JP5968112B2 - 圧電材料 - Google Patents

圧電材料 Download PDF

Info

Publication number
JP5968112B2
JP5968112B2 JP2012142185A JP2012142185A JP5968112B2 JP 5968112 B2 JP5968112 B2 JP 5968112B2 JP 2012142185 A JP2012142185 A JP 2012142185A JP 2012142185 A JP2012142185 A JP 2012142185A JP 5968112 B2 JP5968112 B2 JP 5968112B2
Authority
JP
Japan
Prior art keywords
piezoelectric material
piezoelectric
weight
parts
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012142185A
Other languages
English (en)
Other versions
JP2013216557A (ja
Inventor
潤平 林
潤平 林
達雄 古田
達雄 古田
康志 清水
康志 清水
松田 堅義
堅義 松田
齋藤 宏
宏 齋藤
久保田 純
純 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012142185A priority Critical patent/JP5968112B2/ja
Publication of JP2013216557A publication Critical patent/JP2013216557A/ja
Application granted granted Critical
Publication of JP5968112B2 publication Critical patent/JP5968112B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は圧電材料に関するものであり、特に鉛を含有しない圧電材料に関する。
圧電材料は、チタン酸ジルコン酸鉛(以下「PZT」という)のようなABO型ペロブスカイト型金属酸化物が一般的である。しかしながら、PZTはAサイト元素として鉛を含有するために、環境に対する影響が問題視されている。このため、鉛を含有しないペロブスカイト型金属酸化物を用いた圧電材料が求められている。
鉛を含有しないペロブスカイト型金属酸化物の圧電材料として、チタン酸バリウムが知られている。また、その特性を改良する目的で、チタン酸バリウムの組成をベースとした材料開発が行われている。特許文献1と非特許文献1にはチタン酸バリウムのAサイトの一部をCaに、Bサイトの一部をZrで置換することで圧電特性が向上した材料が開示されている。しかし、これらの材料はキュリー温度が80℃以下と低く、夏季の車中など高温環境下において、脱分極を起こし、圧電特性が小さくなるという課題があった。また、機械的品質係数が小さいため、交流電圧を印加した際に脱分極を起こしやすいという課題があった。
また、特許文献2と非特許文献2にはチタン酸バリウムのAサイトを一部、Caに置換し、さらにMn、Fe、またはCuを添加する材料が開示されている。これらの材料は、チタン酸バリウムに比べて機械的品質係数に優れるものの、圧電特性が小さいという課題があった。
特開2009−215111号公報 特開2010−120835号公報
"Journal of Applied Physics" 2011年 109巻 054110−1から054110−6 "Japanese Journal of Applied Physics" 2010年 49巻 09MD03−1から09MD03−4
本発明は上述の課題に対処するためになされたもので、広い実用温度領域で良好かつ安定な圧電定数と機械的品質係数を有する非鉛圧電材料を提供するものである。
本発明に係る圧電材料は、下記一般式(1):
一般式(1) 一般式(Ba1−xCa(Ti1−yZr)O(1.00≦a≦1.01、0.155≦x≦0.300、0.041≦y≦0.069)で表わされるペロブスカイト型金属酸化物を主成分とした圧電材料であって、
前記圧電材料にMn成分が含有されており、前記Mnの含有量が前記金属酸化物100重量部に対して金属換算で0.12重量部以上0.40重量部以下であり、
前記圧電材料を構成する結晶粒の平均円相当径が1.0μm以上10.4μm以下であり、
前記圧電材料の相対密度が92.1%以上100%以下であり、
前記金属酸化物およびMn以外の副成分は、前記金属酸化物100重量部に対してその合計が1.2重量部以下であることを特徴とする。
本発明によれば、広い実用温度領域で良好かつ安定な圧電定数と機械的品質係数を有する非鉛圧電材料を提供することができる。
本発明の実施例1から21および比較例1から14の圧電材料のx値とy値の関係を示す相図である。点線の内部は請求項1のx値とy値の範囲を示している。
以下、本発明を実施するための形態について説明する。
本発明に係る圧電材料は、下記一般式(1):
一般式(1) (Ba1−xCa(Ti1−yZr)O(1.00≦a≦1.01、0.155≦x≦0.300、0.041≦y≦0.069)で表わされるペロブスカイト型金属酸化物を主成分とした圧電材料であって、前記金属酸化物にMnが含有されており、前記Mnの含有量が前記金属酸化物100重量部に対して金属換算で0.12重量部以上0.40重量部以下あることを特徴とする。
本発明において、ペロブスカイト型金属酸化物とは、岩波理化学辞典 第5版(岩波書店 1998年2月20日発行)に記載されているような、理想的には立方晶構造であるペロブスカイト型構造(ペロフスカイト構造とも言う)を持つ金属酸化物を指す。ペロブスカイト型構造を持つ金属酸化物は一般にABOの化学式で表現される。ペロブスカイト型金属酸化物において、元素A、Bは各々イオンの形でAサイト、Bサイトと呼ばれる単位格子の特定の位置を占める。例えば、立方晶系の単位格子であれば、A元素は立方体の頂点、B元素は体心に位置する。O元素は酸素の陰イオンとして立方体の面心位置を占める。
前記一般式(1)で表わされる金属酸化物は、Aサイトに位置する金属元素がBaとCa、Bサイトに位置する金属元素がTiとZrであることを意味する。ただし、一部のBaとCaがBサイトに位置してもよい。同様に、一部のTiとZrがAサイトに位置してもよい。
前記一般式(1)における、Bサイトの元素とO元素のモル比は1対3であるが、元素量の比が若干ずれた場合(例えば、1.00対2.94〜1.00対3.06)でも、前記金属酸化物がペロブスカイト型構造を主相としていれば、本発明の範囲に含まれる。
前記金属酸化物がペロブスカイト型構造であることは、例えば、X線回折や電子線回折による構造解析から判断することができる。
本発明に係る圧電材料の形態は限定されず、セラミックス、粉末、単結晶、膜、スラリーなどのいずれの形態でも構わないが、セラミックスであることが好ましい。本明細書中において「セラミックス」とは、基本成分が金属酸化物であり、熱処理によって焼き固められた結晶粒子の凝集体(バルク体とも言う)、いわゆる多結晶を表す。焼結後に加工されたものも含まれる。
前記一般式(1)において、AサイトにおけるBaとCaの存在量とBサイトにおけるTiとZrのモル量の比を示すaは、1.00≦a≦1.01の範囲である。aが1.00より小さいと異常粒成長が生じ易くなり、材料の機械的強度が低下してしまう。一方で、aが1.01より大きくなると粒成長に必要な温度が高くなり過ぎ、一般的な焼成炉で焼結ができなくなる。ここで、「焼結ができない」とは密度が充分な値にならないことや、前記圧電材料内にポアや欠陥が多数存在している状態を指す。より好ましくは1.004≦a≦1.009である。
前記一般式(1)において、AサイトにおけるCaのモル比を示すxは、0.155≦x≦0.300の範囲である。xが0.155より小さいと結晶構造相転移が実用温度で発生して、耐久性に悪影響を及ぼす。一方で、xが0.300より大きいと圧電特性が充分でなくなる。より好ましくは0.155≦x≦0.240である。さらに好ましくは0.160≦x≦0.240である。
前記一般式(1)において、BサイトにおけるZrのモル比を示すyは、0.041≦y≦0.069の範囲である。yが0.041より小さいと、圧電特性が充分でなくなる。一方で、yが0.069より大きいとキュリー温度(T)が100℃未満と低くなり、高温において圧電特性が消失する。好ましくは0.045≦y≦0.069である。
本明細書において、キュリー温度とは、強誘電性が消失する温度をいう。その特定方法は、測定温度を変えながら強誘電性が消失する温度を直接測定する方法に加えて、微小交流電界を用いて測定温度を変えながら誘電率を測定し誘電率が極大を示す温度から求める方法がある。
本発明に係る圧電材料の組成を測定する手段は特に限定されない。手段としては、X線蛍光分析、ICP発光分光分析、原子吸光分析などが挙げられる。いずれの手段においても、前記圧電材料に含まれる各元素の重量比および組成比を算出できる。
本発明の圧電材料は、Mnの含有量が前記金属酸化物100重量部に対して金属換算で0.12重量部以上0.40重量部以下である。本発明の圧電材料は、前記範囲のMnを含有すると、絶縁性や機械的品質係数が向上する。ここで、機械的品質係数とは圧電材料を振動子として評価した際に振動による弾性損失を表す係数であり、機械的品質係数の大きさはインピーダンス測定における共振曲線の鋭さとして観察される。つまり振動子の共振の鋭さを表す定数である。絶縁性や機械的品質係数の向上は、TiやZrと価数が異なるMnによって欠陥双極子が導入されて内部電界が発生することに由来すると考えられる。内部電界が存在すると、前記圧電材料を圧電素子として電圧を印加し駆動させた際に、圧電素子の長期信頼性が確保できる。
ここで、Mnの含有量を示す「金属換算」とは、前記圧電材料から蛍光X線分析(XRF)、ICP発光分光分析、原子吸光分析などにより測定されたBa、Ca、Ti、ZrおよびMnの各金属の含有量から、前記一般式(1)で表わされる金属酸化物を構成する元素を酸化物換算し、その総重量を100としたときに対するMn重量との比によって求められた値を表す。Mnの含有量が0.12重量部未満であると、機械的品質係数が400未満と小さくなる。機械的品質係数が小さいと、前記圧電材料に1対の電極を付けて、圧電素子にして共振デバイスとして駆動した際に、消費電力が増大してしまう。好ましい機械的品質係数は、400以上であり、より好ましくは800以上である。この範囲であれば、実用的な駆動において、消費電力の極端な増大は発生しない。一方、Mnの含有量が0.40重量部より大きくなると、圧電特性が充分でなくなることや、圧電特性に寄与しない六方晶構造の結晶が発現することがあるので好ましくない。好ましくは0.20重量部以上0.40重量部以下である。
Mnは金属Mnに限らず、Mn成分として圧電材料に含まれていれば良く、その含有の形態は問わない。例えば、Bサイトに固溶していても良いし、粒界に含まれていてもかまわない。または、金属、イオン、酸化物、金属塩、錯体などの形態でMn成分が圧電材料に含まれていても良い。より好ましい含有の形態は、絶縁性や焼結容易性という観点からBサイトに固溶することである。Bサイトに固溶された場合、AサイトにおけるBaとCaのモル量とBサイトにおけるTiとZrとMnのモル量の比をA/Bとすると、好ましいA/Bの範囲は0.993≦A/B≦0.998である。A/Bがこの範囲の圧電材料は、圧電定数と機械的品質係数は特に優れるため、本発明の圧電材料を用いて耐久性に優れたデバイスを作製できる。
本発明の一実施形態に係る圧電材料は、前記一般式(1)およびMn以外の成分(以下、副成分)を特性が変動しない範囲で含んでいてもよい。前記副成分は、前記一般式(1)で表現される金属酸化物100重量部に対してその合計が1.2重量部以下であることが好ましい。前記副成分が1.2重量部を超えると、前記圧電材料の圧電特性や絶縁特性が低下する恐れがある。また、前記副成分のうち前記Ba、Ca、Ti、Zr、Mn以外の金属元素の含有量は、前記圧電材料に対して酸化物換算で1.0重量部以下、または金属換算で0.9重量部以下であることが好ましい。本明細書中において「金属元素」とはSi、Ge、Sbのような半金属元素も含む。前記副成分のうち前記Ba、Ca、Ti、Zr、Mn以外の金属元素の含有量が、前記圧電材料に対して酸化物換算で1.0重量部、または金属換算で0.9重量部を超えると、前記圧電材料の圧電特性や絶縁特性が著しく低下する恐れがある。前記副成分のうち、Li、Na、Mg、Al元素の合計は、前記圧電材料に対して金属換算で0.5重量部以下であることが好ましい。前記副成分のうち、Li、Na、Mg、Al元素の合計が、前記圧電材料に対して金属換算で0.5重量部を超えると、焼結が不十分となる恐れがある。前記副成分のうち、Y、V元素の合計は、前記圧電材料に対して金属換算で0.2重量部以下であることが好ましい。前記副成分のうち、Y、V元素の合計が前記圧電材料に対して金属換算で0.2重量部を超えると、分極処理が困難になる恐れがある。
前記副成分の例として、SiやCuといった焼結助剤が挙げられる。また、BaおよびCaの市販原料に不可避成分として含まれる程度のSrは、本発明の圧電材料に含んでいてもよい。同じく、Tiの市販原料に不可避成分として含まれる程度のNbと、Zrの市販原料に不可避成分として含まれる程度のHfは、本発明の圧電材料に含んでいてもよい。
前記副成分の重量部を測定する手段は特に限定されない。手段としては、X線蛍光分析、ICP発光分光分析、原子吸光分析などが挙げられる。
本発明の圧電材料は、CaとZrのモル比であるx/y=bが2.65≦b≦5.00の範囲であることが好ましい。bが2.65より小さいと、Mnの固溶が不充分になり、機械的品質係数が小さくなる恐れがある。一方で、bが5.00より大きくなると、単位格子のc軸とa軸の比が大きくなり、圧電特性が小さくなる恐れがある。より好ましくは2.71≦b≦5.00である。
本発明の圧電材料は、−25℃から100℃において結晶構造相転移点を有さないことが好ましい。
一般的に知られているチタン酸バリウムは、結晶構造が斜方晶から正方晶へ転移する温度(以下、To→tという)が17℃付近に、正方晶から斜方晶へと転移する温度(Tt→o)が5℃付近に存在する。圧電材料は、これらの結晶構造相転移点を往き来すると、単位格子の体積と分極軸方向が変化するために、次第に脱分極が起こり、圧電特性が劣化する恐れがある。そのため、チタン酸バリウムは広い温度域での使用が困難であった。本発明の圧電材料は、To→tが−25℃より低いため、チタン酸バリウムが抱えていた上述の課題に対する恐れがない。また、キュリー温度が100℃以上に存在することにより、夏季の車中で想定される80℃という過酷な状況下においても、圧電性を損失することなく、維持することができる。さらに、−25℃から100℃において正方晶構造を維持するため、機械的品質係数を高く維持することになり、機械的品質係数が小さくなる斜方晶領域を使用することを避けることができるため、広い実用温度域で良好かつ安定な圧電定数と機械的品質係数を有することが可能となる。
本発明に係る圧電材料は、前記圧電材料を構成する結晶粒の平均円相当径が1μm以上10μm以下であることが好ましい。平均円相当径をこの範囲にすることで、本発明の圧電材料は、良好な圧電特性と機械的強度を有することが可能となる。平均円相当径が1μm未満であると、圧電特性が充分でなくなる恐れがある。一方で、10μmより大きくなると機械的強度が低下する恐れがある。より好ましい範囲としては3μm以上8μm以下である。
本発明における「円相当径」とは、顕微鏡観察法において一般に言われる「投影面積円相当径」を表し、結晶粒の投影面積と同面積を有する真円の直径を表す。本発明において、この円相当径の測定方法は特に制限されない。例えば圧電材料の表面を偏光顕微鏡や走査型電子顕微鏡で撮影して得られる写真画像を画像処理して求めることができる。対象となる粒子径により最適倍率が異なるため、光学顕微鏡と電子顕微鏡を使い分けても構わない。材料の表面ではなく研磨面や断面の画像から円相当径を求めても良い。
本発明の圧電材料は、前記圧電材料の相対密度が93%以上100%以下であることが好ましい。
相対密度が93%より小さくなると、圧電特性や機械的品質係数が充分でなかったり、機械的強度が低下したりする恐れがある。
本発明に係る圧電材料の製造方法は特に限定されない。
圧電セラミックスを製造する場合は、構成元素を含んだ酸化物、炭酸塩、硝酸塩、蓚酸塩などの固体粉末を常圧化で焼結する一般的な手法を採用することができる。原料としては、Ba化合物、Ca化合物、Ti化合物、Zr化合物およびMn化合物といった金属化合物から構成される。
使用可能なBa化合物としては、酸化バリウム、炭酸バリウム、蓚酸バリウム、酢酸バリウム、硝酸バリウム、チタン酸バリウム、ジルコン酸バリウム、チタン酸ジルコン酸バリウムなどが挙げられる。
使用可能なCa化合物としては、酸化カルシウム、炭酸カルシウム、蓚酸カルシウム、酢酸カルシウム、チタン酸カルシウム、ジルコン酸カルシウムなどが挙げられる。
使用可能なTi化合物としては、酸化チタン、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸カルシウムなどが挙げられる。
使用可能なZr化合物としては、酸化ジルコニウム、ジルコン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。
使用可能なMn化合物としては、炭酸マンガン、酸化マンガン、二酸化マンガン、酢酸マンガン、四酸化三マンガンなどが挙げられる。
また、本発明の一実施形態に係る前記圧電セラミックスのAサイトにおけるBaとCaの存在量とBサイトにおけるTiとZrのモル量の比を示すaを調整するための原料は特に限定されない。Ba化合物、Ca化合物、Ti化合物、Zr化合物のいずれでも効果は同じである。
本発明の一実施形態に係る圧電セラミックスの原料粉を造粒する方法は特に限定されないが、造粒粉の粒径をより均一に出来るという観点において、最も好ましい造粒方法はスプレードライ法である。
造粒する際に使用可能なバインダーの例としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、アクリル系樹脂が挙げられる。添加するバインダーの量は1重量部から10重量部が好ましく、成形体の密度が上がるという観点において2重量部から5重量部がより好ましい。
本発明の一実施形態に係る圧電セラミックスの焼結方法は特に限定されない。
焼結方法の例としては、電気炉による焼結、ガス炉による焼結、通電加熱法、マイクロ波焼結法、ミリ波焼結法、HIP(熱間等方圧プレス)などが挙げられる。電気炉およびガスによる焼結は、連続炉であってもバッチ炉であっても構わない。
前記焼結方法におけるセラミックスの焼結温度は特に限定されないが、各化合物が反応し、充分に結晶成長する温度であることが好ましい。好ましい焼結温度としては、セラミックスの粒径を1μmから10μmの範囲にするという観点で、1200℃以上1550℃以下であり、より好ましくは1300℃以上1480℃以下である。上記温度範囲において焼結した圧電セラミックスは良好な圧電性能を示す。
焼結処理により得られる圧電セラミックスの特性を再現よく安定させるためには、焼結温度を上記範囲内で一定にして2時間以上24時間以下の焼結処理を行うとよい。また、二段階焼結法などの焼結方法を用いてもよいが、生産性を考慮すると急激な温度変化のない方法が好ましい。
前記圧電セラミックスを研磨加工した後に、1000℃以上の温度で熱処理することが好ましい。機械的に研磨加工されると、圧電セラミックスの内部には残留応力が発生するが、1000℃以上で熱処理することにより、残留応力が緩和し、圧電セラミックスの圧電特性がさらに良好になる。また、粒界部分に析出した炭酸バリウムなどの原料粉を排除する効果もある。熱処理の時間は特に限定されないが、1時間以上が好ましい。
本発明に係る圧電材料は、少なくとも第一の電極と第二の電極を有する圧電素子にすることにより、その圧電特性を評価できる。前記第一の電極および第二の電極は、厚み5nmから2000nm程度の導電層よりなる。その材料は特に限定されず、圧電素子に通常用いられているものであればよい。例えば、Ti、Pt、Ta、Ir、Sr、In、Sn、Au、Al、Fe、Cr、Ni、Pd、Ag、Cuなどの金属およびこれらの化合物を挙げることができる。
前記第一の電極および第二の電極は、これらのうちの1種からなるものであっても、あるいはこれらの2種以上を積層してなるものであってもよい。また、第一の電極と第二の電極が、それぞれ異なる材料であっても良い。
前記第一の電極と第二の電極の製造方法は限定されず、金属ペーストの焼き付けにより形成しても良いし、スパッタ、蒸着法などにより形成してもよい。また第一の電極と第二の電極とも所望の形状にパターニングして用いても良い。
前記圧電素子は一定方向に分極軸が揃っているものであると、より好ましい。分極軸が一定方向に揃っていることで前記圧電素子の圧電定数は大きくなる。前記圧電素子の分極方法は特に限定されない。分極処理は大気中で行ってもよいし、シリコーンオイル中で行ってもよい。分極をする際の温度は60℃から100℃の温度が好ましいが、素子を構成する圧電セラミックスの組成によって最適な条件は多少異なる。分極処理をするために印加する電界は800V/mmから2.0kV/mmが好ましい。
前記圧電素子の圧電定数および機械的品質係数は、市販のインピーダンスアナライザーを用いて得られる共振周波数及び反共振周波数の測定結果から、電子情報技術産業協会規格(JEITA EM−4501)に基づいて、計算により求めることができる。以下、この方法を共振−反共振法と呼ぶ。
本発明の圧電材料は、圧電センサ、圧電トランスや超音波モータといった共振周波数で駆動する共振デバイス(ハードデバイス)に好適に用いられる。
以下に、実施例を挙げて本発明をより具体的に説明するが、本発明は、以下の実施例により限定されるものではない。
本発明の圧電セラミックスを作製した。
(実施例1)
平均粒径100nmのチタン酸バリウム(堺化学工業製:BT−01)、平均粒径300nmのチタン酸カルシウム(堺化学工業製:CT−03)、平均粒径300nmのジルコン酸カルシウム(堺化学工業製:CZ−03)をモル比で84.5対11.4対4.1になるように秤量した。また、AサイトにおけるBaとCaのモル量とBサイトにおけるTiとZrのモル量との比を示すaを調整するために蓚酸バリウムを0.014mol添加した。これらの秤量粉は、ボールミルを用いて24時間の乾式混合によって混合した。得られた混合粉を造粒するために、混合粉に対してMn重量が金属換算で0.18重量部となる酢酸マンガン(II)と混合粉に対して3重量部となるPVAバインダーを、それぞれスプレードライヤー装置を用いて、混合粉表面に付着させた。
次に、得られた造粒粉を金型に充填し、プレス成型機を用いて200MPaの成形圧をかけて円盤状の成形体を作製した。この成形体は冷間等方加圧成型機を用いて、更に加圧しても構わない。
得られた成形体を電気炉に入れ、1440℃の最高温度で5時間保持し、合計24時間かけて大気雰囲気で焼結した。
そして、得られたセラミックスを構成する結晶粒の平均円相当径と相対密度を評価した。結果、平均円相当径は10.4μm、相対密度は94.6%であった。なお、結晶粒の観察には、主に偏光顕微鏡を用いた。小さな結晶粒の粒径を特定する際には、走査型電子顕微鏡(SEM)を用いた。この観察結果より平均円相当径を算出した。また、相対密度はアルキメデス法を用いて評価した。
次に、得られたセラミックスを厚さ0.5mmになるように研磨し、X線回折により結晶構造を解析した。その結果、ペロブスカイト型構造に相当するピークのみが観察された。
また、蛍光X線分析により組成を評価した。その結果、(Ba0.845Ca0.1551.004(Ti0.959Zr0.041)Oの化学式で表わすことができる組成にMnが0.18重量部含有されていることが分かった。これは秤量した組成と焼結後の組成が一致していることを意味する。また、Ba、Ca、Ti、ZrおよびMn以外の元素は検出限界以下の量であり、0.1重量部未満であった。
さらに、結晶粒の観察を再度行ったが、研磨前後で、平均円相当径に大きな違いは無かった。
(実施例2から21)
平均粒径100nmのチタン酸バリウム(堺化学工業製:BT−01)、平均粒径300nmのチタン酸カルシウム(堺化学工業製:CT−03)、平均粒径300nmのジルコン酸カルシウム(堺化学工業製:CZ−03)を表1に示すモル比になるように秤量した。また、AサイトにおけるBaとCaのモル量とBサイトにおけるTiとZrのモル量との比を示すaを調整するために蓚酸バリウムを表1の値になるように添加した。これらの秤量粉は、ボールミルを用いて24時間の乾式混合によって混合した。なお、実施例16には、SiとCuを酸化物換算で合計1.0重量部になるように混合した。得られた混合粉を造粒するために、混合粉に対してMn重量が金属換算で表1の重量部になるように酢酸マンガン(II)と、混合粉に対して3重量部となるPVAバインダーを、それぞれスプレードライヤー装置を用いて混合粉表面に付着させた。
次に、得られた造粒粉を金型に充填し、プレス成型機を用いて200MPaの成形圧をかけて円盤状の成形体を作製した。この成形体は冷間等方加圧成型機を用いて、更に加圧しても構わない。
得られた成形体を電気炉に入れ、1350℃から1480℃の最高温度で5時間保持し、合計24時間かけて大気雰囲気で焼結した。最高温度はCaの量が多くなるほど高くした。
そして、得られたセラミックスを構成する結晶粒の平均円相当径と相対密度を評価した。その結果を表2に示す。なお、結晶粒の観察には、主に偏光顕微鏡を用いた。小さな結晶粒の粒径を特定する際には、走査型電子顕微鏡(SEM)を用いた。この観察結果より平均円相当径を算出した。また、相対密度はアルキメデス法を用いて評価した。
次に、得られたセラミックスを厚さ0.5mmになるように研磨し、X線回折により結晶構造を解析した。その結果、いずれのサンプルにおいてもペロブスカイト型構造に相当するピークのみが観察された。
また、蛍光X線分析により組成を評価した。その結果を表3に示す。表中の副成分とは、Ba、Ca、Ti、ZrおよびMn以外の元素のことであり、0は検出限界以下であり、0.1重量部未満であったことを意味する。これより、いずれのサンプルにおいても秤量した組成と焼結後の組成は一致していることが分かった。
さらに、結晶粒の観察を再度行ったが、焼結後と研磨後において、結晶粒のサイズや状態に大きな違いは無かった。
(比較例1から14)
実施例1から21と同様の原料粉に加え、平均粒径300nmであるジルコン酸バリウム(日本化学工業製)を用いて、表1に示すモル比になるように秤量し、ボールミルを用いて乾式混合を24時間行った。なお、比較例6には副成分としてYとVを酸化物換算で合計2.1重量部になるように混合した。得られた混合粉を造粒するために、混合粉に対してMn重量が金属換算で表1の重量部となる酢酸マンガン(II)と、混合粉に対して3重量部となるPVAバインダーを、それぞれスプレードライヤー装置を用いて混合粉表面に付着させた。
得られた造粒粉を用いて、実施例2から21と同様の条件でセラミックスを作製した。そして、得られたセラミックスを構成する結晶粒の平均円相当径と相対密度を評価した。その結果を表2に示す。なお、結晶粒および相対密度の評価は実施例1から21と同様の手法で行った。
次に、得られたセラミックスを厚さ0.5mmになるように研磨し、X線回折により結晶構造を解析した。その結果、比較例1から13までのサンプルにおいてはペロブスカイト型構造に相当するピークのみが観察された。しかし、比較例14はCaとZrを含有していないため、Mnが0.27重量部だったにも関わらず非ペロブスカイト型構造のピークが確認された。
また、蛍光X線分析により組成を評価した。その結果を表3に示す。これより、いずれのサンプルにおいても秤量した組成と焼結後の組成は一致していることが分かった。
また、実施例1から21、比較例1から14の圧電材料のx値とy値の関係を図1に示す。点線の範囲はペロブスカイト型金属酸化物を表す一般式(1)におけるx、yの範囲を示す。
Figure 0005968112
Figure 0005968112

Figure 0005968112
(圧電素子の作製と静特性評価)
(実施例1から21)
続いて、実施例1から21のセラミックスを用いて圧電素子を作製した。
前記円盤状のセラミックスの表裏両面にDCスパッタリング法により厚さ400nmの金電極を形成した。なお、電極とセラミックスの間には、密着層として30nmのチタンを成膜した。この電極付きのセラミックスを切断加工し、10mm×2.5mm×0.5mmの短冊状圧電素子を作製した。
得られた圧電素子を、ホットプレートの表面を60℃から100℃になるように設定し、前記ホットプレート上で1kV/mmの電界を30分間印加し、分極処理した。
以下では、本発明の圧電材料及び比較例に対応する圧電材料を有する圧電素子の静特性として、分極処理した圧電素子のキュリー温度、圧電定数d31及び機械的品質係数(Qm)を評価した。その結果を表4に示す。表中の「相転移点」は、−25℃から100℃の間に結晶構造相転移点が存在しているか否かを調べた結果を表わす。周波数1kHzの微小交流電界を用いて測定温度を−25℃から100℃まで変えながら誘電率を測定し極大点があったものを「有」、なかったものを「無」と記載した。キュリー温度は、周波数1kHzの微小交流電界を用いて測定温度を変えながら誘電率を測定し誘電率が極大を示す温度から求めた。また、圧電定数d31は共振−反共振法によって求め、表中にはその絶対値を記載した。
表4には、BaおよびCaの存在量とTi、ZrおよびMnの存在量の比も記載した。また、表中の「×」は、評価が実施できなかったことを意味する。
Figure 0005968112
ここで、実施例4と5、実施例6と7、実施例10と11および実施例12と13を比較する。いずれの組み合わせもx、yおよびMn含有量が同じ組成であるが、aの値が小さい実施例5、7、11および13の方が圧電定数と機械的品質係数ともに優れていた。また、実施例5、7、11および13のBaおよびCaの存在量とTi、ZrおよびMnの存在量の比は、0.993以上0.998以下であった。
また、全ての実施例において、電極を銀ペーストの焼き付けに変更しても、金電極と同等の特性であった。
(比較例1から14)
次に、比較例1から14のセラミックスを用いて圧電素子を作製した。
素子の作製と評価は実施例1から21と同様の方法で行った。
比較例2はZrを含有していないため圧電定数d31が41[pC/N]と低くなった。比較例3はZrが15%(y=0.150)と多量に含有するため、キュリー温度が60℃と低くなり、圧電素子として使用できる温度が狭くなった。比較例4はCaが32%(x=0.32)と多量に含有するため、焼結が充分に進まず粒成長が不十分であったため、圧電定数が小さくなった。比較例5はaの値が0.980と小さく、粒径が30μmより大きく成長する異常粒成長がみられたため、キュリー温度以外の静特性の評価を実施できなかった。比較例5の圧電材料を構成する結晶粒の平均円相当径は、作成した短冊状圧電素子の厚み(0.5mm=500μm)と比べてかなり大きいため、圧電材料にへき開が生じやすく、素子として実装するには機械的強度が著しく不十分だった。比較例6は副成分として、YとVを合わせて2.1重量%含有していたため、圧電定数が小さくなった。比較例7はaの値が1.030と大きく、焼結が充分に進まず粒成長が不十分であったため、圧電定数d31が20[pC/N]と値が小さかった。比較例9はMnを0.45重量部と多く含んでいたため、圧電定数が小さくなった。比較例10は粒径の平均円相当径が1μmより小さくなり、圧電定数が小さかった。比較例11は粒径の平均円相当径が100μmより大きく成長する異常粒成長がみられたため、比較例5と同様にキュリー温度以外の静特性の評価を実施できなかった。比較例12は相対密度が93%より低くなったため、圧電定数が小さくなった。比較例14は非ペロブスカイト型構造のピークが確認されたため、キュリー温度以外の静特性の評価を実施できなかった。比較例1、8および13の静特性は実施例のサンプルと遜色ない結果であった。
(圧電素子の動特性評価)
以下では本発明の圧電材料及び比較例に対応する圧電材料を有する圧電素子の動特性として、電圧印加を下記条件で行った際の圧電定数の変化率、および消費電力の計測を行った。
実施例1から21、比較例1、8および13に関しては、共振−反共振法を用いて機械的品質係数を評価した。その結果を表5に示す。
続いて、短冊状の素子に共振周波数近傍(190kHz〜230kHz)の周波数の交流電圧を印加し、振動速度と素子の消費電力の関係を評価した。振動速度はレーザ―ドップラー振動計で、消費電力は電力計でそれぞれ測定をおこなった。そして、印加電圧と周波数を変化させ、振動速度が0.40m/sになるようしたときの消費電力の値を表5にまとめた。
Figure 0005968112
実施例のサンプルと比較例13はいずれも消費電力が20[mW]以下であったのに対し、比較例1および8サンプルはいずれも50[mW]以上の消費電力が生じてしまった。比較例1、8ともに機械的品質係数が190以下と小さかったことがこの差の原因であると考えられ、共振周波数近傍で駆動する際には機械的品質係数の値が重要であり、400以上の値が必要となる。
(圧電素子の耐久性評価)
次に圧電素子の耐久性を確認するため、実施例1から21、比較例1および13を恒温槽に入れ、25℃→−20℃→50℃→25℃を1サイクルとした温度サイクルを100サイクル繰り返す、サイクル試験を行った。サイクル試験前後の圧電定数d31を評価し、圧電定数の変化率を表6にまとめた。
Figure 0005968112
実施例のサンプルはいずれも圧電特性の変化率が5%以下であったのに対し、比較例のサンプルはいずれも10%以上の変化が生じた。実施例のサンプルはいずれも結晶構造相転移点を−25℃から100℃の間に有さない。そのため、−25℃から50℃の温度変化に対して、分極劣化が少なかったと考えられる。一方、比較例1と13は、結晶構造相転移点が−25℃から50℃の間に存在するため、結晶構造相転移点を何度も往復することにより、分極劣化が大きく生じ、圧電特性が低下したと考えられる。すなわち、結晶構造相転移温度を−25℃から100℃の間にもつ圧電セラミックスは、素子として充分な耐久性がないといえる。
本発明の圧電材料は、広い実用温度領域で良好かつ安定な圧電定数と機械的品質係数を有し、環境に対しても負荷がなく、超音波モータなど多くの圧電素子等の圧電材料を多く用いる機器にも問題なく利用することができる。

Claims (5)

  1. 下記一般式(1):
    一般式(1) 一般式(Ba1−xCa(Ti1−yZr)O(1.00≦a≦1.01、0.155≦x≦0.300、0.041≦y≦0.069)で表わされるペロブスカイト型金属酸化物を主成分とした圧電材料であって、
    前記圧電材料にMn成分が含有されており、前記Mnの含有量が前記金属酸化物100重量部に対して金属換算で0.12重量部以上0.40重量部以下であり、
    前記圧電材料を構成する結晶粒の平均円相当径が1.0μm以上10.4μm以下であり、
    前記圧電材料の相対密度が92.1%以上100%以下であり、
    前記金属酸化物およびMn以外の副成分は、前記金属酸化物100重量部に対してその合計が1.2重量部以下であることを特徴とする圧電材料。
  2. 前記圧電材料のCaとZrのモル比Ca/Zr=bが2.65≦b≦5.00であることを特徴とする請求項1に記載の圧電材料。
  3. 前記圧電材料が−25℃から100℃において結晶構造相転移点を有さないことを特徴とする請求項1乃至2のいずれかに記載の圧電材料。
  4. 前記圧電材料を構成する結晶粒の平均円相当径が1μm以上10μm以下であることを特徴とする請求項1乃至3のいずれかに記載の圧電材料。
  5. 前記圧電材料の相対密度が93%以上100%以下であることを特徴とする請求項1乃至4のいずれかに記載の圧電材料。
JP2012142185A 2011-07-05 2012-06-25 圧電材料 Active JP5968112B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142185A JP5968112B2 (ja) 2011-07-05 2012-06-25 圧電材料

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011149359 2011-07-05
JP2011149359 2011-07-05
JP2012060236 2012-03-16
JP2012060236 2012-03-16
JP2012142185A JP5968112B2 (ja) 2011-07-05 2012-06-25 圧電材料

Publications (2)

Publication Number Publication Date
JP2013216557A JP2013216557A (ja) 2013-10-24
JP5968112B2 true JP5968112B2 (ja) 2016-08-10

Family

ID=49589147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142185A Active JP5968112B2 (ja) 2011-07-05 2012-06-25 圧電材料

Country Status (1)

Country Link
JP (1) JP5968112B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238251A (ja) * 2003-02-06 2004-08-26 Murata Mfg Co Ltd 誘電体磁器組成物、及びセラミック電子部品
JP4756312B2 (ja) * 2004-11-15 2011-08-24 株式会社豊田中央研究所 異方形状粉末及びその製造方法、並びに、結晶配向セラミックスの製造方法
JP2007223863A (ja) * 2006-02-24 2007-09-06 Tdk Corp 誘電体磁器組成物およびその製造方法

Also Published As

Publication number Publication date
JP2013216557A (ja) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5979992B2 (ja) 圧電材料
KR101634016B1 (ko) 압전 재료
KR101541022B1 (ko) 압전재료, 압전소자, 액체 토출 헤드, 초음파 모터 및 진애 제거 장치
JP5566059B2 (ja) 金属酸化物および圧電材料
JP4948639B2 (ja) 圧電セラミックス、その製造方法、圧電素子、液体吐出ヘッドおよび超音波モータ
KR101541021B1 (ko) 압전 세라믹, 그 제조 방법, 압전소자, 액체 토출 헤드, 초음파 모터 및 진애 제거장치
JP5523431B2 (ja) 圧電セラミックス、圧電セラミックスの製造方法、圧電素子、液体吐出ヘッド、超音波モータ及び塵埃除去装置
KR101717323B1 (ko) 압전 재료, 압전 소자, 및 전자 기기
KR101333346B1 (ko) 텅스텐 브론즈형 압전 재료 및 그의 제조 방법
JP2004115293A (ja) 圧電セラミックス
CN104891987A (zh) 陶瓷粉末、压电陶瓷、压电元件和电子设备
JP2013216565A (ja) 圧電材料、圧電素子、および電子機器
US20190044054A1 (en) Piezoelectric material, piezoelectric element, vibration wave motor, optical apparatus, and electronic apparatus
JP3934324B2 (ja) 圧電セラミックス
JP7150511B2 (ja) 圧電材料、圧電素子、振動波モータ、光学機器及び電子機器
JP2016147798A (ja) 圧電材料、圧電素子、およびこれを用いた装置
JP2016131240A (ja) 圧電材料、圧電素子、およびこれを用いた装置
JP5968112B2 (ja) 圧電材料
JP7348751B2 (ja) 圧電セラミックス、圧電素子および電子機器
JP2003335577A (ja) 圧電デバイス
JP3981221B2 (ja) 圧電磁器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R151 Written notification of patent or utility model registration

Ref document number: 5968112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151