JP5972758B2 - 粒径測定装置及び粒径測定方法 - Google Patents

粒径測定装置及び粒径測定方法 Download PDF

Info

Publication number
JP5972758B2
JP5972758B2 JP2012243957A JP2012243957A JP5972758B2 JP 5972758 B2 JP5972758 B2 JP 5972758B2 JP 2012243957 A JP2012243957 A JP 2012243957A JP 2012243957 A JP2012243957 A JP 2012243957A JP 5972758 B2 JP5972758 B2 JP 5972758B2
Authority
JP
Japan
Prior art keywords
particle
particle size
image data
distance
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012243957A
Other languages
English (en)
Other versions
JP2014092494A (ja
Inventor
勝郎 出島
勝郎 出島
和茂 原田
和茂 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Engineering and Maintenance Co Ltd
Original Assignee
Shinko Engineering and Maintenance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50936650&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5972758(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shinko Engineering and Maintenance Co Ltd filed Critical Shinko Engineering and Maintenance Co Ltd
Priority to JP2012243957A priority Critical patent/JP5972758B2/ja
Publication of JP2014092494A publication Critical patent/JP2014092494A/ja
Application granted granted Critical
Publication of JP5972758B2 publication Critical patent/JP5972758B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、例えば粒状の工業用原料等に含まれる各粒子の粒径を測定するための粒径測定装置及び粒径測定方法に関する。
製鉄等の鉄鋼業において用いられるコークス、鉄鉱石及び石灰等の粒状工業用原料は、その粒径が生産性に影響するため、その粒径を測定することが重要となる。そのため、このような粒状工業用原料の粒径を測定するための様々な技術が従来提案されている。例えば、特許文献1には、ベルトコンベアの終点又は乗り継ぎ点等から空中に投下される粒状コークスに対してスリット光を照射しながら、当該粒状コークスをカメラによって撮像し、得られた画像データより粒状コークスの各粒子を検出し、検出された各粒子の粒径を算出することで粒度分布を得る粒度測定方法が開示されている。このように粒状コークスにスリット光を照射すると、各粒子の表面には縞模様が形成される。スリット光の当たり方は各粒子の位置によって異なるため、この縞模様は粒子毎にその形状等が異なり、各粒子間において不連続となる。このため、この粒度測定方法によれば、粒子間のスリット光の不連続性を検出することで、例えば、粒子同士が重なっている等により複数の粒子が見かけ上一つの粒子に見えてしまうような粒子群を検出することができる。このようにして粒子群を検出した後、その粒子群を粒径の算出対象から除外することによって、この従来の粒度測定方法では精度の高い粒度分布を得ることができる。
特開平07−128214号公報
図9は、上述したような従来の粒度測定方法におけるカメラDCの設置位置を説明するための模式図であり、ベルトコンベアBCによって運搬される粒状コークスGCと、粒状コークスGCを撮像するためのカメラDCとの位置関係が示されている。この図9に示すように、ベルトコンベアBCの終点から粒状コークスGCを空中に投下した場合、粒状コークスGCに含まれる各粒子それぞれの大きさ及び形状の違い等から、粒状コークスGCは一定の広がり(図9中、Lで示す範囲)を持って落下する。この従来の粒度測定方法においては、ベルトコンベアBCの終点から空中に投下され、広がりながら落下する粒状コークスGCを撮像することが可能なようにカメラDCが設置されている。
上述した従来技術のようにカメラを用いて測定対象を撮像する場合、カメラと測定対象との間の距離に反比例して撮像素子上に結像する測定対象の像のサイズが変化する。このため、空中に投下され、一定の広がりを持って落下する粒状コークスを撮像した場合、落下中の広がりによって生じる粒状コークスの各粒子それぞれとカメラとの距離の違いにより、画像データ上における各粒子それぞれの倍率が異なってくることになる。しかしながら、上記の従来技術においては、このような投下中の粒状コークスの広がりによって生じる画像データ上での粒子毎の倍率の違いは考慮されていない。この違いに起因して測定誤差が生じるため、上記の従来の粒度測定方法においては高精度での粒径の測定が難しいという問題がある。
本発明は斯かる事情に鑑みてなされたものであり、その主たる目的は、上記課題を解決することができる粒径測定装置及び粒径測定方法を提供することにある。
上述した課題を解決するために、本発明の一の態様の粒径測定装置は、運搬経路上を移動する、複数の粒子を含む粒状原料を含む画像データを撮像する撮像部と、前記撮像部によって撮像された画像データの画素毎に、前記画像データにおける前記粒状原料の各粒子それぞれと当該撮像部との間の距離を測定する距離測定手段と、前記撮像部により撮像された画像データ及び前記距離測定手段により測定された距離に基づいて、前記粒状原料の各粒子それぞれの粒径を算出する粒径算出手段とを備える。
この態様において、前記距離測定手段により測定された距離に基づいて、前記画像データ上において各粒子が重なっているか否かを判定する重なり判定手段と、前記重なり判定手段の判定結果に基づいて、前記画像データ上から処理対象となる粒子を特定する粒子特定手段とをさらに備え、前記粒径算出手段は、前記粒子特定手段により処理対象として特定された粒子の粒径を算出するように構成されていることが好ましい。
この態様において、前記粒子特定手段は、前記重なり判定手段により重なっていると判定された複数の粒子については、前記画像データ上において最前面となる粒子を処理対象として特定するように構成されていることが好ましい。
この態様において、前記距離測定手段により測定された距離に基づいて、前記画像データに含まれる各粒子を複数のグループにグループ化するグループ化手段をさらに備え、前記粒径算出手段は、前記グループ化手段によりグループ化された粒子群毎に設定される代表距離に基づいて、当該粒子群に含まれる粒子それぞれの粒径を算出するように構成されていてもよい。
この態様において、前記距離測定手段は、光を発光する発光部と、光を受光する受光部とを具備し、前記発光部から前記粒状原料に対して発光され、当該粒状原料から反射された光を前記受光部が受光することで距離を測定するように構成され、前記撮像部は、前記発光部から発光される光を利用して撮像を行うように構成されていることが好ましい。
この態様において、前記発光部は、赤外線を発光するように構成されていることが好ましい。
この態様において、前記撮像部は、前記運搬経路上で空中に投下される粒状原料を撮像するように配設されていてもよい。
この態様において、前記粒径算出手段により算出される前記粒状原料の各粒子の粒径に基づいて、当該粒状原料の粒度分布を算出する粒度分布算出手段をさらに備えていてもよい。
また、本発明の他の態様の粒径測定方法は、運搬経路上を移動する、複数の粒子を含む粒状原料を撮像部により画像データとして撮像するステップと、前記撮像部と前記撮像するステップによって撮像された前記粒状原料の各粒子それぞれとの間の距離を測定するステップと、前記撮像するステップにおいて得られた画像データ及び前記測定するステップにおいて測定された距離に基づいて、前記粒状原料の各粒子それぞれの粒径を算出するステップとを有している。
本発明に係る粒径測定装置及び粒径測定方法によれば、粒状の工業用原料等の各粒子それぞれの粒径を高い精度で測定することができる。
本発明の実施の形態1に係る粒径測定装置の全体の構成を示すブロック図。 本発明の実施の形態1に係る粒径測定装置が備える撮像部の構成を示す模式図。 本発明の実施の形態1に係る粒径測定装置が備える撮像部の設置位置を示す模式図。 本発明の実施の形態1に係る粒径測定装置が備える情報処理部で実行される撮像処理の手順を示すフローチャート。 本発明の実施の形態1に係る粒径測定装置が備える情報処理部で実行される粒度算出処理の手順を示すフローチャート。 本発明の実施の形態2に係る粒径測定装置が備える情報処理部で実行される粒度算出処理の手順を示すフローチャート。 本発明の実施の形態2に係る粒度算出処理において設定される距離範囲を示す模式図。 層別化処理において生成される画像の一例を示す模式図。 層別化処理において生成される画像の一例を示す模式図。 層別化処理において生成される画像の一例を示す模式図。 測定対象の広がりと測定対象及びカメラの距離との関係を示す模式図。
以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は、本実施の形態に係る粒径測定装置1の全体構成を示すブロック図である。本粒径測定装置1は、複数の粒子からなる粒状工業用原料の粒度分布を測定するために用いられる。この粒径測定装置1は、図1に示すように、特定波長の赤外線を粒状工業用原料に対して発光し、粒状工業用原料から反射してきた赤外線を受光する撮像部11と、撮像部11の制御及び撮像部11からの信号に対する処理を行う情報処理部12とを備えている。
図2は、撮像部11の構成を示す模式図である。この図に示すように、撮像部11は、特定の波長の赤外線を発光する発光部11aと、複数の受光素子からなる受光部11bと、凸型の光学レンズ11cとを具備している。発光部11aは、情報処理部12と通信可能に接続されており、情報処理部12からの信号に基づいて赤外線を発光する。受光部11bは、発光部11aと同様に情報処理部12と通信可能に接続されており、情報処理部12に信号を送信することができる。なお、受光部11bから情報処理部12には、受光部11bの各受光素子それぞれからの信号が送信され、情報処理部12は、これらの信号に基づいて画像データを生成する。この受光部11bは、その受光面が発光部11aの発光方向に向くように設置されている。これにより、受光部11bは、発光部11aから測定対象Toに向かって発光され、測定対象Toから反射された赤外線を、その受光面において受光することができる。また、光学レンズ11cは、受光部11bの受光面の前方に設けられている。このように光学レンズ11cが設けられているため、測定対象Toによって反射された赤外線は、光学レンズ11cを通じて受光部11bの受光面上に照射され、その結果この受光面上に測定対象Toの実像Trが結像される。
図3は、粒径測定装置1の撮像部11の設置位置を示す模式図である。なお、図中の矢印は粒状工業用原料GMが運搬される方向を示している。また、以下では、粒状工業用原料GMが運搬されていく方向を前方、それとは反対の方向を後方と定義する。この図3に示すように、上流に設置されているベルトコンベアBC1の前方が、下流に設置されているベルトコンベアBC2の後方よりも高くなっている。この高低差が設けられている地点は「乗り継ぎ点」と呼ばれる。この乗り継ぎ点において、粒状工業用原料GMは、ベルトコンベアBC1からベルトコンベアBC2に向かって落下し、その結果、ベルトコンベアBC1,BC2間での粒状工業用原料GMの乗り継ぎが行われる。撮像部11は、この乗り継ぎ点の前方において、発光部11aの光軸が乗り継ぎ点に向くようにして設置される。これにより、撮像部11は、乗り継ぎ点においてベルトコンベアBC1から空中に投下された粒状工業用原料GMを撮像することができる。
次に、情報処理部12の構成について説明する。情報処理部12はコンピュータによって実現される。図1に示すように、情報処理部12は、CPU12a、ROM12b、RAM12c、ハードディスク12d、入出力インタフェース12e、入力部12f、及び画像表示部12gを備えており、これらのCPU12a、ROM12b、RAM12c、ハードディスク12d、入出力インタフェース12e、入力部12f、及び画像表示部12gは、バス12jによって接続されている。
CPU12aは、RAM12cにロードされたコンピュータプログラムを実行することができる。また、ハードディスク12dに記録されているコンピュータプログラムを当該CPU12aが実行することで、情報処理部12は、粒径測定装置1の演算制御装置として機能する。
ROM12bは、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、又はEEPROM(Electrically Erasable PROM)等によって構成されており、CPU12aにより実行されるコンピュータプログラム及びこれに用いるデータ等が記録されている。
RAM12cは、SRAM又はDRAM等によって構成されている。RAM12cは、ハードディスク12dに記録されている種々のコンピュータプログラムの読み出しに用いられる。また、RAM12cは、CPU12aがコンピュータプログラムを実行するときに、CPU12aの作業領域として利用される。
ハードディスク12dは、オペレーティングシステム及びアプリケーションプログラム等、CPU12aに実行させるための種々のコンピュータプログラム及び当該コンピュータプログラムの実行に用いられるデータがインストールされている。なお、これらのコンピュータプログラムは、USBメモリ等の可搬型記録デバイス等によって、入出力インタフェース12eを介してハードディスク12dに提供される。
また、ハードディスク14dには、例えば、米マクロソフト社が製造販売するWindows(登録商標)等のマルチタスクオペレーティングシステムがインストールされている。以下の説明において、本実施の形態に係る情報処理部12上で実行されるコンピュータプログラムは当該オペレーティングシステム上で動作するものとしている。
入出力インタフェース12eは、例えばUSB、IEEE1394、又はRS−232C等のシリアルインタフェース、SCSI、IDE、又はIEEE1284等のパラレルインタフェース、及びD/A変換器、A/D変換器等からなるアナログインタフェース等から構成されている。この入出力インタフェース12eには、USBメモリ等の可搬型記録デバイス、又はプリンタ等の出力装置等が接続される。これにより、入出力インタフェース12eを介してデータの入出力を行うことができる。なお、撮像部11は、この入出力インタフェース12eを介して情報処理部12と接続されており、これにより撮像部11と情報処理部12とは相互にデータの送受信が可能となっている。
入力部12fは、キーボード及びマウスからなり、測定者が当該入力部12fを使用することにより、情報処理部12にデータを入力することができる。
画像表示部12gは、LCD又はCRT等で構成されており、CPU12aから与えられる映像信号にしたがって、画像(画面)を表示する。
次に、上述したように構成及び設置された粒径測定装置1の動作について、フローチャート等の図面を参照しながら説明する。本実施の形態の粒径測定装置1にて実行される主な処理として、(1)測定対象を撮像し、画像データを生成する撮像処理、及び(2)撮像処理によって得られた画像データを画像処理し、粒度分布を算出する粒度算出処理がある。以下では、これらの各処理について説明する。
(1)撮像処理
粒径を算出するための画像データを生成する撮像処理について、図2及びフローチャートを参照しながら説明する。
図4は、本実施の形態の粒径測定装置1の情報処理部12にて実行される撮像処理の処理手順を示すフローチャートである。この撮像処理は、粒状工業用原料の運搬が開始されるのと共に開始される。撮像処理が開始されると、情報処理部12のCPU12aは、撮像部11の発光部11aに対して発光を指示するための発光指示信号を送信する(ステップS101)。この発光指示信号を受けた発光部11aは赤外線を発光する。ここで、CPU12aは、発光部11aに対して発光指示信号を送信した時刻を発光時刻としてRAM12cに記憶する(ステップS102)。
発光部11aから発光された赤外線は、粒状工業用原料に当たり、反射される。粒状工業用原料から反射してきた赤外線は、光学レンズ11cを通って、受光部11bの受光面上に照射される。受光部11bの各受光素子が赤外線を受光すると、各受光素子は受光した赤外線の光強度を示す受光強度信号を情報処理部12に送信する。
情報処理部12のCPU12aは、各受光素子から受光強度信号を受信する(ステップS103)と、その受信した時刻を各受光素子の受光時刻としてRAM12cに記憶する(ステップS104)。次に、CPU12aは、受光素子毎の受光強度に応じて各受光素子に対応する画素の濃淡を設定し、画像データを生成する(ステップS105)。
画像データが生成されると、CPU12aは、この画像データに含まれる全ての被撮像物と受光部11bとの間の距離を、その画像データの画素毎に算出する(ステップS106)。この処理の詳細を説明すると、CPU12aはまず、発光時刻と、各画素に対応する受光素子毎の受光時刻とを参照し、発光時刻から受光時刻までの時間差を画素毎に算出する。そして、CPU12aは、光速及び算出された画素毎の時間差から、各画素に係る距離を算出する。次に、CPU12aは、このようにして画素毎に算出された距離を示す画素距離情報を、画像データと対応付けてハードディスク12dに記憶する(ステップS107)。
このように、本実施の形態では、距離を測定するための光を利用して測定対象を撮像している。これにより、距離の測定と撮像とを併せて行うことができ、画素毎の距離を正確に測定することができる。また、このように構成されていることで、距離測定装置と撮像装置とをそれぞれ別個に備える必要が無く、装置の簡略化及び小型化を図ることができる。
なお、この撮像処理は、粒状工業用原料が運搬されている間、所定の間隔で繰り返し実行され、粒状工業用原料の運搬が終了すると共に終了する。撮像処理が終了すると、この撮像処理で生成された複数の画像データを処理対象として以下の粒度算出処理が実行される。
(2)粒度算出処理
次に、撮像処理によって得られた複数の画像データに対して画像処理を行い、粒度分布を算出する粒度算出処理について、フローチャート等を参照しながら説明する。
図5は、本実施の形態の粒径測定装置1の情報処理部12にて実行される粒度算出処理の処理手順を示すフローチャートである。この粒度算出処理は、撮像処理によって所定の数以上の画像データが得られた後に実行される。粒度算出処理が実行されると、まず、情報処理部12のCPU12aは、処理対象となる画像データを設定し(ステップS201)、この画像データを所定の閾値によって二値化する(ステップS202)。次に、CPU12aは、二値化された画像データ中の境界を特定し、その境界によって囲まれた範囲を粒子が存在する粒子範囲として抽出する(ステップS203)。
次に、CPU12aは、処理対象の画像データに対応付けられた画素距離情報を取得する(ステップS204)。画素距離情報を取得すると、CPU12aは、その画素距離情報に基づいて、ステップS203において抽出された粒子範囲内において複数の粒子による重なりが生じていないかを検出する(ステップS205)。このステップS205における具体的な処理について、以下に説明する。まず、CPU12aは、ステップS204において取得した画素距離情報より、各粒子範囲に含まれる各画素に係る距離を特定し、その距離の分布を算出する。ここで算出された分布において、2以上の数のピークが存在している場合、その粒子範囲内には複数の粒子が重なりあって存在していると判定される。他方、各画素の距離の分布において、単一のピークしか存在していない場合、その粒子範囲には単一の粒子しか存在していないと判定される。
次に、CPU12aは、ステップS205の検出結果に基づいて、画像データ内における粒子を抽出する(ステップS206)。より具体的には、ステップS205において複数の粒子が重なりあっていると判定された粒子範囲の複数のピークの内、最も距離が短いピークを特定し、そのピークに含まれる画素で構成された範囲を単一の粒子として抽出する。他方、ステップS205において、単一の粒子しか含まれていないと判定された粒子範囲は、その粒子範囲がそのまま粒子として抽出される。このようにして抽出された粒子を示す情報はRAM12cに一時記憶される。
二値化された画像データより粒子を抽出した後、CPU12aは、各粒子と撮像部11との間の距離を、粒子毎に算出する(ステップS207)。このステップS207における具体的な処理について、以下に説明する。まず、CPU12aは、画像データより抽出された粒子毎に、その粒子に含まれる全ての画素に係る距離を画素距離情報より取得する。次に、CPU12aは、取得した距離より粒子毎にその平均値を算出し、算出された平均値から光学レンズ11cと受光部11bとの間の距離を引いた値を、各粒子それぞれと撮像部11との間の距離として算出する。ここで得られた各粒子に係る距離は、粒子距離情報としてRAM12cに一時記憶される。なお、各粒子と受光部11bとの間の距離は、各粒子に含まれる全ての画素の平均値から算出する値に限定されるものではなく、各粒子の重心となる画素に係る距離等、他の値に基づいて算出されてもよい。
次に、CPU12aは、各粒子の粒径を算出する(ステップS208)。このステップS208における具体的な処理について、以下に説明する。まず、CPU12aは、ステップS206において抽出された粒子のうち、一つを処理対象として設定する。次に、CPU12aは、RAM12cに記憶された粒子距離情報より、処理対象の粒子と撮像部11との間の距離を特定する。処理対象の粒子の粒子−撮像部11間の距離及び光学レンズ11c−受光部11b間の距離から、この粒子の画像データ上の倍率を算出する。次に、CPU12aは、処理対象として設定された粒子の境界を特定し、この粒子の画像データ上での大きさを特定する。画像データ上での大きさを特定した後、CPU12aは、画像データ上における粒子の大きさ及び粒子の倍率から、粒子の粒径を算出する。以上の処理を、ステップS206において抽出された全ての粒子に対して行い、各粒子それぞれの粒径を算出する。このようにして算出された各粒子の粒径を示す粒径情報は、画像データに対応付けられた後、ハードディスク12dに記憶される。
次に、CPU12aは、全ての画像データが処理されたか否かを判定する(ステップS209)。この結果、まだ処理されていない画像データが有ると判定された場合(ステップS209でNO)、ステップS201へ戻り、新たな画像データを処理対象として設定した後、ステップS202以降の処理を繰り返す。他方、全ての画像データが処理されたと判定された場合(ステップS209でYES)、ステップS208で算出された粒径に基づいて、粒度分布を示すグラフを作成する(ステップS210)。より具体的には、CPU12aは、ハードディスク12dに記憶された粒径情報より、ステップS208で算出された全ての粒子の粒径を参照し、x軸を粒径、y軸を存在比率としたグラフを作成する。このような粒度分布図が作成されると、CPU12aは、その粒度分布図を画像表示部12gに表示させ(ステップS211)、粒度算出処理を終了する。
本実施の形態では、粒子毎の粒子−撮像部11間の距離を算出している。したがって、粒子毎の画像データ上の倍率の違いを考慮することができ、正確な粒径を算出することができる。
また、従来の粒度測定方法では、画像データ上における粒子の重なりを検出することは可能であるが、それぞれの粒子がどのように重なっているかといったことは検出することができないため、重なっていると判定された粒子群は粒度の算出からは除外される。したがって、従来の粒度測定方法においては、その標本数が少なくなってしまい、信頼性が低下してしまうという問題がある。本実施の形態では、各粒子に含まれる画素毎の距離に基づいて、画像データ上における粒子の重なりを検出しているために、見かけ上一つに見える粒子群の重なり方を検出することができ、最も手前の粒子のみを抽出することで、粒子群の中から少なくとも1つの粒子を標本に加えることが可能である。したがって、本実施の形態によれば、従来の粒度測定方法よりも、得られる粒度分布の信頼性を高めることができる。
(実施の形態2)
実施の形態1では、各粒子の粒径を算出する際に、粒子毎に距離を取得している。これに対し、実施の形態2では、各粒子をその距離に基づいて層別化し、層毎に設定された代表距離を用いて、各粒子の粒径を算出する。なお、本実施の形態に係る粒径測定装置の構成については、実施の形態1の場合と同様であるので、その説明を省略する。以下、本実施の形態の粒径測定装置の動作について、フローチャート等の図を参照しながら説明する。
実施の形態2においても、実施の形態1における各処理と同様の処理を実行するが、(2)粒度算出処理については、実施の形態1の場合と異なる処理を実行する。以下、本実施の形態において実行される粒度算出処理について説明する。
(2)粒度算出処理
図6は、本実施の形態の粒径測定装置1の情報処理部12にて実行される粒度算出処理の処理手順を示すフローチャートである。この粒度算出処理は、実施の形態1と同様に、撮像処理によって所定の数以上の画像データが得られた後に実行される。粒度算出処理が実行されると、まず、情報処理部12のCPU12aは、処理対象となる画像データを設定し(ステップS301)、その画像データを所定の閾値によって二値化する(ステップS302)。次に、CPU12aは、粒子範囲を抽出する(ステップS303)。粒子範囲を抽出すると、CPU12aは、画素距離情報を取得し(ステップS304)、粒子の重なりを検出した後(ステップS305)、粒子を抽出する(ステップS306)。次に、CPU12aは、各粒子と撮像部11との間の距離を算出する(ステップS307)。なお、これらのステップS303からステップS307までの具体的な処理の内容は、実施の形態1における粒度測定処理のステップS203からステップS207と同様である。
次に、CPU12aは、RAM12cに一時記憶されている各粒子の距離情報に基づいて、画像データ上の粒子をその距離によって層別化する(ステップS308)このステップS308における具体的な処理について、以下に説明する。まず、CPU12aは、RAM12cに記憶された粒子距離情報を参照し、撮像部11からの距離が最も遠い粒子及び最も近い粒子を特定し、その距離を取得する。これらの距離を取得した後、CPU12aは、2つの粒子の間に3つの領域を設定する。例えば、撮像部11から最も離れた粒子までの距離が3m、最も近い粒子までの距離が2.4mであった場合、この間の範囲を均等に分割し、2.4mから2.6mまでの範囲、2.6mから2.8mまでの範囲、2.8mから3mまでの範囲の3つの領域が設定される(図7中、A,B,Cで示す領域)。次に、CPU12aは、粒子距離情報を参照し、各粒子を各距離範囲に分類する。これにより、各粒子がその距離によって層別化される。画像データ上の粒子を層別化した後、CPU12aは、層毎に層別化画像データを生成する(ステップS309)。より具体的には、CPU12aは、各層それぞれに含まれる粒子のみを層毎に抽出し、図8A乃至図8Cに示すような層別化画像データを層毎に生成する。ここで、図8A乃至図8Cは、図7におけるA乃至Cの領域にそれぞれ対応する層別化画像データの例を示している。
次に、CPU12aは、ステップS309において生成された各層別化画像データを画像処理し、層別化画像データそれぞれに含まれる粒子の粒径を算出する(ステップS310)。このステップS310における具体的な処理について、以下に説明する。まず、CPU12aは、層別化画像データの距離範囲を参照し、その中心値(例えば、2.4mから2.6mまでの範囲の層別化画像データの場合は2.5m)を各層別化画像データに含まれる各粒子と撮像部11との間の距離に設定する。なお、本実施の形態では、代表距離として中心値を用いているが、本発明はこれに限定されるものではなく、例えば、層別化画像データに含まれる全粒子の距離の平均値又は中央値等、他の値を代表距離として用いてもよい。このようにして設定された層別化画像データ毎の代表距離及び光学レンズ11c−受光部11b間の距離から、CPU12aは、層別化画像データ毎の倍率を算出する。層別化画像データの倍率を算出した後、CPU12aは、層別化画像データ上における各粒子の境界を特定し、層別化画像データ上の全ての粒子について、層別化画像データ上での大きさを特定する。次に、CPU12aは、算出された倍率及び層別化画像データ上における粒子の大きさから、層別化画像データ上の全ての粒子の粒径を算出する。算出された各粒子の粒径を示す粒径情報は、画像データに対応付けられた後、ハードディスク12dに記憶される。
次に、CPU12aは、全ての画像データが処理されたか否かを判定する(ステップS311)。この結果、まだ処理されていない画像データが有ると判定された場合(ステップS311でNO)、ステップS301へ戻り、新たな画像データを処理対象として設定した後、ステップS302以降の処理を繰り返す。他方、全ての画像データが処理されたと判定された場合(ステップS311でYES)、実施の形態1の粒度算出処理におけるステップS210と同様にして、粒度分布図を作成する(ステップS312)。粒度分布図が作成されると、CPU12aは、その粒度分布図を画像表示部12gに表示させ(ステップS313)、粒度算出処理を終了する。
本実施の形態では、各粒子をその距離に基づいて層別化し、代表値を用いて各粒子の粒径を算出している。これにより、粒径を算出する際に、粒子毎にその距離を取得する必要がなく、処理を簡略化することができる。また、層別化しているため、このように処理を簡略化したとしても、従来の粒度測定方法よりも測定誤差を小さくすることができる。なお、本実施の形態の層別化では、粒子を3つの層に分類しているが、本発明はこれに限定されるものではなく、2以上の層に分類するのであれば、層の数はいくつであってもよいことは言うまでもない。
(その他の実施の形態)
上記の各実施の形態では、撮像及び距離を測定するための光として赤外線を利用している。これは、赤外線は、他の光線と比較して、周囲の光の影響を受けにくく、透過性に優れているという特長を有しているからである。しかしながら、本発明はこれに限定されるものではない。例えば、撮像及び距離の測定が可能であれば、紫外線又は可視光等の他の光線を利用してもよい。また、上記の実施の形態では、光線を利用して撮像及び距離の測定を併せて行っているが、本発明はこれに限定されるものではない。例えば、撮像するためのカメラと、距離を測定するための距離測定装置とを個別に備えていてもよい。なお、このような場合、距離測定装置は、音波又は電磁波等を利用して測定対象との距離を測定するように構成されていてもよい。
また、上記の各実施の形態では、画像処理により粒径を算出した後、算出された粒径に基づいて粒度分布を算出しているが、本発明はこれに限定されるものではなく、粒度分布の算出は行わず、粒径を算出するのみであってもよい。
また、上記の各実施の形態では、複数の粒子が重なっていると判定された粒子群については、画像データ上で最前面となる粒子のみを処理対象として抽出するように構成されているが、本発明はこれに限定されるものではない。例えば、重なっていると判定された粒子群の後方の粒子について、その形状を画像データ上に写る範囲から予測し、その予測された形状に基づいて粒径を概算するように構成されていてもよい。
また、上記の各実施の形態では、乗り継ぎ点等の粒状工業用原料が空中に投下される地点において、粒状工業用原料を撮像するように構成されている。これは、このように空中に投下された粒状工業用原料は散逸しながら落下するため、複数の粒子の重なりを抑制することができ、より多くの粒子を撮像し、処理対象とすることができるためである。しかしながら、本発明はこれに限定されるものではなく、ベルトコンベア等の運搬手段上の粒状工業用原料を撮像するように構成されていてもよい。なお、このような場合であっても、本発明では、他の粒子の重なりにより、その全体を把握することができないような粒子を処理対象から除外し、正確に粒径を測定することができる粒子のみを抽出することができるため、高い精度で粒径及び粒度分布を測定することができる。
本発明の粒径測定装置及び粒径測定方法は、粒状の工業用原料等の各粒子それぞれの粒径を測定するための粒径測定装置及び粒径測定方法等として有用である。
1 粒径測定装置
11 撮像部
11a 発光部
11b 受光部
11c 光学レンズ
12 情報処理部
12a CPU
12b ROM
12c RAM
12d ハードディスク
12e 入出力インタフェース
12f 入力部
12g 画像表示部
12j バス

Claims (9)

  1. 運搬経路上を移動する、複数の粒子を含む粒状原料を含む画像データを撮像する撮像部と、
    前記撮像部によって撮像された画像データの画素毎に、前記画像データにおける前記粒状原料の各粒子それぞれと当該撮像部との間の距離を測定する距離測定手段と、
    前記撮像部により撮像された画像データ及び前記距離測定手段により測定された距離に基づいて、前記粒状原料の各粒子それぞれの粒径を算出する粒径算出手段と
    を備える粒径測定装置。
  2. 前記距離測定手段により測定された距離に基づいて、前記画像データ上において各粒子が重なっているか否かを判定する重なり判定手段と、
    前記重なり判定手段の判定結果に基づいて、前記画像データ上から処理対象となる粒子を特定する粒子特定手段とをさらに備え、
    前記粒径算出手段は、前記粒子特定手段により処理対象として特定された粒子の粒径を算出するように構成される、
    請求項1に記載の粒径測定装置。
  3. 前記粒子特定手段は、前記重なり判定手段により重なっていると判定された複数の粒子については、前記画像データ上において最前面となる粒子を処理対象として特定するように構成される、
    請求項2に記載の粒径測定装置。
  4. 前記距離測定手段により測定された距離に基づいて、前記画像データに含まれる各粒子を複数のグループにグループ化するグループ化手段をさらに備え、
    前記粒径算出手段は、前記グループ化手段によりグループ化された粒子群毎に設定される代表距離に基づいて、当該粒子群に含まれる粒子それぞれの粒径を算出するように構成される、
    請求項1乃至3の何れかに記載の粒径測定装置。
  5. 前記距離測定手段は、光を発光する発光部と、光を受光する受光部とを具備し、前記発光部から前記粒状原料に対して発光され、当該粒状原料から反射された光を前記受光部が受光することで距離を測定するように構成され、
    前記撮像部は、前記発光部から発光される光を利用して撮像を行うように構成される、
    請求項1乃至4の何れかに記載の粒径測定装置。
  6. 前記発光部は、赤外線を発光するように構成される、
    請求項5に記載の粒径測定装置。
  7. 前記撮像部は、前記運搬経路上で空中に投下される粒状原料を撮像するように配設される、
    請求項1乃至6の何れかに記載の粒径測定装置。
  8. 前記粒径算出手段により算出される前記粒状原料の各粒子の粒径に基づいて、当該粒状原料の粒度分布を算出する粒度分布算出手段をさらに備える、
    請求項1乃至7の何れかに記載の粒径測定装置。
  9. 運搬経路上を移動する、複数の粒子を含む粒状原料を撮像部により画像データとして撮像するステップと、
    前記撮像部と前記撮像するステップによって撮像された前記粒状原料の各粒子それぞれとの間の距離を測定するステップと、
    前記撮像するステップにおいて得られた画像データ及び前記測定するステップにおいて測定された距離に基づいて、前記粒状原料の各粒子それぞれの粒径を算出するステップと
    を有する粒径測定方法。
JP2012243957A 2012-11-05 2012-11-05 粒径測定装置及び粒径測定方法 Expired - Fee Related JP5972758B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012243957A JP5972758B2 (ja) 2012-11-05 2012-11-05 粒径測定装置及び粒径測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012243957A JP5972758B2 (ja) 2012-11-05 2012-11-05 粒径測定装置及び粒径測定方法

Publications (2)

Publication Number Publication Date
JP2014092494A JP2014092494A (ja) 2014-05-19
JP5972758B2 true JP5972758B2 (ja) 2016-08-17

Family

ID=50936650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012243957A Expired - Fee Related JP5972758B2 (ja) 2012-11-05 2012-11-05 粒径測定装置及び粒径測定方法

Country Status (1)

Country Link
JP (1) JP5972758B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672823B2 (ja) * 2016-01-19 2020-03-25 株式会社大林組 地盤材料の粒度監視方法および三次元画像処理設備
JP6696290B2 (ja) * 2016-04-28 2020-05-20 株式会社大林組 ロックフィルダムにおけるロックゾーンの品質管理方法
US11391662B2 (en) 2017-03-30 2022-07-19 Jfe Steel Corporation Raw material particle size distribution measuring apparatus, particle size distribution measuring method, and porosity measuring apparatus
JP7003786B2 (ja) * 2018-03-27 2022-01-21 日本製鉄株式会社 粒子径測定装置及び粒子径測定方法
JP6988632B2 (ja) * 2018-03-27 2022-01-05 日本製鉄株式会社 輪郭抽出装置及び輪郭抽出方法
RU2750581C1 (ru) 2018-04-03 2021-06-29 ДжФЕ СТИЛ КОРПОРЕЙШН Аппаратура для измерения распределения размеров частиц и способ измерения распределения размеров частиц
BR112021019242A2 (pt) * 2019-04-02 2021-11-30 Jfe Steel Corp Aparelho de monitoramento de distribuição de tamanho de partícula, método de monitoramento de distribuição de tamanho de partícula, meio de armazenamento legível por computador, forno, alto-forno, método para controlar um forno e método de operação de alto-forno
EP3926056B1 (en) * 2019-04-05 2023-12-06 JFE Steel Corporation Powder rate measuring method and device
CN114199728B (zh) * 2020-09-18 2023-09-01 宝武碳业科技股份有限公司 一种用于针状焦自动分析检测方法和检测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290943A (ja) * 1987-05-25 1988-11-28 Nkk Corp 高炉装入物の粒度測定方法
JPH07128214A (ja) * 1993-11-04 1995-05-19 Nippon Steel Corp コークス粒度測定方法
US20020084172A1 (en) * 2000-08-01 2002-07-04 Toms Jerry L. Device and system for use in imaging particulate matter
JP2011017640A (ja) * 2009-07-09 2011-01-27 Toyota Central R&D Labs Inc 距離計測装置とその距離計測装置に用いられる受光装置

Also Published As

Publication number Publication date
JP2014092494A (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5972758B2 (ja) 粒径測定装置及び粒径測定方法
Wang et al. Automated estimation of reinforced precast concrete rebar positions using colored laser scan data
Kim et al. Automated multiple concrete damage detection using instance segmentation deep learning model
JP5327796B2 (ja) 橋梁通過車両の車重計測システム、橋梁通過車両の車重計測方法、およびコンピュータプログラム
Thurley Automated online measurement of limestone particle size distributions using 3D range data
US11029255B2 (en) Defect inspection device, defect inspection method, and program
JP2015082326A5 (ja)
EP3719442A1 (en) Shape inspecting device and shape inspecting method
JP2015161575A (ja) タイヤ劣化評価装置とそのシステム、その方法及びそのプログラム
EP3315951A1 (en) Surface defect detection apparatus and surface defect detection method
CN103983975B (zh) 基于两种雷达的大气运动垂直速度检测方法及系统
EP3187861A1 (en) Substrate inspection device and substrate inspection method
CN102262733B (zh) 激光点检测方法及装置
US11037352B2 (en) Information processing apparatus, system of assessing structural object, method of assessing structural object and storage medium
WO2014087494A1 (ja) 計算システム及び計算方法
JP2014126970A (ja) 車両の周辺監視装置及び車両の周辺監視方法
JP4458339B2 (ja) 画像処理方法、システム及びプログラム
JP4927427B2 (ja) 外形欠点の検出方法及びプログラム
JP2007094919A (ja) 交通流計測装置
JP2010055628A (ja) 交通流計測装置
CA3182777A1 (en) Self-test method for a ranging sensor-arrangement of a work machine
WO2023080041A1 (ja) 情報処理方法、情報処理装置、情報処理システム、情報処理プログラム、及び高炉操業方法
CN115362473A (zh) 用于对长于视场的运动物体进行三维扫描的系统和方法
JP2017219382A (ja) 検査システム
JP2006226834A (ja) 表面検査装置、表面検査の方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160713

R150 Certificate of patent or registration of utility model

Ref document number: 5972758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees