、プリプレグの突っ張りが発生し、所望の形状へ賦形することができなかった。
(Comparative Example 1)
The prepreg was shaped in the same manner as in the example except that the prepreg was not cut. As a result, the prepreg was stretched and could not be formed into a desired shape.

(比較例2)
プリプレグ全面に実施例と同様の方法で切れ目を設けたこと以外は、実施例と同様にプリプレグを賦形した。その結果、所望の形状に賦形されたプリプレグが得られた。
この賦形品を実施例と同様の方法で加熱加圧成形し、最終成形品を得た。得られた成形品は物性に劣るものであった。
(Comparative Example 2)
The prepreg was shaped in the same manner as in the example except that the entire surface of the prepreg was cut by the same method as in the example. As a result, a prepreg shaped into a desired shape was obtained.
This shaped product was subjected to heat and pressure molding in the same manner as in the example to obtain a final molded product. The obtained molded product was inferior in physical properties.

1・・・下型、
2・・・上型、
3・・・プリプレグ
4・・・レーザー照射装置
5・・・クランプ
6・・・切れ目
1 ... Lower mold,
2 ... Upper mold,
3 ... Prepreg 4 ... Laser irradiation device 5 ... Clamp 6 ... Break

Claims (5)

強化繊維と熱硬化性樹脂組成物とを含むプリプレグを、雄型と雌型との間にプリプレグを配置して、雄型と雌型を勘合させることにより、賦形させる成形品の製造方法において、
非線形解析ソフトを用いた賦形性シミュレーションによって算出される応力値(Von Mises Stress)が100.0MPa以上となるプリプレグの場所に、
切れ目作成手段によりプリプレグを切断する切れ目を作成し、
雄型と雌型との勘合によりプリプレグを賦形する成形品の製造方法。
In a manufacturing method of a molded product, a prepreg containing a reinforcing fiber and a thermosetting resin composition is formed by placing a prepreg between a male mold and a female mold and fitting the male mold and the female mold. ,
In the place of the prepreg where the stress value (Von Miss Stress) calculated by the shaping simulation using nonlinear analysis software is 100.0 MPa or more,
Create a cut to cut the prepreg by the cut creation means,
A method for producing a molded product in which a prepreg is shaped by fitting a male mold and a female mold.
前記切れ目作成手段がレーザー照射装置を用いたものである請求項1に記載の成形品の製造方法。   The method for producing a molded product according to claim 1, wherein the cut creating means uses a laser irradiation device. 前記切れ目を施した箇所の強化繊維の長さが、15〜30mmである請求項1または2に記載の成形品の製造方法。   The method for producing a molded product according to claim 1 or 2, wherein the length of the reinforcing fiber at the cut portion is 15 to 30 mm. 前記切れ目を施した箇所が複数個所あって、それぞれの切れ目箇所の幅が、0.1〜0.4mmである請求項1〜3のいずれか一項に記載の成形品の製造方法。   The method for producing a molded product according to any one of claims 1 to 3, wherein there are a plurality of places where the cuts are made, and a width of each cut part is 0.1 to 0.4 mm. 前記雄型と雌型との勘合によるプリプレグを賦形する工程に先立って、プリプレグの中央部から外側へ伸ばしつつ、雄型に押し付ける工程を有する請求項1〜4のいずれか一項に記載の成形品の製造方法。   5. The method according to claim 1, further comprising a step of pressing the male mold while extending outward from a central portion of the prepreg prior to the step of shaping the prepreg by fitting the male mold and the female mold. Manufacturing method of molded products.
JP2012238472A 2012-10-30 2012-10-30 Manufacturing method of fiber reinforced plastic Expired - Fee Related JP5979436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238472A JP5979436B2 (en) 2012-10-30 2012-10-30 Manufacturing method of fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238472A JP5979436B2 (en) 2012-10-30 2012-10-30 Manufacturing method of fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2014088487A JP2014088487A (en) 2014-05-15
JP5979436B2 true JP5979436B2 (en) 2016-08-24

