JP2012104622A - Capacitor and manufacturing method thereof - Google Patents

Capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP2012104622A
JP2012104622A JP2010251357A JP2010251357A JP2012104622A JP 2012104622 A JP2012104622 A JP 2012104622A JP 2010251357 A JP2010251357 A JP 2010251357A JP 2010251357 A JP2010251357 A JP 2010251357A JP 2012104622 A JP2012104622 A JP 2012104622A
Authority
JP
Japan
Prior art keywords
anode
cathode
capacitor
current collector
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010251357A
Other languages
Japanese (ja)
Inventor
Masayuki Mori
正行 森
Tatsuro Kubonai
達郎 久保内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2010251357A priority Critical patent/JP2012104622A/en
Priority to EP11817938.1A priority patent/EP2608230B1/en
Priority to KR1020137006759A priority patent/KR101930095B1/en
Priority to PCT/JP2011/004623 priority patent/WO2012023289A1/en
Priority to CN201180039963.7A priority patent/CN103081047B/en
Publication of JP2012104622A publication Critical patent/JP2012104622A/en
Priority to US13/768,851 priority patent/US9053858B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To achieve reduced capacitor resistance and a robust connection structure, and to provide a configuration and a method capable of improving insulation quality between different electrodes.SOLUTION: A capacitor comprises: a capacitor element 4; a plurality of electrode overhanging parts (anode part 6, cathode part 8) in which a part of electrode bodies (anode body, cathode body) is extracted to an element end surface 5 of the capacitor element by a predetermined overhanging width, bent, and disposed on the element end surface 5, and insulation intervals 21, 23 set between different electrodes are larger than the overhanging width of the electrode body; and collecting plates (anode collecting plate 12, cathode collecting plate 16) connected to the electrode overhanging parts and the external terminals (anode terminal 10, cathode terminal 14).

Description

本発明は、コンデンサ素子と、コンデンサ素子の外装部材の封口部材にある外部端子との間の接続に関し、その接続に溶接技術を用いた例えば、電解コンデンサ、電気二重層コンデンサ等のコンデンサ及びその製造方法に関する。
The present invention relates to a connection between a capacitor element and an external terminal on a sealing member of an exterior member of the capacitor element, and uses a welding technique for the connection, for example, a capacitor such as an electrolytic capacitor or an electric double layer capacitor, and its manufacture Regarding the method.

電気二重層コンデンサ又は電解コンデンサでは、コンデンサ素子と外部端子とを電気的に接続することが必要である。この電気的な接続により、素子側の内部抵抗の低減や、接続部分の接触抵抗を低減させる対策が施されている。   In the electric double layer capacitor or electrolytic capacitor, it is necessary to electrically connect the capacitor element and the external terminal. By this electrical connection, measures are taken to reduce the internal resistance on the element side and the contact resistance of the connection portion.

このような電気的接続に関し、素子の端面に集電端子を設けること(例えば、特許文献1)、巻回素子の一方の端面に陽極集電板、他方の端面に陰極集電板を設けること(例えば、特許文献2)、巻回素子の端面に露出した集電箔を覆って集電板を備え、集電板と集電箔とを溶接接続すること(例えば、特許文献3)、また、集電板を外装ケースと素子との接続や外部端子との接続に用いること(例えば、特許文献4)が知られている。   Regarding such electrical connection, a current collecting terminal is provided on the end face of the element (for example, Patent Document 1), an anode current collecting plate is provided on one end face of the winding element, and a cathode current collecting plate is provided on the other end face. (For example, Patent Document 2), including a current collector foil that covers the current collector foil exposed on the end face of the winding element, and welding and connecting the current collector plate and the current collector foil (for example, Patent Document 3); It is known that a current collector plate is used for connection between an exterior case and an element or connection with an external terminal (for example, Patent Document 4).

また、積層型のコンデンサ素子では、素子端面側に接続端子を備えるものが知られている(例えば、特許文献5)。
In addition, a multilayer capacitor element having a connection terminal on the element end face side is known (for example, Patent Document 5).

特開平11−219857公報Japanese Patent Laid-Open No. 11-21857 特開2001−068379公報JP 2001-068379 A 特開2007−335156公報JP 2007-335156 A 特開2010−093178公報JP 2010-093178 A 特開平6−275476公報JP-A-6-275476

ところで、巻回型素子の各端面に集電板を備える構成では、巻回素子を外装する外装部材に陽極側及び陰極側の外部端子を隣接して設置した場合には、各外部端子と集電板との間に接続距離を確保する必要がある。また、巻回型素子では、内側部分と外側部分との間で内部抵抗の分布が異なるため、その対策が必要となり、素子と集電板との接続に注意を払う必要がある。また、集電板を用いた構造では素子の内部抵抗を低減できるが、外部端子と素子との間に介在する集電板に製造途上で加わる応力によっては接続の信頼性低下や接続抵抗が大きくなる場合がある。   By the way, in the configuration in which the current collector plate is provided on each end face of the wound element, when the external terminal on the anode side and the cathode side is installed adjacent to the exterior member that covers the wound element, It is necessary to secure a connection distance between the electric plate. Further, in the wound type element, since the distribution of the internal resistance is different between the inner part and the outer part, it is necessary to take measures against it, and it is necessary to pay attention to the connection between the element and the current collector plate. In addition, the structure using the current collector plate can reduce the internal resistance of the element, but depending on the stress applied to the current collector plate interposed between the external terminal and the element during manufacturing, the reliability of the connection is reduced and the connection resistance is large. There is a case.

このような接続に関し、コンデンサ素子と封口部材との間には僅かなスペースが存在するが、このスペースを大きくし、接続部材や接続に要する間隔を増加させると、その分だけ抵抗を増加させ、更にはコンデンサの高さ寸法が増大する。この間隔(距離)を短くすれば、小スペース化によりコンデンサの小型化を図ることができるが、コンデンサ素子と封口部材との接続間隔が短くなり、接続に手間取ったり、接続が不完全になるという課題がある。   Regarding such connection, there is a slight space between the capacitor element and the sealing member, but when this space is increased and the interval required for the connection member and connection is increased, the resistance is increased accordingly. Furthermore, the height dimension of the capacitor increases. If this distance (distance) is shortened, the size of the capacitor can be reduced by reducing the space, but the connection interval between the capacitor element and the sealing member is shortened, and it takes time to connect or incomplete connection. There are challenges.

また、端子接続のためにコンデンサ素子からの引き出された部分が多い程、その部分と外部端子に対してコンデンサ素子の電極体の接続箇所が拡大するので、コンデンサ素子の内部抵抗を低下する。反面、コンデンサ素子からの引出し部分を多くすれば、その引出し部分を積層状態で精度良く折り曲げることは困難である。巻回素子にあっては、電極体からの引出し部分が湾曲しており、折り曲げた際にしわを生じ、そのしわが集電板との接続の障害となり、接続部分が不安定になる。   Also, the more portions that are drawn from the capacitor element for terminal connection, the larger the connection point of the capacitor element electrode body to that portion and the external terminal, so that the internal resistance of the capacitor element decreases. On the other hand, if the lead-out portion from the capacitor element is increased, it is difficult to bend the lead-out portion with high accuracy in the laminated state. In the winding element, the lead-out portion from the electrode body is curved and wrinkles when bent, and the wrinkle becomes an obstacle to the connection with the current collector plate, and the connection portion becomes unstable.

また、コンデンサ素子からの引出し部分が異極間で隣接して形成した場合、両者間に絶縁が不十分であると、コンデンサの性能を低下させることになる。   In addition, when the lead-out portion from the capacitor element is formed adjacently between different poles, if the insulation between the two is insufficient, the performance of the capacitor is degraded.

斯かる要求や課題について、特許文献1〜5にはその開示や示唆はなく、それを解決する構成等についての開示や示唆はない。   Regarding such demands and problems, Patent Documents 1 to 5 do not disclose or suggest them, and do not disclose or suggest a configuration for solving them.

そこで、本発明の目的は、上記課題に鑑み、コンデンサの低抵抗化、接続構造の堅牢化とともに、異極間の絶縁性を高めることにある。
Therefore, in view of the above problems, an object of the present invention is to increase the insulation between different poles as well as to reduce the resistance of the capacitor and to strengthen the connection structure.

上記目的を達成するため、本発明のコンデンサは、コンデンサ素子と、前記コンデンサ素子の素子端面に電極体の一部を所定の張出し幅を以て引き出して素子端面上に折曲して配置されるとともに、異極間に設定された絶縁間隔が前記電極体の前記張出し幅より大きく設定された複数の電極張出し部と、前記電極張出し部に接続され、外部端子部材に接続された集電板とを備えている。   In order to achieve the above object, a capacitor of the present invention is arranged by bending a capacitor element and a part of an electrode body on the element end face of the capacitor element with a predetermined overhanging width and bending it on the element end face. A plurality of electrode overhang portions in which an insulation interval set between different electrodes is set larger than the overhang width of the electrode body; and a current collector plate connected to the electrode overhang portion and connected to an external terminal member. ing.

上記目的を達成するには、上記コンデンサにおいて、前記集電板の異極間に設定された絶縁間隔が、前記電極張出し部の異極間に設定された絶縁間隔より小さくしてもよい。   In order to achieve the above object, in the capacitor, the insulation interval set between the different poles of the current collector plate may be smaller than the insulation gap set between the different poles of the electrode overhanging portion.

上記目的を達成するには、上記コンデンサにおいて、前記コンデンサ素子が巻回素子である場合、前記電極張出し部は、前記コンデンサ素子が半周毎に、半周の円弧長より狭い幅で前記コンデンサ素子の素子端面から露出させた電極体である構成としてもよい。 In order to achieve the above object, in the capacitor, when the capacitor element is a wound element, the electrode projecting portion has a width narrower than the arc length of the half circumference for each half circumference of the capacitor element. It is good also as a structure which is an electrode body exposed from the end surface.

上記目的を達成するには、上記コンデンサにおいて、前記絶縁間隔が3〜15〔mm〕に設定してもよい。   In order to achieve the object, in the capacitor, the insulation interval may be set to 3 to 15 [mm].

上記目的を達成するため、本発明のコンデンサの製造方法は、コンデンサ素子の素子端面に電極体の一部を所定の張出し幅を以て引き出して素子端面上に折曲して配置されるとともに、異極間に設定された絶縁間隔が前記電極体の前記張出し幅より大きく設定された複数の電極張出し部を形成する工程と、外部端子部材に接続する集電板を前記電極張出し部に溶接により接続する工程とを含んでいる。   In order to achieve the above-described object, the capacitor manufacturing method of the present invention is arranged such that a part of the electrode body is drawn out with a predetermined overhanging width on the element end face of the capacitor element and bent on the element end face. A step of forming a plurality of electrode overhang portions in which an insulation interval set between them is set larger than the overhang width of the electrode body, and a current collector plate connected to an external terminal member is connected to the electrode overhang portions by welding Process.

本発明のコンデンサ又はその製造方法によれば、次の何れかの効果が得られる。   According to the capacitor of the present invention or the manufacturing method thereof, any one of the following effects can be obtained.

(1) コンデンサ素子の素子端面から所定幅で折り曲げられて重ねられた異極間の電極張出し部に絶縁に必要な間隔を確保することができる。   (1) A space necessary for insulation can be ensured in the electrode overhanging portion between the different electrodes that are bent and overlapped with a predetermined width from the element end face of the capacitor element.

(2) 電極張出し部に重ねられて接続される集電板と電極張出し部との接続が安定化し、コンデンサ素子及びコンデンサの低抵抗化を図ることができる。   (2) It is possible to stabilize the connection between the current collector plate that is overlapped and connected to the electrode overhanging portion and the electrode overhanging portion, and to reduce the resistance of the capacitor element and the capacitor.

(3) 接続のための空間部を狭小化でき、しかも接続の強化、接続の信頼性向上を図ることができる。   (3) Space for connection can be reduced, and connection can be strengthened and connection reliability can be improved.

(4) コンデンサ素子の電極体から引き出された電極張出し部と、封口部材側の端子部材との間に集電板を介在させた接続構造であるから、接続の簡略化とともに、接続構造の堅牢化を図ることができる。   (4) Since the current collector plate is interposed between the electrode extension drawn from the electrode body of the capacitor element and the terminal member on the sealing member side, the connection structure is simplified and the connection structure is robust. Can be achieved.

(5) 上記構造により、集電板を介在させているので、コンデンサ素子側と封口側にある外部端子の接続が容易化でき、接続工程を簡略化とともに、接続処理を短時間で行うことができ、製造コストの低減を図ることができる。   (5) Since the current collector plate is interposed by the above structure, the connection between the external terminals on the capacitor element side and the sealing side can be facilitated, the connection process is simplified, and the connection process can be performed in a short time. The manufacturing cost can be reduced.

そして、本発明の他の目的、特徴及び利点は、添付図面及び各実施の形態を参照することにより、一層明確になるであろう。
Other objects, features, and advantages of the present invention will become clearer with reference to the accompanying drawings and each embodiment.

第1の実施の形態に係る電気二重層コンデンサの一例を示す断面図である。It is sectional drawing which shows an example of the electric double layer capacitor which concerns on 1st Embodiment. 電気二重層コンデンサの各部材を示す分解斜視図である。It is a disassembled perspective view which shows each member of an electric double layer capacitor. 第2の実施の形態に係る電気二重層コンデンサの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the electrical double layer capacitor which concerns on 2nd Embodiment. 陽極体及び陰極体の一例を示す図である。It is a figure which shows an example of an anode body and a cathode body. 陽極体、陰極体及びセパレータの一例を示す図である。It is a figure which shows an example of an anode body, a cathode body, and a separator. コンデンサ素子の一例を示す斜視図である。It is a perspective view which shows an example of a capacitor | condenser element. コンデンサ素子の陽極部及び陰極部の成形前後の一例を示す図である。It is a figure which shows an example before and behind shaping | molding of the anode part of a capacitor | condenser element, and a cathode part. コンデンサ素子の陽極部及び陰極部の成形工程の一例を示す図である。It is a figure which shows an example of the formation process of the anode part of a capacitor | condenser element, and a cathode part. 陽極集電板及び陰極集電板の一例を示す図である。It is a figure which shows an example of an anode current collecting plate and a cathode current collecting plate. 集電板とコンデンサ素子の電極部とのレーザ溶接の一例を示す図である。It is a figure which shows an example of the laser welding with a collector plate and the electrode part of a capacitor | condenser element. コンデンサ素子上の集電板と、封口側の外部端子との接続の一例を示す図である。It is a figure which shows an example of a connection with the current collection board on a capacitor | condenser element, and the external terminal of a sealing side.

〔第1の実施の形態〕 [First Embodiment]

第1の実施の形態は、コンデンサ素子の素子端面に異極の電極張出し部が形成され、各電極張出し部が所定幅を折り目にして折り曲げられ、素子端面上に重ねられた状態で異極間で十分な絶縁が得られる間隔が保持された電気二重層コンデンサ(以下、単に「コンデンサ」と称する。)を開示している。   In the first embodiment, electrode overhang portions having different polarities are formed on the element end surface of the capacitor element, and each electrode overhang portion is bent with a predetermined width as a crease and overlapped on the element end surfaces. An electric double layer capacitor (hereinafter simply referred to as a “capacitor”) in which a sufficient interval for obtaining sufficient insulation is maintained is disclosed.

このコンデンサについて、図1及び図2を参照する。図1は電気二重層コンデンサの一例を示す縦断面を示し、図2は電気二重層コンデンサの各部材の一例を示している。   Refer to FIGS. 1 and 2 for this capacitor. FIG. 1 shows a longitudinal section showing an example of an electric double layer capacitor, and FIG. 2 shows an example of each member of the electric double layer capacitor.

このコンデンサ2は電気二重層コンデンサであって、本発明のコンデンサ及びその製造方法の一例である。図1に示すコンデンサ2では、コンデンサ素子4の同一の素子端面5に陽極部6と陰極部8を形成している。陽極部6及び陰極部8は、電極張出し部の一例であって、コンデンサ素子4の素子端面5から引き出された電極体(陽極体60又は陰極体80:図5)の一部で構成される。陽極部6は、コンデンサ素子4の素子端面5に陽極体60から引き出され、陰極部8は、同様に、素子端面5に陰極体80から引き出され、コンデンサ素子4の素子端面5から所定幅を折り目線46(図4、図5、図6)を用いてコンデンサ素子4の素子端面5上に折り曲げられて重ねられている。   This capacitor 2 is an electric double layer capacitor, and is an example of the capacitor of the present invention and a method for manufacturing the same. In the capacitor 2 shown in FIG. 1, an anode portion 6 and a cathode portion 8 are formed on the same element end surface 5 of the capacitor element 4. The anode part 6 and the cathode part 8 are an example of an electrode projecting part, and are constituted by a part of an electrode body (anode body 60 or cathode body 80: FIG. 5) drawn from the element end face 5 of the capacitor element 4. . The anode portion 6 is drawn from the anode body 60 to the element end face 5 of the capacitor element 4, and the cathode portion 8 is similarly drawn from the cathode body 80 to the element end face 5 and has a predetermined width from the element end face 5 of the capacitor element 4. The fold line 46 (FIGS. 4, 5, and 6) is used to be folded and overlapped on the element end face 5 of the capacitor element 4.

陽極部6と陽極端子10との接続には両者間に介在させた陽極集電板12が用いられ、また、陰極部8と陰極端子14との接続には両者間に介在させた陰極集電板16が用いられている。これらの接続には例えば、レーザ溶接や電子ビーム溶接が用いられ、陽極部6と陽極端子10、陰極部8と陰極端子14が溶接接続部18で接続されている。また、陽極端子10及び陰極端子14は外部接続のための外部端子部材であって、陽極端子10は陽極端子部材の一例、陰極端子14は陰極端子部材の一例である。陽極集電板12と陰極集電板16との間には、陽極部6と陰極部8との間に形成された絶縁間隔21に対応して絶縁間隔23が設定される。   An anode current collector plate 12 interposed between the anode part 6 and the anode terminal 10 is used for the connection between the anode part 6 and the anode terminal 10, and a cathode current collector interposed between the two for the connection between the cathode part 8 and the cathode terminal 14. A plate 16 is used. For these connections, for example, laser welding or electron beam welding is used, and the anode portion 6 and the anode terminal 10, and the cathode portion 8 and the cathode terminal 14 are connected by a welding connection portion 18. The anode terminal 10 and the cathode terminal 14 are external terminal members for external connection. The anode terminal 10 is an example of an anode terminal member, and the cathode terminal 14 is an example of a cathode terminal member. An insulation interval 23 is set between the anode current collector plate 12 and the cathode current collector plate 16 corresponding to the insulation interval 21 formed between the anode portion 6 and the cathode portion 8.

この実施の形態では、コンデンサ素子4は円筒体であって、一方の素子端面5に陽極体60を張り出させて陽極部6が形成されているとともに、陰極体80(図6)を張り出させて陰極部8が形成されている。コンデンサ素子4の周囲には保持テープ25が巻回され、陽極体60や陰極体80の巻き戻りが防止されている。この実施形態では、陽極集電板12と接続された陽極部6、及び陰極集電板16と接続された陰極部8の外周部には絶縁手段19が設置されている。この絶縁手段19によってコンデンサ素子2と外装ケース20との絶縁が図られている。この絶縁手段19には例えば、絶縁紙や絶縁テープ等の絶縁材料を用いればよい。   In this embodiment, the capacitor element 4 is a cylindrical body, and an anode body 60 is formed by projecting an anode body 60 on one of the element end faces 5, and a cathode body 80 (FIG. 6) is projected. Thus, the cathode portion 8 is formed. A holding tape 25 is wound around the capacitor element 4 to prevent the anode body 60 and the cathode body 80 from unwinding. In this embodiment, an insulating means 19 is installed on the outer periphery of the anode portion 6 connected to the anode current collector plate 12 and the cathode portion 8 connected to the cathode current collector plate 16. The insulating means 19 insulates the capacitor element 2 from the outer case 20. For the insulating means 19, for example, an insulating material such as insulating paper or insulating tape may be used.

コンデンサ素子4の外装部材として外装ケース20及び封口板22が備えられる。外装ケース20は例えばアルミニウム等の成形性のある金属材料からなる成形体である。封口板22は外装ケース20の開口部を閉止し、空間部24の気密性を保持する封口体の一例であるとともに、陽極端子10及び陰極端子14を固定する固定部材であり、コンデンサ素子4の支持部材を構成している。この実施の形態では、封口板22にベース部26と、封止部28とが備えられる。ベース部26は絶縁材料である例えば、合成樹脂で形成され、陽極端子10及び陰極端子14が固定されるとともに、絶縁されている。封止部28は密閉性の高い材料例えば、ゴム環で構成されている。   An exterior case 20 and a sealing plate 22 are provided as exterior members of the capacitor element 4. The outer case 20 is a molded body made of a moldable metal material such as aluminum. The sealing plate 22 is an example of a sealing body that closes the opening of the outer case 20 and maintains the airtightness of the space 24, and is a fixing member that fixes the anode terminal 10 and the cathode terminal 14. A support member is configured. In this embodiment, the sealing plate 22 is provided with a base portion 26 and a sealing portion 28. The base portion 26 is formed of an insulating material, for example, synthetic resin, and the anode terminal 10 and the cathode terminal 14 are fixed and insulated. The sealing portion 28 is made of a material having high airtightness, for example, a rubber ring.

この封口板22は、外装ケース20の開口部30(図2)に挿入されるとともに、開口部30側の中途部に形成された加締め段部32に位置決めされている。外装ケース20の開口端部34は、カーリング処理により加締められ、封止部28に食い込ませられている。これらにより、外装ケース20が強固に封止されている。そして、封口板22のベース部26には、図2に示すように、透孔36が形成されるとともに、薄ゴムからなる圧力開放機構38が形成されている。   The sealing plate 22 is inserted into the opening 30 (FIG. 2) of the exterior case 20 and is positioned at a caulking step 32 formed in the middle part on the opening 30 side. The open end 34 of the outer case 20 is crimped by a curling process and is bitten into the sealing portion 28. As a result, the outer case 20 is firmly sealed. As shown in FIG. 2, the base portion 26 of the sealing plate 22 is formed with a through hole 36 and a pressure release mechanism 38 made of thin rubber.

このコンデンサ2の特徴事項や利点を以下に列挙する。   The features and advantages of the capacitor 2 are listed below.

(1) コンデンサ素子4の素子端面5から所定幅で形成された折り目線46を基準にして一様に折り曲げられて重ねられた電極張出し部が素子端面5に平坦化され、この電極張出し部に重ねられて接続される陽極集電板12、陰極集電板16と陽極部6、陰極部8との接続が安定化し、コンデンサ素子及びコンデンサの低抵抗化が図られている。   (1) The electrode overhanging portion that is uniformly bent and overlapped with respect to the crease line 46 formed with a predetermined width from the element end surface 5 of the capacitor element 4 is flattened on the element end surface 5, and this electrode overhanging portion The connection of the anode current collector plate 12 and the cathode current collector plate 16 that are connected in a stacked manner to the anode portion 6 and the cathode portion 8 is stabilized, and the resistance of the capacitor element and the capacitor is reduced.

(2) コンデンサ素子4の素子端面5において、陽極部6と陰極部8との間には絶縁間隔21が設定されるとともに、陽極部6に溶接により接続された陽極集電板12と、陰極部8に溶接により接続された陰極集電板16との間にも絶縁間隔23が設定されている。陽極部6は複数の陽極体60を折り曲げたものであり、陰極部8も複数の陰極体80を折り曲げたものであるのに対し、陽極集電板12及び陰極集電板16は金属板であって、これらが陽極体60又は陰極体80に溶接によって接続され、陽極集電板12及び陰極集電板16による絶縁間隔23の保持により、陽極部6と陰極部8との間の絶縁間隔21を強固に維持することができる。   (2) On the element end face 5 of the capacitor element 4, an insulation interval 21 is set between the anode part 6 and the cathode part 8, and an anode current collector plate 12 connected to the anode part 6 by welding, and a cathode An insulation interval 23 is also set between the cathode current collector plate 16 connected to the portion 8 by welding. The anode portion 6 is formed by bending a plurality of anode bodies 60, and the cathode portion 8 is also formed by bending a plurality of cathode bodies 80, whereas the anode current collector plate 12 and the cathode current collector plate 16 are metal plates. These are connected to the anode body 60 or the cathode body 80 by welding, and the insulation interval between the anode portion 6 and the cathode portion 8 is maintained by holding the insulation interval 23 by the anode current collector plate 12 and the cathode current collector plate 16. 21 can be maintained firmly.

(3) コンデンサ素子4の素子端面5に陽極部6及び陰極部8が平坦化され、陽極集電板12、陰極集電板16を介して陽極端子10及び陰極端子14が接続されているので、これら接続のための空間部を狭小化でき、該空間部が電気二重層コンデンサ2に占める割合を小さくでき、しかも接続の強化、接続の信頼性向上を図ることができる。   (3) Since the anode portion 6 and the cathode portion 8 are flattened on the element end face 5 of the capacitor element 4 and the anode terminal 10 and the cathode terminal 14 are connected via the anode current collector plate 12 and the cathode current collector plate 16. The space for these connections can be narrowed, the proportion of the space occupied in the electric double layer capacitor 2 can be reduced, and the connection can be strengthened and the connection reliability can be improved.

(4) コンデンサ素子4の陽極部6、陰極部8と陽極集電板12、陰極集電板16とを備えた接続構造であるから、接続の簡略化とともに、接続構造の堅牢化を図ることができる。   (4) Since the connection structure includes the anode part 6 and the cathode part 8 of the capacitor element 4 and the anode current collector plate 12 and the cathode current collector plate 16, the connection structure is simplified and the connection structure is strengthened. Can do.

(5) 上記構造により、陽極集電板12、陰極集電板16を介在させて封口板22にある陽極端子10及び陰極端子14の接続が容易化でき、接続工程を簡略化とともに、接続処理を短時間で行うことができ、製造コストの低減を図ることができる。   (5) With the above structure, the anode current collector plate 12 and the cathode current collector plate 16 can be interposed to facilitate the connection of the anode terminal 10 and the cathode terminal 14 on the sealing plate 22, simplifying the connection process, and connection processing Can be performed in a short time, and the manufacturing cost can be reduced.

〔第2の実施の形態〕 [Second Embodiment]

第2の実施の形態は、既述のコンデンサ2の製造方法を開示している。   The second embodiment discloses a method for manufacturing the capacitor 2 described above.

このコンデンサ2の製造工程について、図3、図4、図5、図6、図7、図8、図9、図10及び図11を参照する。図3は電気二重層コンデンサの製造工程の一例、図4は電極体及び電極部の形成工程の一例、図5はコンデンサ素子の電極、セパレータの大小関係及び配置の一例、図6はコンデンサ素子の一例、図7は電極部の成形前及び成形後の一例、図8は電極部の成形前及び成形処理の一例、図9は集電板の一例、図10は集電板の溶接の一例、図11は集電板と外部端子の接続処理の一例を示している。   The manufacturing process of the capacitor 2 will be described with reference to FIGS. 3, 4, 5, 6, 7, 8, 9, 10, and 11. 3 is an example of a manufacturing process of an electric double layer capacitor, FIG. 4 is an example of a process of forming an electrode body and an electrode part, FIG. 5 is an example of the size and arrangement of electrodes and separators of a capacitor element, and FIG. An example, FIG. 7 is an example before and after forming an electrode part, FIG. 8 is an example before and after forming an electrode part, FIG. 9 is an example of a current collector plate, FIG. 10 is an example of welding of a current collector plate, FIG. 11 shows an example of a connection process between the current collector plate and the external terminals.

このコンデンサ2の製造工程は、本発明のコンデンサの製造方法の一例であって、この製造工程には、図3に示すように、電極体の形成工程(ステップS1)、折り目形成工程(ステップS2)、電極部の形成工程(ステップS3)、巻回工程(ステップS4)、電極部の形成工程(ステップS5)、接続工程(ステップS6)、電解液含浸及び封入工程(ステップS7)が含まれる。   The manufacturing process of the capacitor 2 is an example of the manufacturing method of the capacitor of the present invention. As shown in FIG. 3, the manufacturing process includes an electrode body forming process (step S1) and a crease forming process (step S2). ), Electrode part formation process (step S3), winding process (step S4), electrode part formation process (step S5), connection process (step S6), electrolyte solution impregnation and encapsulation process (step S7). .

(1) 電極体の形成工程(ステップS1)   (1) Electrode body formation process (step S1)

この電極体の形成工程では、陽極側又は陰極側の電極体が形成され、この電極体の形成工程では、図4のAに示すように、コンデンサ素子4の端面集電用の電極張出し部として未塗工部44(陽極部6、陰極部8)が形成される。   In this electrode body forming step, an anode-side or cathode-side electrode body is formed. In this electrode body forming step, as shown in FIG. Uncoated portions 44 (anode portion 6 and cathode portion 8) are formed.

陽極体60及び陰極体80には、ベース材40に例えば、アルミニウム箔が用いられる。ベース材40は、同一幅の帯状体であって、このベース材40の両面に活性炭等の活物質及び結着剤等を含む分極性電極42を形成する。この分極性電極42の形成の際、ベース材40には、一方の縁部側に曲率半径に応じて異なる幅Lの未塗工部44(図6)が形成され、この未塗工部44は分極性電極42の非形成部分である。この未塗工部44が既述の電極張出し部であり、この未塗工部44の縁部側の所定幅で既述の陽極部6又は陰極部8が形成される。   For the anode body 60 and the cathode body 80, for example, an aluminum foil is used for the base material 40. The base material 40 is a strip having the same width, and the polarizable electrode 42 including an active material such as activated carbon and a binder is formed on both surfaces of the base material 40. When the polarizable electrode 42 is formed, the base material 40 is formed with an uncoated portion 44 (FIG. 6) having a different width L in accordance with the radius of curvature on one edge side. Is a non-formation part of the polarizable electrode. The uncoated portion 44 is the electrode extension portion described above, and the anode portion 6 or the cathode portion 8 described above is formed with a predetermined width on the edge side of the uncoated portion 44.

(2) 折り目形成工程(ステップS2)   (2) Crease formation process (step S2)

この折り目形成工程では、既述の未塗工部44に対し、図4のBに示すように、縁部から一定幅の折り目線46を形成する。この折り目線46はキズではなくケガキ線であって、陽極部6及び陰極部8の折り曲げ時の座屈を防止することができる。この折り目線46は溝であり、断面形状は三角、四角又は湾曲(R)であってもよい。この折り目線46の形成には例えば、プレス、レーザ、切削等の方法を用いればよい。折り目線46は図4のBに示すように1本であってもよいが、未途工部44の幅に応じて複数本としてもよい。折り目線46の形成面部は、未塗工部44の片面でもよいが、両面であってもよい。一例としての折り目線46は、素子端面5の巻回中心部52に対向する面が谷折りになるように形成されている。   In this crease forming step, a crease line 46 having a constant width is formed from the edge portion of the above-mentioned uncoated portion 44 as shown in FIG. The crease line 46 is not a flaw but a marking line, and can prevent buckling of the anode portion 6 and the cathode portion 8 during bending. The crease line 46 is a groove, and the cross-sectional shape may be triangular, square, or curved (R). For example, a method such as pressing, laser, or cutting may be used to form the crease line 46. The crease line 46 may be one as shown in B of FIG. 4, or may be plural according to the width of the unfinished part 44. The formation surface portion of the crease line 46 may be one surface of the uncoated portion 44, or may be both surfaces. The crease line 46 as an example is formed so that the surface of the element end surface 5 facing the winding center portion 52 is valley-folded.

(3) 電極部の形成工程(ステップS3)   (3) Electrode part formation process (step S3)

この電極部の形成工程において、図4のCに示すように、陽極体60には幅の異なる複数の陽極部6が形成され、図4のDに示すように、陰極体80には幅の異なる複数の陰極部8が形成される。各陽極部6はコンデンサ素子4の素子端面に半周毎に引き出されるように異なる間隔で形成する。また、各陰極部8もコンデンサ素子4の素子端面に半周毎に引き出され、しかも、陽極部6と陰極部8との間には既述の絶縁間隔27が設定されている。そして、各陽極部6及び各陰極部8には、既述の折り目線46(図6)が形成されている。   In this electrode portion forming step, a plurality of anode portions 6 having different widths are formed on the anode body 60 as shown in FIG. 4C, and the cathode body 80 has a width as shown in FIG. A plurality of different cathode portions 8 are formed. The anode portions 6 are formed at different intervals so as to be drawn out from the element end face of the capacitor element 4 every half circumference. Further, each cathode portion 8 is also drawn out to the element end face of the capacitor element 4 every half circumference, and the above-described insulation interval 27 is set between the anode portion 6 and the cathode portion 8. The fold lines 46 (FIG. 6) described above are formed in each anode portion 6 and each cathode portion 8.

陽極体60、陰極体80及びセパレータ48、50について、図5を参照すると、陽極体60、陰極体80の幅W1 、セパレータ48、50の幅をW2 、分極性電極42の幅をW3 、既述の未塗工部44の幅をW4 、セパレータ48、50から露出する陽極体60、80即ち、陽極部6及び陰極部8の幅をW5 、幅W4 のセパレータ48、50が重なり部分の幅をW7 、素子端面5と反対側の素子端面の形成幅をW6 、陽極部6及び陰極部8の折り幅をW8 とすると、一例としての大小関係は、
1 >W2 >W3 >W4 >W5 >W8
である。また、W6 =W7 である。幅W5 には折り幅W8 から内側に屈曲させるための折り目線46が形成されている。
Referring to FIG. 5 for the anode body 60, the cathode body 80, and the separators 48 and 50, the width W 1 of the anode body 60 and the cathode body 80, the width of the separators 48 and 50 is W 2 , and the width of the polarizable electrode 42 is W. 3 , the width of the uncoated portion 44 described above is W 4 , and the anode bodies 60 and 80 exposed from the separators 48 and 50, that is, the width of the anode portion 6 and the cathode portion 8 is W 5 , and the separator 48 having a width W 4 Assuming that 50 is the width of the overlapping portion W 7 , W 6 is the formation width of the element end surface opposite to the element end surface 5, and W 8 is the folding width of the anode portion 6 and the cathode portion 8, the magnitude relationship as an example is
W 1 > W 2 > W 3 > W 4 > W 5 > W 8
It is. Further, W 6 = W 7 . Fold line 46 for bending a width W 8 folded inward is formed in the width W 5.

これらの幅W1 、W2 、W3 、W4 、W5 、W6 、W7 、W8 を例示すれば、W1 =100〔mm〕、W2 =99〔mm〕、W3 =89〔mm〕、W4 =11〔mm〕、W5 =6〔mm〕、W6 =W7 =W8 =5〔mm〕である。 If these widths W 1 , W 2 , W 3 , W 4 , W 5 , W 6 , W 7 , W 8 are exemplified, W 1 = 100 [mm], W 2 = 99 [mm], W 3 = 89 [mm], W 4 = 11 [mm], W 5 = 6 [mm], W 6 = W 7 = W 8 = 5 [mm].

このような配置からコンデンサ素子4の素子端面5は、コンデンサ素子4から露出したセパレータ48、50の縁部によって形成される。そして、素子端面5から一定の幅を持って形成される折り目線までの寸法は0.5〔mm〕〜3〔mm〕が好ましく、また、素子端面5からの陽極部6及び陰極部8の張り出し長寸法(W5 )は、3〔mm〕〜10〔mm〕とすることが好ましい。 With this arrangement, the element end surface 5 of the capacitor element 4 is formed by the edges of the separators 48 and 50 exposed from the capacitor element 4. The dimension from the element end face 5 to the crease line formed with a certain width is preferably 0.5 [mm] to 3 [mm], and the anode portion 6 and the cathode portion 8 from the element end face 5 The overhang length dimension (W 5 ) is preferably 3 [mm] to 10 [mm].

