JP5971406B2 - 酸化珪素の製造装置及び製造方法 - Google Patents

酸化珪素の製造装置及び製造方法 Download PDF

Info

Publication number
JP5971406B2
JP5971406B2 JP2015508523A JP2015508523A JP5971406B2 JP 5971406 B2 JP5971406 B2 JP 5971406B2 JP 2015508523 A JP2015508523 A JP 2015508523A JP 2015508523 A JP2015508523 A JP 2015508523A JP 5971406 B2 JP5971406 B2 JP 5971406B2
Authority
JP
Japan
Prior art keywords
silicon oxide
substrate
chamber
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015508523A
Other languages
English (en)
Other versions
JPWO2014157159A1 (ja
Inventor
敦雄 川田
敦雄 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Application granted granted Critical
Publication of JP5971406B2 publication Critical patent/JP5971406B2/ja
Publication of JPWO2014157159A1 publication Critical patent/JPWO2014157159A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、包装用フィルム蒸着用、リチウムイオン二次電池負極活物質などとして好適に使用される酸化珪素の製造方法及び製造装置に関する。
従来、酸化珪素粉末の製造方法として、二酸化珪素系酸化物粉末からなる原料混合物を減圧非酸化性雰囲気中で熱処理し、酸化珪素ガスを発生させ、この酸化珪素ガスを気相中で凝縮させて、0.1μm以下の微細アモルファス状の酸化珪素粉末を連続的に製造する方法(特許文献1:特開昭63−103815号公報)、及び原料珪素を加熱蒸発させて、表面組織を粗とした基体の表面に蒸着させる方法(特許文献2:特開平9−110412号公報)が知られている。また、二酸化珪素を含む混合原料粉末を反応炉内に供給し、酸化珪素ガスを発生させ、冷却した基体表面に析出させ、ついでこの酸化珪素析出物を連続的に回収する方法(特許文献3:特開2001−220123号公報)が提案されている。
しかしながら、上述した特開昭63−103815号公報の方法は、連続的な製造が可能であるが、生成したSiO粉末は微粉であり、大気に取り出した際の酸化反応により高純度の酸化珪素粉末が製造できない問題がある。一方で、特開平9−110412号公報に記載の方法は、高純度酸化珪素はできるものの回分法を前提としているため、量産化が困難であり、結果として高価な酸化珪素粉末しか製造できない。特開2001−220123号公報に記載の方法は、高純度酸化珪素粉末を連続的に回収することはできるが、酸化珪素が硬いため回収機構である掻き取り装置のブレードが磨耗し易く、長期の使用に耐えないという問題点があった。
特開昭63−103815号公報 特開平9−110412号公報 特開2001−220123号公報
本発明は上記事情に鑑みなされたもので、効率的かつ長期間安定的に、高純度の酸化珪素を連続的に製造することができる酸化珪素の製造方法、及び製造装置を提供する。
本発明者らは、上記目的を達成するため鋭意検討した結果、酸化珪素ガスを発生させ、これを基体に析出させる酸化珪素の製造方法において、伸縮可能な蛇腹状の基体を有する製造装置を用いて、酸化珪素ガスを析出室内に導入し、析出室内で蛇腹状の基体表面に酸化珪素固体を析出させると共に、蛇腹状の基体を伸縮させて基体表面に析出した酸化珪素固体を剥離させて回収することにより、効率的かつ長期間安定的に、高純度の酸化珪素を連続的に製造できることを知見し、本発明をなすに至ったものである。
従って、本発明は下記発明を提供する。
[1].二酸化珪素粉末を含む混合原料粉末を反応させて酸化珪素ガスを生成させる反応室と、この反応室内に上記混合原料粉末を供給する原料供給機構と、上記酸化珪素ガスを酸化珪素固体としてその表面に析出させる、伸縮可能な蛇腹状の基体と、上記基体が配置された析出室と、上記酸化珪素ガスを上記反応室から上記析出室に搬送する搬送管と、上記基体を伸縮させる伸縮機構と、析出室にゲート弁を介して連結されたロードロック室とを具備する酸化珪素の製造装置。
[2].[1]記載の装置を用い、二酸化珪素粉末を含む混合原料粉末を反応炉内に供給し、この反応炉内で、常圧又は減圧下で1,200〜1,600℃に加熱して酸化珪素ガスを発生させ、この酸化珪素ガスを反応室と同じ温度以上に保持された搬送管を通して析出室内に導入し、析出室内で蛇腹状の基体表面に酸化珪素固体を析出させると共に、蛇腹状の基体を伸縮させて基体表面に析出した酸化珪素固体を剥離させて回収する、酸化珪素の製造方法。
[3].混合原料粉末が、二酸化珪素と金属珪素粉末との混合物である[2]記載の製造方法。
[4].析出室の基体の温度が、200〜1,000℃である[2]又は[3]記載の製造方法。
[5].さらに、得られた酸化珪素固体を粉砕し、得られた酸化珪素粉末の平均粒径が0.01〜30μmであり、BET比表面積が0.5〜30m2/gである[2]〜[4]のいずれかに記載の製造方法。
[6].酸化珪素が、包装用フィルム蒸着用である[2]〜[5]のいずれかに記載の製造方法。
[7].酸化珪素が、リチウムイオン二次電池負極活物質用である[2]〜[5]のいずれかに記載の製造方法。
本発明によれば、効率的かつ長期間安定的な、高純度酸化珪素の連続製造が可能となる。
本発明の一実施例を示す概略断面図である。 本発明の一実施例を示す伸縮機構詳細図である。 本発明の一実施例を示す蛇腹状基体詳細図である。 比較例で使用した装置の概略断面図である。
以下、本発明について詳細に説明する。
本発明の製造方法は、二酸化珪素粉末を含む混合原料粉末を反応させて酸化珪素ガスを生成させる反応室と、この反応室内に上記混合原料粉末を供給する原料供給機構と、上記酸化珪素ガスを酸化珪素固体としてその表面に析出させ、伸縮可能な蛇腹状の基体と、上記基体が配置された析出室と、上記酸化珪素ガスを上記反応室から上記析出室に搬送する搬送管と、上記基体を伸縮させる伸縮機構と、析出室にゲート弁を介して連結されたロードロック室とを具備する酸化珪素の製造装置を用いて、二酸化珪素粉末を含む混合原料粉末を反応炉内に供給し、この反応炉内で、常圧又は減圧下で1,200〜1,600℃に加熱して酸化珪素ガスを発生させ、この酸化珪素ガスを反応室と同じ温度以上に保持された搬送管を通して析出室内に導入し、析出室内で蛇腹状の基体表面に酸化珪素固体を析出させると共に、蛇腹状の基体を伸縮させて基体表面に析出した酸化珪素固体を剥離させて回収する、酸化珪素の製造方法である。
二酸化珪素粉末を含む混合原料粉末としては、二酸化珪素粉末とこれを還元する粉末との混合物を用いる。具体的な還元粉末としては、金属珪素化合物、炭素含有粉末等が挙げられるが、反応性を高め、収率を高めるといった点から、金属珪素粉末が好ましい。二酸化珪素粉末と金属珪素粉末の場合、下記の反応スキームによって進行する。
Si(s)+SiO2(s)→2SiO(g)
本発明に用いる二酸化珪素粉末の平均粒径は0.1μm以下であり、通常0.005〜0.1μm、好ましくは0.005〜0.08μmである。また金属珪素粉末の平均粒径は30μm以下であり、通常0.05〜30μm、好ましくは0.1〜20μmである。二酸化珪素粉末の平均粒径が0.1μmより大きい、又は金属珪素粉末の平均粒径が30μmより大きいと、反応性が低下し、生産性が低下するおそれがある。なお、本発明において、平均粒径はレーザー光回折法による粒度分布測定における累積重量平均値D50で表すことができる。
本発明では、上記混合原料粉末を反応室内において1,200〜1,600℃、好ましくは1,300〜1,500℃の温度に加熱、保持し、酸化珪素ガスを生成させる。反応温度が1,200℃未満では反応が進行しがたく、生産性が低下してしまい、一方、1,600℃を超えると、混合原料粉末が溶融して炉材料の選定が困難になる場合がある。
一方、炉内(反応室)雰囲気は、常圧又は減圧(好ましくは1,000Pa以下)下で行う。酸化珪素がガスとして発生しやすい減圧下で行うことが好ましい。炉内を不活性ガス中としてもよい。不活性ガスとしては、アルゴンガス、ヘリウムガス等が挙げられる。
上記反応室には、原料供給機構にて、上記混合原料粉末を適宜間隔ごと、又は連続的に供給し、反応を連続的に行うものである。上記原料供給機構としては、スクリューフィーダー等による連続供給や、上下にダンパーを設けた中間ホッパーによる間欠供給、及びこれらの組み合わせが挙げられる。
上記反応室で生成した酸化珪素ガスは、搬送管を介して析出室に連続的に供給される。搬送管は反応室と同じ温度以上に保持される。搬送管の温度が反応室以下の温度では、酸化珪素ガスが搬送管内壁に析出、付着して運転上の支障をきたし、安定的な運転ができなくなる。逆に、反応室を著しく超える温度に加熱しても、電力コストの上昇を招くだけで効果が得られないため、反応室と同じ温度〜反応室温度+200℃が妥当である。
上記析出室内には、酸化珪素ガスを酸化珪素固体としてその表面に析出させる、伸縮可能な蛇腹状の基体が配置されている。この析出室に導入された上記酸化珪素ガスがこの基体に接触することにより、この基体表面に塊状の酸化珪素(固体)として析出する。析出室の基体の温度(析出温度)は、200〜1,000℃に保持することが好ましく、300〜900℃がより好ましく、300〜800℃がさらに好ましい。1,000℃より高いと酸化珪素が析出し難くなるおそれがあり、200℃より低いと、得られた酸化珪素は微粉となり、活性が強すぎるものとなるおそれがある。なお、基体温度の測定は、酸化珪素蒸気が直接当たる面の裏側を測定する。測定は、熱電対を基体に接触させる方法、放射温度計により非接触で測定する方法等で行えるが、本発明における温度は、熱電対を基体に接触させる方法で測定した値である。
基体の形状は伸縮可能な蛇腹状であれば特に限定されず、一体ものでも組合せたものでもよいが、屈曲させた薄い板状のもの、屈曲させた薄い板を筒状にしたもの等が挙げられるが、屈曲させた薄い板状のものが好ましい。基体は屈曲部で繋がった板状の傾斜部の連続で構成され、傾斜部の板状表面に酸化珪素固体が析出するように、析出室内に配置される。
基体表面に析出した酸化珪素は、伸縮機構により蛇腹状の伸縮自在の基体を伸縮させることで、機械的応力が発生し、酸化珪素析出体が基体から剥離するので、容易に回収することができる。
基体の材質は特に限定されないが、析出温度での耐熱性と酸化珪素ガスに対する耐蝕性があるもの、具体的には金属材料やセラミックス材料が好ましい。具体的にはカーボン、炭化珪素、窒化珪素、ステンレス鋼(SUS)、ニッケル合金、チタン合金等が好適に用いられる。
蛇腹状の基体を伸縮させるための伸縮機構は、蛇腹状基体を伸縮させることができれば特に限定されないが、例えば、ボールねじと駆動用モーターからなる伸縮機構やエア駆動シリンダーからなる伸縮機構が挙げられる。
基体を伸縮させる間隔は、原料の供給速度、基体の冷却速度等により適宜選定されるが、1min〜1hが好ましい。
このように、酸化珪素の導入中に蛇腹状の基体を伸縮させることにより、酸化珪素の析出をしながら、随時酸化珪素の剥離が可能であり、効率的に酸化珪素が連続製造できる。
析出室に蓄積された剥離した酸化珪素固体は、運転を停止せず、連続運転中に適宜ゲート弁を開閉しロードロック室を通して取り出すことができる。その場合、基体の下方に回収トレーが予め配置されていると、回収がより早くできる。なお、析出室が減圧雰囲気の場合、ゲート弁を開く前には、ロードロック室を減圧して析出室と均圧にする必要があり、ロードロック室から酸化珪素を取り出す前には、ロードロック室を大気圧まで復圧しておく必要がある。なお、この場合でも運転を停止せず、酸化珪素ガスの析出室への導入等を停止することなく、回収室に蓄積された酸化珪素の取り出し、回収トレーの配置が可能である。
酸化珪素の純度は99.9〜99.95質量%であり、高純度のものを得ることができる。
得られた塊状の酸化珪素固体は、適切な粉砕機と分級器を使用することによって酸化珪素粉末とすることができる。例えば、平均粒径0.01〜30μm、BET比表面積0.5〜30m2/gの酸化珪素粉体とすることができる。このような酸化珪素粉末は、包装用フィルム蒸着用、リチウムイオン二次電池負極活物質用等として好適である。
上記方法に用いる装置としては、例えば、図1に示すような、二酸化珪素粉末を含む混合原料粉末を反応させて酸化珪素ガスを生成させる反応室と、この反応室内に上記混合原料粉末を供給する原料供給機構と、上記酸化珪素ガスを酸化珪素固体としてその表面に析出させる、伸縮可能な蛇腹状の基体と、上記基体が配置された析出室と、上記酸化珪素ガスを上記反応室から上記析出室に搬送する搬送管と、上記基体を伸縮させる伸縮機構と、析出室にゲート弁を介して連結されたロードロック室とを具備することを特徴とする酸化珪素の連続製造装置が挙げられる。
装置の一例について、より詳細に説明する。
反応炉1はその内部に反応室2を有する。反応室2は反応室ヒーター3、反応室断熱材4が備えられており、反応室2には原料供給機構6が連結し、反応室2は搬送管7を介して析出室8と連結している。搬送管7は搬送管ヒーター9、搬送管断熱材10が備えられている。析出室8には伸縮可能な蛇腹状基体11が配置され、析出室ヒーター12、析出室断熱材13が備えられており、析出室8の外部に配設された駆動用モーター14を動力源とするボールねじを用いた伸縮機構15が配置されている。
伸縮機構詳細図(図2)を用いて説明する。
ボールねじは、駆動軸101、ボールを有するナット102a,102b、軸受(固定側103a、支持側103b)を具備する。ボールを有するナット102a,102bは駆動軸101に取り付けられ、駆動軸101の両端は、軸受によって析出室8内に取り付けられている。リニアガイド104は移動軸105に沿って移動可能で、移動軸105の両端は、駆動軸101と平行となるように析出室内に取り付けられている。蛇腹状基体11の両端は、ナット102a,102bと、ボールねじ連結部106を介して、その上端にそれぞれねじ留めにより連結されており、蛇腹状基体11屈曲部は、リニアガイド104に、リニアガイド連結部107を介して、その上端にそれぞれ連結されている。駆動軸101は、ナット102aの可動部と、ナット102bの可動部でねじ溝の方向が反対となっており、駆動用モーター14により駆動軸101が回転し、ナット102a,102bがそれぞれ軸受方向に移動して蛇腹状基体11が伸び、駆動軸101の回転方向を変えることで、ナット102a,102bがそれぞれ駆動軸101中央に移動して蛇腹状基体11が縮む。
基体は屈曲させた薄い板状のもので、屈曲部で繋がった板状の傾斜部の連続で構成され、傾斜部の板状表面に酸化珪素固体が析出するように配置されている。伸縮しない状態における好適範囲は、屈曲部の角度(θ)は60〜120°、屈曲部と屈曲部間の長さ(L)は3〜30cm、蛇腹形成方向の基体の幅の長さ(W)は30〜300cm、基体の高さ(H)は30〜300cmである。蛇腹状基体詳細図を図3に示す。
基体の下方の析出室8内に回収トレー16aが配置されている。析出室8はゲート弁17を介してロードロック室18と連結されており、ロードロック室扉19が備えられている。ロードロック室18内には、回収トレー16aと交換する予備の回収トレー16bが配置されている。20a〜20cは真空ポンプであり、それぞれ、析出室8、ロードロック室18、原料供給機構6と連結している。
反応室2は反応室ヒーター3によって1,200〜1,600℃に加熱される。二酸化珪素粉末を含む混合原料粉末5が、原料供給機構6によって、反応室2に連続もしくは間欠的に供給される。反応室2内で発生した酸化珪素ガスは、搬送管7により析出室8に搬送される。搬送管7は搬送管ヒーター9により、反応室2の温度以上に保持されている。析出室8には伸縮可能な蛇腹状基体11が配置され、基体11は析出室ヒーター12によって所定温度に保持される。酸化珪素ガスは析出室8の基体11の表面で酸化珪素固体となって析出する。上記基体11は、析出室8の外部に配設された駆動用モーター14を動力源とするボールねじを用いた伸縮機構15によって、図1の矢印方向(蛇腹構造の伸縮方向)に伸縮する。析出した酸化珪素固体は、蛇腹の伸縮によって生じる機械的応力により基体11から剥離し、析出室8中のトレー16a上に落下し蓄積する。蓄積した酸化珪素固体は、連続運転中に適宜ゲート弁17を開閉し、ロードロック室18内に配置された予備の回収トレー16bと交換され、ロードロック室18を経由してロードロック室扉19から取り出すことができる。
上記装置によれば、酸化珪素固体を蛇腹状の基体に析出させ、蛇腹状の基体を伸縮させることにより、容易に酸化珪素固体を剥離させ回収することが可能となり、酸化珪素を連続的に安定して、低コストで製造できる。
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[実施例1]