Family

ID=50790655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238472A Expired - Fee Related JP5979436B2 (en) 2012-10-30 2012-10-30 Manufacturing method of fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP5979436B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224530A (en) * 1984-04-23 1985-11-08 Mazda Motor Corp Composite resin sheet containing reinforcing fiber
JPH085079B2 (en) * 1987-04-02 1996-01-24 三井東圧化学株式会社 Method for producing fiber-reinforced thermoplastics
US4990207A (en) * 1987-04-02 1991-02-05 Mitsui Toatsu Chemicals, Inc. Process for preparing fiber-reinforced thermoplastic molded articles
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
JP2006337343A (en) * 2005-06-06 2006-12-14 Yazaki Corp Estimation system of true stress-logarithmic strain curve of structure comprising crystalline polymer
JP2007146151A (en) * 2005-10-31 2007-06-14 Toray Ind Inc Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
JP2008279753A (en) * 2007-04-13 2008-11-20 Toray Ind Inc Manufacturing method of fiber-reinforced plastics
JP2009138396A (en) * 2007-12-05 2009-06-25 Toyo Tire & Rubber Co Ltd Structural member for rainwater storage and penetration system, and rainwater storage and penetration system using the same
JP2009215766A (en) * 2008-03-10 2009-09-24 Toyo Tire & Rubber Co Ltd Structural member for rainwater storage and infiltration system, and rainwater storage and infiltration system using the same
JP2010018723A (en) * 2008-07-11 2010-01-28 Toray Ind Inc Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic
EP2549010A4 (en) * 2010-03-19 2017-08-02 Toray Industries, Inc. Method for cutting carbon fiber base
JP2014087963A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Method for producing molded part

Also Published As

Publication number Publication date
JP2014088487A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
KR101630584B1 (en) Manufacturing method for article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material
JP5668874B2 (en) Preform manufacturing method and fiber reinforced resin molded product manufacturing method
JP2001315149A (en) Producing method for semi-cured article fitted with joggle consisting of fiber-reinforced composite material, and producing method for premolding structural body using the same
EP2877342B1 (en) Novel shaping process for pmi foam materials and/or composite components produced therefrom
TWI532766B (en) Molded article of fiber-reinforced composite material and method of manufacturing the same
JP2016506327A5 (en)
JP2008290421A (en) Manufacturing method of molding comprising prepreg laminate
US20150273813A1 (en) Fiber-reinforced resin plate punching method and fiber-reinforced resin product fabrication method
WO2015071155A1 (en) One-shot manufacturing of composites
JP2021014125A (en) Manufacturing method of fiber reinforced resin structure, manufacturing system of fiber reinforced resin structure and fiber reinforced resin structure
JP2016221929A (en) Resin composite material curing device, curing method therefor and resin molding
JP5909062B2 (en) Forming method
CN111886119A (en) Method for producing fiber-reinforced resin
JP2018507128A5 (en)
WO2020122260A1 (en) Production method for fiber-reinforced resin molded article
JP2010115822A (en) Method for continuously forming composite material shape member having varied cross-sectional shape
JP5979436B2 (en) Manufacturing method of fiber reinforced plastic
JP2014087963A (en) Method for producing molded part
JP2017052246A (en) Manufacturing method of thermoformed articles and material for thermoforming
JP4448823B2 (en) Method for manufacturing sandwich panel cores from composite materials
JP6542460B2 (en) Method of forming a solid of uneven thickness with a thermoplastic CFRP material
JP6696975B2 (en) Molding material and method of forming the same
EP3639996B1 (en) Method for manufacturing composite laminate, method for manufacturing fiber-reinforced composite material molded article, composite laminate and fiber-reinforced composite material molded article
JP6712430B1 (en) Method for producing thermoplastic fiber-reinforced resin molded product
DE102014009584A1 (en) One-shot HD-RTM method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160713

R151 Written notification of patent or utility model registration

Ref document number: 5979436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees