JP5961939B2 - Capacitor manufacturing method - Google Patents

Capacitor manufacturing method Download PDF

Info

Publication number
JP5961939B2
JP5961939B2 JP2011160247A JP2011160247A JP5961939B2 JP 5961939 B2 JP5961939 B2 JP 5961939B2 JP 2011160247 A JP2011160247 A JP 2011160247A JP 2011160247 A JP2011160247 A JP 2011160247A JP 5961939 B2 JP5961939 B2 JP 5961939B2
Authority
JP
Japan
Prior art keywords
current collector
anode
cathode
collector plate
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011160247A
Other languages
Japanese (ja)
Other versions
JP2013026462A (en
Inventor
正行 森
正行 森
久保内 達郎
達郎 久保内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2011160247A priority Critical patent/JP5961939B2/en
Priority to CN201180053897.9A priority patent/CN103210459B/en
Priority to PCT/JP2011/006266 priority patent/WO2012063486A1/en
Publication of JP2013026462A publication Critical patent/JP2013026462A/en
Priority to US13/890,426 priority patent/US9672985B2/en
Application granted granted Critical
Publication of JP5961939B2 publication Critical patent/JP5961939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンデンサ素子と、コンデンサ素子の外装部材を封口する封口部材にある外部端子との間の接続に関し、その接続にレーザ溶接や電子ビーム溶接を用いた例えば、電解コンデンサ、電気二重層コンデンサ等のコンデンサの製造方法に関する。 The present invention relates to a connection between a capacitor element and an external terminal in a sealing member that seals an exterior member of the capacitor element. For example, an electrolytic capacitor or an electric double layer capacitor using laser welding or electron beam welding for the connection. a process for the manufacture of capacitors and the like.

電気二重層コンデンサ又は電解コンデンサでは、コンデンサ素子と外部端子とを電気的に接続することが必要である。この電気的な接続により、素子側の内部抵抗の低減や、接続部分の接触抵抗を低減させる対策が施されている。   In the electric double layer capacitor or electrolytic capacitor, it is necessary to electrically connect the capacitor element and the external terminal. By this electrical connection, measures are taken to reduce the internal resistance on the element side and the contact resistance of the connection portion.

このような電気的接続に関し、素子の端面に集電端子を設けること(例えば、特許文献1)、巻回素子の一方の端面に陽極集電板、他方の端面に陰極集電板を設けること(例えば、特許文献2)、巻回素子の端面に露出した集電箔を覆って集電板を備え、集電板と集電箔とを溶接接続すること(例えば、特許文献3)、また、集電板を外装ケースと素子との接続や外部端子との接続に用いること(例えば、特許文献4)が知られている。   Regarding such electrical connection, a current collecting terminal is provided on the end face of the element (for example, Patent Document 1), an anode current collecting plate is provided on one end face of the winding element, and a cathode current collecting plate is provided on the other end face. (For example, Patent Document 2), including a current collector foil that covers the current collector foil exposed on the end face of the winding element, and welding and connecting the current collector plate and the current collector foil (for example, Patent Document 3); It is known that a current collector plate is used for connection between an exterior case and an element or connection with an external terminal (for example, Patent Document 4).

また、積層型のコンデンサ素子では、素子端面側に接続端子を備えるものが知られている(例えば、特許文献5)。
In addition, a multilayer capacitor element having a connection terminal on the element end face side is known (for example, Patent Document 5).

特開平11−219857号公報Japanese Patent Application Laid-Open No. 11-219857 特開2001−068379号公報JP 2001-068379 A 特開2007−335156号公報JP 2007-335156 A 特開2010−093178号公報JP 2010-093178 A 特開平6−275476号公報JP-A-6-275476

ところで、コンデンサ素子の素子端面に集電板を備えて外部端子等の外部端子部材と接続する構成では、集電板と外部端子部材とを溶接によって接続する。この接続にはレーザ溶接や電子ビーム溶接が用いられ、これらの溶接ではレーザビームや電子ビームを溶接箇所に照射することにより、溶接部の金属が溶融して一体化される。このような溶接にあっては、溶接箇所にレーザビームや電子ビームを照射するので、集電板と外部端子との接触が必要であり、その接触部分には溶接に必要な加工精度が求められる。しかし、集電板や、外部端子部材の形状精度にばらつきがあるなど、これらの加工精度が低い場合には、集電板と外部端子部材との間の接触面間に隙間を生じる。   Incidentally, in a configuration in which a current collector plate is provided on the element end face of the capacitor element and connected to an external terminal member such as an external terminal, the current collector plate and the external terminal member are connected by welding. For this connection, laser welding or electron beam welding is used. In these weldings, the welded portion is irradiated with a laser beam or electron beam to melt and integrate the metal in the welded portion. In such welding, since a laser beam or an electron beam is irradiated to the welding location, contact between the current collector plate and the external terminal is required, and the contact portion is required to have processing accuracy necessary for welding. . However, when the processing accuracy is low, such as variations in the shape accuracy of the current collector plate and the external terminal member, a gap is generated between the contact surfaces between the current collector plate and the external terminal member.

このような隙間を生じた接触面間にレーザビームや電子ビームを照射すると、その隙間によって溶接領域が変動し、溶接精度が低下するという課題がある。また、接触面間の隙間が大きい場合には溶接範囲が狭小化したり、集電板と外部端子部材との間の接続強度が低下したり、接続抵抗が大きくなってしまうなどの課題がある。   When a laser beam or an electron beam is irradiated between the contact surfaces in which such a gap is generated, there is a problem in that the welding region changes due to the gap and the welding accuracy is lowered. Moreover, when the clearance gap between contact surfaces is large, there exists a subject that a welding range narrows, the connection strength between a current collecting plate and an external terminal member falls, or a connection resistance becomes large.

そこで、本発明の目的は、上記課題に鑑み、集電板や外部端子部材の加工精度に影響を受けることなく、集電板と外部端子部材との間の溶接精度や接続強度を高めたコンデンサを提供することにある。
Therefore, in view of the above problems, an object of the present invention is to provide a capacitor with improved welding accuracy and connection strength between the current collector plate and the external terminal member without being affected by the processing accuracy of the current collector plate and the external terminal member. Is to provide.

記目的を達成するため、本発明のコンデンサの製造方法は、陽極側及び陰極側の電極体と、これら電極体間に介在されたセパレータとを備える巻回素子又は非巻回素子であるコンデンサ素子の素子端面に前記電極体を張り出させ、前記素子端面に単一又は複数の電極張出し部を形成する工程と、前記コンデンサ素子を収容するケース部材の開口部を封口する封口部材に設置された外部端子部材、又は前記電極張出し部に接続される集電板の何れか一方に覆い部を備え、この覆い部で前記外部端子部材と前記集電板との接触面を覆う工程と、前記覆い部にレーザビーム又は電子ビームの照射位置が設定され、前記集電板と前記外部端子部材とを溶接する工程とを含む構成である。 To achieve the above Symbol object, method of manufacturing the capacitor of the present invention is a wound element or non-winding device comprising the electrode body on the anode side and cathode side, and a separator interposed between the electrode bodies capacitor A step of forming the electrode body on the element end face of the element and forming a single or a plurality of electrode overhanging portions on the element end face; and a sealing member for sealing the opening of the case member accommodating the capacitor element. A step of covering the contact surface between the external terminal member and the current collector plate with a cover portion on either one of the external terminal member or the current collector plate connected to the electrode extension portion; and An irradiation position of a laser beam or an electron beam is set on the cover, and the step includes welding the current collector plate and the external terminal member.

上記目的を達成するため、上記コンデンサの製造方法において、より好ましくは、前記レーザビーム又は前記電子ビームの前記照射位置は、前記集電板と前記外部端子部材との接触面に一致させてもよい。   In order to achieve the above object, in the capacitor manufacturing method, more preferably, the irradiation position of the laser beam or the electron beam may coincide with a contact surface between the current collector plate and the external terminal member. .

上記目的を達成するため、上記コンデンサの製造方法において、より好ましくは、前記レーザビーム又は前記電子ビームの前記照射位置は、前記集電板と前記外部端子部材との接触面に対して交差方向に異ならせてもよい。   In order to achieve the above object, in the method for manufacturing a capacitor, more preferably, the irradiation position of the laser beam or the electron beam is in a direction intersecting with a contact surface between the current collector plate and the external terminal member. It may be different.

上記目的を達成するため、上記コンデンサの製造方法において、より好ましくは、前記レーザビーム又は前記電子ビームの前記照射位置を前記接触面と交差方向に±0.1〜±0.5〔mm〕だけ異ならせてもよい。   In order to achieve the above object, in the method of manufacturing a capacitor, more preferably, the irradiation position of the laser beam or the electron beam is ± 0.1 to 0.5 mm in the direction intersecting the contact surface. It may be different.

上記目的を達成するため、上記コンデンサの製造方法において、より好ましくは、前記レーザビーム又は前記電子ビームのデフォーカス位置を前記レーザビーム又は前記電子ビームの前記照射位置から0.2〔mm〕〜2.0〔mm〕以下に設定してもよい。
上記目的を達成するためには、上記コンデンサの製造方法において、より好ましくは、前記レーザビームによる溶接又は前記電子ビームによる溶接のナゲット深さを1.2〔mm〕以下としてもよい。
In order to achieve the above object, in the method for manufacturing a capacitor, more preferably, the defocus position of the laser beam or the electron beam is set to 0.2 mm to 2 mm from the irradiation position of the laser beam or the electron beam. It may be set to 0.0 [mm] or less.
In order to achieve the above object, in the method for manufacturing a capacitor, more preferably, the nugget depth of the laser beam welding or the electron beam welding may be 1.2 mm or less.

本発明のコンデンサの製造方法によれば、次の何れかの効果が得られる。 According to capacitor production method of the present invention, any of the following effects can be obtained.

(1) 集電板と外部端子部材との接触面を集電板又は外部端子部材にある覆い部で覆い、この覆い部にレーザビーム又は電子ビームを照射するので、集電板と外部端子部材との接触面の状態に無関係に両者を溶接することができる。   (1) Since the contact surface between the current collector plate and the external terminal member is covered with a cover portion on the current collector plate or the external terminal member, and this cover portion is irradiated with a laser beam or an electron beam, the current collector plate and the external terminal member Both can be welded regardless of the state of the contact surface.

(2) 集電板と外部端子部材との接触面を覆う集電板側の平坦面を選択してレーザビーム又は電子ビームを照射できるので、集電板と外部端子部材との接触面の加工精度が低い場合でも、隙間があっても、最適な溶接範囲が得られ、集電板と外部端子部材との間の溶接精度や溶接強度を高めることができる。   (2) Since a laser beam or electron beam can be irradiated by selecting a flat surface on the current collector plate that covers the contact surface between the current collector plate and the external terminal member, processing of the contact surface between the current collector plate and the external terminal member is possible. Even if the accuracy is low, even if there is a gap, an optimum welding range can be obtained, and the welding accuracy and welding strength between the current collector plate and the external terminal member can be increased.

そして、本発明の他の目的、特徴及び利点は、添付図面及び各実施の形態を参照することにより、一層明確になるであろう。
Other objects, features, and advantages of the present invention will become clearer with reference to the accompanying drawings and each embodiment.

第1の実施の形態に係る電気二重層コンデンサの一例を示す断面図である。It is sectional drawing which shows an example of the electric double layer capacitor which concerns on 1st Embodiment. 電気二重層コンデンサを示す分解斜視図である。It is an exploded perspective view showing an electric double layer capacitor. 一部を分解したコンデンサ素子の一例を示す斜視図である。It is a perspective view which shows an example of the capacitor | condenser element which decomposed | disassembled one part. コンデンサ素子の電極部の成形前後の一例を示す図である。It is a figure which shows an example before and behind shaping | molding of the electrode part of a capacitor | condenser element. 集電板の一例を示す図である。It is a figure which shows an example of a current collecting plate. レーザ溶接された集電板を備えるコンデンサ素子を示す図である。It is a figure which shows a capacitor | condenser element provided with the current collector plate welded by laser. コンデンサ素子上の集電板と外部端子との接続を示す図である。It is a figure which shows the connection of the current collection board on a capacitor | condenser element, and an external terminal. 陽極集電板及び陽極端子の溶接部を拡大して示した図である。It is the figure which expanded and showed the welding part of the anode current collecting plate and the anode terminal. レーザビームの溶接形態を示す図である。It is a figure which shows the welding form of a laser beam. 熱伝導溶接によって形成されたナゲットを示す図である。It is a figure which shows the nugget formed by heat conduction welding. 熱伝導溶接によって形成された他のナゲットを示す図である。It is a figure which shows the other nugget formed by heat conduction welding. 第2の実施の形態に係る電気二重層コンデンサの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the electrical double layer capacitor which concerns on 2nd Embodiment. コンデンサ素子の陽極部及び陰極部の成形状態を示す図である。It is a figure which shows the molding state of the anode part and cathode part of a capacitor | condenser element. コンデンサ素子と集電板の接続工程を示す図である。It is a figure which shows the connection process of a capacitor | condenser element and a current collecting plate. 第3の実施の形態に係る集電板と外部端子との接続を示す図である。It is a figure which shows the connection of the current collection board which concerns on 3rd Embodiment, and an external terminal. 第4の実施の形態に係る集電板、その接続を示す図である。It is a figure which shows the current collection board which concerns on 4th Embodiment, and its connection. 第5の実施の形態に係る集電板と外部端子との接続及び位置決めを示す図である。It is a figure which shows the connection and positioning of the current collecting plate and external terminal which concern on 5th Embodiment. 第6の実施の形態に係る、端子接続板を備える電気二重層コンデンサを示す分解斜視図である。It is a disassembled perspective view which shows an electric double layer capacitor provided with the terminal connection board based on 6th Embodiment. 他の実施の形態に係る外部端子を覆う集電板及び溶接処理を示す図である。It is a figure which shows the current collection board which covers the external terminal which concerns on other embodiment, and a welding process.

〔第1の実施の形態〕 [First Embodiment]

第1の実施の形態は、コンデンサ素子の素子端面に接続された集電板と外部端子との接触面と異なる位置にレーザビーム又は電子ビームの照射位置を設定し、集電板と外部端子をレーザ溶接した構成である。   In the first embodiment, the irradiation position of the laser beam or electron beam is set at a position different from the contact surface between the current collector plate connected to the element end face of the capacitor element and the external terminal, and the current collector plate and the external terminal are connected. It is the structure which carried out laser welding.

この第1の実施の形態に係る電気二重層コンデンサ(以下単に「コンデンサ」と称する)について図1及び図2を参照する。図1はコンデンサの縦断面、図2はその分解状態を示している。図1及び図2に示す構成は一例であり、斯かる構成に本発明が限定されるものではない。   The electric double layer capacitor (hereinafter simply referred to as “capacitor”) according to the first embodiment will be described with reference to FIGS. FIG. 1 shows a longitudinal section of the capacitor, and FIG. 2 shows an exploded state thereof. The configuration shown in FIGS. 1 and 2 is an example, and the present invention is not limited to such a configuration.

