JP2009215766A - Structural member for rainwater storage and infiltration system, and rainwater storage and infiltration system using the same - Google Patents

Structural member for rainwater storage and infiltration system, and rainwater storage and infiltration system using the same Download PDF

Info

Publication number
JP2009215766A
JP2009215766A JP2008059705A JP2008059705A JP2009215766A JP 2009215766 A JP2009215766 A JP 2009215766A JP 2008059705 A JP2008059705 A JP 2008059705A JP 2008059705 A JP2008059705 A JP 2008059705A JP 2009215766 A JP2009215766 A JP 2009215766A
Authority
JP
Japan
Prior art keywords
top plate
rib
rainwater storage
joined
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008059705A
Other languages
Japanese (ja)
Inventor
Hideki Miyaji
秀樹 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2008059705A priority Critical patent/JP2009215766A/en
Publication of JP2009215766A publication Critical patent/JP2009215766A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting

Landscapes

  • Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structural member for a rainwater storage and infiltration system, and the rainwater storage and infiltration system using the structural member reduced in weight while increasing resistance force to shear deformation and ensuring a function of a top plate for partitioning a structure or a structure body from soil covering, and structured to facilitate maintenance and inspection and to secure a large space when assembled. <P>SOLUTION: The outer peripheral part of the top plate P is provided with ribs Ra perpendicular to a plate, and the side part upper ends of lateral members 2 or connecting members 1 corresponding to the ribs Ra are provided with recessed groove parts. Each rib Ra is fittingly joined to the groove part, and the inside of the rib Ra is provided with a plurality of ribs Rb of projecting shape having a projecting height larger than the projecting height of the rib Ra. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、雨水貯留浸透システム用構造部材およびこれを用いた雨水貯留浸透システムに関し、詳しくは、複数の縦部材と横部材を組み立てて三次元構造体を形成し、その内部に空間を形成可能にする雨水貯留浸透システム用構造部材およびこれを用いた雨水貯留浸透システムに関する。   The present invention relates to a structural member for a rainwater storage and penetration system and a rainwater storage and penetration system using the same, and more specifically, a plurality of vertical members and a horizontal member can be assembled to form a three-dimensional structure and a space can be formed therein. The present invention relates to a structural member for a rainwater storage and penetration system and a rainwater storage and penetration system using the same.

近年、特に都市部で異常降雨や出水、あるいはその逆の異常乾燥といった問題が頻繁に生じており、その原因としてヒートアイランド現象が取り上げられている。かかる現象を緩和するため、雨水を利用する施設の構築が提案されており、雨水貯留構造物あるいは雨水貯留用充填材などの開発が進んでいる。   In recent years, particularly in urban areas, problems such as abnormal rainfall and flooding, and vice versa, have frequently occurred, and the cause is the heat island phenomenon. In order to alleviate this phenomenon, the construction of facilities that use rainwater has been proposed, and development of rainwater storage structures or rainwater storage fillers has been progressing.

このような雨水貯留構造物として、例えば、地面にピットを堀り、その外表面に遮水シートを敷設して、その上面に複数の容器状部材を縦横および上下に積み上げ、さらに最上部に覆土などを施して被覆し、雨水を貯留する構造物が知られている。具体的には、図13に示すように、地面101を掘下げてタンク部102を構成する。タンク部102の形状は平面四辺形を基本として造成し、側壁部102aは緩やかな傾斜面とする。このタンク部102の底部102bおよび側壁部102aには、コンクリート等は打設しない。このタンク部102の底部102bには、砂利を敷き詰め、砂利層103を構成し、その砂利層103上に箱形部材104,104・・・を連設配置する構造物が形成されている。ここで、109は被覆層、110は側溝、111は流出口を表す(例えば特許文献1参照)。   As such a rainwater storage structure, for example, a pit is dug in the ground, a water shielding sheet is laid on the outer surface, a plurality of container-like members are stacked vertically and horizontally, and a top cover is covered with soil. A structure for covering rainwater and storing rainwater is known. Specifically, as shown in FIG. 13, the tank unit 102 is configured by digging down the ground 101. The shape of the tank portion 102 is formed based on a plane quadrangle, and the side wall portion 102a is a gently inclined surface. Concrete or the like is not placed on the bottom 102b and the side wall 102a of the tank 102. The bottom 102b of the tank 102 is formed with a structure in which gravel is spread to form a gravel layer 103, and box-shaped members 104, 104,... Are arranged continuously on the gravel layer 103. Here, 109 represents a coating layer, 110 represents a lateral groove, and 111 represents an outlet (see, for example, Patent Document 1).

特開昭63−268823号公報JP-A 63-268823

しかしながら、上記実施形態の雨水貯留構造物あるいはこれを用いた雨水貯留システム(TUTT)には、以下のような課題があった。   However, the rainwater storage structure or the rainwater storage system (TUTT) using the rainwater storage structure of the above embodiment has the following problems.

(1)上記雨水貯留システムに用いられる構造物あるいは構造体には、覆土などとの仕切りのために天板を用いることがあった。このとき、使用されている現行の天板は、取り外しが容易となるように、平板体を載置することが通常であり、上載荷重に対しては、十分な強度を有するように機能していたが、構造物あるいは構造体に対して掛かる応力などに対しては殆ど影響を与えることはなかった。また、その固定には、通常キャップ部材を縦部材に被せるなどの方法が用いられていたが、この場合においても、同様であった。   (1) A top plate may be used for a structure or a structure used in the rainwater storage system for partitioning with a covering soil or the like. At this time, the current top plate used is usually mounted with a flat plate so that it can be easily removed, and it functions so as to have sufficient strength against an overload. However, there was almost no effect on the structure or the stress applied to the structure. In addition, for fixing, a method such as covering a vertical member with a cap member is usually used, but this is the same in this case.

(2)一方、雨水貯留システムにおいては、その下地の形状や埋め戻しによる外力によって、構造物あるいは構造体に対して上部が拡大する方向に力が働くことがあり、縦部材と横部材の嵌合部でその荷重に対する支えを受け持っていたため限界があった。能力を超えた荷重が発生した場合、該嵌合部が破断する事象があった。また、構造物あるいは構造体の一部に荷重がかかった場合には、構造物あるいは構造体の全体がゆがみ、ひし形となる事象があった。よって、このような事象が発生しないように埋め戻しの作業時に、雨水貯留システムの状況を確認しながら、念入りに作業する必要があった。   (2) On the other hand, in the rainwater storage system, a force may be exerted in the direction in which the upper part is enlarged with respect to the structure or the structure due to the external force due to the shape of the foundation or backfilling. There was a limit because it supported the load at the joint. When a load exceeding the capacity was generated, there was an event that the fitting portion was broken. Further, when a load is applied to the structure or a part of the structure, there is an event that the whole structure or the structure is distorted and becomes a rhombus. Therefore, it was necessary to work carefully while confirming the status of the rainwater storage system at the time of backfilling work so that such an event would not occur.

(3)さらに、構造物あるいは構造体には、雨水貯留システムが設けられる現場までの運搬において、組上げた状態では雨水貯留空間を内蔵して嵩張ることから個々の構成部材から組立が容易な構造であることが求められ、現場の作業性からは軽量化が求められる。このように、雨水貯留システムにおいては、天板を含む個々の構成部材について、多くの制約条件を満たすことや改善が求められている。   (3) Furthermore, the structure or structure has a structure that is easy to assemble from the individual components because the rainwater storage space is built in and bulky in the assembled state when transported to the site where the rainwater storage system is provided. There is a need for it, and weight reduction is required for workability on site. As described above, in the rainwater storage system, it is required to satisfy many constraints and improve the individual components including the top plate.

そこで、本発明の目的は、上記従来技術の有する問題点に鑑みて、構造物あるいは構造体を覆土から仕切る天板の機能を確保しつつ、剪断変形に対する抵抗力を強化する一方、当該部材の軽量化を図るとともに、組み立てた場合に大きい空間を確保できて保守点検が容易な構造を有する雨水貯留浸透システム用構造部材およびこれを用いた雨水貯留浸透システムを提供することにある。また、個々の構成部材から組立を容易にして、現地での組立を可能にすることにより輸送コストを低減でき、かつ雨水貯留浸透槽の形状に対して柔軟に対応可能な雨水貯留システム用構造部材とこれを備えた雨水貯留浸透システムを提供することにある。   Therefore, in view of the above-described problems of the prior art, the object of the present invention is to enhance the resistance to shear deformation while ensuring the function of the top plate that partitions the structure or structure from the cover soil, while Another object of the present invention is to provide a structural member for a rainwater storage and infiltration system having a structure that can reduce the weight and secure a large space when assembled and can be easily maintained and inspected, and a rainwater storage and infiltration system using the structural member. In addition, the structural member for the rainwater storage system can be easily assembled from the individual components and can be assembled on site to reduce the transportation cost and flexibly cope with the shape of the rainwater storage and penetration tank. Another object is to provide a rainwater storage and infiltration system equipped with this.

本発明者は、鋭意研究を重ねた結果、以下に示す雨水貯留浸透システム用構造部材およびこれを用いた雨水貯留浸透システムによって、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventor has found that the above object can be achieved by the following structural member for a rainwater storage and penetration system and a rainwater storage and penetration system using the same, and has completed the present invention.

すなわち、本発明は、複数の縦部材と横部材が挿抜可能に嵌合して単位となる三次元構造体を形成し、該単位となる三次元構造体が縦方向、横方向および高さ方向に複数接合して構成され、その内部に空間部を形成するとともに、前記三次元構造体の上部に載置され、前記縦部材,横部材あるいはこれらを接合させる接続部材があれば該接続部材のいずれかと接合して固定される平板状の天板を有する雨水貯留浸透システム用構造部材において、前記天板の外周部に平板に垂直な曲げ縁または/および凸形状のリブ(合せて「リブRa」という)を設け、該リブRaによって前記横部材または接続部材の上端に接合させるとともに、前記リブRaの内側に、この突起高さよりも大きい突起高さを有する複数の凸形状のリブRbを設け、該リブRbによって前記横部材または接続部材の内側部と嵌合状に接合させることを特徴とする。   That is, the present invention forms a three-dimensional structure as a unit by fitting a plurality of vertical members and horizontal members so that they can be inserted and removed, and the three-dimensional structure as a unit is in the vertical direction, the horizontal direction, and the height direction. If there is a connecting member that forms a space inside and is placed on top of the three-dimensional structure and connects the vertical member, the horizontal member, or these, In a structural member for a rainwater storage and infiltration system having a flat top plate that is joined and fixed to either one of the outer peripheral portion of the top plate, a bent edge perpendicular to the flat plate and / or a convex rib (also referred to as “rib Ra And a plurality of convex ribs Rb having a projection height larger than the projection height is provided inside the rib Ra. , The rib And characterized in that it joined to the inner portion and the fitting shape of the transverse member or connecting member by a b.

この構成によれば、縦部材と横部材あるいは接続部材によって組立てられた三次元構造体において、大きい雨水貯留空間を確保できると同時に、その上部に載置され堅固に固定された平板状の天板によって、その上部に掛かる局部的な剪断変形に対する抵抗力が格段に向上する。つまり、三次元構造体は、所定の大きさの縦空間が求められ、所定の大きさの天板が求められる。このとき、三次元構造体の軽量化の目的からは、天板の重量が小さいことが好ましい半面、天板自体の強度は不可欠である。そこで、本発明は、天板の外周部に曲げ縁または/およびリブ(リブRa)を設け、天板の外周からの大きな剪断応力に対する強度の補強を図るとともに、そのリブRaの内側に複数の凸形状のリブRbを設けることによって、天板自体の強度の補強を図った。さらに、かかる構成の検証において、リブRbの突起高さをリブRaよりも大きくすることによって、一層の剪断応力に対する抵抗力の増大を図ることができ、天板の板面自体のそりやねじれに対する強度が格段に向上することができるとの知見を得た。加えて、リブRbの厚みを突起高さの増加に合せて薄くしても高い強度を維持することができることを見出した。これによって、リブRbの追加および突起高さの増大による天板の重量増加を低減し、従前では相反するとされた部材の強度の強化と部材の軽量化という課題をバランスよく解消し、更なる剪断応力に対する強度の補強と天板自体の軽量化と強化を同時に確保することが可能となった。また、1つの横部材についてみれば、1つの天板のリブRaとの接合によって、その補強機能を確保することができることから、単位となる三次元構造体ごとに全て天板を配設する必要は必ずしもなく、例えば1つおきなど任意に配設することが可能である。   According to this configuration, in the three-dimensional structure assembled by the vertical member and the horizontal member or the connection member, a large rainwater storage space can be secured, and at the same time, a flat top plate placed on the top and firmly fixed As a result, the resistance to local shear deformation applied to the upper portion thereof is remarkably improved. That is, for the three-dimensional structure, a vertical space having a predetermined size is required, and a top plate having a predetermined size is required. At this time, for the purpose of reducing the weight of the three-dimensional structure, it is preferable that the weight of the top plate is small, but the strength of the top plate itself is indispensable. Therefore, the present invention provides a bending edge or / and a rib (rib Ra) on the outer peripheral portion of the top plate to reinforce the strength against a large shear stress from the outer periphery of the top plate, and a plurality of inner sides of the rib Ra. By providing the convex rib Rb, the strength of the top plate itself was reinforced. Furthermore, in the verification of such a configuration, by increasing the protrusion height of the rib Rb larger than that of the rib Ra, it is possible to increase the resistance to further shearing stress, and to prevent warping and twisting of the plate surface itself of the top plate. The knowledge that the strength can be remarkably improved was obtained. In addition, it has been found that high strength can be maintained even if the thickness of the rib Rb is reduced in accordance with the increase in the protrusion height. This reduces the increase in the weight of the top plate due to the addition of the ribs Rb and the increase in the height of the protrusion, and balances the problems of strengthening the strength of the member and reducing the weight of the member, which were previously contradictory, and further shearing It became possible to secure strength reinforcement against stress and weight reduction and strengthening of the top plate at the same time. In addition, as for one horizontal member, since the reinforcing function can be ensured by joining with the rib Ra of one top plate, it is necessary to arrange the top plate for every three-dimensional structure as a unit. However, it is not always necessary, for example, every other one can be arranged arbitrarily.

また、横部材と縦部材の組み合わせによるジャングルジム構造の形成によって、三次元構造体全体の軽量化を図ることが可能となる。さらに、上記天板を含むこれらの部材を挿抜可能に嵌合して組立てることによって、個々の構成部材から組立を容易にして、現地での組立を可能にすることにより輸送コストを低減でき、かつ雨水貯留浸透槽の形状に対して柔軟に対応することが可能となる。その結果、特に上部を含む剪断変形に対する抵抗力を十分に有し、当該部材の軽量化を図るとともに、組み立てた場合に大きい空間を確保できて保守点検が容易な構造を形成することができ、しかも、個々の構成部材から組立を容易にして、現地での組立を可能にすることにより輸送コストを低減でき、かつ雨水貯留浸透槽の形状に対して柔軟に対応可能な雨水貯留システム用構造部材を提供することが可能となった。なお、横部材と縦部材が直接接合される場合には、ここでいう接続部材は独立した部材として必要とされないが、横部材,縦部材のいずれかがその機能を代用する接続部を有するものとする。   Further, the formation of the jungle gym structure by the combination of the horizontal member and the vertical member makes it possible to reduce the weight of the entire three-dimensional structure. Furthermore, by assembling these members including the top plate so as to be insertable / removable, it is possible to easily assemble from the individual components, and to reduce the transportation cost by enabling on-site assembly, and It becomes possible to respond flexibly to the shape of the rainwater storage and penetration tank. As a result, it has sufficient resistance to shear deformation including the upper part in particular, and it is possible to form a structure that can secure a large space when assembled and can be easily maintained and inspected, while reducing the weight of the member. Moreover, the structural member for the rainwater storage system can be easily assembled from the individual components and can be assembled on-site to reduce transportation costs and flexibly cope with the shape of the rainwater storage and penetration tank. It became possible to provide. In addition, when the horizontal member and the vertical member are directly joined, the connecting member here is not required as an independent member, but either the horizontal member or the vertical member has a connecting portion that substitutes the function. And

本発明は、上記雨水貯留浸透システム用構造部材であって、前記リブRaの内側に、この突起高さよりも大きい突起高さを有し、周回状または周回の一部を形成する凸形状のリブRcを設け、該リブRcの外側面によって前記横部材または接続部材の内側部の一部または全体と嵌合状に接合することを特徴とする。   The present invention is a structural member for the rainwater storage and infiltration system, wherein the rib Ra has a protrusion height larger than the protrusion height on the inner side of the rib Ra and forms a circular shape or a part of the circular shape. Rc is provided, and the rib or the outer surface of the rib Rc is joined to a part or the whole of the inner part of the transverse member or the connecting member in a fitting manner.

上記のように、天板の外周部に設けられたリブRaおよびRbは、剪断応力に対する強度の補強機能と同時に、天板自体の軽量化と強化を確保する機能を有している。かかる構成の検証において、本発明者は、さらにリブRbの1つの実施形態として、リブRaの突起高さよりも大きい突起高さを有し、周回状または周回の一部を形成する凸形状のリブRcを設け、該リブRcの外側面によって横部材または接続部材の内側部の一部または全体と嵌合状に接合することによって、一層の剪断応力に対する抵抗力の増大を図ることができるとの知見を得た。つまり、曲げ縁やリブの配設方法や天板の外周部の内側での応力の方向や強度に対するリブの抵抗力の方向や強度を検証した結果、高い突起を有するリブRcでこれに接合する横部材からの剪断応力を受けることによって、応力の分散を図ることができる等、天板の機能をさらに強化することが可能となったものである。   As described above, the ribs Ra and Rb provided on the outer peripheral portion of the top plate have a function of ensuring weight reduction and strengthening of the top plate itself as well as a function of reinforcing the strength against the shear stress. In the verification of such a configuration, the inventor further has, as one embodiment of the rib Rb, a convex rib having a projection height larger than the projection height of the rib Ra and forming a circular shape or a part of the circular shape. By providing Rc and joining a part or the whole of the inner part of the lateral member or the connecting member with the outer surface of the rib Rc in a fitting manner, it is possible to further increase the resistance to shear stress. Obtained knowledge. That is, as a result of verifying the direction and strength of the resistance of the rib to the bending edge and rib arrangement method and the stress direction and strength inside the outer periphery of the top plate, the rib Rc having a high protrusion is joined to this. By receiving the shear stress from the transverse member, the function of the top plate can be further strengthened, for example, the stress can be dispersed.

本発明は、上記雨水貯留浸透システム用構造部材であって、前記天板の角部の一部に平板に垂直な凸形状部を設け、前記縦部材、横部材あるいは接続部材のいずれかの一部に設けられた凹形状部と嵌合状に接合させることを特徴とする。   The present invention is the above-described structural member for a rainwater storage and infiltration system, wherein a convex portion perpendicular to a flat plate is provided at a part of a corner of the top plate, and any one of the vertical member, the horizontal member, and the connection member is provided. It is characterized by being joined in a fitting manner with a concave-shaped part provided in the part.

縦部材と横部材あるいは接続部材によって組立てられた三次元構造体は、大きい雨水貯留空間を確保できると同時に、その上部に載置され堅固に固定された平板状の天板によって、その上部に掛かる局部的な剪断変形に対する抵抗力が格段に向上する。本発明は、さらに、天板が縦部材、横部材あるいは接続部材のいずれかと角部において嵌合状に接合することによって、三次元構造体の上部に掛かる大きな剪断応力に対する強度を補強する機能を確保できることが検証された。つまり、三次元構造体においては、下地の形状や埋め戻しによる外力によって、三次元構造体の上部に対して縦方向だけではなく横方向に大きな剪断変形をもたらす応力が掛かる。従って、横部材あるいは接続部材とリブRaの接合に加え、その角部の一部に凸形状部を有する平板状の天板を用い、縦部材、横部材あるいは接続部材のいずれかの一部と嵌合的に接合させ、上部面を全体あるいは部分的に被覆することによって、この平面において鎹として機能させることにより強度の補強を図るもので、こうした応力に伴って生じる2次的なねじれ力に対しても強い抵抗力を確保することができる。また、上記のように、リブRaおよびRbとで接合可能な天板で、かつリブRcを有する場合には、該凸形状部の付加により、異なる機能を有する3つの凸形状体で三次元構造体と接合することから、種々の方向や強度の剪断応力を受けることがあっても、応力の分散を図ることができ、天板の機能をさらに強化することが可能となったものである。   The three-dimensional structure assembled by the vertical member and the horizontal member or connecting member can secure a large rainwater storage space, and at the same time, it is hung on the upper part by the flat top plate placed on the upper part and firmly fixed Resistance to local shear deformation is greatly improved. The present invention further has a function of reinforcing the strength against a large shear stress applied to the upper portion of the three-dimensional structure by joining the top plate to any one of the vertical member, the horizontal member and the connecting member in a fitting manner at the corner. It was verified that it could be secured. That is, in the three-dimensional structure, a stress that causes a large shear deformation not only in the vertical direction but also in the horizontal direction is applied to the upper portion of the three-dimensional structure due to the external force due to the shape of the base and backfilling. Therefore, in addition to the joining of the horizontal member or the connecting member and the rib Ra, a flat top plate having a convex portion at a part of the corner is used, and any one of the vertical member, the horizontal member or the connecting member is used. The joint is joined and the upper surface is entirely or partially covered so that it functions as a wrinkle in this plane to reinforce the strength. A strong resistance can be ensured. In addition, as described above, when the top plate can be joined to the ribs Ra and Rb and has the rib Rc, the three-dimensional structure is formed by three convex shapes having different functions by adding the convex portion. Since it is joined to the body, even if it receives shear stress in various directions and strengths, it is possible to distribute the stress and to further enhance the function of the top plate.

本発明は、雨水貯留浸透システムであって、上記いずれかに記載の構造部材を用い、その一部の上部に前記天板が載置された三次元構造体によって雨水貯留空間を形成することを特徴とする。   The present invention is a rainwater storage and penetration system, wherein the structural member according to any one of the above is used, and the rainwater storage space is formed by a three-dimensional structure in which the top plate is placed on a part of the top. Features.

上記の構造部材を用いて形成される雨水貯留浸透システムは、剪断変形に対する抵抗力を十分に有し、大きい空間を確保できて保守点検が容易であり、しかも個々の構成部材から容易に組立てることができる。このとき、上記の構造部材の特徴である嵌合上に接合された天板は、必ずしも単位となる三次元構造体の全てに配設する必要はなく、三次元構造体の大きさや雨水貯留浸透システムの設置条件に応じて配設した場合においても、十分に補強機能を確保することが可能である。従って、現地での組立を可能にすることにより輸送コストを低減でき、かつこうした天板の配設の柔軟性を含めた雨水貯留浸透槽の形状に対して柔軟に対応可能な雨水貯留浸透システム用構造部材を備えた雨水貯留浸透システムを提供することができる。   The rainwater storage and infiltration system formed using the structural members described above has sufficient resistance to shear deformation, can secure a large space, is easy to maintain, and can be easily assembled from individual components. Can do. At this time, the top plate joined on the fitting, which is a feature of the structural member described above, does not necessarily need to be disposed on all the three-dimensional structures as a unit. Even when it is arranged according to the installation conditions of the system, it is possible to ensure a sufficient reinforcing function. Therefore, it is possible to reduce transportation costs by enabling on-site assembly, and for rainwater storage and infiltration systems that can flexibly respond to the shape of the rainwater storage and infiltration tank including the flexibility of the top plate arrangement. A rainwater storage and penetration system including a structural member can be provided.

本発明は、上記雨水貯留浸透システムであって、前記三次元構造体を天板が載置されていない上部を含む複数の区分に分割し、該区分ごとに、該三次元構造体の上空間に点検孔を配設することを特徴とする。   The present invention is the above-described rainwater storage and infiltration system, wherein the three-dimensional structure is divided into a plurality of sections including an upper portion on which the top plate is not placed, and the upper space of the three-dimensional structure is divided into the sections. An inspection hole is arranged in the above.

上記のように、1つの天板を三次元構造体の上部に嵌合上に接合することによって、その三次元構造体を形成する最小単位だけではなく、その周辺での剪断変形に対する抵抗力を強化することができる。また、三次元構造体には、その内部の保守点検のために、雨水貯留浸透システムの上部から繋がる縦空間あるいは横空間を必要とすることがある。本発明は、複数の単位となる三次元構造体からなる複数の区分によって構成し、この区分ごとに三次元構造体の上空間に点検孔を配設することによって、保守点検のため空間部を確保すると同時に、剪断変形に対する抵抗力を強化することを可能にしたものである。   As described above, by joining one top plate to the upper part of the three-dimensional structure on the fitting, not only the minimum unit forming the three-dimensional structure, but also the resistance to shear deformation in the periphery thereof. Can be strengthened. In addition, the three-dimensional structure may require a vertical space or a horizontal space connected from the upper part of the rainwater storage and infiltration system for maintenance and inspection inside. The present invention comprises a plurality of sections composed of a three-dimensional structure as a plurality of units, and an inspection hole is provided in the space above the three-dimensional structure for each section, thereby providing a space portion for maintenance inspection. At the same time, it is possible to enhance the resistance to shear deformation.

本発明に係る実施形態を、図面を参照して詳細に説明する。
<本発明に係る雨水貯留浸透システム用構造部材>
本発明に係る雨水貯留浸透システム用構造部材(以下「本構造部材」という)は、複数の縦部材と横部材が挿抜可能に嵌合して単位となる三次元構造体(以下「単位ブロック」という)を形成し、さらに、この単位ブロックが縦方向、横方向および高さ方向に複数接合することによって、その内部に空間部を形成する雨水貯留浸透システムが構成される。このとき、三次元構造体(以下「構造体」という)の上部に載置され、横部材,縦部材あるいはこれらを接合させる接続部材があれば該接続部材のいずれかに固定される平板状の天板であって、その外周部に設けられたリブRaによって、横部材等によって構成された平面状体と接合するとともに、該リブRaの内側に、この突起高さよりも大きい突起高さを有する複数の凸形状のリブRbを設けることを特徴とするものである。さらにリブRbの1つの実施形態として、リブRaの突起高さよりも大きい突起高さを有し、周回状または周回の一部を形成する凸形状のリブRcを設け、該リブRcの外側面によって横部材または接続部材の内側部の一部または全体と嵌合状に接合させることを特徴とするものである。
Embodiments according to the present invention will be described in detail with reference to the drawings.
<Structural member for rainwater storage and penetration system according to the present invention>
The structural member for rainwater storage and infiltration system according to the present invention (hereinafter referred to as “the present structural member”) is a three-dimensional structure (hereinafter referred to as “unit block”) that is a unit in which a plurality of vertical members and horizontal members are detachably fitted. Furthermore, a plurality of unit blocks are joined in the vertical direction, the horizontal direction, and the height direction to form a rainwater storage and infiltration system that forms a space portion therein. At this time, if there is a horizontal member, a vertical member, or a connecting member for joining them, there is a flat plate-like shape that is placed on top of a three-dimensional structure (hereinafter referred to as “structure”). The top plate is joined to a planar body constituted by a transverse member or the like by ribs Ra provided on the outer peripheral portion thereof, and has a projection height larger than the projection height inside the rib Ra. A plurality of convex ribs Rb are provided. Furthermore, as one embodiment of the rib Rb, a convex rib Rc having a protrusion height larger than the protrusion height of the rib Ra and forming a circular shape or a part of the circular shape is provided, and an outer surface of the rib Rc A part or the whole of the inner part of the horizontal member or the connecting member is joined in a fitting manner.

図1は、本構造部材の構成要素として、接続部材1を用いて横部材2と縦部材3を組み立てて形成された単位ブロックの1つの実施態様例を斜視図として示す。本構造部材は、この上部に天板PのリブRaが、横部材2と接合している(詳細は後述する)。このとき、横部材2あるいは縦部材3の端部に、接続部材1と同様の機能を有する部位を設け、接続部材1を省略することも可能である。   FIG. 1 shows, as a perspective view, one embodiment example of a unit block formed by assembling a transverse member 2 and a longitudinal member 3 using a connecting member 1 as a component of the structural member. As for this structural member, the rib Ra of the top plate P has joined to the horizontal member 2 in this upper part (it mentions later for details). At this time, it is also possible to provide a portion having the same function as the connecting member 1 at the end of the horizontal member 2 or the vertical member 3 and omit the connecting member 1.

〔単位ブロック〕
一般には、図1に示すように、横部材2と縦部材3を略等寸とする単位ブロックを形成し、これを単位として上下左右に接合することによって、構造体が構成される。具体的には単位ブロックを形成する横部材2および縦部材3を400mm、あるいは800mm等を定尺として単位ブロックを形成する場合が多い。このとき、雨水貯留浸透槽の内部全体の保守点検のために、点検孔から槽内への上下方向の移動を可能にすると同時に、横方向の人が移動可能な大きさの空間(以下「横空間」という)によって水平方向の移動が可能するには、例えば、一辺800mm以上の空間あるいは直径800mm以上の空間を確保できる最小限度の大きさが好ましい。つまり、単位ブロックを大きくすれば、要求される強度を確保するために縦部材3および横部材2の肉厚を大きくする必要があり、各部材の重量が大きくなり操作性・作業性が悪くなる。従って、一辺400〜1600mm程度を定尺とする単位ブロックが好ましい。
[Unit block]
In general, as shown in FIG. 1, a unit body is formed by forming a unit block in which the transverse member 2 and the longitudinal member 3 are approximately equal in size, and joining them vertically and horizontally as a unit. Specifically, in many cases, the unit block is formed with the horizontal member 2 and the vertical member 3 forming the unit block as 400 mm or 800 mm as a standard. At this time, for maintenance and inspection of the entire inside of the rainwater storage and penetration tank, it is possible to move vertically from the inspection hole into the tank, and at the same time, a space of a size that can be moved by a person in the horizontal direction (hereinafter “horizontal”). For example, a space having a side of 800 mm or more or a minimum size that can secure a space of 800 mm or more is preferable. That is, if the unit block is made larger, it is necessary to increase the thickness of the vertical member 3 and the horizontal member 2 in order to ensure the required strength, and the weight of each member increases, resulting in poor operability and workability. . Accordingly, a unit block having a standard length of about 400 to 1600 mm on one side is preferable.

単位ブロックは、4つの縦部材3の上下端を、接続部材1の筒状部1aに嵌合して装着し、8つの接合部材1の突起部1bに設けられた貫通孔1cの各々に、8つの横部材2端部の突起(図示せず)を挿入させて係合し、横部材2と縦部材3が接続されることによって形成される。また、実際に単位ブロックを接合して構造体を作製する場合には、縦部材3の上端を接続部材1の筒状部1aに嵌合して装着し、2つの縦部材3に装着された2つの接続部材1の貫通孔1cの夫々に、横部材2端部の突起(図示せず)を挿入させて係合することにより横部材2と縦部材3を接続し、これを繰り返して、ジャングルジム状に構造体を形成する。なお、接続部材1、横部材2および縦部材3の組立手順などはこれに限定されるものではない。   The unit block is fitted with the upper and lower ends of the four vertical members 3 fitted to the cylindrical portion 1a of the connecting member 1, and is inserted into each of the through holes 1c provided in the protruding portions 1b of the eight joining members 1. The protrusions (not shown) at the ends of the eight transverse members 2 are inserted and engaged, and the transverse member 2 and the longitudinal member 3 are connected. Further, when the structure is manufactured by actually joining the unit blocks, the upper end of the vertical member 3 is fitted to the cylindrical portion 1a of the connecting member 1 and attached to the two vertical members 3. By inserting and engaging a protrusion (not shown) at the end of the transverse member 2 into each of the through holes 1c of the two connecting members 1, the transverse member 2 and the longitudinal member 3 are connected, and this is repeated. A structure is formed in a jungle gym shape. In addition, the assembly procedure of the connection member 1, the horizontal member 2, and the vertical member 3 is not limited to this.

本構造部材は、さらに、構造体を形成するときは、こうして組み上げられた最上部の単位ブロックの上面部に、図2(A)〜(C)に例示するように、天板Pが配設されることを特徴とする。具体的には、天板PのリブRaが、4つの横部材2および4つの接合部材1から構成される平面状体に対し、その上端に接合させるとともに、リブRbが、その平面状体の内側部と嵌合状に接合される。これによって、この平面の強度の補強を図り、横部材2に剪断変形をもたらす応力に対する大きな抵抗力を得るとともに、特に、構造体の上部および側部に掛かる剪断変形の応力に対して、単位ブロックの抵抗力の強化を図ることができる。   When the structure member is further formed, the top plate P is disposed on the upper surface of the uppermost unit block assembled in this way, as illustrated in FIGS. 2 (A) to (C). It is characterized by being. Specifically, the rib Ra of the top plate P is joined to the upper end of the planar body composed of the four transverse members 2 and the four joining members 1, and the rib Rb is joined to the planar body. Joined to the inner part in a fitting manner. Thereby, the strength of the plane is reinforced, and a large resistance force to the stress that causes the shear deformation to the transverse member 2 is obtained, and in particular, the unit block against the stress of the shear deformation applied to the upper and side portions of the structure. Can be strengthened.

次に、こうした単位ブロックを構成する接続部材1、横部材2、縦部材3および天板Pについて詳述する。   Next, the connecting member 1, the transverse member 2, the longitudinal member 3 and the top plate P that constitute such a unit block will be described in detail.

〔接続部材〕
接続部材1は、図1および図2(B),(C)に示すように、縦部材3に外嵌可能な筒状部1aと、外周面の4ヶ所から突出して横部材2の端部と係合して両者を接続する突出部1bを有していて、突出部1bには、横部材2の端部に設けられた突起(図示せず)を受け入れて係合する貫通孔1cが4ヶ所形成されている。さらに、筒状部1a内部にも、やや小径の貫通孔が形成されて重量軽減が図られているとともに、雨水を下方に移動させて貯留させるようになっている。
(Connecting member)
As shown in FIG. 1 and FIGS. 2B and 2C, the connecting member 1 includes a cylindrical portion 1 a that can be fitted onto the vertical member 3, and an end portion of the horizontal member 2 that protrudes from four locations on the outer peripheral surface. Has a protrusion 1b that engages and connects the two, and the protrusion 1b has a through hole 1c that receives and engages a protrusion (not shown) provided at the end of the transverse member 2. Four places are formed. Further, a slightly smaller diameter through hole is formed inside the cylindrical portion 1a to reduce weight, and rainwater is moved downward to be stored.

ここで、縦部材3の端部と接する接続部材1の筒状部1aの内周面は、凹凸が1μm以下である平滑面に形成されることが好ましい。接続部材1に縦部材3を接続する場合、両者の嵌合・接続状態を強固にする。特に、縦部材3の端部表面にシボ加工を施した場合においては、さらに気密性あるいは水密性を強化することができる。なお、ここで縦部材3にシボ加工を施さない場合には、筒状部1aの内周面にシボ加工を施すことによって同様の機能を確保することが可能である。   Here, it is preferable that the inner peripheral surface of the cylindrical portion 1a of the connecting member 1 that is in contact with the end portion of the vertical member 3 is formed as a smooth surface having irregularities of 1 μm or less. When the vertical member 3 is connected to the connecting member 1, the fitting / connecting state between the two is strengthened. In particular, when the surface of the end portion of the vertical member 3 is textured, the airtightness or watertightness can be further enhanced. Here, when the vertical member 3 is not subjected to texturing, it is possible to ensure the same function by texturing the inner peripheral surface of the cylindrical portion 1a.

接続部材1が、このように構成されていることから、上下の筒状部1aに縦部材3を嵌合する際に、筒状部1aが適度に拡径変形するので、縦部材3の設計自由度が幾分高くなるとともに、縦部材3の寸法融通性が高くなり、施工作業性が向上する。また、横部材2との接続に対しても、横部材2に形成されている突起と、接続部材1の貫通孔1cとが嵌合し、接続部材1と横部材2との接続が一層強固になり、構造体の強度が顕著に向上する。なお、後述する構造体を形成する場合において、接続部材1の最上部位置では、縦部材3を接続しないため、上方に向けた筒状部1aは不要となる。そのため、筒状部1aの上部の突出した部分を取り除くとともに、薄い円盤状の頂部を有するキャップ部材(図示せず)を嵌着するようにしてもよい。なお、接続部材1に代え、横部材2あるいは縦部材3の端部に接続部材1と同様の機能を有する部位を設け、これを省略することも可能である。また、接続部材1を横部材2あるいは縦部材3と一体化して成形することも可能である。   Since the connecting member 1 is configured in this way, when the vertical member 3 is fitted to the upper and lower cylindrical portions 1a, the cylindrical portion 1a is appropriately expanded in diameter. While the degree of freedom is somewhat increased, the dimensional flexibility of the vertical member 3 is increased, and the workability is improved. Also, for the connection with the horizontal member 2, the protrusion formed on the horizontal member 2 and the through hole 1 c of the connection member 1 are fitted, and the connection between the connection member 1 and the horizontal member 2 is further strengthened. As a result, the strength of the structure is remarkably improved. In addition, when forming the structure mentioned later, since the vertical member 3 is not connected in the uppermost position of the connection member 1, the cylindrical part 1a toward the top becomes unnecessary. Therefore, while removing the protruding part of the upper part of the cylindrical part 1a, you may make it fit the cap member (not shown) which has a thin disk shaped top part. Instead of the connection member 1, a portion having the same function as the connection member 1 may be provided at the end of the horizontal member 2 or the vertical member 3, and this may be omitted. It is also possible to form the connecting member 1 integrally with the horizontal member 2 or the vertical member 3.

〔横部材〕
横部材2は、図3(A)に示すように、上記接続部材1の貫通孔1cに挿入されて係合する突起2aを裏面側の両端部に下向きに形成している。また、横部材2には重量軽減を図るとともに、強度を確保するために、凹形状の溝部2bやリブ2cが設けることが好ましい。溝部2bを設けていることにより、横部材2の長手方向から作用する圧縮力に対して大きな強度を発揮し得、短辺方向のリブ2cを設けていることにより、横部材2に作用するねじれ方向の外力に対して耐久力を発揮し得る。補強用のリブの数、位置、形状などは種々に変更可能である。なお、図3(A)においては、リブ2cを表面に設けた構成例を示したが、裏面に設けて長さ方向全体に溝部2bを形成することも可能である。
(Horizontal member)
As shown in FIG. 3A, the horizontal member 2 has protrusions 2a that are inserted into and engaged with the through holes 1c of the connection member 1 at both ends on the back side so as to face downward. The transverse member 2 is preferably provided with concave grooves 2b and ribs 2c in order to reduce weight and ensure strength. By providing the groove portion 2b, a large strength can be exerted against the compressive force acting from the longitudinal direction of the transverse member 2, and by providing the rib 2c in the short side direction, the twist acting on the transverse member 2 It can exhibit durability against external force in the direction. The number, position, shape, etc. of the reinforcing ribs can be variously changed. Although FIG. 3A shows a configuration example in which the rib 2c is provided on the front surface, the groove portion 2b can be formed on the entire back surface by providing the rib 2c on the back surface.

ここで、単位ブロックに天板Pを配設する場合には、図3(B)に例示するように、溝部2bに、天板Pに設けられたリブRa(曲げ縁)を接合するとともに、リブRbを横部材2の内側部に嵌合的に接合することができる。また、図3(C)に例示するように、リブRa(凸状リブ)を接合することができる。こうした構成によって、横部材2の長さ方向全体で、天板Pを接合することができ、構造体の上部に掛かる大きな剪断応力に対する強度の補強を図ることができる。   Here, when the top plate P is arranged in the unit block, as illustrated in FIG. 3B, the rib Ra (bending edge) provided on the top plate P is joined to the groove portion 2b, The rib Rb can be fitted to the inner part of the transverse member 2 in a fitting manner. Further, as illustrated in FIG. 3C, ribs Ra (convex ribs) can be joined. With such a configuration, the top plate P can be joined over the entire length of the transverse member 2, and the strength against a large shearing stress applied to the upper part of the structure can be enhanced.

横部材2の材質は、構造体の強度および無害性が確保され、長期の雨水との接触によって変質・腐蝕されない材料であれば、特に制限されないが、加工性あるいは輸送や現場での組立作業の容易性などから軽量で成型が容易な樹脂製素材が好適である。具体的には、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、PET(ポリエチレンテレフタレート)等を使用してもよいし、必要な強度が得られれば、各種の熱可塑性樹脂を使用することができる。   The material of the transverse member 2 is not particularly limited as long as the strength and harmlessness of the structure is ensured and the material is not altered or corroded by long-term contact with rainwater. A resin material that is lightweight and easy to mold is preferred because of its ease. Specifically, polypropylene, polyethylene, polyvinyl chloride, PET (polyethylene terephthalate) or the like may be used, and various thermoplastic resins can be used as long as necessary strength is obtained.

なお、横部材2を板状体で構成することも可能である。横部材2自体の剪断変形に対する強度の強化とともに、縦部材3との線接合によって構造体全体として剪断変形に対する強い抵抗力を確保することができる。このとき、板状体の中央部に1つまたは複数の開口部を形成することによって、軽量化を図るとともに、貯留される雨水の移送あるいは保守時の人員の移動などを円滑に行うことが可能となる。また、上記のように横部材2の一端部あるいは両端部に接続部材1と同様の機能を有する接合部を設けた場合には、接続部材1を用いずに直接縦部材3との接合も可能である。   In addition, it is also possible to comprise the horizontal member 2 with a plate-shaped body. In addition to strengthening the strength against the shear deformation of the horizontal member 2 itself, a strong resistance against the shear deformation can be ensured as a whole structure by line joining with the vertical member 3. At this time, by forming one or a plurality of openings in the central part of the plate-like body, it is possible to reduce the weight and smoothly transfer stored rainwater or move personnel during maintenance. It becomes. Moreover, when the junction part which has the function similar to the connection member 1 is provided in the one end part or both ends of the horizontal member 2 as mentioned above, the junction with the vertical member 3 is also possible directly without using the connection member 1. It is.

〔縦部材〕
縦部材3は、所定長さを有する筒状体あるいは棒状体で形成され、断面は同一形状を有することが好ましい。図1においては、接続部材1の筒状部1aに内嵌可能な構造となっている。ここで、縦部材3の長さは、仕様に合った任意の長さを設定することが可能であるとともに、後述するように、本構造部材を用いた構造体しいては雨水貯留浸透システムにとって重要な役割を果たしている。また、図1においては、定尺の縦部材3を用いた場合を例示する。このとき、構造体が求められる強度および輸送面や組立時の作業性に対応して、縦部材3の形状(外径や肉厚あるいは長さ)や本数を設定することが好ましい。
(Vertical member)
The vertical member 3 is preferably formed of a cylindrical body or a rod-like body having a predetermined length, and the cross section preferably has the same shape. In FIG. 1, it has a structure that can be fitted into the tubular portion 1 a of the connecting member 1. Here, the length of the vertical member 3 can be set to an arbitrary length that meets the specifications, and, as will be described later, a structure using this structural member is not suitable for a rainwater storage and infiltration system. Plays an important role. Moreover, in FIG. 1, the case where the fixed vertical member 3 is used is illustrated. At this time, it is preferable to set the shape (outer diameter, thickness, or length) and number of the longitudinal members 3 in accordance with the strength required for the structure, the transportation surface, and the workability during assembly.

さらに、接続部材1の筒状部1aに嵌合する縦部材3の先端部の嵌合面にシボ加工を施すことが好ましい。シボ加工を施すことによって、嵌合時シボの先端部分が弾性変形し容易に嵌合が可能となるとともに、嵌合した状態においてシボの形状が戻り抜けにくい状態となる。さらに、こうしたシボ加工を自由端から所定の位置まで連続的に形成することによって、嵌合部における気密性あるいは水密性を強化することができる。長期使用時に発生する縦部材3の内部や接続部材1の筒状部1aの内部などへの種々の藻類や浮遊物などの付着を防止することができ、雨水貯留構造用組立部材の保守や分解清掃作業において、作業性の向上を図ることができる。具体的には、接続部材1と接する縦部材3の端部外周面に、凹凸が10〜40μmであるシボ加工が施すとともに、該端部外周面が先端から離間するに従い僅かに拡径され、肉厚化されている構造を挙げることができる。   Furthermore, it is preferable that the fitting surface of the front end portion of the vertical member 3 fitted to the cylindrical portion 1a of the connecting member 1 is subjected to a texture process. By applying the embossing process, the tip end portion of the embossing is elastically deformed and can be easily fitted, and the embossed shape is difficult to return. Furthermore, by continuously forming such embossing from the free end to a predetermined position, the airtightness or watertightness at the fitting portion can be enhanced. It is possible to prevent various algae and floating substances from adhering to the inside of the vertical member 3 and the inside of the cylindrical portion 1a of the connecting member 1 generated during long-term use, and maintenance and disassembly of the rainwater storage structure assembly member In the cleaning work, workability can be improved. Specifically, on the outer peripheral surface of the end portion of the vertical member 3 in contact with the connecting member 1, the unevenness is 10-40 μm, and the diameter is slightly increased as the end outer peripheral surface is separated from the tip. A thickened structure can be mentioned.

縦部材3の材質は、特に制限されるものではなく、縦部材3と同様の種々の材料を使用することができる。ただし、構造体が必要とされる強度、耐久性あるいは軽量性など種々の条件からは、横部材2と同様、ポリプロピレンなどの樹脂製素材が好適である。また、樹脂製に代えてステンレス鋼などの金属製パイプとすることもでき、樹脂製縦部材の内部にコンクリートを注入したり、あるいは鉄筋コンクリートを挿入したりして補強してもよい。   The material of the vertical member 3 is not particularly limited, and various materials similar to those of the vertical member 3 can be used. However, from various conditions such as strength, durability, and lightness that require a structure, a resin material such as polypropylene is suitable as with the transverse member 2. Moreover, it can replace with resin and can also be made into metal pipes, such as stainless steel, and you may reinforce by inject | pouring concrete into the inside of a resin vertical member, or inserting reinforced concrete.

なお、上記のように縦部材3の一端部あるいは両端部に接続部材1と同様の機能を有する接合部を設けた場合には、接続部材1を用いずに直接横部材2との接合も可能である。また、複数の縦部材3を垂直に接続する場合、縦部材3の一端部を他端部と嵌合しうる構造(図示せず)とし、隣接する縦部材3同士を接合することによって、任意の高さ(深さ)の構造体を形成することができる(該一端部あるいは他端部には横部材2との接合機能を有することが必要となる)。さらに、中空部(図示せず)を有する縦部材3の場合には、該中空部に支柱(図示せず)を挿入する方法も可能である。   In addition, when the junction part which has the function similar to the connection member 1 is provided in the one end part or both ends of the vertical member 3 as mentioned above, the junction with the horizontal member 2 is also possible directly without using the connection member 1. It is. Moreover, when connecting several vertical member 3 perpendicularly, it is set as the structure (not shown) which can fit one end part of the vertical member 3 with an other end part, and by joining adjacent vertical members 3 mutually, arbitrary A structure having a height (depth) can be formed (the one end portion or the other end portion must have a function of joining to the transverse member 2). Furthermore, in the case of the vertical member 3 having a hollow portion (not shown), a method of inserting a column (not shown) into the hollow portion is also possible.

〔天板〕
天板Pは、図2(C)に示すような平面部を有するとともに、図4(A)〜(G)に例示するような裏面を有する。図4(A)に例示するように、天板Pの外周部に設けられたリブRaによって横部材2の上端と嵌合状に接合するとともに、その内側の平面全体を縦横に走るように、リブRaの突起高さよりも大きい突起高さを有する複数のリブRbが設けられ、リブRbの一部が横部材2の内側部と嵌合状に接合している。こうした構成によって、覆土などの上載荷重や板のねじり応力などに対する天板P自体の強度の補強を図ることができるとともに、構造体の上部に掛かる大きな剪断応力に対する強度の補強を図ることができる。また、天板Pには、孔Phが設けられている。天板上部からの雨水や上面に溜まった雨水を、貯留水として天板下部の槽内に導くことができる。
〔Top board〕
The top plate P has a flat portion as shown in FIG. 2C and a back surface as exemplified in FIGS. 4A to 4G. As illustrated in FIG. 4 (A), the rib Ra provided on the outer peripheral portion of the top plate P is joined to the upper end of the transverse member 2 in a fitting manner, and the entire inner plane runs vertically and horizontally. A plurality of ribs Rb having a protrusion height larger than the protrusion height of the rib Ra is provided, and a part of the rib Rb is joined to the inner portion of the lateral member 2 in a fitting manner. With such a configuration, it is possible to reinforce the strength of the top plate P itself against an overload such as covering soil or torsional stress of the plate, and it is possible to reinforce strength against a large shear stress applied to the upper part of the structure. The top plate P is provided with a hole Ph. Rainwater from the top of the top plate or rainwater collected on the top surface can be introduced into the tank below the top plate as stored water.

このとき、リブRbの1つの実施形態として、リブRaの内側に、周回状または周回の一部を形成するように図4(B)の断面b−bに例示するような凸状のリブRcを設け、図4(C)に示すように該リブRcの外側面によって横部材2または接続部材1の内側部の一部または全体と嵌合状に接合することが好ましい。また、図4(D)に示すように、リブRcの突起高さLcがリブRaの突起高さLaよりも大きいことが好ましい。横部材2と嵌合状に接合する場合において、こうした構造によって、リブRbと横部材2との接合部分の増大およびリブRaとRcの2つで挟持しつつ接合することによって、より横部材からの剪断応力の分散を図ることができる等、天板の機能をさらに強化することが可能となる。こうした構造によって、リブRaを横部材2の上端に接合させることによって、構造体の上部に掛かる大きな剪断応力に対する強度の補強を図るとともに、Rcの外側面によって横部材2(またはこれと接続部材1)の内側部の一部または全体と接合させることによって、リブRaとRcの2つで挟持しつつ接合し、一層の剪断応力に対する抵抗力の増大を図ることができる。   At this time, as one embodiment of the rib Rb, a convex rib Rc as exemplified in the cross-section bb of FIG. 4B so as to form a circular shape or a part of the circular shape inside the rib Ra. As shown in FIG. 4C, it is preferable that the outer surface of the rib Rc is joined to a part or the whole of the inner part of the lateral member 2 or the connecting member 1 in a fitting manner. Further, as shown in FIG. 4D, it is preferable that the protrusion height Lc of the rib Rc is larger than the protrusion height La of the rib Ra. In the case of joining to the transverse member 2 in a fitting manner, by such a structure, the joining portion between the rib Rb and the transverse member 2 is increased, and by joining while being sandwiched between the two of the ribs Ra and Rc, the transverse member 2 is further removed. It is possible to further enhance the function of the top plate, for example, the shear stress can be dispersed. With such a structure, the rib Ra is joined to the upper end of the transverse member 2 to reinforce the strength against a large shear stress applied to the upper portion of the structure, and the transverse member 2 (or the connecting member 1 and the transverse member 2 is formed by the outer surface of Rc. ) Are joined while being sandwiched by two of the ribs Ra and Rc, and the resistance to one layer of shear stress can be further increased.

ここで、リブRbおよびRcは、後述する〔天板の剪断変形に対する抵抗力の解析例〕において解析した結果、一辺400mmの天板Pにおいて、突起高さRa:突起高さRb(Rc)=20(mm):40(mm)=1:2とし、その厚みを約2mm(つまり突起高さRbの約1/10程度)とすることが好ましいことが確認できた。つまり、天板Pに設けられたリブRbおよびRcについて、その厚みより高さが変形に対する効果が高いことが確認できる。単なる設計事項に止まらず、こうした構造体に用いる天板の基準としての知見を得たものである。   Here, the ribs Rb and Rc are analyzed in “Analysis example of resistance to shear deformation of the top plate” to be described later. As a result, in the top plate P having a side of 400 mm, the projection height Ra: projection height Rb (Rc) = It was confirmed that 20 (mm): 40 (mm) = 1: 2 and the thickness was preferably about 2 mm (that is, about 1/10 of the protrusion height Rb). That is, it can be confirmed that the ribs Rb and Rc provided on the top plate P have a higher effect on deformation than the thickness. This is not just a design matter, but has gained knowledge as a standard for the top plate used in such structures.

さらに、詳細には、天板Pに設けるリブは、天板Pの側面に平行して設けたリブRcのみならず、図4(E)の断面c−cに例示するように、リブRcに対して垂直なリブRdを各辺につき複数箇所(図4(A)では5箇所)設け、横部材2にもこれと対応するリブ受(図示せず)を設けることが好ましい。リブRcのみの場合には、横部材2との面接合を確実にするために高い加工精度を必要とする場合がある。リブRdの配設によって、こうした面接合を緩和しながら確実な接合を確保するとともに、強度の補強を図ることができる。特に、図4(F)の断面d−dのように、リブRcに接合するリブRdからリブRcに立ち上がるリブReを設けることによって、一層面接合を緩和しながら、確実な接合を確保することができる。また、図4(G)は、複数のリブRbが設けられた図4(A)の断面e−eを示している。   More specifically, the rib provided on the top plate P is not limited to the rib Rc provided parallel to the side surface of the top plate P, but also on the rib Rc as illustrated in the section cc in FIG. On the other hand, it is preferable to provide a plurality of ribs Rd perpendicular to each side (five places in FIG. 4 (A)) and to provide rib supports (not shown) corresponding to the ribs on the lateral member 2. In the case of only the rib Rc, high processing accuracy may be required in order to ensure surface bonding with the transverse member 2. By disposing the rib Rd, it is possible to secure reliable bonding while relaxing the surface bonding and to reinforce the strength. In particular, as shown in the cross-section dd in FIG. 4F, by providing a rib Re that rises from the rib Rd joined to the rib Rc to the rib Rc, it is possible to ensure reliable joining while alleviating the surface joining. Can do. FIG. 4G shows a cross section ee of FIG. 4A in which a plurality of ribs Rb are provided.

ここで、天板Pの材質は、構造体の強度および無害性が確保され、長期の雨水との接触によって変質・腐蝕されない材料であれば、特に制限されないが、加工性あるいは輸送や現場での組立作業の容易性などから軽量で成型が容易な樹脂製素材が好適である。具体的には、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、PET(ポリエチレンテレフタレート)等を使用してもよいし、必要な強度が得られれば、各種の熱可塑性樹脂を使用することができる。また、樹脂製に代えてステンレス板やアルミ板などの金属製の板状体を加工することもできる。   Here, the material of the top plate P is not particularly limited as long as the strength and harmlessness of the structure are ensured and the material is not altered or corroded by contact with rainwater for a long time. A resin material that is lightweight and easy to mold is preferred because of the ease of assembly work. Specifically, polypropylene, polyethylene, polyvinyl chloride, PET (polyethylene terephthalate) or the like may be used, and various thermoplastic resins can be used as long as necessary strength is obtained. Moreover, it can replace with resin and can process metal plate-shaped bodies, such as a stainless plate and an aluminum plate.

〔天板の他の実施形態〕
天板Pの他の実施形態として、その一部または全部の角部Paに、平板に垂直な凸形状部Pbが設けられた天板Pを図5(A)〜(D)に例示する。縦部材3、横部材2あるいは接続部材1のいずれかの一部に設けられた凹形状部(図1においては筒状部1aが相当する)と、天板の嵌合状に接合させ、構造体の上部面を全体あるいは部分的に被覆することによって、この平面において鎹として機能させ、構造体に掛かる応力に伴って生じる2次的なねじれ力に対しても強い抵抗力を確保することができる。特に、リブRaおよびRbとで接合可能な天板で、かつリブRcを有する場合には、該凸形状部の付加により、異なる機能を有する3つの凸形状体で三次元構造体と接合することから、種々の方向や強度の剪断応力を受けることがあっても、応力の分散を図ることができ、天板の機能をさらに強化することができる。
[Other Embodiments of Top Plate]
As other embodiment of the top plate P, the top plate P in which the convex part Pb perpendicular | vertical to a flat plate was provided in the one or all corner | angular part Pa is illustrated to FIG. 5 (A)-(D). A concave-shaped part (corresponding to the cylindrical part 1a in FIG. 1) provided in a part of any one of the vertical member 3, the horizontal member 2 or the connecting member 1 is joined to the top plate so as to have a structure. By covering the upper surface of the body in whole or in part, it can function as a wrinkle in this plane and ensure a strong resistance against the secondary torsional force caused by the stress applied to the structure. it can. In particular, when the top plate can be joined with the ribs Ra and Rb and has the rib Rc, the convex portion is added to join the three-dimensional structure with three convex bodies having different functions. Therefore, even if shear stress of various directions and strengths is applied, the stress can be dispersed and the function of the top plate can be further enhanced.

具体的には、図5(A)に例示する天板Pの4つの角部Paに、図5(B)に例示するように、平板Pに垂直な凸形状部Pbが設けられている。ここで、凸形状部Pbは、天板Pが樹脂等によって成形される場合には、一体成形によって作製することが可能であり、金属板製の場合には、例えば、図5(C)のように、角部Paを形成し、その部材の一部を破線において折り返すことによって形成することができる。図5(D)〜(E)は、4つの横部材2および4つの接合部材1から構成される平面状体に対し、嵌合状に接合される状態の詳細を、拡大表示している。凸形状部Pbが、4つの筒状部1aと嵌合状に接合されることによって、この平面の強度の補強を図り、横部材2に剪断変形をもたらす応力に対する大きな抵抗力が得るとともに、特に、構造体の上部に掛かる剪断変形の応力に対して、単位ブロックの抵抗力の強化を図ることができる。   Specifically, convex portions Pb perpendicular to the flat plate P are provided at four corners Pa of the top plate P illustrated in FIG. 5A as illustrated in FIG. Here, when the top plate P is formed of a resin or the like, the convex portion Pb can be manufactured by integral molding, and in the case of a metal plate, for example, as shown in FIG. Thus, it can form by forming corner | angular part Pa and folding up a part of the member in a broken line. 5D to 5E show enlarged details of a state in which the planar body constituted by the four transverse members 2 and the four joining members 1 are joined in a fitting manner. The convex-shaped part Pb is joined to the four cylindrical parts 1a in a fitting manner, thereby reinforcing the strength of the plane and obtaining a large resistance to stress that causes shear deformation in the transverse member 2. The resistance of the unit block can be strengthened against the stress of shear deformation applied to the upper part of the structure.

ここで、凸形状部Pbおよびこれと接する筒状部1aの内周面は、凹凸が1μm以下である平滑面に形成されることが好ましい。接続部材1に凸形状部Pbを接続する場合、両者の嵌合・接続状態を強固にする。特に、凸形状部Pbの端部表面にシボ加工を施した場合においては、さらに気密性あるいは水密性を強化することができる。なお、ここで凸形状部Pbにシボ加工を施さない場合には、筒状部1aの内周面にシボ加工を施すことによって同様の機能を確保することが可能である。   Here, it is preferable that the convex part Pb and the inner peripheral surface of the cylindrical part 1a in contact with the convex part Pb are formed on a smooth surface having irregularities of 1 μm or less. When connecting the convex-shaped part Pb to the connection member 1, both fitting and a connection state are strengthened. In particular, when the embossing is performed on the end surface of the convex portion Pb, the airtightness or watertightness can be further enhanced. Here, when the convex part Pb is not subjected to the texturing, it is possible to ensure the same function by applying the texturing to the inner peripheral surface of the cylindrical part 1a.

このとき、天板Pと接続部材1と横部材2との接合関係は、必ずしも角部Paと接続部材1の接合(接合a)が4箇所全てで形成され、曲げ縁PdまたはリブPeと横部材2の溝部の接合(接合b)が4箇所全てで形成される必要はなく、少なくとも接合aおよび接合bが1箇所ずつであっても、横からの変形応力に対する抵抗力の強化機能を確保することができる。具体的には、図6(A)〜(C−3)に例示するような組合せを挙げることができる。図6(A)は接合aおよび接合bが1箇所ずつの場合、図6(B−1)〜(B−3)は合計3箇所の場合、図6(C−1)〜(C−3)は合計4箇所の場合の組み合わせの一部を示している。図6(A)および図6(B−3)については、1つのコーナー(接続部材1)についての補強が施されないが、構造体を形成する場合、これに接合する単位ブロックについて同様の補強を行うことによって、横からの変形応力に対する抵抗力を強化することができる。それ以外の組み合わせにおいては、いずれも各コーナーに対しての補強が施されることから、横からの変形応力に対して顕著な抵抗力の強化を図ることができる。   At this time, the joining relationship between the top plate P, the connecting member 1 and the transverse member 2 is such that the corner portion Pa and the joining member 1 are joined at all four locations (joining a), and the bending edge Pd or the rib Pe and the transverse portion are transversely formed. It is not necessary to form the bonding (bonding b) of the groove portion of the member 2 at all four places, and even if at least one bonding a and one bonding b are provided at each position, the function of strengthening the resistance to deformation stress from the side is ensured. can do. Specifically, combinations illustrated in FIGS. 6A to 6C-3 can be given. 6A shows the case where the junction a and the junction b are one each, and FIGS. 6B-1 to 6B-3 show the case where there are a total of three locations, FIGS. 6C-1 to 6C-3. ) Shows a part of the combination in the case of a total of four places. 6A and 6B-3, no reinforcement is applied to one corner (connecting member 1), but when a structure is formed, the same reinforcement is applied to the unit block joined thereto. By carrying out, the resistance with respect to the deformation stress from the side can be strengthened. In all other combinations, each corner is reinforced, so that it is possible to remarkably enhance the resistance against deformation stress from the side.

〔天板の剪断変形に対する抵抗力の解析例〕
次に、上記天板Pの構成と剪断変形に対する抵抗力について解析した。
(1)対象となる天板
図7Aおよび図7Bの(a)〜(p)の各図番に対応する12の構成例(a)〜(p)を対象とした。具体的には、下表1に示すように、従来型である(a)外周部と同じ高さのリブを全体に配設した部材)および(b)〜(p)外周部と異なる高さ・厚さのリブおよび天板厚さの改良01〜12型を対象とした。一辺400mmの正方形状の天板を用いた。改良型は、リブの高さ、肉厚等の最適化(軽量化)を有限要素法(FEM解析)によって検討し、従来型の天板との比較を行った。(g)改良06型〜(m)改良10型は、外周部のリブと既存の中央部に向かうリブの接点に応力が集中するため、荷重を分散させる目的で新たに中央部に向かう20mm高さのリブを追加した。改良型の基本は、縁部の肉厚4mmとした。目標値として、重量:従来型に対して約20%軽量化、最大たわみ量:従来型以下、最大応力:34MPa以下、最大ひずみ:従来型以下と設定した。
[Example of analysis of resistance to shear deformation of top plate]
Next, the structure of the top plate P and the resistance to shear deformation were analyzed.
(1) Top Table to be Targeted Twelve configuration examples (a) to (p) corresponding to the respective figure numbers of (a) to (p) in FIGS. 7A and 7B were targeted. Specifically, as shown in Table 1 below, the conventional type (a) a member in which ribs having the same height as the outer peripheral part are disposed on the whole) and (b) to (p) different heights from the outer peripheral part. -Targeted thickness 01 and type 12-12 improved top plate thickness. A square top plate having a side of 400 mm was used. In the improved type, optimization (weight reduction) of rib height, wall thickness, etc. was examined by the finite element method (FEM analysis), and compared with a conventional top plate. (G) Modified 06 type to (m) Improved 10 type has a 20 mm height toward the center part for the purpose of distributing the load because stress concentrates on the contact points between the outer peripheral ribs and the existing ribs toward the center part. Added a rib. The basic of the improved type was an edge thickness of 4 mm. As target values, weight: about 20% lighter than conventional type, maximum deflection: conventional type or less, maximum stress: 34 MPa or less, maximum strain: conventional type or less were set.

Figure 2009215766
Figure 2009215766

(2)解析条件
各構成例に対し、以下の項目について、非線形解析ソフトを用いて解析した。
(2−1)天板特性:ポリプロピレン樹脂製(PP,日本ポリプロ社製:製品名「ノバテックBCBH」)を用い、下表2のような特性を有するPPを適用した。

Figure 2009215766
(2−2)たわみ量(mm):負荷を与えたときの変位量を示す。上端部に大きな変位を生じるとともに、分布状態によって各天板における部分的な変位の偏在の有無を評価することができる。
(2−3)最大応力(MPa):特定の部位に応力が集中することより部材が破損しやすいと考えられるので、小さい方が荷重分散が上手くできていると評価することができる。解析結果を従来品との比率で表示し、評価した。
(2−4)最大ひずみ(−):上記(2−3)応力と同様、ひずみが集中することより部材が破損しやすいと考えられるので、小さい方が荷重分散が上手くできていると評価することができる。
(2−5)改良型は、角部の突起部を固定し、辺が梁となる横部材に載った状態とし、上載荷重を86kN/mとした。 (2) Analysis conditions For each structural example, the following items were analyzed using nonlinear analysis software.
(2-1) Top plate characteristics: PP having the characteristics as shown in Table 2 below was applied using polypropylene resin (PP, manufactured by Nippon Polypro Co., Ltd .: product name “Novatech BCBH”).
Figure 2009215766
(2-2) Deflection (mm): Indicates the amount of displacement when a load is applied. A large displacement occurs at the upper end, and the presence or absence of partial displacement unevenness in each top plate can be evaluated according to the distribution state.
(2-3) Maximum stress (MPa): Since it is considered that the member is more likely to be broken than the stress is concentrated on a specific part, it can be evaluated that the smaller the load is, the better the load distribution is. The analysis results were displayed in the ratio with the conventional product and evaluated.
(2-4) Maximum strain (-): Like the above (2-3) stress, it is considered that the member is more likely to be damaged than the strain is concentrated. Therefore, the smaller the load is, the better the load distribution is evaluated. be able to.
(2-5) In the improved type, the protrusions at the corners were fixed and placed on a horizontal member whose side became a beam, and the upper load was 86 kN / m 2 .

(3)解析結果
解析の結果、各部の応力、ひずみおよび変位を図7Aおよび図7Bに示す。また、数値化した解析結果を下表2に示す。
(3−1)従来品と同等以上の性能を維持することを前提とした場合、たわみ量より改良01型及び改良05型については、変形がかなり大きい結果となった。ひずみについても同様の結果となる。応力については、局所的に引張強度を超える箇所があった。改良02型については、ひずみの項目について従来型よりも改善されたが、たわみ量、応力について従来型と同等以下となった。改良01型のリブの高さを30mmから40mmへ変更した改良03型については、大幅に応力が改善し、板厚の薄肉化により減量した樹脂を、効率用よく新たなリブとして配置することにより、従来型に対して約20%減量し、解析でたわみ量、応力、ひずみの項目について従来型と同等以上の数値を得ることができた。軽量化を図った改良04型については、応力について改善がみられたものの、たわみ量、ひずみにおいて従来型との差異はみられなかった。
(3−2)改良06型、改良07型は、リブを追加することにより、応力の減少が確認された。一方、中心部に向かうリブを配置した改良08型については、たわみ量が大きく減少したが、逆に外周のリブの接点に応力が過度に集中する結果となった。改良09型は、外周部のリブとの接点についてのみリブの高さを40mmとし、たわみ量は減少したが、応力についてはさらに外周のリブとの接点に集中する結果となった。改良10型は、リブの長さが短い部位に応力が集中することから、リブの長さを確保するためにリブを斜めに肉盗みし、辺を長くすることにより大幅に応力を分散させることができた。
(3−3)また、改良10型をさらに肉盗みした改良11型は、たわみ量、応力の項目について改良10型よりも低下した。改良10型にさらにリブを追加した改良12型は、たわみ量、応力全ての項目について改良10型よりも改善された。
(3) Analysis result As a result of the analysis, stress, strain and displacement of each part are shown in FIGS. 7A and 7B. The numerical analysis results are shown in Table 2 below.
(3-1) Assuming that the performance equal to or higher than that of the conventional product is maintained, the deformation of the improved 01 type and the improved 05 type is considerably larger than the deflection amount. Similar results are obtained for strain. As for stress, there was a portion that locally exceeded the tensile strength. The improved type 02 was improved over the conventional type in terms of strain, but the deflection amount and the stress were equal to or lower than those of the conventional type. For the improved 03 type in which the height of the improved 01 type rib is changed from 30 mm to 40 mm, the stress is greatly improved, and the resin reduced by reducing the thickness of the plate is arranged as a new rib efficiently. The amount was reduced by about 20% compared to the conventional type, and the numerical values equivalent to or higher than those of the conventional type were obtained for the items of deflection, stress, and strain in the analysis. Although the improvement 04 type which aimed at weight reduction was improved about stress, the difference in a deflection amount and a distortion was not seen from the conventional type.
(3-2) In the improved 06 type and the improved 07 type, a reduction in stress was confirmed by adding ribs. On the other hand, in the improved 08 type in which the rib toward the center is arranged, the amount of deflection is greatly reduced, but conversely, the stress is excessively concentrated on the contact point of the outer peripheral rib. In the improved 09 type, the height of the rib was set to 40 mm only for the contact with the outer peripheral rib, and the amount of deflection was reduced, but the stress was further concentrated on the contact with the outer peripheral rib. In the improved type 10, stress concentrates on the part where the length of the rib is short. Therefore, in order to secure the length of the rib, the rib is stealed obliquely and the stress is greatly dispersed by lengthening the sides. I was able to.
(3-3) Further, the improved type 11, which further steals the improved type 10, was lower than the improved type 10 in terms of deflection amount and stress. The improved type 12 in which ribs are further added to the improved type 10 is improved over the improved type 10 in all items of deflection and stress.

Figure 2009215766
Figure 2009215766

〔天板の平滑性向上の効果を検証する実験例〕
次に、本発明に係る天板Pにおける剪断変形に対する天板Pの表面摩擦係数の変化の実験を行った。つまり、上記のように、構造体を形成した本発明に係る天板Pの上面には、凹凸部がなく、また、構造体の組み立てにおいても縦部材や横部材との接合にキャップ等を用いる必要がない。ここでは、こうした特徴を生かし、後述する構造体の埋め戻しによる外力の影響を少なくするために、天板Pの表面を平滑にすることによって摩擦係数が小さくなり、外力の影響を軽減することが可能となったことを検証するものである。具体的には、後述するように、天板Pを配設した構造体を形成した後に、天板Pの上面に遮水シートが敷かれることがあるが、このとき、遮水シートとともに、あるいは遮水シートなしで、天板Pの上面に例えば透水シート(不織布)が敷かれることがあり、天板Pの上面に凹凸部のある場合やキャップ等による部材の接合を行う場合には、その上部に覆土がされるとその部分が不織布の一部による引っ張りや摩擦の発生が生じることがある。このとき、天板Pおよび構造体には、剪断応力が掛かることとなり、ゆがみやひずみなどの原因となる可能性がある。天板Pは、こうした事象の発生を根本的に解消することができるもので、その形態の優位性とともに高い平滑性による表面摩擦係数の減少について従来品との比較検証を行った。
[Experimental example to verify the effect of improving the smoothness of the top plate]
Next, the experiment of the change of the surface friction coefficient of the top plate P with respect to the shear deformation in the top plate P according to the present invention was conducted. That is, as described above, the top surface P of the top plate P according to the present invention in which the structure is formed has no uneven portion, and a cap or the like is used for joining the vertical member or the horizontal member in the assembly of the structure. There is no need. Here, in order to reduce the influence of external force due to backfilling of the structure, which will be described later, by taking advantage of these characteristics, the friction coefficient is reduced by smoothing the surface of the top plate P, and the influence of the external force can be reduced. It verifies that it has become possible. Specifically, as will be described later, a water shielding sheet may be laid on the top surface of the top plate P after forming the structure on which the top plate P is disposed. Without a water-impervious sheet, for example, a water-permeable sheet (nonwoven fabric) may be laid on the top surface of the top plate P. When there is an uneven portion on the top surface of the top plate P or when joining members with caps, When the upper part is covered with soil, the part may be pulled or rubbed due to a part of the nonwoven fabric. At this time, the top plate P and the structure are subjected to shear stress, which may cause distortion and distortion. The top plate P can fundamentally eliminate the occurrence of such an event, and compared with the conventional product for the reduction of the surface friction coefficient due to the high smoothness as well as the superiority of the form.

(1)対象となる構造体
幅200×100(mm)に切断した本発明に係る天板Pを対象とし、従来品との比較を行った。
(2)実験方法
せん断速度を1mm/secとし,載荷圧δnを10.0kN/m,24.5kN/m,49.0kN/m,73.5kN/m,98.0kN/mの5種類に変化させたときの、天板Pとその上面を被覆した長繊維不織布との間に生じる相対変位と摩擦力度τの関係を求める。相対変位20mmまでの最大摩擦力度τmaxを求め、そのときの載荷圧δnによって除算し、摩擦係数(τ/δn)を算出した。
(3)実験結果
実験の結果は、図8(A)のように、対象となる各天板について上記各載荷圧δnにおける相対変位と摩擦力度τとの関係において、相対変位2〜3mm以上において摩擦力度τの安定が見られた。図8(B)は、載荷圧δnと最大摩擦力度τmaxとの関係を示し、一次近似が可能な相関性を得ることができた。図8(C)は、本発明に係る天板Pと従来品の載荷圧δnと摩擦係数(τ/δn)との関係を示す。天板Pについて、非常に小さな摩擦係数(τ/δn)に改善され、外力の影響を軽減することができることが判った。
(1) Structure used as object The top plate P according to the present invention cut to a width of 200 × 100 (mm) was used as a target and compared with a conventional product.
(2) Experimental method and the shearing speed and 1 mm / sec, loading pressure δn the 10.0kN / m 2, 24.5kN / m 2, 49.0kN / m 2, 73.5kN / m 2, 98.0kN / m The relationship between the relative displacement generated between the top plate P and the non-woven fabric covered with the upper surface and the degree of frictional force τ when the number is changed to the five types of 2 is obtained. The maximum frictional force degree τmax up to a relative displacement of 20 mm was obtained, and divided by the loading pressure δn at that time to calculate the friction coefficient (τ / δn).
(3) Experimental results As shown in FIG. 8 (A), the experimental results are shown in the relationship between the relative displacement at each loading pressure δn and the frictional force degree τ for each target top plate when the relative displacement is 2 to 3 mm or more. The stability of the frictional force τ was observed. FIG. 8B shows the relationship between the loading pressure δn and the maximum frictional force degree τmax, and a correlation capable of linear approximation was obtained. FIG. 8C shows the relationship between the top plate P according to the present invention, the loading pressure δn of the conventional product, and the friction coefficient (τ / δn). It has been found that the top plate P can be improved to a very small friction coefficient (τ / δn) and the influence of external force can be reduced.

〔構造体について〕
上記においては、主としてブロック単位に形成される構造体について述べたが、雨水貯留浸透システムを形成する構造体は、この単位ブロックを縦方向、横方向および高さ方向に接合して構成される。具体的には、接続部材1に縦部材3を嵌合させながら接合し、さらに4つの方向に横部材2を挿入させながら繰り返し接合することによって、桝目状の単位ブロックを上下・縦横に拡張して任意の大きさの構造体を形成することが可能となる。これによって、縦方向および横方向に空間を形成し、雨水の流通あるいは保守時の人員の移動が可能となる。ただし、横部材2と縦部材3に接合するように、水平あるいは垂直な板状体を挿入し、縦空間あるいは横空間を遮断する構造あるいは通過不可能な構造を形成することが可能である。特に構造体に対する横方向および斜め方向からの力に対する強度を上げることができる。
[About structure]
In the above description, the structure formed mainly in block units has been described. However, the structure forming the rainwater storage and infiltration system is configured by joining the unit blocks in the vertical direction, the horizontal direction, and the height direction. Specifically, by joining the connecting member 1 while the longitudinal member 3 is fitted, and repeatedly joining the connecting member 1 while inserting the transverse member 2 in four directions, the grid-like unit block is expanded vertically and vertically and horizontally. Thus, a structure with an arbitrary size can be formed. As a result, spaces are formed in the vertical direction and the horizontal direction, and personnel can be moved during the circulation or maintenance of rainwater. However, it is possible to insert a horizontal or vertical plate-like body so as to join the horizontal member 2 and the vertical member 3 to form a structure that blocks the vertical space or the horizontal space or a structure that cannot pass through. In particular, the strength against the force from the lateral direction and the oblique direction with respect to the structure can be increased.

さらに、こうして組み上げられた構造体の最上部の上面部に、天板Pが配設される。具体的な配設状態については、上記〔単位ブロック〕に記載の通りであり、こうした構成によって、構造体の上部の強度の補強を図り、横部材2に剪断変形をもたらす応力に対する大きな抵抗力が得るとともに、特に、構造体の上部に掛かる剪断変形の応力に対して、単位ブロックのみならず、構造体全体の抵抗力の強化を図ることができる。   Furthermore, the top plate P is disposed on the uppermost surface of the uppermost part of the structure thus assembled. The specific arrangement state is as described in the above [unit block]. With such a configuration, the strength of the upper part of the structure is reinforced, and a large resistance to stress that causes shear deformation in the transverse member 2 is obtained. In particular, the resistance of not only the unit block but also the entire structure can be strengthened against the stress of shear deformation applied to the upper part of the structure.

ここで、天板Pは、構造体の最上部を構成する全ての単位ブロックの上面に配設する必要はなく、例えば、構造体を上からみた図9に示すように、1つおきに配設することによって、十分な補強を行うことができ、縦方向の空間を確保することができる。つまり、2つの天板P1およびP2は、接続部材11によって嵌合状の接合が形成され、同様に1つおきに近接する単位ブロックに配設された天板P1,P2・・は、接続部材11,12・・を接点として直接接することとなり、横からの効力に対して十分な抵抗力を確保することができる。また、天板Pの外周部にリブRaを設けた場合には、図9に示すように、全ての横部材2について、いずれかのリブRaと接合されていることから、その補強機能を確保することができる。このように、単位となる構造体ごとに全て天板を配設する必要は必ずしもなく、任意に配設することが可能である。   Here, it is not necessary to arrange the top plate P on the upper surface of all the unit blocks that constitute the uppermost part of the structure. For example, as shown in FIG. By providing, sufficient reinforcement can be performed and a vertical space can be secured. That is, the two top plates P1 and P2 are formed in a fitting-like joint by the connection member 11, and similarly, the top plates P1, P2,. 11, 12... Are contacted directly, and sufficient resistance can be secured against the effect from the side. Further, when the rib Ra is provided on the outer peripheral portion of the top plate P, as shown in FIG. 9, since all the lateral members 2 are joined to any of the ribs Ra, the reinforcing function is ensured. can do. As described above, it is not always necessary to dispose the top plate for every structure serving as a unit, and it is possible to dispose them arbitrarily.

〔実験例〕
次に、上記構造体について、図10(A)に例示するような実験装置を用いて、本発明に係る天板Pを配設したときの剪断変形に対する抵抗力の実験を行った。
(1)対象となる構造体
図1に例示した単位ブロックを「高さ4×幅7×奥行き3」接合し、その上部に、図10(B)に例示するような本発明に係る天板Pを配設した構造体と、図10(C)に例示するような従来型の天板を配設した構造体を対象とした。本発明に係る天板Pとしては、上記改良型を用いた。
[Experimental example]
Next, with respect to the structure, an experiment of resistance to shear deformation when the top plate P according to the present invention was disposed was performed using an experimental apparatus as illustrated in FIG.
(1) Target Structure The unit block illustrated in FIG. 1 is joined “height 4 × width 7 × depth 3”, and the top plate according to the present invention as illustrated in FIG. A structure in which P is disposed and a structure in which a conventional top plate as illustrated in FIG. As the top plate P according to the present invention, the improved type was used.

(2)実験方法
各構造体について、図10(A)に示す実験装置をおいて、構造体の中央部を引っ張り、荷重と変位から天板の変形に対する追従性を確認し、引張荷重に対する変位を計測し剪断変形に対する抵抗力を求める実験を行った。具体的には、上記の対象となる構造体10について、構造体10の最上部中央10aを引張り、荷重と変位を計測し、剪断強度特性を確認する。実験ヤードに設置された構造体10に引張治具82にワイヤ83、ロードセル84および変位計85をセットし、引張装置86を介してフォークリフト87によって引張りながら、ロードセル84によって計測された引張荷重(剪断力)および変位計85によって計測された変位量から各構造体10の剪断変形に対する抵抗特性を把握するとともに、構造体10が変形する状態を確認する。
(2) Experimental method For each structure, place the experimental device shown in Fig. 10 (A), pull the center of the structure, confirm the followability to the deformation of the top plate from the load and displacement, and change the displacement against the tensile load. An experiment was conducted to determine the resistance to shear deformation. Specifically, with respect to the structure 10 to be the target, the uppermost center 10a of the structure 10 is pulled, the load and displacement are measured, and the shear strength characteristics are confirmed. A wire 83, a load cell 84 and a displacement meter 85 are set on a tension jig 82 in the structure 10 installed in the experimental yard, and the tensile load (shear) measured by the load cell 84 is pulled while being pulled by a forklift 87 via a tensioning device 86. Force) and the amount of displacement measured by the displacement meter 85, the resistance characteristics against the shear deformation of each structure 10 are grasped, and the state in which the structure 10 is deformed is confirmed.

(3)実験結果
実験の結果、図11のような差異のあるグラフを得ることができた。従来型の天板を配設した構造体に比較して、改良型の天板を配設した構造体が、剪断変形に対する優れた抵抗特性を有することが判る。具体的には、従来型は変形に対して反力を得る構造となっていないため、改良型の天板は、60mm以上の変位で約1000N程度の効果があった。変位(変形量)による部材の外れは、従来型の天板は、荷重2800N、変位50mm辺りから徐々に外れ初めたのに対して、改良型の天板は、荷重6000N、変位90mm時点で跳ねるように外れた。荷重及び変位について2倍程度改善している。
(3) Experimental results As a result of the experiments, a graph having a difference as shown in FIG. 11 could be obtained. It can be seen that the structure with the improved top plate has superior resistance to shear deformation compared to the structure with the conventional top plate. Specifically, since the conventional type does not have a structure for obtaining a reaction force against deformation, the improved top plate has an effect of about 1000 N with a displacement of 60 mm or more. As for the detachment of the member due to the displacement (deformation amount), the conventional top plate gradually begins to deviate from a load of about 2800 N and a displacement of about 50 mm, whereas the improved top plate jumps at a load of 6000 N and a displacement of 90 mm. It came off. The load and displacement are improved about twice.

<本発明に係る雨水貯留浸透システム>
本発明に係る雨水貯留浸透システム(以下「本システム」という)は、上記いずれかの構造部材を用い、縦方向および横方向の空間を形成可能にすることを特徴とする。すなわち、本システムは、剪断変形に対する抵抗力を十分に有するとともに、大きい空間を確保できて保守点検が容易である。しかも個々の構成部材から容易に組立てることができことから、現地での組立を可能にすることにより輸送コストを低減でき、かつ雨水貯留浸透槽の形状に対して柔軟に対応可能することができる。
<Rainwater storage and penetration system according to the present invention>
A rainwater storage and infiltration system according to the present invention (hereinafter referred to as “the present system”) is characterized by using any of the structural members described above and making it possible to form vertical and horizontal spaces. That is, this system has sufficient resistance to shear deformation, and can secure a large space and is easy to maintain and inspect. In addition, since it can be easily assembled from individual components, it is possible to reduce the transportation cost by enabling on-site assembly, and to flexibly cope with the shape of the rainwater storage and penetration tank.

図12(A)および(B)は、本システムの1つの実施形態を例示するもので、構造体10を天板Pが載置されていない上部を含む複数の区分20に分割し、区分20ごとに、構造体10の上空間に点検孔21を配設することを特徴とする。こうした構成によって、保守点検のため空間部を確保すると同時に、剪断変形に対する抵抗力を強化された雨水貯留浸透槽を作製することが可能となる。   12 (A) and 12 (B) illustrate one embodiment of the present system. The structure 10 is divided into a plurality of sections 20 including an upper portion on which the top plate P is not placed. Each is characterized in that an inspection hole 21 is provided in the upper space of the structure 10. With such a configuration, it is possible to prepare a rainwater storage and penetration tank that secures a space for maintenance and at the same time has enhanced resistance to shear deformation.

以下、本構造部材を用いて本システムを組み立てた場合について、図12(A)を主に説明する。本システムを形成するに当たり、まず地面に1〜5m程度の地面凹部(以下、ピットということがある)を掘削・形成するとともに、ピット周囲に側溝11を形成し、ピットの底面に砕石、砂などを敷設・施工し平準化して基礎12を形成する。その表面に遮水材である遮水シート13を敷設した後、樹脂製の縦部材3と横部材2とから構成された単位ブロックで構成された区分20を形成しつつ、更に継ぎ足し拡張して、ピットの内容積に応じた構造体10を配置する。このとき、砕石などを敷設して形成された基礎12に代え、コンクリートにより形成することによって、より高い平滑性を確保することが可能である。本システムにおいては、1つの区分20において、図9に示したように交互に構造体によって形成された場合を例示し、区分20の中央に単位ブロックUが縦列に配設され、さらに区分20同士の境界を側壁22によって仕切られている。ここで、ピットの内容積が大きい場合には、ピット内で構造体10を組み立ててもよいし、構造体10をピット外で組み立てた後、ピット内に配置するようにしてもよい。このようにして組み立てた構造体10は、樹脂製あるいは金属製などのベルトで締結・固定されることが好ましい。次に、この構造体10の上部に天板Pを配設する。ここでは、図12(B)のように、天板Pを1つおきに配設した場合を例示する。   Hereinafter, the case where this system is assembled using this structural member will be described mainly with reference to FIG. In forming this system, first, a ground recess (hereinafter sometimes referred to as a pit) of about 1 to 5 m is excavated and formed in the ground, a side groove 11 is formed around the pit, and crushed stone, sand, etc. are formed on the bottom surface of the pit. The foundation 12 is formed by laying and constructing and leveling. After laying a water-impervious sheet 13 as a water-impervious material on the surface, the section 20 composed of the unit block composed of the resin vertical member 3 and the horizontal member 2 is formed, and further expanded and expanded. The structure 10 corresponding to the internal volume of the pit is arranged. At this time, instead of the foundation 12 formed by laying crushed stone or the like, it is possible to ensure higher smoothness by forming with concrete. In this system, a case where one section 20 is formed by an alternating structure as shown in FIG. 9 is illustrated, unit blocks U are arranged in a column in the center of the section 20, and the sections 20 Is bounded by a side wall 22. Here, when the internal volume of the pit is large, the structure 10 may be assembled in the pit, or after the structure 10 is assembled outside the pit, it may be arranged in the pit. The assembled structure 10 is preferably fastened and fixed with a belt made of resin or metal. Next, the top plate P is disposed on the upper portion of the structure 10. Here, as shown in FIG. 12B, a case where every other top plate P is arranged is illustrated.

ついで、ピット内に配置された構造体10の側面部14,14は、必要に応じて埋め戻しを行うとともに、側溝11よりピット内に雨水を流し込み可能に連通する配管15を敷設し、さらに、上面に遮水シート13を被覆し(天板Pを大半の単位ブロックの上面部に配設する場合には不要とすることができる)、その上から0.5〜2m程度の土砂を被覆して覆土16とする。これら、上面の遮水シート13、覆土16などは、被覆層を形成する。また、これら被覆層16の複数箇所には、点検孔21が設けられていてもよい。なお、構造体10に遮水シート13を被覆する代わりに、透水性シートを被覆して雨水を浸透させるようにしてもよい。側溝11は、その底部に泥溜17が形成されるように、底部が幾分深くなっている。   Next, the side surface portions 14 and 14 of the structure 10 arranged in the pit are backfilled as necessary, and a piping 15 is laid so as to allow rainwater to flow into the pit from the side groove 11. Cover the upper surface with a water shielding sheet 13 (can be unnecessary when the top panel P is disposed on the upper surface of most unit blocks), and then cover the soil about 0.5 to 2 m above it. To cover soil 16. These water-impervious sheet 13 and covering soil 16 on the upper surface form a covering layer. In addition, inspection holes 21 may be provided at a plurality of locations of the covering layer 16. Instead of covering the structure 10 with the water shielding sheet 13, rainwater may be infiltrated by covering with a water permeable sheet. The side groove 11 has a slightly deep bottom so that a mud reservoir 17 is formed at the bottom.

ここで、構造体10の大きさについては、要求仕様によって任意に設定されるが、(1)必要とされる雨水貯留浸透槽の内部容積を確保すること、および(2)その保守点検が可能な空間および開口を確保できること、に加え、(3)積載される単位ブロックの自重および覆土16による圧縮に耐えうる強度を確保できること、が求められることから、例えば図9における長さおよび奥行きを、数m〜数10m程度とし、高さをその1/5〜2倍程度とすることが好ましい。   Here, the size of the structure 10 is arbitrarily set according to the required specifications, but (1) securing the required internal volume of the rainwater storage and penetration tank, and (2) maintenance and inspection are possible. In addition to ensuring a sufficient space and opening, (3) the weight of the unit block to be loaded and the strength to withstand compression by the covering soil 16 are required, for example, the length and depth in FIG. It is preferable that the height is about several meters to several tens of meters, and the height is about 1/5 to 2 times the height.

また、構造体10は、少なくとも108kN/m以上の圧縮強度を有することが好ましい。このようにすれば、最上部に覆土2m程度(負荷:約36kN/m)を施工したとしても、土圧の3倍以上となる十分な強度を有する。具体的には、長さ約80cmの縦部材3と長さ約80cmの横部材2を組み合わせる場合には、縦部材3は、1.56本/mとなり、少なくとも圧縮強度約69.2kN/本を有する縦部材3を用いることが好ましい。ただし、縦部材3と嵌合状態で接合する横部材2の補強機能によって、その1/2以下であっても十分な強度を確保することができる。 The structure 10 preferably has a compressive strength of at least 108 kN / m 2 or more. If it does in this way, even if it covers about 2 m of covering soil (load: about 36 kN / m < 2 >) on the top, it has sufficient intensity | strength which becomes 3 times or more of earth pressure. Specifically, when the longitudinal member 3 having a length of about 80 cm and the transverse member 2 having a length of about 80 cm are combined, the length of the longitudinal member 3 is 1.56 pieces / m 2 , and at least a compressive strength of about 69.2 kN / It is preferable to use a longitudinal member 3 having a book. However, sufficient strength can be ensured even if it is ½ or less by the reinforcing function of the horizontal member 2 joined to the vertical member 3 in a fitted state.

このようにすることにより、一旦雨水を貯留して、庭園などへの散水、洗浄水、非常用水など各種用途に利用したり、大量の雨水を徐々に放流できるような調整機能を備えさせたりすることができる。しかも、コンクリートで構成する場合に比べて、養生期間などが不要であることから、雨水貯留構造物の構築速度を格段に早くすることができる。   In this way, rainwater is temporarily stored and used for various purposes such as watering gardens, washing water, emergency water, etc., and an adjustment function that can gradually discharge a large amount of rainwater is provided. be able to. And since the curing period etc. are unnecessary compared with the case where it comprises with concrete, the construction speed of a rainwater storage structure can be made markedly faster.

本発明に係る雨水貯留構造物は、雨水を貯留して利用するタンクとしての用途に止まらず、ビオトープ等として利用することもできる。   The rainwater storage structure according to the present invention is not limited to the use as a tank for storing and using rainwater, but can also be used as a biotope or the like.

本発明に係る雨水貯留浸透システム用構造部材の単位ブロックの1つの実施態様を例示する説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which illustrates one embodiment of the unit block of the structural member for rainwater storage and penetration systems which concerns on this invention. 単位ブロックへの天板の配設を例示する説明図。Explanatory drawing which illustrates arrangement | positioning of the top plate to a unit block. 本発明に係る横部材の構造を例示する説明図。Explanatory drawing which illustrates the structure of the horizontal member which concerns on this invention. 本発明に係る天板の構造を例示する説明図。Explanatory drawing which illustrates the structure of the top plate which concerns on this invention. 本発明に係る天板の構造を例示する説明図。Explanatory drawing which illustrates the structure of the top plate which concerns on this invention. 本発明に係る天板との接合状態を例示する説明図。Explanatory drawing which illustrates a joining state with the top plate which concerns on this invention. 天板の構成と剪断変形に対する抵抗力についての解析結果を示す説明図。Explanatory drawing which shows the analysis result about the structure of a top plate, and the resistance force with respect to a shear deformation. 天板の構成と剪断変形に対する抵抗力についての解析結果を示す説明図。Explanatory drawing which shows the analysis result about the structure of a top plate, and the resistance force with respect to a shear deformation. 本発明に係る構造体の構成を例示する説明図。Explanatory drawing which illustrates the structure of the structure which concerns on this invention. 本発明に係る構造体の構成を例示する説明図。Explanatory drawing which illustrates the structure of the structure which concerns on this invention. 構造体に配設された天板の剪断強度特性を実験する装置を例示する説明図。Explanatory drawing which illustrates the apparatus which tests the shear strength characteristic of the top plate arrange | positioned at the structure. 構造体に配設された天板の剪断強度特性実験結果を例示する説明図。Explanatory drawing which illustrates the shear strength characteristic experimental result of the top plate arrange | positioned at the structure. 本発明に係る雨水貯留浸透システムを例示する説明図。Explanatory drawing which illustrates the rainwater storage penetration system which concerns on this invention. 従来技術に係る雨水貯留構造物を例示する説明図。Explanatory drawing which illustrates the rainwater storage structure which concerns on a prior art.

符号の説明Explanation of symbols

1 接続部材
1a 凹形状部(筒状部)
1b 突起部
1c 貫通孔
2 横部材
2a 突起
2b 溝部
2c、Ra、Rb、Rc リブ
3 縦部材
P 天板
Pa 角部
1 Connection member 1a Concave shape part (tubular part)
1b Protrusion 1c Through-hole 2 Horizontal member 2a Protrusion 2b Groove 2c, Ra, Rb, Rc Rib 3 Vertical member P Top plate Pa Corner

Claims (5)

複数の縦部材と横部材が挿抜可能に嵌合して単位となる三次元構造体を形成し、該単位となる三次元構造体が縦方向、横方向および高さ方向に複数接合して構成され、その内部に空間部を形成するとともに、前記三次元構造体の上部に載置され、前記縦部材,横部材あるいはこれらを接合させる接続部材があれば該接続部材のいずれかと接合して固定される平板状の天板を有する雨水貯留浸透システム用構造部材において、
前記天板の外周部に平板に垂直な曲げ縁または/および凸形状のリブ(合せて「リブRa」という)を設け、これに対応する前記横部材または接続部材の側部の上端に接合させるとともに、前記リブRaの内側に、この突起高さよりも大きい突起高さを有する複数の凸形状のリブRbを設け、該リブRbによって前記横部材または接続部材の内側部と嵌合状に接合させることを特徴とする雨水貯留浸透システム用構造部材。
A plurality of vertical members and horizontal members are detachably fitted to form a unit three-dimensional structure, and the unit three-dimensional structure is formed by joining a plurality of members in the vertical direction, the horizontal direction, and the height direction. If there is a connecting member that forms a space in the interior and is placed on top of the three-dimensional structure and connects the vertical member, the horizontal member, or these, there is a connection with the connecting member. In the structural member for a rainwater storage and penetration system having a flat top plate to be
A bent edge or / and a convex rib (also referred to as “rib Ra”) perpendicular to the flat plate is provided on the outer peripheral portion of the top plate and joined to the upper end of the side portion of the corresponding transverse member or connecting member. In addition, a plurality of convex ribs Rb having a projection height larger than the projection height is provided inside the rib Ra, and the ribs Rb are joined to the inner portion of the lateral member or the connection member in a fitting manner. A structural member for a rainwater storage and infiltration system.
前記リブRaの内側に、この突起高さよりも大きい突起高さを有し、周回状または周回の一部を形成する凸形状のリブRcを設け、該リブRcの外側面によって前記横部材または接続部材の内側部の一部または全体と嵌合状に接合することを特徴とする請求項1記載の雨水貯留浸透システム用構造部材。   A convex rib Rc having a projection height larger than the projection height and forming a circular shape or a part of the circular shape is provided on the inner side of the rib Ra, and the lateral member or connection is provided by an outer surface of the rib Rc. The structural member for a rainwater storage and infiltration system according to claim 1, wherein the structural member is joined to a part or the whole of the inner part of the member in a fitting manner. 前記天板の角部の一部に平板に垂直な凸形状部を設け、前記縦部材、横部材あるいは接続部材のいずれかの一部に設けられた凹形状部と嵌合状に接合させることを特徴とする請求項1または2記載の雨水貯留浸透システム用構造部材。   A convex part perpendicular to the flat plate is provided at a part of the corner of the top plate, and the concave part provided in a part of any one of the vertical member, the horizontal member or the connecting member is joined in a fitting manner. The structural member for a rainwater storage and infiltration system according to claim 1 or 2. 請求項1〜3いずれかに記載の構造部材を用い、その一部の上部に前記天板が載置された三次元構造体によって、雨水貯留空間を形成することを特徴とする雨水貯留浸透システム。   A rainwater storage and infiltration system using the structural member according to any one of claims 1 to 3 and forming a rainwater storage space by a three-dimensional structure in which the top plate is placed on a part of the top. . 前記三次元構造体を天板が載置されていない上部を含む複数の区分に分割し、該区分ごとに、該三次元構造体の上空間に点検孔を配設することを特徴とする請求項4記載の雨水貯留浸透システム。   The three-dimensional structure is divided into a plurality of sections including an upper portion on which the top plate is not placed, and an inspection hole is disposed in the upper space of the three-dimensional structure for each section. Item 5. A rainwater storage and penetration system according to Item 4.
JP2008059705A 2008-03-10 2008-03-10 Structural member for rainwater storage and infiltration system, and rainwater storage and infiltration system using the same Withdrawn JP2009215766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059705A JP2009215766A (en) 2008-03-10 2008-03-10 Structural member for rainwater storage and infiltration system, and rainwater storage and infiltration system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059705A JP2009215766A (en) 2008-03-10 2008-03-10 Structural member for rainwater storage and infiltration system, and rainwater storage and infiltration system using the same

Publications (1)

Publication Number Publication Date
JP2009215766A true JP2009215766A (en) 2009-09-24

Family

ID=41187889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059705A Withdrawn JP2009215766A (en) 2008-03-10 2008-03-10 Structural member for rainwater storage and infiltration system, and rainwater storage and infiltration system using the same

Country Status (1)

Country Link
JP (1) JP2009215766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227808A (en) * 2012-04-26 2013-11-07 Chichibu Chemical Kk Underground water storage tank
JP2014088487A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Method for producing fiber-reinforced plastic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227808A (en) * 2012-04-26 2013-11-07 Chichibu Chemical Kk Underground water storage tank
JP2014088487A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Method for producing fiber-reinforced plastic

Similar Documents

Publication Publication Date Title
WO2013136630A1 (en) Structural member used in rainwater storage laminated structure
KR100988806B1 (en) The water-storage tank of assembly type and method for constructing thereof
JP2009215766A (en) Structural member for rainwater storage and infiltration system, and rainwater storage and infiltration system using the same
JP2009138396A (en) Structural member for rainwater storage and penetration system, and rainwater storage and penetration system using the same
JP2010229733A (en) Floor slab for bridge, made of steel pipe, floor slab structure for the bridge, and steel pipe
JP2007198071A (en) Reinforcement structure of opening part of concrete slab and its reinforcing method
JP2008248655A (en) Support tool for constructing honeycomb structure
JP6233769B2 (en) Rock fall prevention fence
JP2009209656A (en) Three-dimensional structural body for rainwater storage/penetration system, and rainwater storage/penetration system using the same
JP2009062687A (en) Structural member for rainwater storage and penetration system, and rainwater storage and penetration system using it
KR100643638B1 (en) Reverse placing pipe for top-down construction method was used mesh
KR101192357B1 (en) Reinforced retaining wall and constructing method thereof
KR101411989B1 (en) A prefabricated rainwater storage tank and Structure construction method thereof
GB2373530A (en) Preformed Modular Sub-surface Drainage System
JP6224181B1 (en) Underground water storage facility
JP2009019402A (en) Structural member for rainwater storing and permeating system, and rainwater storing and permeating system using the structural member
KR101272001B1 (en) Body of underground storage container fabricating precast segments and method constructing thereof
KR100883798B1 (en) A sump
JP2015017434A (en) Bar arrangement support tool and masonry method of concrete block of using bar arrangement support tool
KR200461421Y1 (en) Panel with cleaning hole
KR200454341Y1 (en) Wetland work equipment for heavy equipment
JP5200081B2 (en) Earth structure
KR20220122344A (en) Rainwater storage facility with improved structure
JP4425826B2 (en) Rainwater treatment facility structure, rainwater treatment facility structure block, and rainwater treatment facility using these
JP2019044380A (en) Water storage facility

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510