図1に示す連続製造装置を用いて酸化珪素を製造した。原料は、二酸化珪素粉末(平均粒径0.02μm、BET比表面積200m2/g)と金属珪素粉末(平均粒径10μm、BET比表面積3m2/g)を等量モルの割合で撹拌混合機を用いて混合した混合粉末であり、反応炉1内の反応室2(容積0.5m3)に20kgの混合原料粉を初期仕込した。次に、ゲート弁17を閉じた状態で真空ポンプ20aを用いて炉内を10Pa以下に減圧した後、反応室ヒーター3に通電し、反応室の温度を1,400℃に保持した。一方で、搬送管ヒーター9に通電し、搬送管7を1,400℃に保持すると共に、析出室ヒーター12に通電し、ステンレス(SUS)製の薄板からなる伸縮可能な蛇腹状の基体11を650℃に保持した。反応室の圧力上昇から、酸化珪素ガスが発生していることを確認できたので、駆動用モーター14に通電し伸縮機構15を作動させ、10分間に1回の割合で蛇腹状基体11を伸縮させた。酸化珪素ガスが析出室8に導入されて、基体に析出した酸化珪素固体が、伸縮により基体11から剥離され、トレー16a上に回収した。次に、原料供給機構6を作動させ、混合原料粉末を2kg/hの割合で連続供給した。その後も反応室圧力が安定していることから、連続反応していることを確認した。反応室が1,400℃に達してから4時間運転後、真空ポンプ20bによりロードロック室18を析出室8とほぼ同じ圧力になるまで減圧し、ゲート弁17を開き、剥離した酸化珪素固体が入ったトレー16aを、空の予備の回収トレー16bと交換し、ゲート弁17を再度閉じた。ロードロック室18を大気圧に復圧し、ロードロック室扉19からトレー16aを取り出した。上記運転を600時間連続して行った結果、酸化珪素固体は1.9kg/h(収率=95%)で回収された。このようにして得られた酸化珪素固体をボールミルで粉砕して得られた平均粒径D50が5μmの粉末は、BET比表面積8m2/g、純度99.9質量%以上の非晶質粉末であった。また、運転終了後、装置内を観察して特に問題がないことが確認された。
[比較例1]
特開2001−220123号公報の図1(図4)に示された連続製造装置を用いて酸化珪素粉末を製造した。原料は、実施例と同一の二酸化珪素粉末と金属珪素粉末の混合粉末であり、実施例1と同様に反応炉内の反応室(容積0.5m3)に20kgの混合原料粉を初期仕込した。次に、真空ポンプを用いて炉内を10Pa以下に減圧した後、ヒーターに通電し、実施例と同じ1,400℃に昇温、保持した。一方で、搬送管を1400℃に加熱、保持し、冷媒導入管に水を流入し、SUS製の基体を冷却した。次に、フィーダーを作動させ、混合原料粉末を2kg/hの割合で連続供給し、連続反応を行った。基体上に析出した酸化珪素は、超硬材であるタングステンカーバイド製のブレードをもつスクレーパーにより連続的に掻き取り、回収室に回収した。上記運転を120時間連続して行った時点で、酸化珪素固体は1.9kg/h(収率=95%)で回収された。このようにして得られた酸化珪素固体をボールミルで粉砕して得られた平均粒径D50が5μmの粉末は、BET比表面積8m2/g、純度99.9%以上の非晶質粉末であり、不純物元素として微量のタングステンが確認された。その後、連続運転が300時間を過ぎた時点から回収率が急激に低下し始めたため運転を終了し、装置内を観察したところ、スクレーパーの先端のブレードが磨耗し、これ以上は掻き取ることができない状態になっていた。
1 反応炉
2 反応室
3 反応室ヒーター
4 反応室断熱材
5 混合原料粉末
6 原料供給機構
7 搬送管
8 析出室
9 搬送管ヒーター
10 搬送管断熱材
11 蛇腹状基体
12 析出室ヒーター
13 析出室断熱材
14 駆動用モーター
15 伸縮機構
16a,16b トレー
17 ゲート弁
18 ロードロック室
19 ロードロック室扉
20a〜20c 真空ポンプ
101 駆動軸
102a,102b ナット
103a、103b 軸受
104 リニアガイド
105 移動軸
106 ボールねじ連結部
107 リニアガイド連結部
201 反応炉
202 反応室
203 混合原料粉末
204 ヒーター
205 断熱材
206 原料供給機構
207 補給ホッパー
208 フィーダー
209 原料供給管
210 搬送管(搬送ライン)
211 析出槽
212 析出室
213 基体
214 冷媒導入管
215 冷媒排出管
216 掻き取り装置(回収機構)
217 回収管
218 回収槽
219 真空ポンプ
220 真空ポンプ
221 真空ポンプ