このコンデンサ2は本発明のコンデンサの一例である。このコンデンサ2には、コンデンサ素子4の同一の素子端面5に陽極部6と陰極部8が形成されている。陽極部6及び陰極部8は、電極張出し部の一例であって、コンデンサ素子4の素子端面5から引き出された電極体(陽極体60又は陰極体80:図3)の一部で構成される。陽極部6と陽極端子10との接続には両者間に介在させた陽極集電板12が用いられ、また、陰極部8と陰極端子14との接続には両者間に介在させた陰極集電板16が用いられている。陽極端子10及び陰極端子14は外部接続のための外部端子部材であって、陽極端子10は陽極端子部材の一例、陰極端子14は陰極端子部材の一例である。陽極端子10と陽極集電板12の接続、陰極端子14と陰極集電板16の接続には既述のレーザ溶接や電子ビーム溶接が用いられ、これらの接続部にはナゲット18が形成されている。各ナゲット18は、レーザビームや電子ビームを溶接位置にデフォーカスにより照射し、陽極端子10と陽極集電板12又は陰極端子14と陰極集電板16とが溶融、硬化を経て一体化した金属塊部であり、溶接により生成された部分である。各ナゲット18の形状は放物立体形であり、その大きさはナゲット径と、ナゲット表面の中心から深さ方向の長さ(ナゲット深さ)とで定義される。   This capacitor 2 is an example of the capacitor of the present invention. In this capacitor 2, an anode portion 6 and a cathode portion 8 are formed on the same element end surface 5 of the capacitor element 4. The anode part 6 and the cathode part 8 are an example of an electrode projecting part, and are constituted by a part of an electrode body (anode body 60 or cathode body 80: FIG. 3) drawn from the element end face 5 of the capacitor element 4. . An anode current collector plate 12 interposed between the anode part 6 and the anode terminal 10 is used for the connection between the anode part 6 and the anode terminal 10, and a cathode current collector interposed between the two for the connection between the cathode part 8 and the cathode terminal 14. A plate 16 is used. The anode terminal 10 and the cathode terminal 14 are external terminal members for external connection. The anode terminal 10 is an example of an anode terminal member, and the cathode terminal 14 is an example of a cathode terminal member. The aforementioned laser welding or electron beam welding is used for the connection between the anode terminal 10 and the anode current collector plate 12 and the connection between the cathode terminal 14 and the cathode current collector plate 16, and a nugget 18 is formed at these connection portions. Yes. Each nugget 18 irradiates a welding position with a laser beam or an electron beam by defocusing, and the anode terminal 10 and the anode current collector plate 12 or the cathode terminal 14 and the cathode current collector plate 16 are fused and cured to be integrated. It is a lump and is a part generated by welding. The shape of each nugget 18 is a parabolic solid, and its size is defined by the nugget diameter and the length in the depth direction (nugget depth) from the center of the nugget surface.

この実施の形態では、陽極集電板12と接続された陽極部6及び陰極集電板16と接続された陰極部8の外周面には、絶縁手段17が設置されている。この絶縁手段17によってコンデンサ素子4と外装ケース20との絶縁が図られる。この絶縁手段17は例えば、絶縁紙や絶縁テープ等の絶縁材料を用いればよい。   In this embodiment, insulating means 17 is provided on the outer peripheral surface of the anode portion 6 connected to the anode current collector plate 12 and the cathode portion 8 connected to the cathode current collector plate 16. By this insulating means 17, the capacitor element 4 and the outer case 20 are insulated. The insulating means 17 may be made of an insulating material such as insulating paper or insulating tape.

次に、コンデンサ素子4は図2に示すように、円筒体であって、一方の素子端面に陽極体60(図3)を引き出して陽極部6が形成されているとともに、陰極体80(図3)を引き出して陰極部8が形成されている。コンデンサ素子4の周囲には保持テープ19が巻回され、陽極体60や陰極体80の巻き戻りが防止されている。 Next, as shown in FIG. 2, the capacitor element 4 is a cylindrical body, and an anode body 60 (FIG. 3) is drawn out from one element end face to form an anode portion 6, and a cathode body 80 (FIG. 2). 3) is pulled out to form a cathode portion 8. A holding tape 19 is wound around the capacitor element 4 to prevent the anode body 60 and the cathode body 80 from unwinding.

コンデンサ素子4の外装部材として外装ケース20及び封口板22が備えられる。外装ケース20は例えばアルミニウム等の成形性のある金属材料からなる成形体である。封口板22は外装ケース20の開口部30を閉止し、空間部24の気密性を保持する手段であるとともに、陽極端子10及び陰極端子14を固定する固定部材であり、コンデンサ素子4の支持部材を構成している。この実施の形態では、封口板22にベース部26と、封止部28とが備えられる。ベース部26は絶縁材料である例えば、合成樹脂で形成され、陽極端子10及び陰極端子14が固定されるとともに、絶縁されている。封止部28は密閉性の高い材料例えば、ゴム環で構成されている。   An exterior case 20 and a sealing plate 22 are provided as exterior members of the capacitor element 4. The outer case 20 is a molded body made of a moldable metal material such as aluminum. The sealing plate 22 is a means for closing the opening 30 of the outer case 20 and maintaining the airtightness of the space 24, and is a fixing member for fixing the anode terminal 10 and the cathode terminal 14, and a support member for the capacitor element 4. Is configured. In this embodiment, the sealing plate 22 is provided with a base portion 26 and a sealing portion 28. The base portion 26 is formed of an insulating material, for example, synthetic resin, and the anode terminal 10 and the cathode terminal 14 are fixed and insulated. The sealing portion 28 is made of a material having high airtightness, for example, a rubber ring.

この封口板22は、外装ケース20の開口部30に挿入されるとともに、開口部30側の中途部に形成された加締め段部32に位置決めされている。外装ケース20の開口端部34は、カーリング処理により加締められ、封止部28に食い込ませられている。これらにより、外装ケース20が強固に封止されている。そして、封口板22のベース部26には、透孔36が形成されるとともに、薄ゴムからなる圧力開放機構38が形成されている。   The sealing plate 22 is inserted into the opening 30 of the outer case 20 and is positioned at a caulking step 32 formed in the middle of the opening 30. The open end 34 of the outer case 20 is crimped by a curling process and is bitten into the sealing portion 28. As a result, the outer case 20 is firmly sealed. The base portion 26 of the sealing plate 22 is formed with a through hole 36 and a pressure release mechanism 38 made of thin rubber.

そして、陽極集電板12には陽極端子10との接触面65(図8)を接続面部52側でカバーする覆い部の一例としてカバー部53が形成されている。同様に陰極集電板16にも陰極端子14との接触面65を接続面部52側で覆うカバー部53が形成されている。各カバー部53は、少なくとも陽極端子10又は陰極端子14の端子側接続面64の一部又は全部を覆う。このカバー部53は陽極集電板12又は陰極集電板16に一体に形成され、例えば、断面三角形状の立壁部である。これに対応し、陽極端子10又は陰極端子14の接続面64にはテーパ面67が形成されている。このテーパ面67はカバー部53でカバーされる。   A cover portion 53 is formed on the anode current collector plate 12 as an example of a cover portion that covers the contact surface 65 (FIG. 8) with the anode terminal 10 on the connection surface portion 52 side. Similarly, a cover portion 53 is also formed on the cathode current collector plate 16 so as to cover the contact surface 65 with the cathode terminal 14 on the connection surface portion 52 side. Each cover portion 53 covers at least part or all of the terminal side connection surface 64 of the anode terminal 10 or the cathode terminal 14. The cover portion 53 is formed integrally with the anode current collector plate 12 or the cathode current collector plate 16 and is, for example, a standing wall portion having a triangular cross section. Correspondingly, a tapered surface 67 is formed on the connection surface 64 of the anode terminal 10 or the cathode terminal 14. The tapered surface 67 is covered with the cover portion 53.

次に、コンデンサ素子4について図3を参照する。図3は一部を分解したコンデンサ素子4を示している。   Next, the capacitor element 4 will be referred to FIG. FIG. 3 shows the capacitor element 4 partially disassembled.

このコンデンサ素子4は、図3に示すように、陽極体60と、陰極体80と、セパレータ40、42とを備え、陽極体60と陰極体80との間には両者間を絶縁するセパレータ40、42のそれぞれが挟み込まれて巻回され、円筒状の巻回素子を構成している。陽極体60及び陰極体80にはベース材に例えば、アルミニウム箔が用いられ、このアルミニウム箔の両面に活性炭等の活物質及び結着剤等を含む分極性電極が形成されている。   As shown in FIG. 3, the capacitor element 4 includes an anode body 60, a cathode body 80, and separators 40 and 42, and a separator 40 that insulates between the anode body 60 and the cathode body 80. , 42 are sandwiched and wound to form a cylindrical winding element. For example, an aluminum foil is used as a base material for the anode body 60 and the cathode body 80, and polarizable electrodes including an active material such as activated carbon, a binder, and the like are formed on both surfaces of the aluminum foil.

また、このコンデンサ素子4では、同一端面側に形成された陽極部6と陰極部8との間には一定幅の絶縁間隔44が設けられている。陽極部6は例えば、陽極体60の基材で形成され、同様に陰極部8も陰極体80の基材で形成されている。陽極体60及び陰極体80がアルミニウムで形成される場合、陽極部6及び陰極部8は、分極性電極を形成していないアルミニウム面を露出させた基材部である。   In the capacitor element 4, an insulating interval 44 having a constant width is provided between the anode portion 6 and the cathode portion 8 formed on the same end face side. The anode portion 6 is formed of, for example, a base material of the anode body 60, and similarly, the cathode portion 8 is also formed of a base material of the cathode body 80. In the case where the anode body 60 and the cathode body 80 are formed of aluminum, the anode section 6 and the cathode section 8 are base material sections that expose an aluminum surface on which a polarizable electrode is not formed.

陽極部6又は陰極部8の形成部は、絶縁手段であるセパレータ40、42の幅Wより突出する形態とし、陽極部6又は陰極部8の円弧長に対応する長さLに形成されている。長さLを以て突出する陽極部6及び陰極部8には、折り曲げ加工の準備加工として、素子端面5と平行で素子端面5から僅かに露出する位置に折り目線43が形成されている。この折り目線43は、陽極部6及び陰極部8に対し、折り曲げ方向に谷折りとなる屈曲部である。   The formation part of the anode part 6 or the cathode part 8 is formed so as to protrude from the width W of the separators 40 and 42 which are insulating means, and is formed in a length L corresponding to the arc length of the anode part 6 or the cathode part 8. . The anode part 6 and the cathode part 8 projecting with a length L are formed with crease lines 43 at positions where they are parallel to the element end face 5 and slightly exposed from the element end face 5 as a preparation process for the bending process. The crease line 43 is a bent portion that is valley-folded in the bending direction with respect to the anode portion 6 and the cathode portion 8.

そして、コンデンサ素子4の陽極部6又は陰極部8は、陽極集電板12又は陰極集電板16との接続前に、図2(又は図4の(B))に示すように、加工してコンデンサ素子4の素子端面5に密着状態に形成される。   Then, the anode part 6 or the cathode part 8 of the capacitor element 4 is processed as shown in FIG. 2 (or FIG. 4B) before connection with the anode current collector plate 12 or the cathode current collector plate 16. Thus, the capacitor element 4 is formed in close contact with the element end surface 5.

次に、コンデンサ素子の陽極部6及び陰極部8について、図4を参照する。図4はコンデンサ素子の陽極部及び陰極部の一例を示し、(A)は陽極部及び陰極部の成形前、(B)は陽極部及び陰極部の成形後を示している。図4において、図1、図2及び図3と同一部分には同一符号を付してある。   Next, FIG. 4 is referred with respect to the anode portion 6 and the cathode portion 8 of the capacitor element. FIG. 4 shows an example of the anode part and the cathode part of the capacitor element, (A) shows the anode part and the cathode part before molding, and (B) shows the anode part and the cathode part after molding. 4, the same parts as those in FIGS. 1, 2, and 3 are denoted by the same reference numerals.

コンデンサ素子4の素子端面5には図4の(A)に示すように、電極張出し部を構成する陽極部6と陰極部8とが立設され、これら陽極部6と陰極部8との間には所定幅の絶縁間隔44が設定されている。絶縁間隔44の中心にY軸、このY軸と直交方向にX軸を取り、X軸を中心に左右に角度θ1 、θ2 (≧θ1 )を設定して区画する。角度θ1 でコンデンサ素子4の巻回中心部(巻芯部)46を中心に放射状方向に複数の切込み48を入れ、各切込み48で区画された複数の区画部6A、6B、6Cが陽極部6側に形成されている。同様に、陰極部8側にも複数の区画部8A、8B、8Cが形成されている。角度θ1 を例えば、30〔°〕に設定すれば、区画部6A、8Aは2θ1 =60〔°〕となり、区画部6Aを挟んで形成された区画部6B、6C又は区画部8Aを挟んで形成された区画部8B、8Cの角度θ2 は、θ2 =60〔°〕に設定されている。 As shown in FIG. 4A, the element end face 5 of the capacitor element 4 is erected with an anode portion 6 and a cathode portion 8 constituting an electrode extending portion, and between the anode portion 6 and the cathode portion 8. Is set with an insulation interval 44 having a predetermined width. The Y-axis is taken at the center of the insulation interval 44, the X-axis is orthogonal to the Y-axis, and the angles θ 1 and θ 2 (≧ θ 1 ) are set to the left and right around the X-axis. A plurality of cuts 48 are made in the radial direction around the winding center portion (core portion) 46 of the capacitor element 4 at an angle θ 1 , and a plurality of partition portions 6A, 6B, 6C partitioned by each cut 48 are anode portions. 6 side is formed. Similarly, a plurality of partition portions 8A, 8B, and 8C are also formed on the cathode portion 8 side. For example, if the angle θ 1 is set to 30 °, the partition portions 6A and 8A have 2θ 1 = 60 °, and the partition portions 6B and 6C or the partition portion 8A formed with the partition portion 6A interposed therebetween. The angle θ 2 of the partition portions 8B and 8C formed in (1) is set to θ 2 = 60 [°].

切込み48の深さは例えば、張出し長を陽極部6と陰極部8の高さh1 に設定され、陽極部6の区画部6A、6B、6C、陰極部8の区画部8A、8B、8Cを中途部にある折り目線43の部分で屈曲させ、コンデンサ素子4の素子中心部側に押し倒して圧縮成形することにより、図4の(B)に示すように、陽極部6の区画部6A、6B、6C、陰極部8の区画部8A、8B、8Cに成形される。この実施の形態では、各区画部6B、6C及び区画部8B、8Cが溶接部に設定されている。そこで、区画部6A、8Aの突出高さh2 が各区画部6B、6C、8B、8Cの高さh3 より高く設定され、陽極部6の区画部6A、6B、6C及び陰極部8の区画部8A、8B、8Cの高さを陽極集電板12及び陰極集電板16の屈曲形状に対応させている。 For example, the depth of the cut 48 is set to the height h 1 of the anode part 6 and the cathode part 8 with the overhang length, the partition parts 6A, 6B, 6C of the anode part 6, and the partition parts 8A, 8B, 8C of the cathode part 8. Is bent at the part of the crease line 43 in the middle part, and is pushed down to the element center side of the capacitor element 4 and compression-molded, thereby forming the partition part 6A of the anode part 6 as shown in FIG. 6B, 6C and the partition part 8A, 8B, 8C of the cathode part 8 are formed. In this embodiment, the partition sections 6B and 6C and the partition sections 8B and 8C are set as welds. Therefore, the protruding height h 2 of the partition parts 6A, 8A is set higher than the height h 3 of each partition part 6B, 6C, 8B, 8C, and the partition parts 6A, 6B, 6C of the anode part 6 and the cathode part 8 The heights of the partition portions 8A, 8B, and 8C correspond to the bent shapes of the anode current collector plate 12 and the cathode current collector plate 16.