(4) 巻回工程(ステップS4)   (4) Winding process (step S4)

この巻回工程では、図示しない巻軸を用いることにより、図6に示すように、陽極体60及び陰極体80は、これらの間にセパレータ48、50を介在させて巻回され、巻回素子であるコンデンサ素子4が形成される。このコンデンサ素子4の一方の素子端面5には、セパレータ48、50の縁部で覆われるとともに、既述の通り、半周毎に陽極部6と陰極部8とが形成されている。   In this winding step, by using a winding shaft (not shown), the anode body 60 and the cathode body 80 are wound with separators 48 and 50 interposed therebetween as shown in FIG. The capacitor element 4 is formed. One end face 5 of the capacitor element 4 is covered with the edges of the separators 48 and 50, and as described above, the anode portion 6 and the cathode portion 8 are formed every half circumference.

(5) 電極部の成形工程(ステップS5)   (5) Electrode part forming process (step S5)

この電極部の成形工程では、図7のAに示すように、コンデンサ素子4の素子端面5に陽極部6又は陰極部8が、陽極集電板12又は陰極集電板16との接続前に、図7のBに示すように、コンデンサ素子4の素子端面5上で密着状態に成形加工する。   In the step of forming the electrode portion, as shown in FIG. 7A, the anode portion 6 or the cathode portion 8 is connected to the element end surface 5 of the capacitor element 4 before the connection with the anode current collector plate 12 or the cathode current collector plate 16. As shown in FIG. 7B, the capacitor element 4 is molded into a close contact state on the element end surface 5.

コンデンサ素子4の素子端面5には図7のAに示すように、電極張出し部を構成する陽極部6と陰極部8とが立設され、これら陽極部6と陰極部8との間には既述の所定幅の絶縁間隔21を形成するための絶縁間隔27が設定されている。絶縁間隔27の幅をWaとし、絶縁間隔21の幅をWbとすると、後述の陽極部6と陰極部8の折り曲げによっても絶縁間隔21が確保されるように、Wa>Wbに設定され、幅Waは電極体即ち、折曲前の陽極部6又は陰極部8の張出し幅より大きく設定されている。また、絶縁間隔27の幅をWaと前述の陽極部6及び陰極部8の折り幅をW8 の大小関係は、Wa>W8 である。 As shown in FIG. 7A, an anode portion 6 and a cathode portion 8 constituting an electrode extension portion are erected on the element end surface 5 of the capacitor element 4, and between the anode portion 6 and the cathode portion 8. The insulation interval 27 for forming the insulation interval 21 having the predetermined width is set. When the width of the insulating interval 27 is Wa and the width of the insulating interval 21 is Wb, Wa> Wb is set so that the insulating interval 21 is secured even by bending the anode portion 6 and the cathode portion 8 described later. Wa is set larger than the overhang width of the electrode body, that is, the anode part 6 or the cathode part 8 before bending. Further, the magnitude relation of the folding width W 8 of the anode 6 and the cathode portion 8 the width of the foregoing and Wa of the insulating gap 27 is Wa> W 8.

この絶縁間隔27の中心にY軸、このY軸と直交方向にX軸を取り、X軸を中心に左右に角度θ1 、θ2 (>θ1 )を設定して区画する。角度θ1 でコンデンサ素子4の巻回中心部(巻芯部)52を中心に放射状方向に複数の切込み54を入れ、各切込み54で区画された複数の区画部6A、6B、6Cが陽極部6側に形成されている。同様に、複数の陰極部8側にも複数の区画部8A、8B、8Cが形成されている。角度θ1 を例えば、33〔°〕に設定すれば、区画部6A、8Aは2θ1 =66〔°〕となり、区画部6Aを挟んで形成された区画部6B、6C又は区画部8Aを挟んで形成された区画部8B、8Cの角度θ2 は、θ2 =57〔°〕に設定されている。 The insulation interval 27 is centered on the Y axis, the X axis is orthogonal to the Y axis, and the angles θ 1 and θ 2 (> θ 1 ) are set to the left and right with the X axis as the center. A plurality of cuts 54 are made in a radial direction around the winding center portion (core portion) 52 of the capacitor element 4 at an angle θ 1 , and a plurality of partition portions 6A, 6B, 6C partitioned by the respective cuts 54 are anode portions. 6 side is formed. Similarly, a plurality of partition portions 8A, 8B, and 8C are also formed on the plurality of cathode portions 8 side. For example, if the angle θ 1 is set to 33 °, the partition portions 6A and 8A have 2θ 1 = 66 °, and the partition portions 6B and 6C or the partition portion 8A formed with the partition portion 6A interposed therebetween. The angle θ 2 of the partition portions 8B and 8C formed in (5) is set to θ 2 = 57 [°].

切込み54の深さは例えば、張出し長を陽極部6と陰極部8の高さh1 に設定されている。この高さh1 と、既述の絶縁間隔27の幅Waの大小関係は、Wa>h1 である。この高さh1 に設定されている陽極部6の区画部6A、6B、6C、陰極部8の区画部8A、8B、8Cを中途部で屈曲させ、コンデンサ素子4の巻回中心部52の方向に押し倒して圧縮成形することにより、図7のBに示すように、各区画部6A、6B、6C、陰極部8の区画部8A、8B、8Cに成形される。この実施の形態では、各区画部6B、6C及び区画部8B、8Cが溶接部分に設定されている。そこで、区画部6A、8Aの突出高さh2 が各区画部6B、6C、8B、8Cの高さh3 より高く設定され、区画部6A、6B、6C及び陰極部8の区画部8A、8B、8Cの高さを陽極集電板12及び陰極集電板16の屈曲形状に対応させている。なお、コンデンサ素子4の陽極部6及び陰極部8は、この様にコンデンサ素子4の中心方向に向かって陽極部6及び陰極部8全体を圧縮成形することで、高さ寸法を抑制している。この実施の形態では、陽極部6の区画部6B、6Cを圧縮形成して、安定した平坦状の接続面(即ち、溶接面)を形成し、その後非接続面である区画部6Aを圧縮成形し、区画部6A−6B間、区画部6A−6C間の重なりによって生じる境界部の高さ寸法が抑制されている。 The depth of the cut 54 is set, for example, to the height h 1 of the anode portion 6 and the cathode portion 8 with the overhang length. The magnitude relationship between the height h 1 and the width Wa of the above-described insulation interval 27 is Wa> h 1 . The partition portions 6A, 6B, and 6C of the anode portion 6 set at the height h 1 and the partition portions 8A, 8B, and 8C of the cathode portion 8 are bent in the middle, and the winding center portion 52 of the capacitor element 4 is bent. By pressing down in the direction and compression molding, the partition parts 6A, 6B, 6C and the partition part 8A, 8B, 8C of the cathode part 8 are formed as shown in FIG. In this embodiment, the partition sections 6B and 6C and the partition sections 8B and 8C are set as weld portions. Therefore, the protruding height h 2 of the partition parts 6A, 8A is set higher than the height h 3 of each partition part 6B, 6C, 8B, 8C, and the partition parts 6A, 6B, 6C and the partition part 8A of the cathode part 8 The heights 8B and 8C correspond to the bent shapes of the anode current collector plate 12 and the cathode current collector plate 16. In addition, the anode part 6 and the cathode part 8 of the capacitor element 4 are suppressed in height by compressing and molding the anode part 6 and the cathode part 8 as a whole toward the center direction of the capacitor element 4 in this way. . In this embodiment, the partition portions 6B and 6C of the anode portion 6 are compression-formed to form a stable flat connecting surface (that is, a welding surface), and then the partition portion 6A that is a non-connecting surface is compression-molded. And the height dimension of the boundary part produced by the overlap between division part 6A-6B and division part 6A-6C is suppressed.

各陽極部6及び各陰極部8の成形工程において、コンデンサ素子4の巻回後、素子端面5に露出する陽極部6、陰極部8は、図8のAに示すように、折り目線46により巻回中心部52を中心にして対向方向に折り曲げられている。そこで、図8のBに示すように、陽極集電板12、陰極集電板16との接続を図るために巻回中心部52側に折り目線46を用いて既述の区画部6B、6C、8B、8 Cを折り曲げる。   In the forming process of each anode part 6 and each cathode part 8, after winding the capacitor element 4, the anode part 6 and the cathode part 8 exposed on the element end face 5 are formed by a crease line 46 as shown in FIG. The winding center portion 52 is bent in the opposite direction. Therefore, as shown in FIG. 8B, in order to connect the anode current collector plate 12 and the cathode current collector plate 16, the partition portions 6B and 6C described above are used by using the crease line 46 on the winding center 52 side. 8B and 8C are bent.

そして、区画部6B、6C、8B、8 Cを折り曲げた後、図8のCに示すように、折り目線46を用いて区画部6A、区画部8Aを素子端面5上に折り曲げる。   Then, after the partition portions 6B, 6C, 8B, and 8C are bent, the partition portion 6A and the partition portion 8A are bent on the element end surface 5 using a crease line 46, as shown in FIG.

(6) 接続工程(ステップS6)   (6) Connection process (step S6)

この接続工程では、コンデンサ素子4の素子端面5に形成された陽極部6に陽極集電板12、陰極部8に対して陰極集電板16の各接続、陽極集電板12及び陰極集電板16に対する外部端子の接続が含まれる。   In this connection step, each of the anode current collector plate 12 and the cathode current collector plate 16 connected to the anode current collector 12 and the cathode 8 is formed on the element end surface 5 of the capacitor element 4, and the anode current collector 12 and the cathode current collector. Connection of external terminals to the plate 16 is included.

陽極部6に接続される陽極集電板12、陰極部8に接続される陰極集電板16は、図9に示すように、電極材料と同一の例えば、アルミニウム板で形成され、既述の陽極部6の区画部6A、6B、6C(図7のB)を覆い、区画部6B、6Cとのレーザ溶接面積を持ち、且つ陽極端子10とのレーザ溶接面積を持つ形状及び面積を備えている。この実施の形態では、コンデンサ素子4の素子端面5の2分の1の大きさであって、絶縁間隔23が確保される形状として、ほぼ半円形板である。   As shown in FIG. 9, the anode current collector plate 12 connected to the anode part 6 and the cathode current collector plate 16 connected to the cathode part 8 are formed of the same electrode material as, for example, an aluminum plate, as described above. Covering the partition portions 6A, 6B, and 6C (B of FIG. 7) of the anode portion 6, having a laser welding area with the partition portions 6B and 6C, and having a shape and an area with a laser welding area with the anode terminal 10. Yes. In this embodiment, the size is one-half of the element end face 5 of the capacitor element 4, and the shape in which the insulation interval 23 is secured is a substantially semicircular plate.

陽極集電板12(又は陰極集電板16)には、図9のAに示すように、弦側中心部にコンデンサ素子4の巻回中心部52に対応して円弧状切欠部58が形成され、その弧側には、X軸を中心にX軸と直交方向に直線状に切り落とされた接続面部63が形成されている。また、この陽極集電板12(又は陰極集電板16)には、図9のBに示すように、円弧状切欠部58を中心即ち、X軸を中心に左右に角度θ1 を持って直角に屈曲させた段部62を以て円弧状の端子接続部12A(16A)及び素子接続部12B、12C(16B、16C)が形成されている。各端子接続部12A(16A)及び素子接続部12B、12C(16B、16C)は、それぞれ平坦面に形成され、段部62を挟んで平行面を構成している。 In the anode current collector plate 12 (or the cathode current collector plate 16), as shown in FIG. 9A, an arcuate cutout portion 58 is formed at the chord side center portion corresponding to the winding center portion 52 of the capacitor element 4. On the arc side, there is formed a connection surface portion 63 that is cut off linearly in the direction orthogonal to the X axis with the X axis as the center. Further, as shown in FIG. 9B, the anode current collector plate 12 (or the cathode current collector plate 16) has an arc-shaped cutout 58, that is, an angle θ 1 left and right about the X axis. Arc-shaped terminal connecting portions 12A (16A) and element connecting portions 12B and 12C (16B and 16C) are formed by stepped portions 62 bent at right angles. Each of the terminal connection portions 12A (16A) and the element connection portions 12B and 12C (16B, 16C) are formed on a flat surface and constitute parallel surfaces with the stepped portion 62 interposed therebetween.

この陽極集電板12及び陰極集電板16において、端子接続部12A、16Aの高さをh4 、陽極集電板12及び陰極集電板16の厚さをt、端子接続部12Aの内側の高さをh5 とすると、
5 =h4 −t≧h2 −h3 ・・・(1)
に設定されている。従って、端子接続部12Aの内側の高さをh5 は、区画部6A、8Aの突出高さh2 と各区画部6B、6C、8B、8Cの高さh3 との差分Δh(≧h2 −h3 )を吸収し、陽極集電板12の素子接続部12B、12Cが各区画部6B、6Cに密着し、且つ区画部6Aが端子接続部12Aの下面部に収納される。なお、陽極集電板12の厚さtは、陽極集電板12の素子接続部12B、12Cと素子接続部12Aの部位で厚さを変更することもできる。例えば、素子接続部12Aの厚みを素子接続部12B、12Cに比べて厚く設定(1.2倍以上)することができ、これによると陽極部6とのレーザ溶接の際に素子接続部12B、12Cに生じる発熱が所定厚みを有する素子接続部12Aによって吸収され、レーザ溶接の接続精度が向上する。このような構成及び他の部材との関係については、陰極集電板16についても同様である。
In the anode current collecting plate 12 and the cathode current collecting plate 16, the height of the terminal connecting portions 12A and 16A is h 4 , the thickness of the anode current collecting plate 12 and the cathode current collecting plate 16 is t, and the inside of the terminal connecting portion 12A. and of the height and h 5,
h 5 = h 4 −t ≧ h 2 −h 3 (1)
Is set to Therefore, the inner height h 5 of the terminal connecting portion 12A is the difference Δh (≧ h) between the protruding height h 2 of the partition portions 6A and 8A and the height h 3 of the partition portions 6B, 6C, 8B, and 8C. 2− h 3 ) is absorbed, the element connection portions 12B and 12C of the anode current collector plate 12 are in close contact with the respective partition portions 6B and 6C, and the partition portion 6A is housed in the lower surface portion of the terminal connection portion 12A. The thickness t of the anode current collecting plate 12 can be changed at the element connecting portions 12B and 12C and the element connecting portion 12A of the anode current collecting plate 12. For example, the thickness of the element connection portion 12A can be set thicker (1.2 times or more) than the element connection portions 12B and 12C. According to this, the element connection portion 12B, The heat generated in 12C is absorbed by the element connecting portion 12A having a predetermined thickness, and the connection accuracy of laser welding is improved. This configuration and the relationship with other members are the same for the cathode current collector plate 16.

次に、陽極集電板12及び陰極集電板16は図10に示すように、コンデンサ素子4の一端面に巻回中心部52を中心にし、且つ巻回中心部52に円弧状切欠部58を合わせて配置され、陽極部6と陰極部8との間の絶縁間隔21に対応して絶縁間隔23が設定されている。陽極集電板12には、端子接続部12Aの下面側にコンデンサ素子4の陽極部6の区画部6A、陽極集電板12の素子接続部12B、12Cの下面側にコンデンサ素子4の陽極部6の区画部6B、6Cが位置決めされて密着させられる。そして、レーザ照射接続部68では、コンデンサ素子4の周縁方向から巻芯方向に向かうレーザ照射により、区画部6B、6C及び素子接続部12B、12Cを部分的又は全面的に溶融させ、接続している。このような接続は陰極集電板16側でも同様である。なお、陽極部6と陰極部8との間の絶縁間隔21の幅をWbとし、陽極集電板12と陰極集電板16との間の絶縁間隔23の幅をWcとし、少なくとも巻回中心部52付近における大小関係をWb>Wcとしている。このように、陽極集電板12と陰極集電板16との間の絶縁間隔23の幅Wcを小さくすることで、素子端面に圧縮成形された陽極部6及び陰極部8の各区画部(特に各区画部の巻回中心部52付近)が各集電板によって覆われるため、レーザ照射により陽極部6及び陰極部8が各集電板と確実に溶接される。   Next, as shown in FIG. 10, the anode current collector plate 12 and the cathode current collector plate 16 are centered on the winding center portion 52 at one end face of the capacitor element 4, and the arc-shaped notch portion 58 is formed in the winding center portion 52. And an insulation interval 23 is set corresponding to the insulation interval 21 between the anode portion 6 and the cathode portion 8. The anode current collecting plate 12 includes a partition 6A of the anode 6 of the capacitor element 4 on the lower surface side of the terminal connecting portion 12A, and an anode portion of the capacitor element 4 on the lower surfaces of the element connecting portions 12B and 12C of the anode current collecting plate 12. The six partition portions 6B and 6C are positioned and brought into close contact with each other. In the laser irradiation connection portion 68, the partition portions 6B and 6C and the element connection portions 12B and 12C are partially or entirely melted and connected by laser irradiation from the peripheral direction of the capacitor element 4 toward the core direction. Yes. Such connection is the same on the cathode current collector plate 16 side. The width of the insulation interval 21 between the anode portion 6 and the cathode portion 8 is Wb, the width of the insulation interval 23 between the anode current collector plate 12 and the cathode current collector plate 16 is Wc, and at least the winding center. The magnitude relationship in the vicinity of the portion 52 is Wb> Wc. Thus, by reducing the width Wc of the insulation interval 23 between the anode current collector plate 12 and the cathode current collector plate 16, each partition portion of the anode portion 6 and the cathode portion 8 compression-molded on the element end face ( In particular, the vicinity of the winding center 52 of each partition portion is covered with each current collector plate, so that the anode portion 6 and the cathode portion 8 are reliably welded to each current collector plate by laser irradiation.

レーザ照射の部位は、この実施の形態では、図10に示すように、陽極集電板12及び陰極集電板16の段部62で隔てた素子接続部12B、12Cの各2箇所に設定され、陽極集電板12又は陰極集電板16が複数のレーザ照射接続部68でコンデンサ素子4の陽極部6又は陰極部8に溶接されている。この場合、レーザ照射接続部68に付した矢印〔I〕、〔II〕、〔III 〕及び〔IV〕で示すように、レーザ照射を行う。このレーザ照射は、シールドガスにアルゴンガス、ヘリウムガス等の不活性ガスを用いてコンデンサ素子4をシールドし、コンデンサ素子4に対するレーザ熱やスパッタの影響を回避する。   In this embodiment, as shown in FIG. 10, the laser irradiation sites are set at two locations of the element connecting portions 12B and 12C separated by the step portions 62 of the anode current collector plate 12 and the cathode current collector plate 16, respectively. The anode current collector plate 12 or the cathode current collector plate 16 is welded to the anode portion 6 or the cathode portion 8 of the capacitor element 4 by a plurality of laser irradiation connection portions 68. In this case, laser irradiation is performed as indicated by arrows [I], [II], [III] and [IV] attached to the laser irradiation connection portion 68. In this laser irradiation, the capacitor element 4 is shielded by using an inert gas such as argon gas or helium gas as a shielding gas, and the influence of laser heat or sputtering on the capacitor element 4 is avoided.

〔I〕このレーザ照射は、コンデンサ素子4の外周側より、素子中心方向に向かって直線状に一方の陽極集電板12の素子接続部12Bに照射する。   [I] This laser irradiation is applied from the outer peripheral side of the capacitor element 4 to the element connecting portion 12B of one anode current collecting plate 12 in a straight line toward the element center direction.

〔II〕次に、巻回中心部52を隔てて対向する他方の陰極集電板16の素子接続部16Bに素子中心側より、素子外周方向に向かって直線上にレーザ照射することにより、一連の動作にて溶接される。   [II] Next, the device connection portion 16B of the other cathode current collector plate 16 opposed across the winding center portion 52 is irradiated with laser on a straight line from the device center side toward the device outer peripheral direction. It is welded by the operation.

〔III 〕また、同じく、レーザ照射は、コンデンサ素子4の外周側より、素子中心方向に向かって直線状に一方の陽極集電板12の素子接続部12Cに照射する。   [III] Similarly, the laser irradiation is performed from the outer peripheral side of the capacitor element 4 to the element connecting portion 12C of one anode current collector plate 12 in a straight line toward the element center.

〔IV〕そして、巻回中心部52を隔てて対向する他方の陰極集電板16の素子接続部16Cに素子中心側より素子外周側に向かって直線上にレーザを照射する一連の動作にて溶接される。   [IV] In a series of operations of irradiating the laser beam linearly from the element center side toward the element outer peripheral side to the element connecting part 16C of the other cathode current collector plate 16 opposed across the winding center part 52. Welded.

このように、巻回中心部52を隔てて直線状にレーザ照射する一連の動作にて、陽極部6と陽極集電板12、陰極部8と陰極集電板16とが接続される。つまり、陽極部6及び陰極部8と各集電板12、16とを巻回中心部52を隔ててコンデンサ素子4の直径方向に向かう溶接ライン(レーザ照射接続部68)を設定して溶接するので、陽極部6及び陰極部8と各集電板12、16との接続のための溶接の時間短縮を図ることができ、製造工程の簡略化を図ることができる。なお、レーザ照射の〔I〕及び〔II〕の一連の動作を2回繰り返す。又は、レーザ照射の〔I〕ないし〔IV〕の一連の動作を2回繰り返し、近傍に溶接部を配することで接続抵抗を更に低減することも可能である。レーザ照射の〔I〕及び〔II〕の一連の動作にて接続することも可能であるが、陽極集電板12、陰極集電板16の各素子接続部12B、12Cを、それぞれ素子中心側より素子外周側に向かって直線上に照射する等、個別に接続することもできる。   In this way, the anode 6 and the anode current collector 12, and the cathode 8 and the cathode current collector 16 are connected by a series of operations in which laser irradiation is performed linearly across the winding center 52. That is, the anode part 6 and the cathode part 8 and the current collector plates 12 and 16 are welded by setting a welding line (laser irradiation connection part 68) directed in the diameter direction of the capacitor element 4 with the winding center part 52 therebetween. Therefore, it is possible to shorten the welding time for connecting the anode portion 6 and the cathode portion 8 to each of the current collector plates 12 and 16, and to simplify the manufacturing process. The series of operations [I] and [II] of laser irradiation is repeated twice. Alternatively, it is possible to further reduce the connection resistance by repeating the series of operations [I] to [IV] of laser irradiation twice and arranging a weld in the vicinity. Although it is possible to connect by a series of operations [I] and [II] of laser irradiation, the element connection portions 12B and 12C of the anode current collector plate 12 and the cathode current collector plate 16 are respectively connected to the element center side. It can also be connected individually, such as by irradiating a straight line toward the element outer peripheral side.

また、レーザ照射の〔I〕ないし〔IV〕の連続動作について、同一箇所を連続してレーザ照射するのではなく、レーザ溶接を〔I〕から〔IV〕で行い、その後、再び〔I〕から〔IV〕にレーザ照射すれば、同一箇所のレーザ照射に時間間隔を設けることができ、この結果、レーザ照射箇所の冷却化を図ることができ、レーザ溶接による接続の安定化が図られる。また、同一箇所に時間間隔を設けて複数回のレーザ照射を行うことも可能であるが、1回目のレーザ溶接を〔I〕から〔IV〕で行い、再びレーザ溶接を〔I〕から〔IV〕で行うので、冷却間隔を取りながら、レーザ照射を連続的に行うことができ、レーザ照射による溶接時間の短縮化を図ることができる。   In addition, regarding the continuous operation of laser irradiation [I] to [IV], laser welding is performed from [I] to [IV] instead of continuously irradiating the same portion with laser, and then from [I] again. When laser irradiation is performed on [IV], a time interval can be provided for laser irradiation at the same location, and as a result, the laser irradiation location can be cooled and the connection by laser welding can be stabilized. It is also possible to perform laser irradiation a plurality of times with a time interval at the same location, but the first laser welding is performed from [I] to [IV], and laser welding is performed again from [I] to [IV]. Therefore, laser irradiation can be performed continuously while taking a cooling interval, and the welding time by laser irradiation can be shortened.

なお、図7に示すように、陽極部6及び陰極部8は、所定の絶縁間隔27(幅Wa:図7のA)を設けてコンデンサ素子4の素子端面5から導出している。陽極部6及び陰極部8には、中心方向に向かって圧縮成形した際に、陽極部6及び陰極部8が接触しない絶縁間隔21(幅Wb:図7のB)を設定しており、このため、コンデンサ素子4の巻回中心部52近傍(巻回中心部から2mm以内)では、陽極部6及び陰極部8が形成されていない。また、陽極部6及び陰極部8は、その形成部位が多いほど(又は面積が大きいほど)、抵抗の低減につながるため、陽極部6及び陰極部8が接触せず、また、低抵抗化が図れる絶縁間隔27(図7のA)として、例えば、3〔mm〕〜15〔mm〕を設定している。即ち、絶縁間隔27の幅Waに対してコンデンサ素子4の素子端面5から陽極部6及び陰極部8の引き出し高さh1 は、Wa>h1 と設定しているから、陽極部6及び陰極部8が折り曲げられて素子端面5に成形しても、陽極部6及び陰極部8が接触することはない。 As shown in FIG. 7, the anode portion 6 and the cathode portion 8 are led out from the element end face 5 of the capacitor element 4 with a predetermined insulation interval 27 (width Wa: A in FIG. 7). The anode portion 6 and the cathode portion 8 have an insulating interval 21 (width Wb: B in FIG. 7) that does not contact the anode portion 6 and the cathode portion 8 when compression-molded toward the center direction. Therefore, the anode portion 6 and the cathode portion 8 are not formed in the vicinity of the winding center portion 52 of the capacitor element 4 (within 2 mm from the winding center portion). Moreover, since the anode part 6 and the cathode part 8 lead to a reduction in resistance as the number of formation sites (or the area increases), the anode part 6 and the cathode part 8 do not come into contact with each other and the resistance is reduced. For example, 3 [mm] to 15 [mm] is set as the insulating interval 27 (A in FIG. 7). That is, with respect to the width Wa of the insulating interval 27, the lead-out height h 1 of the anode part 6 and the cathode part 8 from the element end face 5 of the capacitor element 4 is set as Wa> h 1. Even if the portion 8 is bent and formed on the element end face 5, the anode portion 6 and the cathode portion 8 do not come into contact with each other.

また、コンデンサ素子4の最外周では、陽極部6及び陰極部8の圧縮成形時にずれ等が生じても、陽極部6及び陰極部8が外装ケース20に接触しないように、陽極部6と陽極集電板12及び陰極部8と陰極集電板16の外周面に絶縁紙や絶縁テープ等の絶縁手段19(図1)を設置すればよい。この絶縁手段19を、該陽極部6及び陰極部8に加え、陽極端子10、陰極端子14、陽極集電板12、陰極集電板16を覆うように外周に沿って設置すれば、外装ケース20との絶縁を強化することができる。   Further, at the outermost periphery of the capacitor element 4, the anode part 6 and the anode part 6 are arranged so that the anode part 6 and the cathode part 8 do not come into contact with the outer case 20 even if the anode part 6 and the cathode part 8 are displaced during compression molding. Insulating means 19 (FIG. 1) such as insulating paper or insulating tape may be installed on the outer peripheral surfaces of the current collector plate 12 and the cathode portion 8 and the cathode current collector plate 16. If the insulating means 19 is installed along the outer periphery so as to cover the anode terminal 10, the cathode terminal 14, the anode current collector plate 12, and the cathode current collector plate 16 in addition to the anode portion 6 and the cathode portion 8, an outer case The insulation with 20 can be strengthened.

次に、陽極集電板12及び陰極集電板16が接続されたコンデンサ素子4には、図11に示すように、封口板22にある陽極端子10、陰極端子14が位置決めされる。陽極端子10及び陰極端子14には端子側接続面70が形成され、この端子側接続面70は、陽極集電板12及び陰極集電板16にある接続面部63と同一面を形成する側壁面である。そこで、これら接続面部63及び端子側接続面70を合致させ、レーザ照射72を行えば、既述の溶接接続部18(図1)がレーザ溶着され、接続面部63及び端子側接続面70間を溶着させることができる。   Next, as shown in FIG. 11, the anode terminal 10 and the cathode terminal 14 on the sealing plate 22 are positioned on the capacitor element 4 to which the anode current collector plate 12 and the cathode current collector plate 16 are connected. A terminal-side connection surface 70 is formed on the anode terminal 10 and the cathode terminal 14, and the terminal-side connection surface 70 is a side wall surface that forms the same surface as the connection surface portion 63 on the anode current collector plate 12 and the cathode current collector plate 16. It is. Therefore, if the connection surface portion 63 and the terminal side connection surface 70 are matched and laser irradiation 72 is performed, the above-described weld connection portion 18 (FIG. 1) is laser welded, and the connection surface portion 63 and the terminal side connection surface 70 are connected. Can be welded.

ここで、コンデンサ素子4と封口板22との間隔(距離)を長く取ると、その分抵抗が増えてしまうとともに、電気二重層コンデンサ2の高さ寸法が大きくなってしまうため、コンデンサ素子4と封口板22との間隔(距離)を極力短くしている。このような小スペースにおいて、陽極端子10及び陰極端子14と、陽極集電板12及び陰極集電板16とを接続するために、既述の通り、接続面部63及び端子側接続面70を一致した共通の面部とし、この部位に局所的に溶接可能なレーザ照射にて溶接することで溶接の簡易化及び強化が図られている。ここで、陽極集電板12及び陰極集電板16、陽極端子10及び陰極端子14の厚み(接続面部63及び端子側接続面70の高さ寸法)は、それぞれ0.5〔mm〕〜5〔mm〕の範囲で設定されており、これによると、レーザ溶接が可能な寸法で且つ内部抵抗が増大され難く、また、電気二重層コンデンサ2の高さ寸法を短くすることができる。   Here, if the distance (distance) between the capacitor element 4 and the sealing plate 22 is increased, the resistance increases and the height of the electric double layer capacitor 2 increases. The distance (distance) from the sealing plate 22 is made as short as possible. In such a small space, in order to connect the anode terminal 10 and the cathode terminal 14 to the anode current collector plate 12 and the cathode current collector plate 16, as described above, the connection surface portion 63 and the terminal side connection surface 70 are matched. The welding is simplified and strengthened by using the common surface portion and welding by laser irradiation that can be locally welded to this portion. Here, the thicknesses of the anode current collector plate 12, the cathode current collector plate 16, the anode terminal 10 and the cathode terminal 14 (height dimensions of the connection surface portion 63 and the terminal side connection surface 70) are 0.5 mm to 5 mm, respectively. The range is set in the range of [mm]. According to this, it is possible to perform laser welding, the internal resistance is hardly increased, and the height of the electric double layer capacitor 2 can be shortened.

また、接続面部63及び端子側接続面70は、レーザ照射の際に他の部材(陽極部6や陰極部8)への過剰なストレスを防ぐためにも、コンデンサ素子4の外周面近傍に設置されることが好ましく、具体的には、コンデンサ素子4の外周面より、例えば、10〔mm〕以内とすることが好ましい。   Further, the connection surface portion 63 and the terminal side connection surface 70 are installed in the vicinity of the outer peripheral surface of the capacitor element 4 in order to prevent excessive stress on other members (the anode portion 6 and the cathode portion 8) during laser irradiation. Specifically, it is preferable that the outer peripheral surface of the capacitor element 4 is, for example, within 10 mm.

また、陽極集電板12、陰極集電板16において、コンデンサ素子4の陽極部6及び陰極部8との接続領域と、陽極端子10と陰極端子14との接続領域とが異なる位置に設定されているので、各電極部と集電板、各外部端子と集電板との接続を安定化させることができ、コンデンサ素子の低抵抗化、接続の強化等、電気的特性を高めることができる。   In the anode current collecting plate 12 and the cathode current collecting plate 16, the connection region between the anode part 6 and the cathode part 8 of the capacitor element 4 and the connection region between the anode terminal 10 and the cathode terminal 14 are set at different positions. Therefore, the connection between each electrode portion and the current collector plate, each external terminal and the current collector plate can be stabilized, and the electrical characteristics can be enhanced, such as lowering the resistance of the capacitor element and strengthening the connection. .

従って、コンデンサ素子4の陽極部6には陽極集電板12を介して外部端子である陽極端子10が溶接接続部18を以て接続され、また、コンデンサ素子4の陰極部8には陰極集電板16を介して外部端子である陰極端子14がレーザ溶接部であるレーザ照射接続部18を以て接続され、コンデンサ素子4に外部端子が接続される。   Therefore, the anode terminal 10 which is an external terminal is connected to the anode portion 6 of the capacitor element 4 via the anode current collector plate 12 via the weld connection portion 18, and the cathode current collector plate is connected to the cathode portion 8 of the capacitor element 4. The cathode terminal 14 that is an external terminal is connected via a laser irradiation connection portion 18 that is a laser welding portion, and the external terminal is connected to the capacitor element 4.

また、コンデンサ素子4と封口板22との間隔(距離)を長く取れば、長くなる程、抵抗が増加し、しかも、コンデンサ2の高さ寸法が大きくなる。このため、コンデンサ素子4と封口板22との間隔(距離)を極力短くしている。このような小スペースにおいて、陽極端子10及び陰極端子14と、陽極集電板12及び陰極集電板16とを接続するために、既述の通り、端子側接続面70と接続面部63とを同一面とし、この部位に局所的に溶接可能なレーザにて溶接しているので、溶接の簡易化及び強化が図られている。ここで、陽極集電板12及び陰極集電板16、陽極端子10及び陰極端子14の厚みは、レーザ溶接が可能な寸法でかつ内部抵抗を増大されない大きさ、また、コンデンサ2の高さ寸法を短く抑えるため、この実施の形態では、それぞれ0.5〔mm〕〜5〔mm〕の範囲にされており、これによると、レーザ溶接が可能な寸法で且つ内部抵抗が増大され難く、また、電気二重層コンデンサ2の高さ寸法を短くすることができる。   Further, as the distance (distance) between the capacitor element 4 and the sealing plate 22 is increased, the resistance increases as the length increases, and the height dimension of the capacitor 2 increases. For this reason, the distance (distance) between the capacitor element 4 and the sealing plate 22 is made as short as possible. In such a small space, in order to connect the anode terminal 10 and the cathode terminal 14 to the anode current collector plate 12 and the cathode current collector plate 16, the terminal-side connection surface 70 and the connection surface portion 63 are connected as described above. Since welding is performed on the same surface with a laser that can be locally welded to this part, welding is simplified and strengthened. Here, the thicknesses of the anode current collector plate 12, the cathode current collector plate 16, the anode terminal 10 and the cathode terminal 14 are dimensions that allow laser welding and do not increase the internal resistance, and the height dimensions of the capacitor 2 In this embodiment, the distance is set in the range of 0.5 mm to 5 mm. According to this, the laser welding is possible and the internal resistance is hardly increased. The height dimension of the electric double layer capacitor 2 can be shortened.

また、端子側接続面70及び接続面63は、コンデンサ素子4の外周面近傍に設置されており、これにより、レーザ照射の際に他の部材(陽極部6や陰極部8)に対する過剰なストレスが加わることが防止される。具体的には、コンデンサ素子4の外周面より、10〔mm〕以内に設定すればよい。   Further, the terminal-side connection surface 70 and the connection surface 63 are installed in the vicinity of the outer peripheral surface of the capacitor element 4, thereby causing excessive stress on other members (the anode portion 6 and the cathode portion 8) during laser irradiation. Is prevented from being added. Specifically, it may be set within 10 mm from the outer peripheral surface of the capacitor element 4.

また、陽極集電板12、陰極集電板16において、コンデンサ素子4の陽極部6及び陰極部8との接続領域と、陽極端子10と陰極端子14との接続領域とが異なる位置に設定されているので、各電極部と集電板、各外部端子と集電板との接続を安定化させることができ、コンデンサ素子の低抵抗化、接続の強化等、電気的特性を高めることができる。
In the anode current collecting plate 12 and the cathode current collecting plate 16, the connection region between the anode part 6 and the cathode part 8 of the capacitor element 4 and the connection region between the anode terminal 10 and the cathode terminal 14 are set at different positions. Therefore, the connection between each electrode portion and the current collector plate, each external terminal and the current collector plate can be stabilized, and the electrical characteristics can be enhanced, such as lowering the resistance of the capacitor element and strengthening the connection. .

(7) 電解液含浸及び封入工程(ステップS7)   (7) Electrolyte impregnation and encapsulation process (Step S7)

コンデンサ素子4は、電解液を含浸した後、外装ケース20に収容し、外装ケース20の開口端部34のカーリング処理により封止し、製品である電気二重層コンデンサ2(図1)が完成する。   The capacitor element 4 is impregnated with an electrolytic solution, and then accommodated in the outer case 20 and sealed by curling the open end 34 of the outer case 20 to complete the electric double layer capacitor 2 (FIG. 1) as a product. .

このような製造工程によれば、既述の電気二重層コンデンサ2を容易に製造でき、端子接続工程の簡略化を図ることができ、第1の実施の形態で述べた通りの効果を有するコンデンサを実現できる。   According to such a manufacturing process, the above-described electric double layer capacitor 2 can be easily manufactured, the terminal connection process can be simplified, and the capacitor having the effect as described in the first embodiment. Can be realized.

以上説明した第2の実施の形態の電気二重層コンデンサ2の特徴事項や利点を列挙すれば以下の通りである。   The features and advantages of the electric double layer capacitor 2 of the second embodiment described above are listed as follows.

(1) 陽極体60、陰極体80を所定幅だけ素子端面5に張り出させ、折曲して陽極部6、陰極部8が形成されているが、素子端面5上で設定された絶縁間隔27は、折り曲げられて接近しても、絶縁間隔21が設定可能な幅に形成されているので、異極間の絶縁性を確保することができる。しかも、絶縁間隔27の設定と、折曲後に形成される絶縁間隔21と、溶接に必要な張出し幅とを考慮するので、コンデンサ素子4の陽極体60又は陰極体80の溶接による並列化とともに、絶縁間隔21、27が設定され、コンデンサ素子4の低抵抗化とともに、絶縁特性の良い電気二重層コンデンサ2が得られ、製品の信頼性を向上させることができる。しかも、絶縁間隔27を3〜15〔mm〕に設定すれば、コンデンサ素子4の各電極体の並列化による低抵抗化とともに、絶縁性の高いコンデンサ素子4を実現することができる。   (1) The anode body 60 and the cathode body 80 are projected over the element end face 5 by a predetermined width, and are bent to form the anode section 6 and the cathode section 8, but the insulating interval set on the element end face 5 Even if it is bent and approached 27, since the insulation space | interval 21 is formed in the width | variety which can be set, the insulation between different poles can be ensured. Moreover, since the setting of the insulation interval 27, the insulation interval 21 formed after bending, and the overhang width necessary for welding are taken into account, along with the parallelization by welding of the anode body 60 or the cathode body 80 of the capacitor element 4, Insulation intervals 21 and 27 are set, and the resistance of the capacitor element 4 is reduced, and the electric double layer capacitor 2 having good insulation characteristics can be obtained, and the reliability of the product can be improved. Moreover, if the insulation interval 27 is set to 3 to 15 [mm], it is possible to realize a highly insulating capacitor element 4 as well as a low resistance by paralleling the electrode bodies of the capacitor element 4.

(2) コンデンサ素子4の一端面側に陽極体60の基材で陽極部6、陰極体80の基材で陰極部8が形成され、陽極部6と陽極端子10とが陽極集電板12を介して接続され、陰極部8と陰極端子14とが陰極集電板16を介して接続されるので、端子接続のシンプル化が図られている。しかも、接続を容易化することができる。   (2) On one end face side of the capacitor element 4, the anode portion 6 is formed by the base material of the anode body 60, the cathode portion 8 is formed by the base material of the cathode body 80, and the anode portion 6 and the anode terminal 10 are connected to the anode current collector plate 12. Since the cathode part 8 and the cathode terminal 14 are connected via the cathode current collector plate 16, the terminal connection is simplified. In addition, the connection can be facilitated.

(3) 外装ケース20の空間部24内に接続部の占める空間専有率が極めて低い。   (3) The space occupation rate occupied by the connecting portion in the space 24 of the outer case 20 is extremely low.

(4) 外装部材である封口板22には、コンデンサ素子4が強固に支持されている。即ち、陽極端子10及び陰極端子14に陽極集電板12、陰極集電板16を介してコンデンサ素子4の陽極部6及び陰極部8のレーザ溶接により、強固に固定されるので、コンデンサ素子4の支持強度が高められている。この結果、機械的に堅牢な支持構造が構成され、製品の耐震性を高めることができる。   (4) The capacitor element 4 is firmly supported by the sealing plate 22 which is an exterior member. That is, the capacitor element 4 is firmly fixed to the anode terminal 10 and the cathode terminal 14 by laser welding of the anode portion 6 and the cathode portion 8 of the capacitor element 4 via the anode current collector plate 12 and the cathode current collector plate 16. The support strength of is increased. As a result, a mechanically robust support structure is formed, and the seismic resistance of the product can be improved.

(5) 巻回素子であるコンデンサ素子4に巻回されている陽極体60から複数の側縁部を集合させて陽極部6が形成され、この陽極部6を陽極集電板12にレーザ溶接し、同様に、陰極体80から複数の側縁部を集合させて陰極部8が形成され、この陰極部8を陰極集電板16にレーザ溶接しているので、コンデンサ素子4及び電気二重層コンデンサ2の低抵抗化を図ることができ、等価直列抵抗の低い製品を提供できる。   (5) A plurality of side edge portions are assembled from the anode body 60 wound around the capacitor element 4 as a winding element to form the anode portion 6, and this anode portion 6 is laser welded to the anode current collector plate 12. Similarly, a plurality of side edge portions are assembled from the cathode body 80 to form the cathode portion 8, and the cathode portion 8 is laser welded to the cathode current collector plate 16. The resistance of the capacitor 2 can be reduced, and a product with a low equivalent series resistance can be provided.

(6) 陽極集電板12及び陰極集電板16を用いたので、コンデンサ素子4にタブを接続する必要がない。   (6) Since the anode current collecting plate 12 and the cathode current collecting plate 16 are used, it is not necessary to connect a tab to the capacitor element 4.

(7) 陽極集電板12又は陰極集電板16と外部端子(陽極端子10又は陰極端子14)との側面の同一面化しているので、両者に対するレーザ照射を安定でき、接続の完全化及び信頼性を高めることができる。   (7) Since the side surfaces of the anode current collector plate 12 or the cathode current collector plate 16 and the external terminal (the anode terminal 10 or the cathode terminal 14) are made the same surface, the laser irradiation with respect to both can be stabilized, and the complete connection and Reliability can be increased.

(8) レーザ照射時にシールドガスを用いるので、レーザ熱や、飛翔するスパッタからコンデンサ素子4を防護でき、コンデンサ素子4及び製品であるコンデンサ2の特性劣化を防止でき、信頼性を向上させることができる。   (8) Since a shielding gas is used during laser irradiation, the capacitor element 4 can be protected from laser heat and flying spatter, and the characteristics of the capacitor element 4 and the product capacitor 2 can be prevented from being deteriorated, thereby improving reliability. it can.

(9) 電極箔からの張出し部が多いほど内部抵抗が下がるので、張出し部を多くすると巻回、積層した際に、張出し部が複数重なることになり、精度良く折り曲げるのは困難であるが、また、巻回素子においては、円周上に連続した張出し部を設けた場合は、折り曲げた際にシワが発生しやすく、集電板との接続が困難となるのに対し、既述のように、張り出し部を精度良く折り曲げることで、集電板との接続を安定させ、低抵抗のコンデンサを提供することができる。即ち、電極張出し部に折り目を付けることで、電極張出し部を精度良く折り曲げることが可能となり、集電板との接続時のがたつき等がなく、安定した接続を実現できる。   (9) The more the overhang from the electrode foil, the lower the internal resistance.Therefore, when the overhang is increased, multiple overhangs will occur when winding and stacking, and it is difficult to bend with high accuracy. In addition, in the winding element, when a continuous overhanging portion is provided on the circumference, wrinkles are likely to occur when bent, and it becomes difficult to connect to the current collector plate. In addition, by bending the overhanging portion with high accuracy, the connection with the current collector plate can be stabilized and a low-resistance capacitor can be provided. That is, by forming a crease in the electrode overhanging portion, it is possible to bend the electrode overhanging portion with high accuracy, and there is no rattling during connection with the current collector plate, and a stable connection can be realized.

(10)折り目位置を素子端面から所定寸法離間させることで、集電板とのレーザ溶接の際に、素子側へのレーザ熱やスパッタが飛ぶことがなく、素子への影響が少なくてすむ。   (10) By separating the crease position from the end face of the element by a predetermined dimension, laser heat and spatter to the element side do not fly during laser welding with the current collector plate, and the influence on the element can be reduced.

(11) コンデンサ素子を形成する前に予め張り出し部に折り目を形成することで、折り目の形成が容易となる。   (11) By forming a crease in the projecting portion in advance before forming the capacitor element, the crease can be easily formed.

(12) 電極箔(未塗工部)に折り目を付け、その後、電極箔の端部を切り出して、張り出し部とすることで、折り目の位置が張り出し部でずれることがないという効果も得られる。   (12) A crease is formed in the electrode foil (uncoated part), and then the end of the electrode foil is cut out to form an overhanging portion, so that the effect that the position of the fold is not shifted in the overhanging portion can also be obtained. .

〔他の実施の形態〕 [Other Embodiments]

(1) 上記実施の形態では、コンデンサ素子として巻回素子を例示したが、巻回素子に限定されない。積層型素子や固体素子であってもよい。   (1) In the embodiment described above, the winding element is exemplified as the capacitor element, but is not limited to the winding element. A multilayer element or a solid element may be used.

(2) 上記実施の形態では、電気二重層コンデンサ2を例示したが、本発明はこれに限定されない。同一の構造及び方法は、電解コンデンサにも同様に適用でき、同様の効果が得られる。   (2) In the above embodiment, the electric double layer capacitor 2 is exemplified, but the present invention is not limited to this. The same structure and method can be similarly applied to an electrolytic capacitor, and the same effect can be obtained.

(3) 上記実施の形態では、集電板として陽極集電板12、陰極集電板16を例示したが、本発明は上記実施の形態に限定されない。また陽極部6、陰極部8と陽極集電板12、陰極集電板16のレーザ照射72による溶接接続部18(各接続面部63及び端子側接続面70と同一面を形成する側壁面)は、フラット面としたが、外部端子の形状に合致する形状として、曲面であってもよい。   (3) In the above embodiment, the anode current collector plate 12 and the cathode current collector plate 16 are exemplified as the current collector plates, but the present invention is not limited to the above embodiment. Also, the welded connection portion 18 (side wall surface forming the same surface as each connection surface portion 63 and the terminal side connection surface 70) by laser irradiation 72 of the anode portion 6, the cathode portion 8, the anode current collector plate 12, and the cathode current collector plate 16 is The flat surface may be a curved surface as the shape matching the shape of the external terminal.

(4) 上記実施の形態では、陽極部と陰極部との間に絶縁間隔を設置しているが、この絶縁間隔に絶縁部材を設置してもよい。   (4) In the above embodiment, an insulation interval is provided between the anode part and the cathode part. However, an insulation member may be provided at this insulation interval.

(5) 上記実施の形態では、陽極部6及び陰極部8を半円形状に形成したが、本発明はこれに限定されない。実施の形態で示した陽極部6の区画部6A、6B、6C、陰極部8の区画部8A、8B、8Cのうち、陽極集電板12と陰極集電板16と接続する区画部6B、6C及び8B、8Cのみ張り出して形成し、陽極部の6A及び陰極部の8Aは張り出さなくてもよい。   (5) Although the anode 6 and the cathode 8 are formed in a semicircular shape in the above embodiment, the present invention is not limited to this. Of the partition sections 6A, 6B, 6C of the anode section 6 and the partition sections 8A, 8B, 8C of the cathode section 8 shown in the embodiment, the partition section 6B connected to the anode current collector plate 12 and the cathode current collector plate 16, Only 6C, 8B, and 8C are formed so as to protrude, and the anode portion 6A and the cathode portion 8A do not need to protrude.

(6) 上記実施の形態では、陽極外部端子部材として陽極端子10を用い、陰極外部端子部材として陰極端子14を例示したが、本発明は上記実施の形態に限定されない。外部端子部材としては、別途薄板状のアルミニウム等からなる接続板が接続された外部端子であってもよい。この場合、陽極接続板は陽極端子10にレーザ溶接により接続された後、コンデンサ素子4側の陽極集電板12に接続される。同様に、陰極接続板は陰極端子14にレーザ溶接により接続された後、コンデンサ素子4側の陰極集電板16に接続される。このような陽極接続板及び陰極接続板を用いた構成では、外部端子である陽極端子10、陰極端子14とコンデンサ素子4側に接続された陽極集電板12、陰極集電板16との接続が広範囲に行われ、接続抵抗を低減でき、しかも接続強度を高めることができる。   (6) Although the anode terminal 10 is used as the anode external terminal member and the cathode terminal 14 is illustrated as the cathode external terminal member in the above embodiment, the present invention is not limited to the above embodiment. The external terminal member may be an external terminal to which a connection plate made of thin plate aluminum or the like is separately connected. In this case, the anode connecting plate is connected to the anode terminal 10 by laser welding and then connected to the anode current collecting plate 12 on the capacitor element 4 side. Similarly, the cathode connection plate is connected to the cathode terminal 14 by laser welding and then connected to the cathode current collector plate 16 on the capacitor element 4 side. In such a configuration using the anode connection plate and the cathode connection plate, the anode terminal 10 and the cathode terminal 14 which are external terminals are connected to the anode current collector plate 12 and the cathode current collector plate 16 connected to the capacitor element 4 side. Is performed over a wide range, the connection resistance can be reduced, and the connection strength can be increased.

(7) 上記実施の形態では、集電板の異なる位置として3分割された区分により、陽極部6及び陰極部10との素子接続領域である区画部12B、12C又は16Bと、16C、端子接続領域である区画部12A又は16Aとが集電板の表裏面に設定され、水平方向に異なる位置に設定しているが、これに限定されない。集電板の一部に素子接続領域(レーザ照射接続部68)を設定し、その他の部位に端子接続領域(溶接接続部18)を設定してもよい。即ち、集電板の表裏面で溶接位置が異なれば、素子接続領域と端子接続領域が近接していてもよい。つまり、素子接続領域である区画部12Bにおいてレーザ照射接続部68と集電板の表裏面で溶接位置が重ならない部位に溶接接続部18を設定してもよい。   (7) In the above-described embodiment, the section 12B, 12C or 16B, which is an element connection region between the anode section 6 and the cathode section 10, and 16C, terminal connection, according to the section divided into three as different positions of the current collector plate Although the partition part 12A or 16A which is a region is set on the front and back surfaces of the current collector plate and is set at a different position in the horizontal direction, it is not limited to this. The element connection region (laser irradiation connection portion 68) may be set in a part of the current collector plate, and the terminal connection region (weld connection portion 18) may be set in other portions. That is, the element connection region and the terminal connection region may be close to each other as long as the welding positions are different on the front and back surfaces of the current collector plate. That is, the welding connection portion 18 may be set at a site where the welding position does not overlap between the laser irradiation connection portion 68 and the front and back surfaces of the current collector plate in the partition portion 12B which is an element connection region.

(8) 上記実施の形態では、W1 >W2 と例示したが、例えば、W1 =W2 でもよく、上記した数値や大小関係は任意に設定できるものであり、上記実施の形態に限定されない。 (8) In the above embodiment, W 1 > W 2 is exemplified. However, for example, W 1 = W 2 may be used, and the above numerical values and magnitude relations can be arbitrarily set, and are limited to the above embodiment. Not.

以上説明したように、本発明の最も好ましい実施の形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment and the like of the present invention have been described. However, the present invention is not limited to the above description, and is described in the claims or a form for carrying out the invention. It goes without saying that various modifications and changes can be made by those skilled in the art based on the gist of the invention disclosed in the above, and such modifications and changes are included in the scope of the present invention.

本発明のコンデンサ及びその製造方法は、端子接続構造や接続工程の簡略化に寄与し、また、電極部の絶縁性を高める等、優れたコンデンサ特性を実現でき、有益である。
The capacitor and the manufacturing method thereof according to the present invention contribute to simplification of the terminal connection structure and the connection process, and are advantageous in that excellent capacitor characteristics such as improvement of the insulation of the electrode portion can be realized.

2 電気二重層コンデンサ
4 コンデンサ素子
6 陽極部
60 陽極体
8 陰極部
80 陰極体
10 陽極端子
12 陽極集電板
12A 端子接続部
12B、12C 素子接続部
14 陰極端子
16 陰極集電板
16A 端子接続部
16B、16C 素子接続部
18 溶接接続部
20 外装ケース
22 封口板
24 空間部
25 保持テープ
26 ベース部
21、23、27 絶縁間隔
28 封止部
32 加締め段部
34 開口端部
36 透孔
38 圧力開放機構
44 未塗工部
2 Electric double layer capacitor 4 Capacitor element 6 Anode portion 60 Anode body 8 Cathode portion 80 Cathode body 10 Anode terminal 12 Anode current collector plate 12A Terminal connection portion 12B, 12C Element connection portion 14 Cathode terminal 16 Cathode current collector plate 16A Terminal connection portion 16B, 16C Element connection portion 18 Weld connection portion 20 Exterior case 22 Sealing plate 24 Space portion 25 Holding tape 26 Base portion 21, 23, 27 Insulation interval 28 Sealing portion 32 Caulking step portion 34 Open end portion 36 Through hole 38 Pressure Opening mechanism 44 Uncoated part

Claims (5)

コンデンサ素子と、
前記コンデンサ素子の素子端面に電極体の一部を所定の張出し幅を以て引き出して素子端面上に折曲して配置されるとともに、異極間に設定された絶縁間隔が前記電極体の前記張出し幅より大きく設定された複数の電極張出し部と、
前記電極張出し部に接続され、外部端子部材に接続された集電板と、
を備えることを特徴とするコンデンサ。
A capacitor element;
A part of the electrode body is drawn out to the element end face of the capacitor element with a predetermined overhanging width and bent on the element end face, and an insulation interval set between different polarities is the overhang width of the electrode body A plurality of electrode overhangs set larger,
A current collector connected to the electrode extension and connected to an external terminal member;
A capacitor comprising:
前記集電板の異極間に設定された絶縁間隔が、前記電極張出し部の異極間に設定された前記絶縁間隔より小さいことを特徴とする請求項1に記載のコンデンサ。   2. The capacitor according to claim 1, wherein an insulation interval set between different poles of the current collector plate is smaller than the insulation interval set between different poles of the electrode extension portion. 前記コンデンサ素子が巻回素子である場合、前記電極張出し部は、前記コンデンサ素子が半周毎に、半周の円弧長より狭い幅で前記コンデンサ素子の素子端面から露出させた電極体であることを特徴とする請求項1に記載のコンデンサ。   When the capacitor element is a wound element, the electrode overhanging portion is an electrode body that is exposed from the element end face of the capacitor element with a width narrower than the arc length of the half circumference for each half circumference. The capacitor according to claim 1. 前記コンデンサ素子の前記絶縁間隔が3〜15〔mm〕である請求項1ないし3のいずれかに記載のコンデンサ。   The capacitor according to any one of claims 1 to 3, wherein the insulation interval of the capacitor element is 3 to 15 [mm]. コンデンサ素子の素子端面に電極体の一部を所定の張出し幅を以て引き出して素子端面上に折曲して配置されるとともに、異極間に設定された絶縁間隔が前記電極体の前記張出し幅より大きく設定された複数の電極張出し部を形成する工程と、
外部端子部材に接続する集電板を前記電極張出し部に溶接により接続する工程と、
を含むことを特徴とするコンデンサの製造方法。
A part of the electrode body is drawn out to the element end face of the capacitor element with a predetermined overhanging width and bent on the element end face, and the insulation interval set between the different polarities is larger than the overhang width of the electrode body. Forming a plurality of large electrode overhang portions,
Connecting a current collector plate connected to the external terminal member to the electrode overhanging portion by welding;
A method for producing a capacitor, comprising:
JP2010251357A 2010-08-18 2010-11-09 Capacitor and manufacturing method thereof Pending JP2012104622A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010251357A JP2012104622A (en) 2010-11-09 2010-11-09 Capacitor and manufacturing method thereof
EP11817938.1A EP2608230B1 (en) 2010-08-18 2011-08-18 Capacitor, and method and program for manufacturing same
KR1020137006759A KR101930095B1 (en) 2010-08-18 2011-08-18 Capacitor, and method and program for manufacturing same
PCT/JP2011/004623 WO2012023289A1 (en) 2010-08-18 2011-08-18 Capacitor, and method and program for manufacturing same
CN201180039963.7A CN103081047B (en) 2010-08-18 2011-08-18 Capacitor, the manufacture method of capacitor and fabrication schedule
US13/768,851 US9053858B2 (en) 2010-08-18 2013-02-15 Capacitor, and manufacturing method and manufacturing program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251357A JP2012104622A (en) 2010-11-09 2010-11-09 Capacitor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2012104622A true JP2012104622A (en) 2012-05-31

Family

ID=46394687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251357A Pending JP2012104622A (en) 2010-08-18 2010-11-09 Capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2012104622A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015106614A (en) * 2013-11-29 2015-06-08 日本ケミコン株式会社 Power storage device and method for manufacturing the same
US9672985B2 (en) 2010-11-09 2017-06-06 Nippon Chemi-Con Corporation Capacitor and method for manufacturing the same
US10777802B2 (en) 2011-06-28 2020-09-15 Nippon Chemi-Con Corporation Electricity storage device and method for manufacturing electricity storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219857A (en) * 1997-11-25 1999-08-10 Matsushita Electric Ind Co Ltd Electric double-layer capacitor
JP2001068379A (en) * 1999-08-24 2001-03-16 Honda Motor Co Ltd Electric double layer capacitor
JP2007335156A (en) * 2006-06-13 2007-12-27 Honda Motor Co Ltd Power storage element
JP2010093178A (en) * 2008-10-10 2010-04-22 Panasonic Corp Electrochemical capacitance and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219857A (en) * 1997-11-25 1999-08-10 Matsushita Electric Ind Co Ltd Electric double-layer capacitor
JP2001068379A (en) * 1999-08-24 2001-03-16 Honda Motor Co Ltd Electric double layer capacitor
JP2007335156A (en) * 2006-06-13 2007-12-27 Honda Motor Co Ltd Power storage element
JP2010093178A (en) * 2008-10-10 2010-04-22 Panasonic Corp Electrochemical capacitance and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9672985B2 (en) 2010-11-09 2017-06-06 Nippon Chemi-Con Corporation Capacitor and method for manufacturing the same
US10777802B2 (en) 2011-06-28 2020-09-15 Nippon Chemi-Con Corporation Electricity storage device and method for manufacturing electricity storage device
JP2015106614A (en) * 2013-11-29 2015-06-08 日本ケミコン株式会社 Power storage device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6264431B2 (en) Power storage device
WO2012063486A1 (en) Capacitor and process for production thereof
JP5961940B2 (en) Capacitor manufacturing method
JP5979273B2 (en) Capacitor manufacturing method
JP6079592B2 (en) Power storage device
JP6107539B2 (en) Power storage device
US10714714B2 (en) Electrical energy store, specifically a battery cell, with spatially-optimized electrode interconnection
JP2012104622A (en) Capacitor and manufacturing method thereof
JP2012160658A (en) Method of manufacturing capacitor
JP5482565B2 (en) Capacitor and manufacturing method thereof
JP5961939B2 (en) Capacitor manufacturing method
JP2012104618A (en) Capacitor and manufacturing method thereof
JP2005339939A (en) Energy storage device
JP5866753B2 (en) Capacitor and manufacturing method thereof
JP5928993B2 (en) Capacitor manufacturing method
JP5764912B2 (en) Capacitor and manufacturing method thereof
CN108808011B (en) Secondary battery and current collecting terminal
JP2012104621A (en) Capacitor and manufacturing method thereof
JP2012104620A (en) Capacitor and manufacturing method thereof
JP6112144B2 (en) Capacitor and manufacturing method thereof
JP5866772B2 (en) Capacitor and its terminal connection method
JP5834617B2 (en) Capacitor manufacturing method
JP2013191842A (en) Capacitor and method of manufacturing the same
JP5716851B2 (en) Capacitor manufacturing method
JP7216061B2 (en) Method for manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804