Claims (7)

  1. 二酸化珪素粉末を含む混合原料粉末を反応させて酸化珪素ガスを生成させる反応室と、この反応室内に上記混合原料粉末を供給する原料供給機構と、上記酸化珪素ガスを酸化珪素固体としてその表面に析出させる、伸縮可能な蛇腹状の基体と、上記基体が配置された析出室と、上記酸化珪素ガスを上記反応室から上記析出室に搬送する搬送管と、上記基体を伸縮させる伸縮機構と、析出室にゲート弁を介して連結されたロードロック室とを具備する酸化珪素の製造装置。
  2. 請求項1記載の装置を用い、二酸化珪素粉末を含む混合原料粉末を反応炉内に供給し、この反応炉内で、常圧又は減圧下で1,200〜1,600℃に加熱して酸化珪素ガスを発生させ、この酸化珪素ガスを反応室と同じ温度以上に保持された搬送管を通して析出室内に導入し、析出室内で蛇腹状の基体表面に酸化珪素固体を析出させると共に、蛇腹状の基体を伸縮させて基体表面に析出した酸化珪素固体を剥離させて回収する、酸化珪素の製造方法。
  3. 混合原料粉末が、二酸化珪素と金属珪素粉末との混合物である請求項2記載の製造方法。
  4. 析出室の基体の温度が、200〜1,000℃である請求項2又は3記載の製造方法。
  5. さらに、得られた酸化珪素固体を粉砕し、得られた酸化珪素粉末の平均粒径が0.01〜30μmであり、BET比表面積が0.5〜30m2/gである請求項2〜4のいずれか1項に記載の製造方法。
  6. 酸化珪素が、包装用フィルム蒸着用である請求項2〜5のいずれか1項に記載の製造方法。
  7. 酸化珪素が、リチウムイオン二次電池負極活物質用である請求項2〜5のいずれか1項に記載の製造方法。
JP2015508523A 2013-03-29 2014-03-25 酸化珪素の製造装置及び製造方法 Active JP5971406B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013073002 2013-03-29
JP2013073002 2013-03-29
PCT/JP2014/058212 WO2014157159A1 (ja) 2013-03-29 2014-03-25 酸化珪素の製造装置及び製造方法

Publications (2)

Publication Number Publication Date
JP5971406B2 true JP5971406B2 (ja) 2016-08-17
JPWO2014157159A1 JPWO2014157159A1 (ja) 2017-02-16

Family

ID=51624130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015508523A Active JP5971406B2 (ja) 2013-03-29 2014-03-25 酸化珪素の製造装置及び製造方法

Country Status (3)

Country Link
JP (1) JP5971406B2 (ja)
TW (1) TW201502070A (ja)
WO (1) WO2014157159A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045333A1 (ja) * 2018-08-27 2020-03-05 株式会社大阪チタニウムテクノロジーズ SiO粉末製造方法及び球形粒子状SiO粉末
JP7520869B2 (ja) * 2019-03-13 2024-07-23 メトオックス インターナショナル,インコーポレイテッド 薄膜堆積用の固体前駆体フィードシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220123A (ja) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd 酸化珪素粉末の連続製造方法及び連続製造装置
JP2012132522A (ja) * 2010-12-22 2012-07-12 Asahi Glass Co Ltd 高温用バルブ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220123A (ja) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd 酸化珪素粉末の連続製造方法及び連続製造装置
JP2012132522A (ja) * 2010-12-22 2012-07-12 Asahi Glass Co Ltd 高温用バルブ装置

Also Published As

Publication number Publication date
JPWO2014157159A1 (ja) 2017-02-16
WO2014157159A1 (ja) 2014-10-02
TW201502070A (zh) 2015-01-16

Similar Documents

Publication Publication Date Title
JP3865033B2 (ja) 酸化珪素粉末の連続製造方法及び連続製造装置
JP5942897B2 (ja) 酸化珪素析出体の連続製造方法及び製造装置
ES2768765T3 (es) Dispositivo y procedimiento para la producción de carburo de silicio
JP5971406B2 (ja) 酸化珪素の製造装置及び製造方法
JP2001226112A (ja) 高活性な酸化珪素粉末及び製造方法
WO2007119605A1 (ja) シリコンの製造方法及び製造装置
WO2014157160A1 (ja) 酸化珪素の製造装置及び製造方法
JP4451671B2 (ja) SiOの製造方法及び製造装置
KR102162973B1 (ko) 이송식 열플라즈마를 이용한 나노분말 연속 제조방법
JP3824047B2 (ja) 非晶質酸化珪素粉末の製造方法
US20230322562A1 (en) Preparation method of high purity sic powder
JP5954492B2 (ja) 酸化珪素の製造装置及び製造方法
WO2001048277A1 (fr) Procede et appareil utiles pour produire un monocristal de carbure de silicium
JP3951107B2 (ja) 多孔質酸化珪素粉末
JP6304477B2 (ja) 炭化珪素粉粒体及びその製造方法
JP6028702B2 (ja) 酸化珪素の製造方法
Wang et al. Characterization of PbSnS3 nanorods prepared via an iodine transport hydrothermal method
EP2805915A1 (en) Silicon purification apparatus and silicon purification method
JP4518278B2 (ja) 多孔質酸化珪素粉末の製造方法
JP2002234719A (ja) シリコン原料の製造装置および方法
TW201215711A (en) Polysilicon production device and polysilicon production method
KR20200032499A (ko) 이송식 열플라즈마를 이용한 나노분말 연속제조장치

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5971406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150