なお、コンデンサ素子4の陽極部6及び陰極部8は、このように素子中心方向に向かって陽極部6及び陰極部8全体を圧縮成形することで、高さ寸法を抑制できる。この実施の形態では、陽極部6の区画部6B、6Cを圧縮成形して、安定した平坦状の接続面を形成し、その後、非接続面である区画部6Aを圧縮成形し、各区画部間6A−6B、6A−6Cの重なりによって生じる境界部の高さ寸法を抑制している。この境界部の高さ寸法の抑制については陰極部8においても同様である。   In addition, the anode part 6 and the cathode part 8 of the capacitor | condenser element 4 can suppress a height dimension by compression-molding the anode part 6 and the cathode part 8 whole toward an element center direction in this way. In this embodiment, the partition parts 6B and 6C of the anode part 6 are compression-molded to form a stable flat connection surface, and then the partition part 6A which is a non-connection surface is compression-molded, and each partition part The height dimension of the boundary portion caused by the overlap between the spaces 6A-6B and 6A-6C is suppressed. The suppression of the height dimension of the boundary portion is the same in the cathode portion 8.

次に、陽極集電板12(又は陰極集電板16)について図5を参照する。図5は陽極集電板(又は陰極集電板)の一例を示し、(A)はその平面、(B)は陽極集電板を溶接接続部側から見た側面を示している。   Next, FIG. 5 will be referred to regarding the anode current collector plate 12 (or the cathode current collector plate 16). FIG. 5 shows an example of the anode current collector (or cathode current collector), (A) shows the plane, and (B) shows the side when the anode current collector is viewed from the welded connection side.

この陽極集電板12は電極材料と同一の例えば、アルミニウム板で形成され、既述の陽極部6の区画部6A、6B、6C(図4)を覆い、区画部6B、6Cとのレーザ溶接面積を持ち、且つ陽極端子10とのレーザ溶接面積を持つ形状及び面積を備えている。この実施の形態では、コンデンサ素子4の素子端面の2分の1の大きさであって、絶縁間隔44が確保される形状として、ほぼ半円形板である。   The anode current collecting plate 12 is formed of, for example, an aluminum plate that is the same as the electrode material, covers the partition portions 6A, 6B, and 6C (FIG. 4) of the anode portion 6 described above, and laser welds the partition portions 6B and 6C. A shape and an area having an area and a laser welding area with the anode terminal 10 are provided. In this embodiment, the size is a half of the element end face of the capacitor element 4, and is a substantially semicircular plate as a shape in which the insulation interval 44 is ensured.

陽極集電板12には、図5の(A)に示すように、弦側中心部にコンデンサ素子4の巻回中心部46に対応して円弧状切欠部50が形成され、その弧側には、X軸を中心にX軸と直交方向に直線状に切り落とされた接続面部52が形成されている。また、この陽極集電板12には、図5の(B)に示すように、円弧状切欠部50を中心即ち、X軸を中心に左右に角度θ1 を持って直角に屈曲させた段部54を以て円弧状の端子接続部56A及び素子接続部56B、56Cが形成されている。各端子接続部56A及び素子接続部56B、56Cは、それぞれ平坦面に形成され、段部54を挟んで平行面を構成している。 As shown in FIG. 5A, the anode current collector plate 12 is formed with an arc-shaped notch 50 corresponding to the winding center 46 of the capacitor element 4 at the center of the string side, and on the arc side thereof. Is formed with a connection surface portion 52 that is cut off linearly in a direction orthogonal to the X axis with the X axis as a center. In addition, as shown in FIG. 5B, the anode current collector plate 12 is a step that is bent at a right angle with an arcuate notch 50 at the center, that is, with an angle θ 1 left and right about the X axis. Arc-shaped terminal connection portions 56A and element connection portions 56B and 56C are formed by the portion 54. Each of the terminal connection portions 56A and the element connection portions 56B and 56C is formed on a flat surface, and forms a parallel surface with the step portion 54 interposed therebetween.

この陽極集電板12において、端子接続部56Aの高さをh4 、陽極集電板12の厚さをt、端子接続部56Aの内側の高さをh5 とすると、
5 =h4 −t≧h2 −h3 ・・・(1)
に設定されている。従って、端子接続部56Aの内側の高さh5 は、区画部6A、8Aの突出高さh2 と各区画部6B、6C、8B、8Cの高さh3 との差分Δh(2 −h3)を吸収し、陽極集電板12が各区画部6B、6Cに密着し、且つ区画部6Aを収納して設置される。なお、陽極集電板12の厚さtは、素子接続部56B、56Cと端子接続部56Aの部位で厚さを変更することもできる。例えば、端子接続部56Aの厚みを素子接続部56B、56Cに比べて厚く設定(1.2倍以上)することができ、これによると陽極部6とのレーザ溶接の際に素子接続部56B、56Cに生じる発熱が所定厚みを有する端子接続部56Aによって吸収され、レーザ溶接の接続精度が向上する。
In the anode current collector plate 12, when the height of the terminal connecting portion 56A is h 4 , the thickness of the anode current collector plate 12 is t, and the inner height of the terminal connecting portion 56A is h 5 ,
h 5 = h 4 −t ≧ h 2 −h 3 (1)
Is set to Therefore, the inner height h 5 of the terminal connection portion 56A is the difference Δh ( = h 2) between the protruding height h 2 of the partition portions 6A and 8A and the height h 3 of the partition portions 6B, 6C, 8B, and 8C. -H 3 ) is absorbed, and the anode current collector plate 12 is in close contact with each of the partition portions 6B and 6C, and the partition portion 6A is accommodated. Note that the thickness t of the anode current collector plate 12 can be changed at the portions of the element connection portions 56B and 56C and the terminal connection portion 56A. For example, the thickness of the terminal connection portion 56A can be set thicker (1.2 times or more) than the element connection portions 56B and 56C, and according to this, the element connection portion 56B, The heat generated in 56C is absorbed by terminal connecting portion 56A having a predetermined thickness, and the connection accuracy of laser welding is improved.

そして、接続面部52の中央部分には溶接される陽極端子10又は陰極端子14との接触面65を覆うカバー部53が備えられている。このカバー部53は、少なくとも陽極端子10又は陰極端子14の端子側接続面64を覆う幅に形成すればよいが、端子側接続面64と同一幅でもよい。   And the cover part 53 which covers the contact surface 65 with the anode terminal 10 or the cathode terminal 14 to be welded is provided in the center part of the connection surface part 52. The cover portion 53 may be formed to have a width that covers at least the terminal side connection surface 64 of the anode terminal 10 or the cathode terminal 14, but may be the same width as the terminal side connection surface 64.

このような構成及び他の部材との関係については、陰極集電板16についても同様である。   This configuration and the relationship with other members are the same for the cathode current collector plate 16.

次に、陽極集電板12及び陰極集電板16と、コンデンサ素子4の陽極部6及び陰極部8との接続について、図6を参照する。図6はコンデンサ素子の素子端面上の陽極集電板及び陰極集電板の配置及び接続状態の一例を示している。図6において図5と同一部分には同一符号を付している。   Next, FIG. 6 is referred to regarding the connection between the anode current collector plate 12 and the cathode current collector plate 16 and the anode portion 6 and the cathode portion 8 of the capacitor element 4. FIG. 6 shows an example of the arrangement and connection state of the anode current collector plate and the cathode current collector plate on the element end face of the capacitor element. In FIG. 6, the same parts as those in FIG.

陽極集電板12及び陰極集電板16は図6に示すように、コンデンサ素子4の一端面に巻回中心部46を中心にし、且つ巻回中心部46に円弧状切欠部50を合わせて配置され、陽極部6と陰極部8との間の絶縁間隔44に対応して間隔61が設定されている。陽極集電板12には、端子接続部56Aの下面側にコンデンサ素子4の陽極部6の区画部6A、陽極集電板12の素子接続部56B、56Cの下面側にコンデンサ素子4の陽極部6の区画部6B、6Cが位置決めされて密着させられる。そして、レーザ照射接続部66では、コンデンサ素子4の周縁方向から素子中心方向に向かうレーザ照射により、区画部6B、6C及び素子接続部56B、56Cを部分的又は全面的に溶融させ、接続している。このような接続は陰極集電板16側でも同様である。   As shown in FIG. 6, the anode current collector plate 12 and the cathode current collector plate 16 are arranged so that one end face of the capacitor element 4 is centered on the winding center 46 and the arc-shaped notch 50 is aligned with the winding center 46. The gap 61 is set corresponding to the insulation gap 44 between the anode 6 and the cathode 8. The anode current collector plate 12 includes a partition portion 6A of the anode portion 6 of the capacitor element 4 on the lower surface side of the terminal connection portion 56A, and an anode portion of the capacitor element 4 on the lower surface side of the element connection portions 56B and 56C of the anode current collector plate 12. The six partition portions 6B and 6C are positioned and brought into close contact with each other. In the laser irradiation connection portion 66, the partition portions 6B and 6C and the element connection portions 56B and 56C are partially or entirely melted and connected by laser irradiation from the peripheral direction of the capacitor element 4 toward the element center direction. Yes. Such connection is the same on the cathode current collector plate 16 side.

レーザ照射の部位は、この実施の形態では、図6に示すように、陽極集電板12及び陰極集電板16の段部54で隔てた素子接続部56B、56C及び58B、58Cの各2箇所即ち、レーザ照射接続部66である。この場合、レーザ照射接続部66に付した矢印〔1〕、〔2〕、〔3〕及び〔4〕で示すように、レーザ照射を行う。このレーザ照射は、シールドガスにアルゴンガス、ヘリウムガス等の不活性ガスを用いてコンデンサ素子4をシールドし、コンデンサ素子4に対するレーザ熱やスパッタの影響を回避する。   As shown in FIG. 6, the laser irradiation sites in each of the element connection portions 56B, 56C and 58B, 58C separated by the step portions 54 of the anode current collector plate 12 and the cathode current collector plate 16 are shown in FIG. That is, the laser irradiation connection portion 66. In this case, laser irradiation is performed as indicated by arrows [1], [2], [3] and [4] attached to the laser irradiation connection portion 66. In this laser irradiation, the capacitor element 4 is shielded by using an inert gas such as argon gas or helium gas as a shielding gas, and the influence of laser heat or sputtering on the capacitor element 4 is avoided.

〔1〕このレーザ照射は、コンデンサ素子4の外周側より、素子中心方向に向かって直線状に一方の陽極集電板12の素子接続部56Bに照射する。   [1] This laser irradiation irradiates the element connecting portion 56B of one anode current collector plate 12 linearly from the outer peripheral side of the capacitor element 4 toward the element center direction.

〔2〕次に、巻回中心部46を隔てて対向する他方の陰極集電板16の素子接続部58Bに素子中心側より、素子外周方向に向かって直線上にレーザ照射することにより、一連の動作にて溶接される。   [2] Next, a series of laser irradiation is performed in a straight line from the element center side toward the element outer peripheral direction to the element connection part 58B of the other cathode current collector plate 16 opposed across the winding center part 46. It is welded by the operation.

〔3〕また、同じく、レーザ照射は、コンデンサ素子4の外周側より、素子中心方向に向かって直線状に一方の陽極集電板12の素子接続部56Cに照射する。   [3] Similarly, laser irradiation is performed from the outer peripheral side of the capacitor element 4 to the element connecting portion 56C of one anode current collector plate 12 in a straight line toward the element center direction.

〔4〕そして、巻回中心部46を隔てて対向する他方の陰極集電板16の素子接続部58Cに素子中心側より素子外周側に向かって直線上にレーザを照射する一連の動作にて溶接される。   [4] In a series of operations of irradiating the element connecting portion 58C of the other cathode current collector plate 16 facing the winding center portion 46 with a laser linearly from the element center side toward the element outer peripheral side. Welded.

このように、巻回中心部46を隔てて直線状にレーザ照射する一連の動作にて、陽極部6と陽極集電板12、陰極部8と陰極集電板16とが接続される。つまり、陽極部6及び陰極部8と各集電板12、16とを巻回中心部46を隔ててコンデンサ素子4の直径方向に向かう溶接ライン(レーザ照射接続部66)を設定して溶接するので、陽極部6及び陰極部8と各集電板12、16との接続のための溶接の時間短縮を図ることができ、製造工程の簡略化を図ることができる。なお、レーザ照射の〔1〕及び〔2〕の一連の動作を2回繰り返す、又は、レーザ照射の〔1〕ないし〔4〕の一連の動作を2回繰り返し、近傍に溶接部を配することで接続抵抗を更に低減することも可能である。レーザ照射の〔1〕及び〔2〕の一連の動作にて接続することも可能であるが、陽極集電板12、陰極集電板16の各素子接続部56B、56C、58B、58Cを、それぞれ素子中心側より素子外周側に向かって直線上に照射する等、個別に接続することもできる。   In this way, the anode section 6 and the anode current collector plate 12, and the cathode section 8 and the cathode current collector plate 16 are connected by a series of operations in which the laser irradiation is performed linearly across the winding center portion 46. That is, the anode part 6 and the cathode part 8 and the current collector plates 12 and 16 are welded by setting a welding line (laser irradiation connection part 66) directed in the diameter direction of the capacitor element 4 with the winding center part 46 therebetween. Therefore, it is possible to shorten the welding time for connecting the anode portion 6 and the cathode portion 8 to each of the current collector plates 12 and 16, and to simplify the manufacturing process. The series of operations [1] and [2] of laser irradiation is repeated twice, or the series of operations [1] to [4] of laser irradiation is repeated twice, and a weld is arranged in the vicinity. Thus, the connection resistance can be further reduced. Although it is possible to connect by a series of operations of laser irradiation [1] and [2], the element connecting portions 56B, 56C, 58B, 58C of the anode current collector plate 12 and the cathode current collector plate 16 are Each can be connected individually, such as irradiating in a straight line from the element center side toward the element outer peripheral side.

また、レーザ照射の〔1〕ないし〔4〕の連続動作について、同一箇所を連続してレーザ照射するのではなく、レーザ溶接を〔1〕から〔4〕で行い、その後、再び〔1〕から〔4〕にレーザ照射すれば、同一箇所のレーザ照射に時間間隔を設けることができ、この結果、レーザ照射箇所の冷却化を図ることができ、レーザ溶接による接続の安定化が図られる。また、同一箇所に時間間隔を設けて複数回のレーザ照射を行うことも可能であるが、1回目のレーザ溶接を〔1〕から〔4〕で行い、再びレーザ溶接を〔1〕から〔4〕で行うので、冷却間隔を取りながら、レーザ照射を連続的に行うことができ、レーザ照射による溶接時間の短縮化を図ることができる。   In addition, in the continuous operation of laser irradiation [1] to [4], laser welding is performed from [1] to [4] instead of continuously irradiating the same part with laser, and then from [1] again. When the laser irradiation is performed in [4], a time interval can be provided for laser irradiation at the same location, and as a result, the laser irradiation location can be cooled and the connection by laser welding can be stabilized. It is also possible to perform laser irradiation a plurality of times with a time interval at the same location, but the first laser welding is performed from [1] to [4], and laser welding is performed again from [1] to [4]. Therefore, laser irradiation can be performed continuously while taking a cooling interval, and the welding time by laser irradiation can be shortened.

このレーザ照射の〔1〕ないし〔4〕の連続動作について、各レーザ照射の始点から終点に至る溶接ラインに対するレーザ出力を段階的又は連続的に減衰させるとよい。具体的には、レーザ出力を始点から終点にかけて3区間を設け、始点区間のレーザ出力Pa、中間区間のレーザ出力Pb、終点区間のレーザ出力Pcとし、レーザ出力をPa>Pb、Pb>Pcに減衰させている。始点区間のレーザ出力Paは最も高い値に設定され、一例として50〔W〕〜3000〔W〕である。レーザ出力Pbはレーザ出力Paの90〔%〕以下のレーザ出力とし、またレーザ出力Pcはレーザ出力Paの80〔%〕以下のレーザ出力としている。このように、各レーザ照射の始点から終点に至る溶接ラインに対するレーザ出力を段階的又は連続的に減衰させることで、集電板12、16、陽極部6及び陰極部8に加えられる溶接エネルギーを均一化でき、接続性を向上させることができ、安定した溶接接続を実現できる。即ち、レーザ照射を受けた陽極集電板12又は陰極集電板16及び陽極部6又は陰極部8の溶接ライン(レーザ照射接続部66)及びその近傍部が加熱され、レーザ照射を溶接ラインに沿って行えば、レーザ照射の走査に応じて加熱がその走査とともに連鎖状態で移動するので、レーザ出力を同一に設定しなくても、連鎖的に溶融状態となる。このため、レーザ出力を段階的及び連続的に減衰させても、溶接部に加わるレーザ照射による熱エネルギーは均一化する。このため、陽極集電板12又は陰極集電板16と陽極部6又は陰極部8との接続性が向上する。   Regarding the continuous operations [1] to [4] of this laser irradiation, the laser output to the welding line from the start point to the end point of each laser irradiation may be attenuated stepwise or continuously. Specifically, three sections are provided from the start point to the end point of the laser output, and the laser output Pa of the start point section, the laser output Pb of the intermediate section, and the laser output Pc of the end point section are set, and the laser output satisfies Pa> Pb and Pb> Pc. It is attenuated. The laser output Pa in the start point section is set to the highest value, and is 50 [W] to 3000 [W] as an example. The laser output Pb is a laser output of 90% or less of the laser output Pa, and the laser output Pc is a laser output of 80% or less of the laser output Pa. In this way, the laser output to the welding line from the start point to the end point of each laser irradiation is attenuated stepwise or continuously, so that the welding energy applied to the current collector plates 12, 16, the anode portion 6 and the cathode portion 8 can be reduced. Uniformity can be achieved, connectivity can be improved, and stable welding connection can be realized. That is, the welding line (laser irradiation connection part 66) of the anode current collector plate 12 or the cathode current collector plate 16 and the anode part 6 or the cathode part 8 which has been irradiated with the laser and the vicinity thereof are heated, and the laser irradiation is made into the welding line. If this is done, the heating moves in a chained state along with the scanning of the laser irradiation, so that even if the laser output is not set to the same, the molten state is chained. For this reason, even if the laser output is attenuated stepwise and continuously, the thermal energy by the laser irradiation applied to the welded portion becomes uniform. For this reason, the connectivity between the anode current collector plate 12 or the cathode current collector plate 16 and the anode portion 6 or the cathode portion 8 is improved.

なお、図4に示すように、コンデンサ素子4の素子端面5には陽極部6及び陰極部8が形成されている。陽極部6及び陰極部8には、中心方向に向かって圧縮成形した際に、陽極部6及び陰極部8が接触しない絶縁間隔44を設定しており、このため、コンデンサ素子4の巻回中心部46近傍(素子中心部から2〔mm〕以内)では、陽極部6及び陰極部8が形成されていない。また、陽極部6及び陰極部8は、その形成部位が多いほど(又は面積が大きいほど)、抵抗の低減につながるため、陽極部6及び陰極部8が接触せず、また、低抵抗化が図れる絶縁間隔44として、例えば、3〔mm〕〜15〔mm〕を設定している。また、コンデンサ素子4の最外周では、陽極部6及び陰極部8の圧縮成形時にずれ等が生じても陽極部6及び陰極部8が外装ケース20に接触しないように、陽極集電板12と接続された陽極部6、及び陰極集電板16と接続された陰極部8の外周面に絶縁紙や絶縁テープ等の絶縁手段17(図1)を設置すればよい。この絶縁手段17を、該陽極部6及び陰極部8に加え、陽極端子10、陰極端子14、陽極集電板12、陰極集電板16を覆うように外周に沿って設置すれば、外装ケース20との絶縁が図られる。   As shown in FIG. 4, an anode portion 6 and a cathode portion 8 are formed on the element end surface 5 of the capacitor element 4. The anode part 6 and the cathode part 8 have an insulation interval 44 at which the anode part 6 and the cathode part 8 do not come into contact with each other when compression-molded toward the center direction. In the vicinity of the portion 46 (within 2 [mm] from the element center), the anode portion 6 and the cathode portion 8 are not formed. Moreover, since the anode part 6 and the cathode part 8 lead to a reduction in resistance as the number of formation sites (or the area increases), the anode part 6 and the cathode part 8 do not come into contact with each other and the resistance is reduced. For example, 3 [mm] to 15 [mm] is set as the insulating interval 44 that can be achieved. In addition, at the outermost periphery of the capacitor element 4, the anode current collector plate 12 and the anode current collector plate 12 are arranged so that the anode 6 and the cathode 8 do not contact the outer case 20 even if a displacement occurs during compression molding of the anode 6 and the cathode 8. Insulating means 17 (FIG. 1) such as insulating paper or insulating tape may be installed on the outer peripheral surfaces of the connected anode section 6 and the cathode section 8 connected to the cathode current collector plate 16. If this insulating means 17 is installed along the outer periphery so as to cover the anode terminal 10, the cathode terminal 14, the anode current collector plate 12, and the cathode current collector plate 16 in addition to the anode portion 6 and the cathode portion 8, an outer case Insulation with 20 is achieved.

陽極端子10と陽極集電板12の接続、陰極端子14と陰極集電板16の接続について図7を参照する。図7は陽極端子と陽極集電板、陰極端子と陰極集電板の接続を示し、図7の(A)は陽極端子と陽極集電板、陰極端子と陰極集電板の接続前の状態、図7の(B)はレーザ照射を示している。図7において図6と同一部分には同一符号を付している。   Refer to FIG. 7 for the connection between the anode terminal 10 and the anode current collector plate 12 and the connection between the cathode terminal 14 and the cathode current collector plate 16. 7 shows the connection between the anode terminal and the anode current collector plate, the cathode terminal and the cathode current collector plate, and FIG. 7A shows the state before the connection between the anode terminal and the anode current collector plate and the cathode terminal and the cathode current collector plate. FIG. 7B shows laser irradiation. In FIG. 7, the same parts as those in FIG.

コンデンサ素子4の素子端面5に接続された陽極集電板12及び陰極集電板16には、図7の(A)及び(B)に示すように、封口板22にある外部端子部材である陽極端子10、陰極端子14が位置決めされる。陽極端子10及び陰極端子14には側面部に端子側接続面64が形成され、この端子側接続面64は、陽極集電板12及び陰極集電板16にある接続面部52と接続すべき側壁面である。陽極集電板12と陽極端子10との接触面65(図8)が陽極集電板12側のカバー部53により、又は陰極端子14と陰極集電板16との接触面65が陰極集電板16側のカバー部53によりカバーされる。そこで、各カバー部53にレーザビームの照射位置を設定し、この照射位置にレーザ照射68を行いさらに接触面65と並行方向にレーザ照射68を行えば、既述のナゲット18がカバー部53を含んで陽極集電板12及び陽極端子10、陰極集電板16及び陰極端子14側に生成されてレーザ溶着される。これにより、接続面部52及び端子側接続面64間を溶着させることができる。   The anode current collecting plate 12 and the cathode current collecting plate 16 connected to the element end face 5 of the capacitor element 4 are external terminal members on the sealing plate 22 as shown in FIGS. The anode terminal 10 and the cathode terminal 14 are positioned. A terminal-side connection surface 64 is formed on the side surface of the anode terminal 10 and the cathode terminal 14, and this terminal-side connection surface 64 is a side to be connected to the connection surface portion 52 on the anode current collector plate 12 and the cathode current collector plate 16. It is a wall surface. The contact surface 65 (FIG. 8) between the anode current collector 12 and the anode terminal 10 is provided by the cover 53 on the anode current collector 12 side, or the contact surface 65 between the cathode terminal 14 and the cathode current collector 16 is provided as the cathode current collector. Covered by the cover portion 53 on the plate 16 side. Therefore, if the irradiation position of the laser beam is set in each cover portion 53, the laser irradiation 68 is performed at the irradiation position, and further the laser irradiation 68 is performed in the direction parallel to the contact surface 65, the nugget 18 described above causes the cover portion 53 to move. Including the anode current collector plate 12 and the anode terminal 10, the cathode current collector plate 16 and the cathode terminal 14, and laser welding. Thereby, between the connection surface part 52 and the terminal side connection surface 64 can be welded.

この陽極集電板12と陽極端子10(又は陰極集電板16と陰極端子14)の溶接について図8を参照する。図8は陽極集電板12及び陽極端子10の溶接部を拡大して示している。   The welding of the anode current collector plate 12 and the anode terminal 10 (or the cathode current collector plate 16 and the cathode terminal 14) will be described with reference to FIG. FIG. 8 shows an enlarged view of the welded portion of the anode current collector plate 12 and the anode terminal 10.

陽極集電板12は例えば、アルミニウム板をヘッダ加工され、一例として接続面部52には断面三角形状のカバー部53が形成されている。陽極端子10も同様に例えば、アルミニウム板をヘッダ加工され、テーパ面67が形成されている。このテーパ面67の角度をカバー部53の内側壁面の傾斜角度と一致させれば、両者を合致させることができる。この場合、接触面65には加工精度に応じて隙間等が生じている。つまり、接触面65側には互いに密着している部分と、互いに上下方向に湾曲して拡開する非接触部63とを備えている。このような陽極集電板12と陽極端子10の形態は、陰極集電板16と陰極端子14との関係においても同様である。   For example, the anode current collector plate 12 is formed by header processing an aluminum plate, and as an example, the connection surface portion 52 has a cover portion 53 having a triangular cross section. Similarly, the anode terminal 10 is formed by header processing an aluminum plate, for example, and a tapered surface 67 is formed. If the angle of the taper surface 67 is matched with the inclination angle of the inner wall surface of the cover portion 53, both can be matched. In this case, a gap or the like is generated on the contact surface 65 according to the processing accuracy. In other words, the contact surface 65 side includes a portion that is in close contact with each other and a non-contact portion 63 that is curved and expands in the vertical direction. The forms of the anode current collecting plate 12 and the anode terminal 10 are the same in the relationship between the cathode current collecting plate 16 and the cathode terminal 14.

このような陽極集電板12と陽極端子10の接触面65に一致した位置にレーザビーム69の照射の中心位置(照射位置71)が設定されている。照射位置71は、図中接触面65に一致してもよく、また、異なった位置でもよい。   The irradiation center position (irradiation position 71) of the laser beam 69 is set at a position coinciding with the contact surface 65 between the anode current collector plate 12 and the anode terminal 10. The irradiation position 71 may coincide with the contact surface 65 in the drawing, or may be a different position.

このレーザビーム69の溶接形態について図9を参照する。レーザビーム69の溶接形態には、図9の(A)に示すように、熱伝導溶接と、図9の(B)に示すように、キーホール溶接とがある。金属間の溶接には何れの溶接形態を用いてもよいが、キーホール溶接では、レーザビーム69の先鋭なフォーカス75を溶接面に当てるため、先鋭で長大なナゲット18を生じ、レーザビーム69の出力によってはナゲット18の成長に応じて多数のスパッタ77が形成される場合がある。   FIG. 9 is referred to regarding the welding mode of the laser beam 69. As the welding form of the laser beam 69, there are a heat conduction welding as shown in FIG. 9A and a keyhole welding as shown in FIG. 9B. Any type of welding may be used for welding between metals, but in keyhole welding, the sharp focus 75 of the laser beam 69 is applied to the welding surface, so that a sharp and long nugget 18 is generated. Depending on the output, a large number of spatters 77 may be formed as the nugget 18 grows.

これに対し、熱伝導溶接では、レーザビーム69の照射位置71の手前にフォーカス75があるデフォーカスとし、照射位置71には口径の大きい照射部79が形成される。この照射部79では、先鋭なフォーカス75に比較し、緩やかに熱伝導を生じ、緩慢なナゲット18が形成される。即ち、熱伝導溶接では、照射部79の半径方向に広がりを持つナゲット18が生成される。この溶接処理では、レーザビーム69をデフォーカスすることによりナゲット径を拡大し、キーホール溶接を熱伝導溶接に移行させている。   On the other hand, in the heat conduction welding, the focus 75 is defocused in front of the irradiation position 71 of the laser beam 69, and an irradiation portion 79 having a large aperture is formed at the irradiation position 71. Compared with the sharp focus 75, the irradiation portion 79 causes heat conduction more gently, and a slow nugget 18 is formed. That is, in the heat conduction welding, a nugget 18 having a spread in the radial direction of the irradiation portion 79 is generated. In this welding process, the laser beam 69 is defocused to increase the nugget diameter, and the keyhole welding is shifted to the heat conduction welding.

このような熱伝導溶接によって形成されたナゲット18について図10を参照する。図10は照射位置71にレーザビーム69を照射し、その照射形態はデフォーカスによりナゲット径を拡大させている。即ち、図10では、ナゲット中心Oを接触面65に一致するよう設定しているが、図中上方又は下方(接触面65に対して交差方向を異ならせる)に設定してもよい。   The nugget 18 formed by such heat conduction welding will be described with reference to FIG. In FIG. 10, the irradiation position 71 is irradiated with a laser beam 69, and the irradiation form has a nugget diameter enlarged by defocusing. That is, in FIG. 10, the nugget center O is set so as to coincide with the contact surface 65, but it may be set upward or downward (different in the crossing direction with respect to the contact surface 65) in the drawing.

このような熱伝導溶接では、照射位置71が接触面65と一致しているため、ナゲット径が拡大されたナゲット18には接触面65が取り込まれ、陽極集電板12と陽極端子10が溶接されている。この図10において、φはナゲット径、Ndはナゲット深さ、Wdは溶接深さである。ナゲット径φが大きく、ナゲット18がキーホール溶接に比較して偏平に近づくため、ナゲット深さNdと同等の溶接深さWd(≒Nd)が得られる。つまり、これにより溶接精度及び溶接強度が高められる。   In such heat conduction welding, since the irradiation position 71 coincides with the contact surface 65, the contact surface 65 is taken into the nugget 18 whose nugget diameter is enlarged, and the anode current collector plate 12 and the anode terminal 10 are welded. Has been. In FIG. 10, φ is the nugget diameter, Nd is the nugget depth, and Wd is the welding depth. Since the nugget diameter φ is large and the nugget 18 approaches a flat shape as compared with the keyhole welding, a welding depth Wd (≈Nd) equivalent to the nugget depth Nd can be obtained. That is, this improves the welding accuracy and welding strength.

また、ナゲット18の外面部には、溶接前、カバー部53が接触面65側に互いに密着している部分と、互いに上下方向に湾曲して拡開する非接触部が溶融によって一体化されることにより、緩やかな面部81が生成されている。   In addition, before welding, the outer surface portion of the nugget 18 is integrated by fusion with a portion where the cover portion 53 is in close contact with the contact surface 65 side and a non-contact portion that is curved and expands in the vertical direction. As a result, a gentle surface portion 81 is generated.

なお、レーザビーム69の照射位置71を図11のAに示すように、カバー部53又はカバー部53を設けた集電板の側面の範囲において、接触面65より上方向に異ならせ、又は図11のBに示すように、下方向に異ならせてもよい。この場合においても、ナゲット径が拡大されたナゲット18には接触面65が取り込まれ、陽極集電板12と陽極端子10が溶接される。この図11において、φはナゲット径、Ndはナゲット深さ、Wdは溶接深さである。ナゲット径φが大きく、ナゲット18がキーホール溶接に比較して偏平に近づくため、ナゲット深さNdと同等の溶接深さWd(≒Nd)が得られる。つまり、これにより溶接精度及び溶接強度が高められる。なお、ナゲット深さNdと溶接深さWdとの寸法差を0.5〔mm〕以内に設定することで所望の溶接強度が得られる。 In addition, as shown to A of FIG. 11, the irradiation position 71 of the laser beam 69 is made to differ upward from the contact surface 65 in the range of the side surface of the current collector plate which provided the cover part 53 or the cover part 53, or a figure. As indicated by 11 B, the distance may be varied downward. Also in this case, the contact surface 65 is taken into the nugget 18 whose nugget diameter is enlarged, and the anode current collector plate 12 and the anode terminal 10 are welded. In FIG. 11, φ is the nugget diameter, Nd is the nugget depth, and Wd is the welding depth. Since the nugget diameter φ is large and the nugget 18 approaches a flat shape as compared with the keyhole welding, a welding depth Wd (≈Nd) equivalent to the nugget depth Nd can be obtained. That is, this improves the welding accuracy and welding strength. The desired welding strength can be obtained by setting the dimensional difference between the nugget depth Nd and the welding depth Wd within 0.5 [mm].

ナゲット18は、陽極集電板12と陽極端子10との接触面65、又は陰極集電板16と陰極端子14との接触面65と平行方向(接続面部52及び端子側接続面64に沿って平行方向)に連続又は非連続にて形成される。   The nugget 18 is parallel to the contact surface 65 between the anode current collector plate 12 and the anode terminal 10 or the contact surface 65 between the cathode current collector plate 16 and the cathode terminal 14 (along the connection surface portion 52 and the terminal side connection surface 64). (Parallel direction) is formed continuously or discontinuously.

そして、この実施の形態では、コンデンサ素子4と封口板22との間隔(距離)を極力短くしている。コンデンサ素子4と封口板22との間隔(距離)を長く取ると、その分抵抗が増え、電気二重層コンデンサ2の高さ寸法が大きくなるが、斯かる不都合をコンデンサ素子4と封口板22との間隔(距離)を極力短くして回避している。このような小スペースにおいて、陽極端子10及び陰極端子14と、陽極集電板12及び陰極集電板16とを接続するために、既述の通り、接続面部52及び端子側接続面64を一致した共通の面部とし、この部位つまり接触面65と一致しない部位に溶接可能なレーザ照射にて溶接することで溶接の簡易化及び強化が図られている。ここで、陽極集電板12及び陰極集電板16、陽極端子10及び陰極端子14の厚み(接続面部52及び端子側接続面64の高さ寸法)は、それぞれ0.5〔mm〕〜5〔mm〕の範囲で設定されており、これによると、レーザ溶接が可能な寸法で且つ内部抵抗が増大され難く、また、電気二重層コンデンサ2の高さ寸法を短くすることができる。   In this embodiment, the distance (distance) between the capacitor element 4 and the sealing plate 22 is made as short as possible. If the interval (distance) between the capacitor element 4 and the sealing plate 22 is increased, the resistance increases and the height of the electric double layer capacitor 2 increases. However, such inconvenience is caused by the capacitor element 4 and the sealing plate 22. The interval (distance) is made as short as possible. In such a small space, in order to connect the anode terminal 10 and the cathode terminal 14 to the anode current collector plate 12 and the cathode current collector plate 16, as described above, the connection surface portion 52 and the terminal side connection surface 64 are matched. Therefore, the welding is simplified and strengthened by welding to this portion, that is, the portion that does not coincide with the contact surface 65 by laser irradiation that can be welded. Here, the thicknesses of the anode current collector plate 12, the cathode current collector plate 16, the anode terminal 10 and the cathode terminal 14 (height dimensions of the connection surface portion 52 and the terminal side connection surface 64) are 0.5 mm to 5 mm, respectively. The range is set in the range of [mm]. According to this, it is possible to perform laser welding, the internal resistance is hardly increased, and the height of the electric double layer capacitor 2 can be shortened.

また、接続面部52及び端子側接続面64は、レーザ照射の際に他の部材(陽極部6や陰極部8)への過剰なストレスを防ぐためにも、コンデンサ素子4の外周面近傍に設置されることが好ましく、具体的には、コンデンサ素子4の外周面より、例えば、10〔mm〕以内とすることが好ましい。   Further, the connection surface portion 52 and the terminal-side connection surface 64 are installed near the outer peripheral surface of the capacitor element 4 in order to prevent excessive stress on other members (the anode portion 6 and the cathode portion 8) during laser irradiation. Specifically, it is preferable that the outer peripheral surface of the capacitor element 4 is, for example, within 10 mm.

また、陽極集電板12、陰極集電板16において、コンデンサ素子4の陽極部6及び陰極部8との接続領域と、陽極端子10と陰極端子14との接続領域とが異なる位置に設定されているので、各電極部と集電板、各外部端子と集電板との接続を安定化させることができ、コンデンサ素子の低抵抗化とともに接続の強化を図ることができる。   In the anode current collecting plate 12 and the cathode current collecting plate 16, the connection region between the anode part 6 and the cathode part 8 of the capacitor element 4 and the connection region between the anode terminal 10 and the cathode terminal 14 are set at different positions. Therefore, the connection between each electrode portion and the current collector plate, and each external terminal and the current collector plate can be stabilized, and the connection can be strengthened together with the lower resistance of the capacitor element.

以上説明した第1の実施の形態の電気二重層コンデンサ2の特徴事項や利点を列挙すれば以下の通りである。   The features and advantages of the electric double layer capacitor 2 of the first embodiment described above are listed as follows.

(1) コンデンサ素子4の一端面側に陽極体60の基材で陽極部6、陰極体80の基材で陰極部8が形成され、陽極部6と陽極端子10とが陽極集電板12を介して接続され、陰極部8と陰極端子14とが陰極集電板16を介して接続されるので、端子接続のシンプル化が図られている。しかも、接続を容易化することができる。   (1) On one end surface side of the capacitor element 4, the anode portion 6 is formed of the base material of the anode body 60, the cathode portion 8 is formed of the base material of the cathode body 80, and the anode portion 6 and the anode terminal 10 are connected to the anode current collector plate 12. Since the cathode part 8 and the cathode terminal 14 are connected via the cathode current collector plate 16, the terminal connection is simplified. In addition, the connection can be facilitated.

(2) 外装ケース20の空間部24内に接続部の占める空間専有率が極めて低い。   (2) The space occupation rate occupied by the connecting portion in the space 24 of the outer case 20 is extremely low.

(3) 外装部材である封口板22には、コンデンサ素子4が強固に支持されている。即ち、陽極端子10及び陰極端子14に陽極集電板12、陰極集電板16を介してコンデンサ素子4の陽極部6及び陰極部8がレーザ溶接により、強固に固定されるので、コンデンサ素子4の支持強度が高められている。この結果、機械的に堅牢な支持構造が構成され、製品の耐震性を高めることができる。   (3) The capacitor element 4 is firmly supported by the sealing plate 22 which is an exterior member. That is, since the anode portion 6 and the cathode portion 8 of the capacitor element 4 are firmly fixed to the anode terminal 10 and the cathode terminal 14 by laser welding via the anode current collector plate 12 and the cathode current collector plate 16, the capacitor element 4 The support strength of is increased. As a result, a mechanically robust support structure is formed, and the seismic resistance of the product can be improved.

(4) 巻回素子であるコンデンサ素子4に巻回されている陽極体60から複数の側縁部を集合させて陽極部6が形成され、この陽極部6を陽極集電板12にレーザ溶接し、同様に、陰極体80から複数の側縁部を集合させて陰極部8が形成され、この陰極部8を陰極集電板16にレーザ溶接しているので、コンデンサ素子4及び電気二重層コンデンサ2の低抵抗化を図ることができ、等価直列抵抗の低い製品を提供できる。   (4) A plurality of side edge portions are assembled from the anode body 60 wound around the capacitor element 4 as a winding element to form the anode portion 6, and this anode portion 6 is laser welded to the anode current collector plate 12. Similarly, a plurality of side edge portions are assembled from the cathode body 80 to form the cathode portion 8, and the cathode portion 8 is laser welded to the cathode current collector plate 16. The resistance of the capacitor 2 can be reduced, and a product with a low equivalent series resistance can be provided.

(5) 陽極集電板12及び陰極集電板16を用いたので、コンデンサ素子4にタブを接続する必要がない。   (5) Since the anode current collecting plate 12 and the cathode current collecting plate 16 are used, it is not necessary to connect a tab to the capacitor element 4.

(6) 陽極集電板12又は陰極集電板16と外部端子(陽極端子10又は陰極端子14)との側面を同一面化しているので、両者に対するレーザ照射を安定でき、接続の完全化及び信頼性を高めることができる。   (6) Since the side surfaces of the anode current collector plate 12 or the cathode current collector plate 16 and the external terminal (the anode terminal 10 or the cathode terminal 14) are flush with each other, the laser irradiation with respect to both can be stabilized, and the complete connection and Reliability can be increased.

(7) レーザ照射時にシールドガスを用いるので、レーザ熱や、飛翔するスパッタからコンデンサ素子4を防護でき、コンデンサ素子4及び製品であるコンデンサ2の特性劣化を防止でき、信頼性を向上させることができる。   (7) Since a shield gas is used during laser irradiation, the capacitor element 4 can be protected from laser heat and flying spatter, the characteristic deterioration of the capacitor element 4 and the capacitor 2 as a product can be prevented, and reliability can be improved. it can.

(8) 上記実施の形態では、レーザビーム69を用いているが、レーザビーム69に変えて電子ビームを用いてもよい。レーザビーム69又は電子ビームを陽極集電板12又は陰極集電板16と外部端子部材との接触面65と異なる位置に照射するので、集電板と外部端子部材との接触面の状態に無関係に両者を溶接することができる。   (8) Although the laser beam 69 is used in the above embodiment, an electron beam may be used instead of the laser beam 69. Since the laser beam 69 or the electron beam is irradiated to a position different from the contact surface 65 between the anode current collector plate 12 or the cathode current collector plate 16 and the external terminal member, it is irrelevant to the state of the contact surface between the current collector plate and the external terminal member. Both can be welded together.

(9) レーザビーム69は、外部端子側の照射位置71の他、レーザ照射に適した面部を選択すればよく、何れかの平坦面を選択してレーザビーム又は電子ビームを照射できる。このようなレーザビーム69又は電子ビームの照射形態では、陽極集電板12(又は陰極集電板16)と外部端子部材との接触面の加工精度が低い場合でも、隙間があっても、最適な溶接領域(ナゲット深さ)を得ることができ集電板と外部端子部材との間の溶接精度や溶接強度を高めることができる。   (9) For the laser beam 69, in addition to the irradiation position 71 on the external terminal side, a surface portion suitable for laser irradiation may be selected, and any one of the flat surfaces can be selected and irradiated with the laser beam or the electron beam. In such a laser beam 69 or electron beam irradiation form, even if the processing accuracy of the contact surface between the anode current collector 12 (or cathode current collector 16) and the external terminal member is low, even if there is a gap, it is optimal. A large welding region (nugget depth) can be obtained, and the welding accuracy and welding strength between the current collector plate and the external terminal member can be increased.

(10) 陽極集電板12(又は陰極集電板16)や外部端子部材にはアルミニウムなどの比較的低い硬度の金属材料が使用され、ヘッダ加工などにより加工される場合には加工精度に限界がある。陽極集電板12(又は陰極集電板16)と外部端子部材との間の接触面間に生じる隙間を避けることができない。このような場合に、既述のレーザビームや電子ビームの照射位置71が陽極集電板12(又は陰極集電板16)の側面にあるカバー部53に設定され、つまり、平坦なレーザ溶接に適した面部を選択でき、溶接精度を高めることができる。   (10) The anode current collector plate 12 (or the cathode current collector plate 16) and the external terminal member are made of a metal material having a relatively low hardness such as aluminum, and the processing accuracy is limited when processing by header processing or the like. There is. The gap which arises between the contact surfaces between the anode current collecting plate 12 (or the cathode current collecting plate 16) and the external terminal member cannot be avoided. In such a case, the irradiation position 71 of the laser beam or electron beam described above is set on the cover portion 53 on the side surface of the anode current collector plate 12 (or cathode current collector plate 16), that is, for flat laser welding. A suitable surface portion can be selected, and the welding accuracy can be increased.

(11) 上記実施の形態では、レーザビーム又は電子ビームの照射位置71が接触面65と直交方向等、交差方向に異ならせてもよく、接触面65と同一位置であってもよい。   (11) In the above embodiment, the irradiation position 71 of the laser beam or the electron beam may be different in the intersecting direction such as the orthogonal direction to the contact surface 65 or may be the same position as the contact surface 65.

(12) レーザビーム又は電子ビームの照射位置71が接触面65と交差方向に異なればよいが、その多寡及びその範囲は例えば、±0.1〜±0.5〔mm〕であることが好ましい。この範囲に設定することでレーザビーム又は電子ビームによる溶接範囲に接触面65を含めることができる。   (12) The irradiation position 71 of the laser beam or the electron beam may be different from the contact surface 65 in the crossing direction, but the number and the range thereof are preferably, for example, ± 0.1 to ± 0.5 [mm]. . By setting to this range, the contact surface 65 can be included in the welding range by the laser beam or the electron beam.

レーザ溶接又は電子ビーム溶接のナゲット18の深さは溶接が可能であればよく、例えば、1.2〔mm〕以下が好ましい。この範囲を超えると、レーザビーム又は電子ビームの照射範囲が広くなり、集電板及び外部端子部材の厚み寸法が増えるため、コンデンサが大型化してしまう。   The depth of the nugget 18 of laser welding or electron beam welding is only required to be able to be welded, and is preferably 1.2 mm or less, for example. If this range is exceeded, the irradiation range of the laser beam or the electron beam is widened, and the thickness of the current collector plate and the external terminal member is increased, resulting in an increase in the size of the capacitor.

〔第2の実施の形態〕 [Second Embodiment]

第2の実施の形態は、既述のコンデンサの製造方法について開示している。   The second embodiment discloses a method for manufacturing a capacitor as described above.

第2の実施の形態について、図12、図13及び図14を参照する。図12は、第2の実施の形態に係る電気二重層コンデンサの製造工程の一例を示すフローチャート、図13は陽極部及び陰極部の成形状態、図14は集電板とコンデンサ素子とのレーザ溶接工程を示している。   The second embodiment will be described with reference to FIGS. 12, 13, and 14. FIG. FIG. 12 is a flowchart showing an example of a manufacturing process of the electric double layer capacitor according to the second embodiment, FIG. 13 is a molding state of the anode part and the cathode part, and FIG. 14 is laser welding of the current collector plate and the capacitor element. The process is shown.

この製造工程は、本発明のコンデンサの製造方法の一例であって、図12に示すように、コンデンサ素子4及び電極部(電極張出し部)の形成工程(ステップS11)、陽極部6及び陰極部8の成形工程(ステップS12)、第1の接続工程(ステップS13)、第2の接続工程(ステップS14)、電解液含浸及び封止工程(ステップS15)を含んでいる。   This manufacturing process is an example of a method of manufacturing a capacitor according to the present invention. As shown in FIG. 12, the capacitor element 4 and the electrode part (electrode overhanging part) forming step (step S11), the anode part 6 and the cathode part 8 forming step (step S12), first connecting step (step S13), second connecting step (step S14), electrolyte solution impregnation and sealing step (step S15).

(1) コンデンサ素子4及び電極部(電極張出し部)の形成工程(ステップS11)   (1) Capacitor element 4 and electrode part (electrode overhanging part) forming step (step S11)

図3に示すように、陽極体60及び陰極体80の間にセパレータ40、42を挟み込み、巻回中心部46を中心に円筒状に巻回することにより、コンデンサ素子4が形成される。このコンデンサ素子4には、素子端面側に陽極体60及び陰極体80の一部を張り出させ、電極張出し部としての陽極部6及び陰極部8が形成される。陽極部6及び陰極部8には絶縁間隔44が設定されている。   As shown in FIG. 3, the separator elements 40 and 42 are sandwiched between the anode body 60 and the cathode body 80, and the capacitor element 4 is formed by winding it in a cylindrical shape around the winding center 46. In the capacitor element 4, a part of the anode body 60 and the cathode body 80 is projected on the element end face side, and an anode section 6 and a cathode section 8 are formed as electrode projecting sections. An insulation interval 44 is set in the anode portion 6 and the cathode portion 8.

(2) 陽極部6及び陰極部8の成形工程(ステップS12)   (2) Molding process of anode part 6 and cathode part 8 (step S12)

この成形工程では、電極張出し部としての陽極部6及び陰極部8を図4の(A)に示すように、既述の区画部6A、6B、6C、8A、8B、8Cに区画し、図4の(B)に示すように、それぞれを巻回中心部46の方向に折曲げ、成形する(ステップS12)。その成形は、図13に示すように、陽極集電板12、陰極集電板16の屈曲形状に対応し、密着可能な高さに成形される。図13において、(A)及び(B)は陽極集電板12に接続される陽極部6の区画部6B、6C、陰極集電板16に接続される陰極部8の区画部8B、8Cの折曲げ状態(成形状態)を示し、(A)は、後述する陽極集電板12及び陰極集電板16を設置する前の成形状態を示し、(B)は陽極集電板12及び陰極集電板16を設置後の成形状態を示す。つまり、陽極集電板12及び陰極集電板16を陽極部6及び陰極部8に押し付けて、又は陽極部6及び陰極部8を陽極集電板12及び陰極集電板16に押し付けて圧縮することで、該陽極部6の区画部6B、6C及び陰極部8の区画部8B、8Cが平坦状となり、陽極集電板12、陰極集電板16に密着することになる。また、図3に示すように、陽極部6又は陰極部8を折り曲げ、成形する前に陽極部6又は陰極部8に予め折り目線43を設けても良い。折り目線43は、素子端面5から一定の幅(0.5mm以上)の位置に形成されており、これにより陽極部6又は陰極部8の折り曲げ時に素子端面位置のセパレータ部位に加わる機械的ストレスが減少し、陽極体60、陰極体80の接触によるショート等を防止可能となる。なお、この折り目線43はキズではなくケガキ線であって、陽極部6及び陰極部8の折り曲げ時の座屈を防止することができる。この折り目線43は溝であり、断面形状は三角、四角又は湾曲(R)であってもよい。この折り目線43の形成には例えば、プレス、レーザ、切削等の方法を用いればよい。折り目線43は図3に示すように1本であってもよいが、陽極部6又は陰極部8の幅に応じて複数本としてもよい。折り目線43の形成面部は、陽極部6又は陰極部8の片面でもよいが、両面であってもよい。一例としての折り目線43は、素子端面の巻回中心部46に対向する面が谷折りになるように形成されている。   In this molding step, the anode portion 6 and the cathode portion 8 as the electrode overhang portions are partitioned into the partition portions 6A, 6B, 6C, 8A, 8B, and 8C described above as shown in FIG. As shown in FIG. 4 (B), each is bent in the direction of the winding center 46 and molded (step S12). The molding corresponds to the bent shape of the anode current collector plate 12 and the cathode current collector plate 16 as shown in FIG. In FIGS. 13A and 13B, (A) and (B) show the partitions 6 B and 6 C of the anode 6 connected to the anode current collector 12 and the partitions 8 B and 8 C of the cathode 8 connected to the cathode current collector 16. A bent state (molded state) is shown, (A) shows a molded state before an anode current collector plate 12 and a cathode current collector plate 16 described later are installed, and (B) shows an anode current collector plate 12 and a cathode current collector. The molding state after installing the electric plate 16 is shown. That is, the anode current collector plate 12 and the cathode current collector plate 16 are pressed against the anode portion 6 and the cathode portion 8 or the anode portion 6 and the cathode portion 8 are pressed against the anode current collector plate 12 and the cathode current collector plate 16 for compression. Thus, the partition sections 6B and 6C of the anode section 6 and the partition sections 8B and 8C of the cathode section 8 become flat, and are in close contact with the anode current collector plate 12 and the cathode current collector plate 16. In addition, as shown in FIG. 3, a crease line 43 may be provided in advance in the anode part 6 or the cathode part 8 before the anode part 6 or the cathode part 8 is bent and molded. The crease line 43 is formed at a position having a certain width (0.5 mm or more) from the element end face 5, and thereby mechanical stress applied to the separator portion at the element end face position when the anode portion 6 or the cathode portion 8 is bent. It is possible to prevent a short circuit due to contact between the anode body 60 and the cathode body 80. Note that the crease line 43 is not a flaw but a marking line, and can prevent buckling of the anode part 6 and the cathode part 8 during bending. The crease line 43 is a groove, and the cross-sectional shape may be triangular, square, or curved (R). For example, a method such as pressing, laser, or cutting may be used to form the crease line 43. Although the crease line 43 may be one as shown in FIG. The formation surface portion of the crease line 43 may be one surface of the anode portion 6 or the cathode portion 8, but may be both surfaces. The crease line 43 as an example is formed so that the surface of the element end face facing the winding center 46 is valley-folded.

(3) 第1の接続工程(ステップS13)   (3) 1st connection process (step S13)

この接続工程(ステップS13)では、図14の(A)に示すように、コンデンサ素子4の陽極部6に陽極集電板12、コンデンサ素子4の陰極部8に陰極集電板16を位置決めし、図14の(B)に示すように、陽極部6に陽極集電板12をまた、陰極部8に陰極集電板16をそれぞれレーザ溶接により接続する。このレーザ溶接では、アルゴンガス、ヘリウムガス等の不活性ガスをシールドガスに用いることにより、コンデンサ素子4をシールドし、レーザ熱や飛翔するスパッタからコンデンサ素子4を分離させる。   In this connection step (step S 13), as shown in FIG. 14A, the anode current collector plate 12 is positioned on the anode portion 6 of the capacitor element 4 and the cathode current collector plate 16 is positioned on the cathode portion 8 of the capacitor element 4. As shown in FIG. 14B, the anode current collector plate 12 is connected to the anode portion 6 and the cathode current collector plate 16 is connected to the cathode portion 8 by laser welding. In this laser welding, an inert gas such as argon gas or helium gas is used as a shielding gas, so that the capacitor element 4 is shielded, and the capacitor element 4 is separated from laser heat or flying spatter.

(4) 第2の接続工程(ステップS14)   (4) Second connection process (step S14)

この接続工程(ステップS14)では、図7に示すように、陽極部6に接続された陽極集電板12の接続面52に封口板22にある陽極端子10の端子側接続面64を対応させ、接触面65と同一位置となる既述の照射位置71の何れかにレーザビーム69又は電子ビームを照射し、さらに既述の接触面65と並行方向にレーザビーム69又は電子ビームを走査して溶接する。同様に、陰極部8に接続された陰極集電板16に封口板22の陰極端子14をレーザ溶接により接続する。このレーザ溶接においても、アルゴンガス、ヘリウムガス等の不活性ガスをシールドガスに用いることにより、コンデンサ素子4をシールドし、レーザ熱や飛翔するスパッタからコンデンサ素子4を分離させる。   In this connection step (step S14), as shown in FIG. 7, the terminal-side connection surface 64 of the anode terminal 10 on the sealing plate 22 is made to correspond to the connection surface 52 of the anode current collector plate 12 connected to the anode portion 6. The laser beam 69 or the electron beam is irradiated to any one of the irradiation positions 71 described above, which is the same position as the contact surface 65, and further the laser beam 69 or the electron beam is scanned in a direction parallel to the contact surface 65 described above. Weld. Similarly, the cathode terminal 14 of the sealing plate 22 is connected to the cathode current collector plate 16 connected to the cathode portion 8 by laser welding. Also in this laser welding, by using an inert gas such as argon gas or helium gas as a shield gas, the capacitor element 4 is shielded, and the capacitor element 4 is separated from laser heat or flying spatter.

この実施の形態では、図7の(A)に示すように、コンデンサ素子4の陽極部6に接続された陽極集電板12に対して封口板22の陽極端子10を位置決めし、同時にコンデンサ素子4の陰極部8に接続された陰極集電板16に対して封口板22の陰極端子14を位置決めすることにより、図7の(B)に示すように、それぞれをレーザ溶接する。18は既述のナゲットである。   In this embodiment, as shown in FIG. 7A, the anode terminal 10 of the sealing plate 22 is positioned with respect to the anode current collector plate 12 connected to the anode portion 6 of the capacitor element 4, and at the same time, the capacitor element By positioning the cathode terminal 14 of the sealing plate 22 with respect to the cathode current collector plate 16 connected to the cathode portion 8 of 4, the laser welding is performed as shown in FIG. Reference numeral 18 denotes the nugget described above.

なお、封口板22は陽極端子10及び陰極端子14のインサートにより合成樹脂を成形(インサート成形)し、これによりベース部26及び封止部28が形成される。   The sealing plate 22 is formed of synthetic resin (insert molding) using inserts of the anode terminal 10 and the cathode terminal 14, whereby the base portion 26 and the sealing portion 28 are formed.

(5) 電解液含浸及び封止工程(ステップS15)   (5) Electrolyte impregnation and sealing process (step S15)

コンデンサ素子4は、電解液を含浸した後、外装ケース20に収容し、外装ケース20の開口端部34のカーリング処理により封止し(ステップS15)、製品である電気二重層コンデンサ2(図1)を完成する。   The capacitor element 4 is impregnated with an electrolytic solution, and then accommodated in the outer case 20 and sealed by curling the open end 34 of the outer case 20 (step S15), and the electric double layer capacitor 2 (FIG. 1) as a product. ) Is completed.

このような製造工程によれば、既述の電気二重層コンデンサ2を容易に製造でき、端子接続工程の簡略化を図ることができ、第1の実施の形態で述べた通りの効果を有するコンデンサを実現できる。   According to such a manufacturing process, the above-described electric double layer capacitor 2 can be easily manufactured, the terminal connection process can be simplified, and the capacitor having the effect as described in the first embodiment. Can be realized.

この製造工程において、レーザビーム又は電子ビームのデフォーカス位置はレーザビーム69又は電子ビームの照射位置71から異なればよく、例えば、0.2〔mm〕〜2.0〔mm〕以下の範囲に設定することが好ましい。   In this manufacturing process, the defocus position of the laser beam or the electron beam may be different from the irradiation position 71 of the laser beam 69 or the electron beam, for example, set in a range of 0.2 [mm] to 2.0 [mm] or less. It is preferable to do.

〔第3の実施の形態〕 [Third Embodiment]

第3の実施の形態では、外部端子の配置及び集電板の形態について開示する。   In the third embodiment, the arrangement of external terminals and the form of a current collector are disclosed.

第3の実施の形態について、図15を参照する。図15は第3の実施の形態に係る集電板と外部端子との接続を示し、(A)は接続前、(B)は接続中のレーザ照射を示している。   The third embodiment will be described with reference to FIG. FIG. 15 shows the connection between the current collector plate and the external terminal according to the third embodiment, (A) shows the laser irradiation before the connection, and (B) shows the laser irradiation during the connection.

この実施の形態の封口板22に設置された陽極端子10及び陰極端子14は、図15の(A)に示すように、コンデンサ素子4の素子端面5の巻回中心部46に近接して配置されている。そして、陽極端子10及び陰極端子14の端子側接続面64は、コンデンサ素子4の外周面より巻回中心部46側に後退している。   The anode terminal 10 and the cathode terminal 14 installed on the sealing plate 22 of this embodiment are arranged close to the winding center 46 of the element end face 5 of the capacitor element 4 as shown in FIG. Has been. The terminal side connection surfaces 64 of the anode terminal 10 and the cathode terminal 14 are set back from the outer peripheral surface of the capacitor element 4 toward the winding center 46.

このような陽極端子10、陰極端子14及び端子側接続面64に対し、この実施の形態では、図15の(A)に示すように、陽極集電板12及び陰極集電板16の端子接続部56A、58Aに巻回中心部46側に後退した凹部70が形成されている。この凹部70には陽極端子10又は陰極端子14の端子側接続面64に対応して既述の接続面部52が形成されている。この場合、陽極集電板12又は陰極集電板16では、端子側接続面64の側面部に対し素子接続部56B、56Cは、コンデンサ素子4の外周方向に突出する平坦部を構成している。   In this embodiment, as shown in FIG. 15A, terminal connection of the anode current collector plate 12 and the cathode current collector plate 16 is made to the anode terminal 10, the cathode terminal 14, and the terminal side connection surface 64. A recess 70 that is recessed toward the winding center 46 is formed in the portions 56A and 58A. In the recess 70, the connection surface portion 52 described above is formed corresponding to the terminal side connection surface 64 of the anode terminal 10 or the cathode terminal 14. In this case, in the anode current collector plate 12 or the cathode current collector plate 16, the element connection portions 56 </ b> B and 56 </ b> C constitute a flat portion protruding in the outer peripheral direction of the capacitor element 4 with respect to the side surface portion of the terminal side connection surface 64. .

このような構成とすれば、図15の(B)に示すように、コンデンサ素子4の素子端面5の巻回中心部46に近接して陽極端子10や陰極端子14が配置されていても、端子側接続面64及び接続面52を対応させて維持し、上記実施の形態と同様に、照射位置71から選択された平坦面にレーザ照射68による接続を行うことができる。   With such a configuration, as shown in FIG. 15B, even if the anode terminal 10 and the cathode terminal 14 are arranged close to the winding center 46 of the element end face 5 of the capacitor element 4, The terminal-side connection surface 64 and the connection surface 52 are maintained in correspondence with each other, and the connection by the laser irradiation 68 can be performed on the flat surface selected from the irradiation position 71 as in the above embodiment.

この場合、カバー部53は接続面52側に形成され、陽極端子10と陽極集電板12との接触面65、陰極端子14と陰極集電板16との接触面65を覆うことができ、カバー部53の外面にレーザビーム69又は電子ビームを照射し、溶接の安定化を図ることができる。   In this case, the cover portion 53 is formed on the connection surface 52 side, and can cover the contact surface 65 between the anode terminal 10 and the anode current collector plate 12, and the contact surface 65 between the cathode terminal 14 and the cathode current collector plate 16, The outer surface of the cover portion 53 can be irradiated with a laser beam 69 or an electron beam to stabilize welding.

なお、この実施の形態では、陽極集電板12及び陰極集電板16に凹部70を形成しているが、凸部を以て接続面52を形成してもよい。   In this embodiment, the concave portion 70 is formed in the anode current collector plate 12 and the cathode current collector plate 16, but the connection surface 52 may be formed by a convex portion.

〔第4の実施の形態〕 [Fourth Embodiment]

第4の実施の形態では、集電板の他の形態について開示しているが、このような集電板を用いた場合にも、既述の接触面65と同一位置にレーザビームや電子ビームの照射位置を設定すればよい。   In the fourth embodiment, other forms of the current collector plate are disclosed. However, even when such a current collector plate is used, a laser beam or an electron beam is placed at the same position as the contact surface 65 described above. The irradiation position may be set.

第4の実施の形態について、図16を参照する。図16は第4の実施の形態に係る集電板、集電板と外部端子との接続を示し、(A)は接続前の集電板、(B)は接続前、(C)は接続中のレーザ照射を示している。   For the fourth embodiment, reference is made to FIG. FIG. 16 shows the current collector plate according to the fourth embodiment, and the connection between the current collector plate and the external terminals. (A) is a current collector plate before connection, (B) is before connection, and (C) is connection. The laser irradiation inside is shown.

この実施の形態の集電板12、16は、図16の(A)に示すように、間隔61を設けてコンデンサ素子4の素子端面5を覆う形態であり、第1の実施の形態と同様に裏面側には区画部6A、8Aを収納させる凹部89が形成されている。この集電板12、16の表面部には、コンデンサ素子4の区画部6A、8Aとの接続部分を扇形の突部91とし、この突部91を挟んで、コンデンサ素子4の区画部6B、6C、8B、8Cに対応する凹部93、95が形成されている。凹部93、95が外部端子との接続部よりコンデンサ素子4の外周方向に突出する平坦部を構成する。突部91には、周縁側に切欠部97が形成され、この切欠部97に臨む周縁部を円弧状に形成して陽極端子10又は陰極端子14との接続面99が形成されている。凹部93、95側には集電板12、16を同時に把持(チャッキング)する手段として、直方体状の突起部101が形成されている。   As shown in FIG. 16A, the current collector plates 12 and 16 of this embodiment are configured to cover the element end face 5 of the capacitor element 4 with a gap 61, which is the same as in the first embodiment. On the back side, a recess 89 for accommodating the partition portions 6A and 8A is formed. On the surface portions of the current collector plates 12 and 16, the connecting portions with the partition portions 6 </ b> A and 8 </ b> A of the capacitor element 4 are fan-shaped protrusions 91, and the partition portions 6 </ b> B and 6 </ b> B of the capacitor element 4 are sandwiched between the protrusions 91. Recesses 93 and 95 corresponding to 6C, 8B and 8C are formed. The concave portions 93 and 95 constitute a flat portion that protrudes in the outer peripheral direction of the capacitor element 4 from the connection portion with the external terminal. The protrusion 91 is formed with a notch 97 on the peripheral side, and a peripheral surface facing the notch 97 is formed in an arc shape to form a connection surface 99 with the anode terminal 10 or the cathode terminal 14. A rectangular parallelepiped protrusion 101 is formed on the recesses 93 and 95 side as means for simultaneously gripping (chucking) the current collector plates 12 and 16.

この実施の形態の集電板12、16は、図16の(B)に示すように、コンデンサ素子4の素子端面5を覆って設置され、陽極部6と集電板12の凹部93、95とがレーザ溶接により接続され、同様に陰極部8と集電板16の凹部93、95とがレーザ溶接により接続される。   As shown in FIG. 16B, the current collector plates 12 and 16 of this embodiment are installed so as to cover the element end surface 5 of the capacitor element 4, and the anode portion 6 and the concave portions 93 and 95 of the current collector plate 12. Are connected by laser welding, and similarly, the cathode portion 8 and the recesses 93 and 95 of the current collector plate 16 are connected by laser welding.

そして、図16の(C)に示すように、コンデンサ素子4に接続された集電板12には陽極端子10が重ねられ、集電板16には陰極端子14が重ねられ、陽極端子10の接続面64と対応する曲面を持つ接続面99を合致させ、同様に陰極端子14の曲面部と対応する曲面を持つ接続面99を合わせて位置決めする。この位置決め状態により、レーザ照射68を行うことにより各集電板12、16と陽極端子10又は陰極端子14とを接続する。凹部93、95は、突部91にある、陽極端子10又は陰極端子14に接続される接続面99即ち、外部端子部材と溶接された側面部より集電板12、16の外周方向に突出する平坦部を構成している。この平坦部でコンデンサ素子4の素子端面5を被覆することができる。   16C, the anode terminal 10 is overlaid on the current collector plate 12 connected to the capacitor element 4, the cathode terminal 14 is overlaid on the current collector plate 16, and the anode terminal 10 The connection surface 99 having a curved surface corresponding to the connection surface 64 is matched, and similarly, the connection surface 99 having a curved surface corresponding to the curved surface portion of the cathode terminal 14 is aligned and positioned. In this positioning state, the current collector plates 12 and 16 are connected to the anode terminal 10 or the cathode terminal 14 by performing laser irradiation 68. The recesses 93 and 95 protrude in the outer peripheral direction of the current collector plates 12 and 16 from the connection surface 99 connected to the anode terminal 10 or the cathode terminal 14, that is, the side surface portion welded to the external terminal member. The flat part is comprised. The element end surface 5 of the capacitor element 4 can be covered with the flat portion.

斯かる構成では、コンデンサ素子4の素子端面5が集電板12、16で覆われており、接続面99側のレーザ照射68によるスパッタの飛翔からコンデンサ素子4の素子端面5を防護できる。しかも、接続面99は、陽極端子10、陰極端子14の曲面に対応する曲面としているが、陽極端子10(又は陰極端子14)と集電板12(又は集電板16)との接触面65に隙間が生じていても、接触面65と同一位置にレーザビームや電子ビームの照射位置71を設定すればよい。斯かる構成によれば、上記実施の形態と同様に良好なレーザ溶接が行え、溶接精度を高めることができる。   In such a configuration, the element end face 5 of the capacitor element 4 is covered with the current collector plates 12 and 16, and the element end face 5 of the capacitor element 4 can be protected from spattering by the laser irradiation 68 on the connection face 99 side. Moreover, although the connection surface 99 is a curved surface corresponding to the curved surfaces of the anode terminal 10 and the cathode terminal 14, the contact surface 65 between the anode terminal 10 (or the cathode terminal 14) and the current collector plate 12 (or the current collector plate 16). Even if there is a gap, the laser beam or electron beam irradiation position 71 may be set at the same position as the contact surface 65. According to such a configuration, good laser welding can be performed as in the above embodiment, and the welding accuracy can be increased.

〔第5の実施の形態〕 [Fifth Embodiment]

第5の実施の形態は、封口板、外部端子又は集電板の何れかに位置決め手段を設け、位置決め手段で外部端子と集電板との接続位置を決定することを開示している。   The fifth embodiment discloses that positioning means is provided on any one of the sealing plate, the external terminal, and the current collecting plate, and the connection position between the external terminal and the current collecting plate is determined by the positioning means.

第5の実施の形態について、図17を参照する。図17は第5の実施の形態に係る封口板を示し、(A)は背面側から見た封口板、(B)は封口板で位置決めされた陽極集電板及び陰極集電板を示している。   The fifth embodiment will be described with reference to FIG. FIG. 17 shows a sealing plate according to a fifth embodiment, (A) shows a sealing plate viewed from the back side, and (B) shows an anode current collector plate and a cathode current collector plate positioned by the sealing plate. Yes.

この実施の形態の封口板22の背面側には、図17の(A)に示すように、陽極端子10及び陰極端子14との間にある空間部に絶縁材料からなる位置決め凸部72が形成され、この位置決め凸部72をコンデンサ素子4(図1)の巻回中心部46に向けて突出させている。この位置決め凸部72は、円柱状部74と、一対の平板状立壁部76とを備えている。円柱状部74は、陽極集電板12と陰極集電板16のそれぞれの円弧状切欠部50の円弧に対応する柱体部である。円柱状部74は、平板状立壁部76を備え、円柱状部74を中心に陽極集電板12及び陰極集電板16の間隔61を維持する平板状立壁部76を左右に備えている。   On the back side of the sealing plate 22 of this embodiment, as shown in FIG. 17A, a positioning convex portion 72 made of an insulating material is formed in a space portion between the anode terminal 10 and the cathode terminal 14. The positioning projection 72 is protruded toward the winding center 46 of the capacitor element 4 (FIG. 1). The positioning convex portion 72 includes a columnar portion 74 and a pair of flat plate-like standing wall portions 76. The columnar part 74 is a columnar part corresponding to the arc of each arcuate notch 50 of the anode current collector plate 12 and the cathode current collector plate 16. The columnar portion 74 includes a plate-like standing wall portion 76, and includes plate-like standing wall portions 76 that maintain the distance 61 between the anode current collector plate 12 and the cathode current collector plate 16 around the columnar portion 74.

このような位置決め凸部72を備えた封口板22を備えれば、図17の(B)に示すように、位置決め凸部72で陽極集電板12及び陰極集電板16を所定位置に位置決めし、間隔61を所定幅wに維持することができる。即ち、位置決め凸部72の円柱状部74では陽極集電板12及び陰極集電板16の円弧状切欠部50を嵌合させ、各平板状立壁部76の側面に陽極集電板12及び陰極集電板16を接することにより、陽極集電板12及び陰極集電板16が所定位置に位置決めされる。この位置決めにより、陽極端子10の端子側接続面64と陽極集電板12の接続面52、陰極端子14の端子側接続面64と陰極集電板16の接続面52をそれぞれ一致させることができ、レーザ照射による接続の安定化を図り、接続精度を高めることができるとともに、位置決め凸部72によって、陽極部6及び陰極部8が確実に絶縁隔離される。   If the sealing plate 22 having such a positioning convex portion 72 is provided, the anode current collecting plate 12 and the cathode current collecting plate 16 are positioned at predetermined positions by the positioning convex portion 72 as shown in FIG. In addition, the interval 61 can be maintained at the predetermined width w. That is, the circular arc-shaped notch 50 of the anode current collecting plate 12 and the cathode current collecting plate 16 is fitted in the cylindrical portion 74 of the positioning convex portion 72, and the anode current collecting plate 12 and the cathode are arranged on the side surface of each flat plate-like wall portion 76. By contacting the current collector plate 16, the anode current collector plate 12 and the cathode current collector plate 16 are positioned at predetermined positions. By this positioning, the terminal-side connection surface 64 of the anode terminal 10 and the connection surface 52 of the anode current collector plate 12, and the terminal-side connection surface 64 of the cathode terminal 14 and the connection surface 52 of the cathode current collector plate 16 can be matched. The connection by laser irradiation can be stabilized, the connection accuracy can be improved, and the anode 6 and the cathode 8 are reliably insulated and isolated by the positioning projection 72.

なお、この実施の形態では、封口板22側に位置決め凸部72を形成したが、外部端子(陽極端子10、陰極端子14)又は集電板(陽極集電板12及び陰極集電板16)の何れかに位置決め手段を設けてもよい。斯かる構成によっても、位置決め手段で外部端子と集電板との接続位置を決めることができ、レーザ照射面として照射位置71を選択すればよく、接続の安定化とともに信頼性の高い溶接接続が得られる。   In this embodiment, the positioning projection 72 is formed on the sealing plate 22 side. However, the external terminals (the anode terminal 10 and the cathode terminal 14) or the current collectors (the anode current collector 12 and the cathode current collector 16). Positioning means may be provided in any of the above. Also with such a configuration, the connection position between the external terminal and the current collector plate can be determined by the positioning means, and the irradiation position 71 may be selected as the laser irradiation surface, and the welding connection with high reliability as well as stabilization of the connection can be achieved. can get.

〔第6の実施の形態〕 [Sixth Embodiment]

第6の実施の形態は、集電板と外部端子部材として接続板を備える構成である。斯かる構成では集電板と接続板とをレーザ溶接又は電子ビーム溶接で接続する際に、集電板と接続板の接触面65とレーザ溶接又は電子ビーム溶接の照射位置とを異ならせてもよく、また、同一であってもよい。つまり、接触面65が不安定であっても、カバー部53がレーザ照射又は電子ビーム照射で溶融し、不安定な面部を溶融金属で補うことができ、安定した溶接が得られ、溶接精度を高めることができる。   The sixth embodiment is configured to include a current collector plate and a connection plate as an external terminal member. In such a configuration, when the current collector plate and the connection plate are connected by laser welding or electron beam welding, the contact surface 65 of the current collector plate and connection plate may be different from the irradiation position of laser welding or electron beam welding. It may be the same. That is, even if the contact surface 65 is unstable, the cover portion 53 is melted by laser irradiation or electron beam irradiation, and the unstable surface portion can be supplemented with molten metal, so that stable welding can be obtained and welding accuracy can be improved. Can be increased.

第6の実施の形態について、図18を参照する。図18は第6の実施の形態に係る電気二重層コンデンサを示している。   FIG. 18 is referred to for the sixth embodiment. FIG. 18 shows an electric double layer capacitor according to a sixth embodiment.

この第6の実施の形態では、図18に示すように、陽極端子部材として陽極端子10とともに陽極接続板88、陰極端子部材として陰極端子14とともに陰極接続板90を備えた構成である。陽極接続板88は陽極端子10にレーザ溶接により接続された後、コンデンサ素子4側の陽極集電板12に接続される。同様に、陰極接続板90は陰極端子14にレーザ溶接により接続された後、コンデンサ素子4側の陰極集電板16に接続される。陽極接続板88には陽極端子10を位置決めして接続する接続用凹部92、陰極接続板90には陰極端子14を位置決めして接続する接続用凹部94が形成されている。また、陽極接続板88及び陰極接続板90の周面の一部には、陽極集電板12又は陰極集電板16の接続面52に対応する接続面部96が形成され、この接続面部96と接続面52とを対応させてレーザ溶接が施されて電気的に接続される。   In the sixth embodiment, as shown in FIG. 18, the anode connection plate 88 is provided with the anode terminal 10 as the anode terminal member, and the cathode connection plate 90 is provided with the cathode terminal 14 as the cathode terminal member. The anode connecting plate 88 is connected to the anode terminal 10 by laser welding and then connected to the anode current collecting plate 12 on the capacitor element 4 side. Similarly, the cathode connection plate 90 is connected to the cathode terminal 14 by laser welding and then connected to the cathode current collector plate 16 on the capacitor element 4 side. The anode connection plate 88 is formed with a connection recess 92 for positioning and connecting the anode terminal 10, and the cathode connection plate 90 is formed with a connection recess 94 for positioning and connecting the cathode terminal 14. A connection surface portion 96 corresponding to the connection surface 52 of the anode current collector plate 12 or the cathode current collector plate 16 is formed on a part of the peripheral surface of the anode connection plate 88 and the cathode connection plate 90. Laser welding is performed in correspondence with the connection surface 52 to be electrically connected.

このような陽極接続板88及び陰極接続板90を用いた構成では、外部端子である陽極端子10、陰極端子14と、コンデンサ素子4側に接続された陽極集電板12、陰極集電板16との接続が広範囲に行われ、接続抵抗を低減でき、しかも接続強度を高めることができる。   In such a configuration using the anode connection plate 88 and the cathode connection plate 90, the anode terminal 10 and the cathode terminal 14 which are external terminals, the anode current collector plate 12 and the cathode current collector plate 16 connected to the capacitor element 4 side. Can be connected in a wide range, connection resistance can be reduced, and connection strength can be increased.

そして、この実施の形態においても、陽極集電板12にカバー部53を備えることにより、陽極接続板88との接触面65をカバー部53で覆い、カバー部53上にレーザビーム69又は電子ビームの照射位置71を設定し、レーザ溶接や電子ビーム溶接を行うことがで、溶接精度を高めることができる。このような構成は陰極集電板16においても同様である。   Also in this embodiment, the anode current collector plate 12 is provided with the cover portion 53, so that the contact surface 65 with the anode connection plate 88 is covered with the cover portion 53, and the laser beam 69 or the electron beam is covered on the cover portion 53. By setting the irradiation position 71 and performing laser welding or electron beam welding, the welding accuracy can be improved. Such a configuration is the same for the cathode current collector plate 16.

〔他の実施の形態〕 [Other Embodiments]

(1) 上記実施の形態では、コンデンサ素子として巻回素子を例示したが、巻回素子に限定されない。積層型素子や固体素子であってもよい。   (1) In the embodiment described above, the winding element is exemplified as the capacitor element, but is not limited to the winding element. A multilayer element or a solid element may be used.

(2) 上記実施の形態では、コンデンサ素子4の素子端面5の一方に陽極部6及び陰極部8を備えて外部端子に接続する構成を開示しているが、一方の素子端面に陽極部、他方の素子端面に陰極部を備える構成としてもよい。   (2) In the above-described embodiment, a configuration in which the anode portion 6 and the cathode portion 8 are provided on one of the element end faces 5 of the capacitor element 4 and connected to an external terminal is disclosed. It is good also as a structure which equips the other element end surface with a cathode part.

(3) 上記実施の形態では、電気二重層コンデンサ2を例示したが、本発明はこれに限定されない。同一の構造及び方法は、電解コンデンサにも同様に適用でき、同様の効果が得られる。   (3) In the above embodiment, the electric double layer capacitor 2 is exemplified, but the present invention is not limited to this. The same structure and method can be similarly applied to an electrolytic capacitor, and the same effect can be obtained.

(4) 上記実施の形態では、集電板として陽極集電板12、陰極集電板16を例示したが、本発明は上記実施の形態に限定されない。接続面52は、フラット面としたが、外部端子の形状に合致する形状として、曲面であってもよい。この接続面52の位置についても、集電板の面内又は周面の何れでもよいし、接続用凸部を設けてもよい。   (4) In the above embodiment, the anode current collector plate 12 and the cathode current collector plate 16 are exemplified as the current collector plates. However, the present invention is not limited to the above embodiment. The connection surface 52 is a flat surface, but may be a curved surface as a shape that matches the shape of the external terminal. The position of the connection surface 52 may be either in the surface of the current collector plate or on the peripheral surface, and may be provided with a connecting convex portion.

(5) 上記実施の形態では、陽極部と陰極部との間に絶縁間隔を設置しているが、この絶縁間隔に絶縁部材を設置してもよい。   (5) In the above embodiment, an insulation interval is provided between the anode part and the cathode part, but an insulation member may be provided at this insulation interval.

(6) 上記実施の形態では、陽極部6及び陰極部8を半円形状に形成したが、本発明はこれに限定されない。実施の形態で示した陽極部6の区画部6A、6B、6C、陰極部8の区画部8A、8B、8Cのうち、陽極集電板12と陰極集電板16と接続する区画部6B、6C及び8B、8Cのみ張り出して形成し、陽極部の区画部6A及び陰極部の区画部8Aは張り出さなくてもよい。 (6) Although the anode part 6 and the cathode part 8 are formed in a semicircular shape in the above embodiment, the present invention is not limited to this. Of the partition sections 6A, 6B, 6C of the anode section 6 and the partition sections 8A, 8B, 8C of the cathode section 8 shown in the embodiment, the partition section 6B connected to the anode current collector plate 12 and the cathode current collector plate 16, 6C and 8B, formed overhanging 8C only partition portion 8A compartments 6A and cathode portion 8 of the anode portion 6 may not overhang.

(7) 上記実施の形態では、集電板の異なる位置として3分割された区分により、陽極部6及び陰極部8との素子接続領域である素子接続部56B、56C又は58B、58C、端子接続領域である端子接続部56A又は58Aとが集電板の表裏面に設定され、水平方向に異なる位置に設定しているが、これに限定されない。集電板の一部に素子接続領域(レーザ照射接続部66)を設定し、その他の部位に端子溶接領域(つまりナゲット18)を設定してもよい。即ち、集電板の表裏面で溶接位置が異なれば、素子接続領域と端子接続領域が近接していてもよい。つまり、素子接続領域である素子接続部56B又は58B又は56C又は58Cにおいてレーザ照射接続部66と集電板の表裏面で溶接位置が重ならない部位にナゲット18を形成してもよい。   (7) In the above embodiment, the element connection portions 56B, 56C or 58B, 58C, which are element connection regions between the anode portion 6 and the cathode portion 8, are connected to the terminal by dividing into three parts as different positions of the current collector plate. The terminal connection portion 56A or 58A, which is a region, is set on the front and back surfaces of the current collector plate, and is set at a different position in the horizontal direction. The element connection region (laser irradiation connection portion 66) may be set in a part of the current collector plate, and the terminal welding region (that is, the nugget 18) may be set in other portions. That is, the element connection region and the terminal connection region may be close to each other as long as the welding positions are different on the front and back surfaces of the current collector plate. That is, the nugget 18 may be formed in a portion where the welding position does not overlap between the laser irradiation connection portion 66 and the front and back surfaces of the current collector plate in the element connection portion 56B, 58B, 56C, or 58C that is the element connection region.

(8) 陽極端子10(又は陰極端子14)と陽極集電板12(又は陰極集電板16)との接触面65を覆うカバー部53は、図19の(A)に示すように、接続面部52を延長して立設させた構成でもよい。このようなカバー部53の外面上の平坦面部に図19の(B)に示すように、照射位置71を設定してレーザビーム又は電子ビームを照射すれば、カバー部53とともに陽極端子10(又は陰極端子14)と陽極集電板12(又は陰極集電板16)を溶融させ、ナゲット18を形成することができ、溶接精度を高めることができる。   (8) The cover portion 53 that covers the contact surface 65 between the anode terminal 10 (or the cathode terminal 14) and the anode current collector plate 12 (or the cathode current collector plate 16) is connected as shown in FIG. The structure which extended the surface part 52 and was made to stand may be sufficient. When the irradiation position 71 is set and the laser beam or the electron beam is irradiated on the flat surface portion on the outer surface of the cover portion 53 as shown in FIG. The cathode terminal 14) and the anode current collector plate 12 (or the cathode current collector plate 16) can be melted to form the nugget 18, and the welding accuracy can be increased.

(9) 上記実施の形態では、カバー部53を集電板12、16側に形成したが、外部端子部材である陽極端子10又は陰極端子14又は接続板に形成し、接触面65を覆う構成としてもよく、上記実施の形態と同様の効果が得られる。   (9) In the above embodiment, the cover portion 53 is formed on the current collecting plates 12 and 16 side. However, the cover portion 53 is formed on the anode terminal 10 or the cathode terminal 14 or the connection plate, which is an external terminal member, and covers the contact surface 65. The same effect as the above embodiment can be obtained.

以上説明したように、本発明の最も好ましい実施の形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment and the like of the present invention have been described. However, the present invention is not limited to the above description, and is described in the claims or a form for carrying out the invention. It goes without saying that various modifications and changes can be made by those skilled in the art based on the gist of the invention disclosed in the above, and such modifications and changes are included in the scope of the present invention.

本発明のコンデンサの製造方法は、集電板又は外部端子部材の何れか一方にカバー部を設けて集電板と外部端子部材との接触面を覆うことにより、カバー部にレーザ照射や電子ビーム照射を行うので、端子接続構造や接続工程の簡略化に寄与し、生産性や信頼性を高めることができ、レーザ溶接や電子ビーム溶接の溶接精度を高め、接続強度を向上させることができるなど、有益である。
Method for manufacturing a capacitor of the present invention, by covering the contact surface with the current collector plate and the external terminal member provided with a cover portion to either of the current collector plate or outer terminal member, the laser irradiation or electron to the cover portion Because beam irradiation is performed, it contributes to simplification of the terminal connection structure and connection process, can improve productivity and reliability, can improve the welding accuracy of laser welding and electron beam welding, and can improve the connection strength. Etc. are beneficial.

2 電気二重層コンデンサ
4 コンデンサ素子
6 陽極部
60 陽極体
8 陰極部
80 陰極体
10 陽極端子
12 陽極集電板
14 陰極端子
16 陰極集電板
18 ナゲット
19 保持テープ
20 外装ケース
22 封口板
24 空間部
26 ベース部
28 封止部
32 加締め段部
34 開口端部
36 透孔
38 圧力開放機構
44 絶縁間隔
53 カバー部
67 テーパ面
71 照射位置
2 Electric double layer capacitor 4 Capacitor element 6 Anode portion 60 Anode body 8 Cathode portion 80 Cathode body 10 Anode terminal 12 Anode current collector plate 14 Cathode terminal 16 Cathode current collector plate 18 Nugget 19 Holding tape 20 Exterior case 22 Sealing plate 24 Space portion 26 Base part 28 Sealing part 32 Caulking step part 34 Open end part 36 Through hole 38 Pressure release mechanism 44 Insulation interval 53 Cover part 67 Tapered surface 71 Irradiation position

Claims (6)

陽極側及び陰極側の電極体と、これら電極体間に介在されたセパレータとを備える巻回素子又は非巻回素子であるコンデンサ素子の素子端面に前記電極体を張り出させ、前記素子端面に単一又は複数の電極張出し部を形成する工程と、
前記コンデンサ素子を収容するケース部材の開口部を封口する封口部材に設置された外部端子部材、又は前記電極張出し部に接続される集電板の何れか一方に覆い部を備え、この覆い部で前記外部端子部材と前記集電板との接触面を覆う工程と、
前記覆い部にレーザビーム又は電子ビームの照射位置が設定され、前記集電板と前記外部端子部材とを溶接する工程と、
を含むことを特徴とする、コンデンサの製造方法。
The electrode body is protruded from the element end face of a capacitor element which is a winding element or a non-winding element provided with an anode-side and cathode-side electrode body and a separator interposed between the electrode bodies, Forming a single or a plurality of electrode overhangs;
Either one of the external terminal member installed on the sealing member that seals the opening of the case member that accommodates the capacitor element, or the current collector plate connected to the electrode overhanging portion includes a covering portion, Covering the contact surface between the external terminal member and the current collector plate;
A step of irradiating a laser beam or an electron beam to the cover, and welding the current collector plate and the external terminal member;
A method for manufacturing a capacitor, comprising:
前記レーザビーム又は前記電子ビームの前記照射位置は、前記集電板と前記外部端子部材との接触面に一致させたことを特徴とする請求項に記載のコンデンサの製造方法。 2. The method for manufacturing a capacitor according to claim 1 , wherein the irradiation position of the laser beam or the electron beam is made to coincide with a contact surface between the current collector plate and the external terminal member. 前記レーザビーム又は前記電子ビームの前記照射位置は、前記集電板と前記外部端子部材との接触面に対して交差方向に異ならせたことを特徴とする、請求項に記載のコンデンサの製造方法。 2. The manufacturing method of a capacitor according to claim 1 , wherein the irradiation position of the laser beam or the electron beam is varied in a crossing direction with respect to a contact surface between the current collector plate and the external terminal member. Method. 前記レーザビーム又は前記電子ビームの前記照射位置を前記接触面と交差方向に±0.1〜±0.5〔mm〕だけ異ならせたことを特徴とする、請求項に記載のコンデンサの製造方法。 4. The method of manufacturing a capacitor according to claim 3 , wherein the irradiation position of the laser beam or the electron beam is varied by ± 0.1 to ± 0.5 [mm] in a direction intersecting with the contact surface. Method. 前記レーザビーム又は前記電子ビームのデフォーカス位置を前記レーザビーム又は前記電子ビームの前記照射位置から0.2〔mm〕〜2.0〔mm〕以下に設定したことを特徴とする、請求項ないしの何れかに記載のコンデンサの製造方法。 Characterized in that setting the defocus position of the laser beam or the electron beam from the irradiation position of the laser beam or the electron beam in 0.2 mm and 2.0 mm. Or less, according to claim 1 5. A method for producing a capacitor as described in any one of 4 to 4 . 前記レーザビームによる溶接又は前記電子ビームによる溶接のナゲット深さを1.2〔mm〕以下とすることを特徴とする、請求項1ないし5の何れかに記載のコンデンサの製造方法。6. The method of manufacturing a capacitor according to claim 1, wherein a nugget depth of welding by the laser beam or welding by the electron beam is 1.2 [mm] or less.
JP2011160247A 2010-11-09 2011-07-21 Capacitor manufacturing method Active JP5961939B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011160247A JP5961939B2 (en) 2011-07-21 2011-07-21 Capacitor manufacturing method
CN201180053897.9A CN103210459B (en) 2010-11-09 2011-11-09 Capacitor and manufacture method thereof
PCT/JP2011/006266 WO2012063486A1 (en) 2010-11-09 2011-11-09 Capacitor and process for production thereof
US13/890,426 US9672985B2 (en) 2010-11-09 2013-05-09 Capacitor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011160247A JP5961939B2 (en) 2011-07-21 2011-07-21 Capacitor manufacturing method

Publications (2)

Publication Number Publication Date
JP2013026462A JP2013026462A (en) 2013-02-04
JP5961939B2 true JP5961939B2 (en) 2016-08-03

Family

ID=47784438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011160247A Active JP5961939B2 (en) 2010-11-09 2011-07-21 Capacitor manufacturing method

Country Status (1)

Country Link
JP (1) JP5961939B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063486A1 (en) 2010-11-09 2012-05-18 日本ケミコン株式会社 Capacitor and process for production thereof
WO2013001821A1 (en) 2011-06-28 2013-01-03 日本ケミコン株式会社 Electricity storage device and method for manufacturing electricity storage device
WO2014199639A1 (en) * 2013-06-14 2014-12-18 日本ケミコン株式会社 Capacitor
MX2019001404A (en) * 2016-08-03 2019-07-04 Shiloh Ind Inc Hybrid weld joint and method of forming the same.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219857A (en) * 1997-11-25 1999-08-10 Matsushita Electric Ind Co Ltd Electric double-layer capacitor
JPH11251190A (en) * 1997-12-22 1999-09-17 Asahi Glass Co Ltd Electric double layer capacitor
JP2001068379A (en) * 1999-08-24 2001-03-16 Honda Motor Co Ltd Electric double layer capacitor
JP4699208B2 (en) * 2003-03-19 2011-06-08 パナソニック株式会社 Capacitor and its connection method
JP2010093178A (en) * 2008-10-10 2010-04-22 Panasonic Corp Electrochemical capacitance and method of manufacturing the same
JP2010135651A (en) * 2008-12-05 2010-06-17 Chiba Inst Of Technology Connection structure of metal foil, connecting method of metal foil, and capacitor

Also Published As

Publication number Publication date
JP2013026462A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP6264431B2 (en) Power storage device
WO2012063486A1 (en) Capacitor and process for production thereof
JP5961940B2 (en) Capacitor manufacturing method
JP5935580B2 (en) Power storage device manufacturing method and secondary battery manufacturing method
JP2006252890A (en) Cylinder-shaped secondary battery and manufacturing method of the same
JP5961939B2 (en) Capacitor manufacturing method
JP5672863B2 (en) battery
JP5979273B2 (en) Capacitor manufacturing method
JP5482565B2 (en) Capacitor and manufacturing method thereof
JP2012160658A (en) Method of manufacturing capacitor
JP5764912B2 (en) Capacitor and manufacturing method thereof
JP2012104618A (en) Capacitor and manufacturing method thereof
JP5928993B2 (en) Capacitor manufacturing method
JP2012104622A (en) Capacitor and manufacturing method thereof
JP5866753B2 (en) Capacitor and manufacturing method thereof
JP6112144B2 (en) Capacitor and manufacturing method thereof
JP2018056482A (en) Power storage device, manufacturing method of power storage device, collector plate, and manufacturing method of collector plate
JP2012104621A (en) Capacitor and manufacturing method thereof
JP5834617B2 (en) Capacitor manufacturing method
JP2012104620A (en) Capacitor and manufacturing method thereof
JP6364972B2 (en) Power storage device and method for manufacturing power storage device
JP5716851B2 (en) Capacitor manufacturing method
JP5892274B2 (en) Capacitor and manufacturing method thereof
JP6683066B2 (en) Electrode welding method
JP2017117535A (en) Method of manufacturing electrode assembly and electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5961939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150