JP5957741B2 - 太陽電池劣化診断装置 - Google Patents

太陽電池劣化診断装置 Download PDF

Info

Publication number
JP5957741B2
JP5957741B2 JP2013046682A JP2013046682A JP5957741B2 JP 5957741 B2 JP5957741 B2 JP 5957741B2 JP 2013046682 A JP2013046682 A JP 2013046682A JP 2013046682 A JP2013046682 A JP 2013046682A JP 5957741 B2 JP5957741 B2 JP 5957741B2
Authority
JP
Japan
Prior art keywords
conversion efficiency
solar cell
deterioration diagnosis
average
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013046682A
Other languages
English (en)
Other versions
JP2014176195A (ja
Inventor
壽郎 本澤
壽郎 本澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industry and Control Solutions Co Ltd
Original Assignee
Hitachi Industry and Control Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industry and Control Solutions Co Ltd filed Critical Hitachi Industry and Control Solutions Co Ltd
Priority to JP2013046682A priority Critical patent/JP5957741B2/ja
Publication of JP2014176195A publication Critical patent/JP2014176195A/ja
Application granted granted Critical
Publication of JP5957741B2 publication Critical patent/JP5957741B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、簡便で比較的精度の良い太陽電池の劣化診断ができる太陽電池劣化診断装置に関する。
再生可能エネルギーの活用が進む中、太陽電池の設置が年々増加している。太陽電池は可動部がないため、保守作業の必要性が低いことが利用上の長所である。一方で、外観では故障状態が見え難く、故障診断そのものが困難であり、太陽電池の出力が気象条件によって常時変化するため、出力を見て劣化や不具合の診断が的確にできない問題がある。
この対策として、例えば、特許文献1の太陽光発電診断装置では、発電情報、日射情報及び温度情報を取得し、これらの情報を記憶しておき、日射情報に基づく実際の日射量及び温度情報に基づくパネルの温度を用いて予測発電量を算出する。また、発電情報に基づく実績発電量を算出し、実績発電量と予測発電量との誤差が一定以上の場合、太陽光発電システムが故障したことを表示する。また、SV(Sophisticated Verification)法にて求められる損失係数によって、パワーコンディショナの定格容量に基づいて、太陽電池の種類に応じて予め設定される劣化補正係数を用いて、発電損失要因を定量化した設計係数を調整することが開示されている。
特開2012−55090号公報
特許文献1では、診断部により、記憶部に記憶された情報に基づき、予測処理及び判断処理が実行される。予測処理は、日射情報、及び、システム定格容量を用い、発電損失要因を定量化した設計係数を設定して、太陽光発電システムにおける診断対象期間の発電量を予測発電量として算出するものであり、比較的複雑な予測発電量計算を必要とする。
一方、太陽光発電システムを設置した顧客は、システム定格容量の変更や、パワーコンディショナの変更などは、機器寿命がつきるまで実施しない。このため、簡素な処理で、太陽電池の劣化診断することが望まれていた。
本発明は、前記の課題を解決するための発明であって、太陽電池の容量、パワーコンディショナの設計係数などを演算に用いないで、簡便で比較的精度の良い太陽電池の劣化診断ができる太陽電池劣化診断装置を提供することを目的とする。
前記目的を達成するため、本発明の太陽電池劣化診断装置は、太陽光発電システムにおける時々刻々と変化する太陽電池パネルで発生する直流電圧および直流電流、日射情報、気温情報を取り込み、単位時間毎に、直流電流と直流電圧に基づく平均発電量、日射情報に基づく平均日射量、気温情報に基づく平均気温を算出し、単位面積あたりに換算した平均発電量を平均日射量で除算して変換効率を求め日別変換効率データとして記憶装置に登録する変換効率生成部と、記憶装置に日別変換効率データが登録されている期間のうちの劣化診断において参照とする所定期間(例えば、図4に示す2XX2年1月)の日別変換効率データに基づき、所定の気温帯域毎に平均変換効率を算出し、算出された平均変換効率の初期値に所定の変動幅(例えば、変動幅91)を考慮した下限値を求め、該下限値に太陽電池の組成から予想される経年劣化係数を乗じて気温帯域毎の劣化判断の判定値とし、記憶装置に気温帯域別データとして登録する判定値生成部と、所定期間の気候的に対応する別の期間である劣化診断対応期間(例えば、図4に示す2XX3年1月)における日別変換効率データに基づき、単位時間毎に平均気温が所定の気温帯域に該当するか否かを判定し、該当する場合変換効率が判定値以下であるか否かを判定し、判定値以下である場合太陽電池パネルの劣化がある旨を出力装置に出力する劣化診断部とを備えることを特徴とする。
本発明によれば、太陽電池の容量、パワーコンディショナの設計係数などを演算に用いないで、簡便で比較的精度の良い太陽電池の劣化診断ができる。
本実施形態に係る太陽電池劣化診断装置を示す図である。 太陽電池劣化診断装置で管理するデータ例を示す図である。 劣化診断の判定の原理を示す図である。 太陽電池劣化診断装置の処理フロー概要を示す図である。 変換効率生成の処理フローを示す図である。 日射量と太陽電池出力との関係を示す図である。 判定値生成の処理フローを示す図である。 劣化診断の処理フローを示す図である。 劣化信号が出力された状況を示す図である。
以下、本発明の実施形態について図面を参照して詳細に説明する。
図1は、本実施形態に係る太陽電池劣化診断装置を示す図である。太陽電池劣化診断装置100は、太陽光発電システム200から発電情報、日射情報、および、気温情報を受信し、太陽電池の劣化診断を行う装置である。
太陽光発電システム200は、太陽電池パネル210、日射計211および気温計212からの計測データを、ネットワーク300を介して太陽電池劣化診断装置100に送信する情報端末213、パワーコンディショナである電力制御装置220、蓄電池230を含んで構成されている。電力制御装置220は、蓄電池230への充電・放電、電力系統240への送電を制御する。電力制御装置220は、太陽電池パネル210での発電情報を、ネットワーク300を介して太陽電池劣化診断装置100に送信する。
なお、太陽電池(ソーラセル)は、光起電力効果を利用し、光エネルギーを直接電力に変換する電力機器である。一般的な一次電池や二次電池のように電力を蓄える蓄電池ではなく、光起電力効果によって光を即時に電力に変換して出力する発電機である。タイプとしては、シリコン太陽電池の他、様々な化合物半導体などを素材にしたものが実用化されている。太陽電池を複数枚直並列接続して必要な電圧と電流を得られるようにしたパネル状の製品単体は、太陽電池パネル210またはソーラーモジュールと呼ばれる。モジュールをさらに複数直並列接続して必要となる電力が得られるように設置したものは、ソーラーアレイと呼ばれる。
ビルの屋上などに設置した太陽電池パネル210などは、比較的大きなものになるので、日射計211および気温計212は、複数設置することが望ましい。日射計211は、全天日射計であり、水平面同様、傾斜取付けにおいても個体差の少ない感度の電圧信号を出す。気温計212は、高い耐熱性・耐候性を有し、紫外線や風雨から気温計を保護する自然通風保護カバーを備えていることが好ましい。
太陽電池劣化診断装置100は、通信装置31、中央演算処理装置(CPU)32、入力装置33、出力装置34、メモリ10、外部記憶装置20、およびこれらを接続するバス35から構成される。出力装置34は、ディスプレイなどであり、太陽電池劣化診断装置100による処理の実行状況や実行結果などを表示する。入力装置33は、キーボードやマウスなどの太陽電池劣化診断装置100に指示を入力するための装置であり、プログラム起動などの指示を入力する。中央演算処理装置(CPU)32は、メモリ10に格納される各種プログラムを実行する。通信装置31は、ネットワーク300を介して、他の装置と各種データやコマンドを交換する。外部記憶装置20は、太陽電池劣化診断装置100が処理を実行するための各種データを保存する。メモリ10は、太陽電池劣化診断装置100が処理を実行する各種プログラムおよび一時的なデータを保持する。
メモリ10には、変換効率の生成処理を行う変換効率生成部11(図5参照)、劣化診断のための判定値の生成処理を行う判定値生成部12(図7参照)、太陽電池の劣化診断の処理を行う太陽電池の劣化診断部13(図8参照)の各種プログラムが格納される。
本実施形態での変換効率とは、平均処理された太陽電池の発電量である発電エネルギー(W)を、同じく平均処理された日射エネルギーで除することにより算出される。通常、日射エネルギーは、単位面積当たりで表される(W/m)ので、発電エネルギーも単位面積あたりに換算する(W/m)。
変換効率には、発電素子としてのソーラセルの変換効率、もうひとつは実際に現場で使用されるソーラーモジュール、または、ソーラーアレイとしての変換効率がある。本実施形態では、ソーラーアレイの変換効率として説明するが、ソーラーモジュールまたはソーラセルにも、後記する太陽電池の劣化診断の処理を適用することは容易である。
外部記憶装置20には、日別データ21、日別変換効率データ22、気温帯域別データ23、劣化信号データ24などが格納される。
図2は、太陽電池劣化診断装置で管理するデータ例を示す図である。図2(a)は日別データ21の例であり、図2(b)は日別変換効率データ22の例であり、図2(c)は月毎の気温帯域別データ23の例である。
図2(a)に示す日別データ21には、日時、天候情報、平均風速情報を含むヘッダ部と、時刻、日射量、ソーラーアレイの直流電圧、ソーラーアレイの直流電流、気温を含む詳細情報が記憶される。時刻は例えば、3秒毎である。
図2(b)に示す日別変換効率データ22には、日別データ21に基づく、所定時間毎(例えば、30分間)の時間、日射情報に基づく平均日射量、発電情報に基づく平均発電量、温度情報に基づく平均気温、変換効率が記憶される。
図2(c)に示す気温帯域別データ23には、劣化診断の判定の際に用いる気温帯域と、気温帯域別判定値が記憶される。本実施形態の特徴のひとつとして、気温帯域別の気温帯域別判定値を算出し(図7参照)、劣化診断に用いることである。
図3は、劣化診断の判定の原理を示す図である。図3は、横軸に使用年数、縦軸に太陽電池の変換効率を示す。太陽電池の変換効率92と、劣化診断の劣化診断用の判定値93とを比較し、この両者が交われば(状態94に至った場合)、劣化や故障が発生していると判定する。
ここで、判定値93は、変換効率の初期値に変動幅91を与えて設定し、太陽電池の組成などから予想される経年劣化係数を組み込んだ値(乗じた値)として設定するものであり、使用年数にしたがって右下がりの勾配を有する。
変換効率の初期値を使用して判定値93を作る理由を説明する。同一の日射量の下でも、太陽電池の容量や種類が変われば発電出力も変わってくる。また、同じ発電容量、種類の太陽電池を使用しても、設置する場所や方角乃至は設置角度によっても、同様に発電出力が変化してしまう。
その結果、当該の太陽電池に適合した判定値93を作るのに、極めて複雑な計算をする必要があるばかりでなく、作成した劣化診断装置が、当該太陽電池に固有の装置となり、汎用性のある劣化診断装置の提供が困難となる。このことは、従来行われてきた太陽電池の出力予想を行って、実発電出力との差分を判定する場合においても同様である。
そこで、変換効率の初期値を実計測の中で求め、これを記憶して一定の変動幅91で補正して判定値93とすれば、複雑な計算の必要性を排除でき、汎用性のある劣化診断装置を提供することができる。
次に季節によって対応する太陽の高度が変化することにより、日射計211で計測される日射量と実際に太陽電池パネル210の受けるエネルギーに差が発生することに対する対処方法について説明する。
季節によって変化する太陽電池の変換効率を正しく評価し、劣化が発生していないことを判定するには、季節に応じた判定値93を用いる。判定値93は、毎月の平均値を採用することもできるし、季節に応じてより長い周期で設定することができる。すなわち、太陽高度の変化が著しい春分や秋分の時期は毎月定め、太陽高度の変化が穏やかな夏至や冬至の時期には、3ヶ月程度の周期で定めても良い。係る判定値93は、判定値生成部(図1、図7参照)で生成する。
本実施形態の太陽電池劣化診断装置100によれば、季節および月の判定値93を生成することにより、誤診断を防止し、正確な劣化診断を行うことができる。
経年変化を検討する場合に、変換効率に影響を与える気温に着目し、日別変換効率データ22から該当する変換効率を抽出し、抽出された変換効率と太陽光発電システム200の設置時の初期の変換効率とを比較して判定する。詳細については、図8を参照して後記する。
図4は、太陽電池劣化診断装置の処理フロー概要を示す図である。太陽光発電システム200を設置後、時系列の処理について説明する。太陽電池劣化診断装置100は、変換効率生成処理S30を開始する。そして、所定時間を経過後、判定値生成処理S40を開始する。ソーラーアレイはすぐに劣化はしないので、例えば、1年後経過後に劣化診断処理S50を開始する。
すなわち、太陽光発電システム200を設置した直後は、変換効率の初期値を有しておらず、劣化診断処理S50はできないが、劣化は設置後直ちに発生することはないため、一定の期間が経過したのちに、変換効率生成処理S30で求めた日別変換効率データ22に基づき、判定値生成処理S40を開始する。そして、翌年以降に劣化診断処理S50を開始するとよい。
図5は、変換効率生成の処理フローを示す図である。適宜図1を参照して説明する。変換効率生成部11は、入力処理を実行する(ステップS31)。入力処理とは、太陽光発電システム200が定めるサンプリング周期毎(例えば、3秒毎)に、日射量(1m当たりの太陽光エネルギー)と太陽電池の直流出力を取り込み、日射量、気温と関連づけて日別データ21(図2(a)参照)として記憶する。直流出力の情報はパワーコンディショナから取り込むこともできるし、太陽電池を直流に接続したストリング毎に直流電流を測定して、別に測定する直流電圧とともに取り込むこともできる。ここでは、図2(a)に示すように、直流電圧とストリング毎の直流電流を個別に取り込んだ場合であり、外部記憶装置20に記憶される。
変換効率生成部11は、所定時刻(例えば、日没の時刻)であるか否かを判定し(ステップS32)、所定時刻と判定されると(ステップS32,Yes)、ステップS33に進み、所定時刻に達していなければ(ステップS32,No)、ステップS31に戻る。
変換効率生成部11は、外部記憶装置20から、日別データ21を読み込み(ステップS33)、30分毎に(ステップS34)、日射量、発電量、気温の各平均値を算出する(ステップS35)。具体的には、サンプリング周期が3秒毎であり、30分の平均値の算出には、600対のデータを1つの単位として平均演算処理がされる。そして、変換効率生成部11は、算出された発電量と日射量から変換効率を算出する(ステップS36)。変換効率生成部11は、最後に、算出された結果を、外部記憶装置20に図2(b)に示す日別変換効率データ22として書込み(ステップS37)、処理を終了する。
ステップS34において、30分毎の平均値を採用しているのは、ソーラーアレイの出力変化の時定数に対し、日射計211の出力変化の時定数が長いことを考慮したものである。
図6は、日射量と太陽電池出力との関係を示す図である。図6(a)、(b)は、異なるソーラーアレイの30分毎の平均値を算出し相関図を作成したものである。変換効率特性82(82a、82b)は、太陽電池出力(ソーラーアレイ出力)と日射量との関係に比例関係を見出すことができ、ソーラーアレイの変換効率が日射量の広い範囲で所定の変動幅81(81a、81b)があることがわかる。変換効率特性83(83a、83b)は、図3に示す判定値93に対応する変換効率特性となる。なお、図6(b)は、CIS型薄膜太陽電池(容量20kW)を用いている。CIS型薄膜太陽電池とは主な成分である銅(Copper)・インジウム(Indium)・セレン(Selenium)の頭文字をとった薄膜系の太陽電池である。
図7は、判定値生成の処理フローを示す図である。適宜図1を参照して説明する。判定値生成部12は、入力装置33を介して判定値生成月の入力を受信すると(ステップS41)、外部記憶装置20の判定値生成月に該当する日別変換効率データ22を読み込む(ステップS42)。
判定値生成部12は、気温帯域別毎(例えば、3度毎)に(ステップS43)、該当する気温帯域の変換効率を抽出し、平均の変換効率を算出し(ステップS44)、算出された変換効率に基づき、劣化診断に用いる判定値を算出する(ステップS45)。判定値を算出するに際し、例えば、算出された変換効率に、数年で予想される変換効率の減少率を加味している。判定値生成部12は、最後に、算出された結果を、外部記憶装置20に図2(c)に示す気温帯域別データ23として書込み(ステップS46)、処理を終了する。
図8は、劣化診断の処理フローを示す図である。適宜図1を参照して説明する。劣化診断部13は、入力装置33を介して、劣化診断の開始の信号を受理すると、劣化信号を初期化し(ステップS51)、診断期間の日別変換効率データ22を読み込む(ステップS52)。
劣化診断部13は、日毎(例えば、2XX3年10月5日、2XX3年10月6日、…)に(ステップS53)、30分毎(例えば、8時0分から8時30分)に(ステップS54)、気温帯域毎(例えば、18℃以上21℃未満)(ステップS55)に、ステップS56からステップS58の処理を繰り返す。
劣化診断部13は、気温帯域に該当するデータであるか否かを抽出して判定し(ステップS56)、データがある場合(ステップS56,Yes)、ステップS57に進み、データがない場合(ステップS56,No)、ステップS55に戻る。
そして、ステップS57において、劣化診断部13は、気温帯域別データ23の気温帯域別判定値である変換効率と、抽出されたデータの変換効率とを比較して劣化があるか否かを判定する。抽出されたデータの変換効率が気温帯域別判定値である変換効率以下になった場合(ステップS57,Yes)、劣化があったとして劣化信号を出力装置34に出力する(ステップS58)。また、劣化信号は、管理者または保守点検員の携帯端末に通知してもよい。一方、抽出されたデータの変換効率が気温帯域別判定値である変換効率以下にない場合(ステップS57,No)、ステップS55に戻る。
そして、劣化診断部13は、劣化信号の出力が所定回数か否かを判定し(ステップS60)、所定回数以上であれば(ステップS60,Yes)、劣化警告を出力装置34に出力する(ステップS61)。また、劣化警告は、管理者または保守点検員の携帯端末に通知してもよい。劣化診断部13は、所定回数未満であれば(ステップS60,No)、ステップS62に進む。なお、保守点検員は、劣化警告があった際、太陽電池パネル210のどの部分に劣化が進んでいるかなど、点検作業に入る。
最後に、劣化診断部13は、劣化信号の出力および劣化警告の出力があった旨について、外部記憶装置20に劣化信号データ24として書き込み(ステップS62)、処理を終了する。劣化信号データ24としては、日別変換効率データ22に含まれる劣化信号が出力された日時、日射量、発電量、気温、変換効率などが含まれる。
図9は、劣化信号が出力された状況を示す図である。適宜図8を参照して具体的に説明すると、例えば、ステップS56において、2XX3年10月5日の9時0分から9時30分(斜線部分)の平均気温が、気温帯域(例えば、18℃以上21未満)に該当し、ステップS58において劣化信号が出力されたことを意味している。
図9を参照すると、さらに、2XX3年10月5日の11時0分から11時30分においても、劣化信号が出力されていることがわかる。しかし、次の日の2XX3年10月6日には、劣化信号は出力されず、2XX3年10月7日の10時0分から10時30分に出力されている。
日射量が少ない場合についてさらに説明する。日射量が少なくなる主な原因は、雲による太陽光の遮断と朝夕などの太陽高度の低さがある。雲によって太陽光が遮断される場合、雲の濃さや大きさ、ならびに動きの速さによって、太陽電池の発電出力が支配される。このような状態が長時間継続すると、例えば、30分の平均値の変換効率を採っても、判定値から逸脱してしまう可能性がある。この対策として、劣化診断を行う日射量に下限値(閾値)を持たせ、該日射量下限値を下回った場合には、劣化診断を行わないようにすることで、正しい診断結果を得ることができる。朝夕の太陽高度の低い場合に、劣化診断が不安定になることを回避するためには、太陽高度が一定の時間帯に診断を行うとよい。すなわち、劣化診断の診断時間を太陽が南中する前後の1乃至2時間に限定してもよい。これにより、さらに、安定した劣化診断を行うことができる効果がある。なお、日射量に下限値を持たせるときは、判定値生成部12での気温帯域別データ23を生成する際にも適用する。
本実施形態の太陽電池劣化診断装置100は、太陽電池パネル210で発生する直流電流と直流電圧に基づき単位時間毎の平均発電量を算出し、単位面積あたりに換算した平均発電量を平均日射量で除算して変換効率を求め、日別変換効率データ22を生成する変換効率生成部11と、日別変換効率データが登録されている期間のうちの劣化診断において参照とする所定期間(例えば、図4に示す2XX2年1月)の日別変換効率データ22に基づき、所定の気温帯域毎に平均変換効率を算出し、算出された平均変換効率に変動幅を加味し、経年劣化係数を乗じて気温帯域毎の劣化判断の判定値とし、気温帯域別データ23を生成する判定値生成部12と、所定期間の気候的に対応する別の期間である劣化診断対応期間(例えば、図4に示す2XX3年1月)における日別変換効率データに基づき、単位時間毎に平均気温が所定の気温帯域に該当する場合、変換効率が判定値以下であるか否かを判定し、判定値以下である場合太陽電池パネルの劣化がある旨を出力装置34に出力する劣化診断部13とを備える。
本実施形態によれば、太陽電池の容量、パワーコンディショナの設計係数などを演算に用いないで、簡便で比較的精度の良い太陽電池の劣化診断ができる。なお、所定期間は、春、夏、秋、冬の季節を対象としてもよい。この場合、例えば、劣化診断において参照とする所定期間は、例えば、図4に示す2XX2年7月から9月であり、所定期間の気候的に対応する別の期間である劣化診断対応期間は、図4に示す2XX3年7月から9月である。
10 メモリ
11 変換効率生成部
12 判定値生成部
13 劣化診断部
20 外部記憶装置(記憶装置)
21 日別データ
22 日別変換効率データ
23 気温帯域別データ
24 劣化信号データ
31 通信装置
32 CPU
33 入力装置
34 出力装置
35 バス
100 太陽電池劣化診断装置
200 太陽光発電システム
210 太陽電池パネル
211 日射計
212 気温計
213 情報端末
220 電力制御装置
230 蓄電池
240 電力系統
300 ネットワーク

Claims (4)

  1. 太陽光発電システムにおける時々刻々と変化する太陽電池パネルで発生する直流電圧および直流電流、日射情報、気温情報を取り込み、単位時間毎に、前記直流電流と前記直流電圧に基づく平均発電量、前記日射情報に基づく平均日射量、前記気温情報に基づく平均気温を算出し、単位面積あたりに換算した前記平均発電量を前記平均日射量で除算して変換効率を求め日別変換効率データとして記憶装置に登録する変換効率生成部と、
    前記記憶装置に前記日別変換効率データが登録されている期間のうちの劣化診断において参照とする所定期間の前記日別変換効率データに基づき、所定の気温帯域毎に平均変換効率を算出し、前記算出された平均変換効率の初期値に所定の変動幅を考慮した下限値を求め、該下限値に太陽電池の組成から予想される経年劣化係数を乗じて前記気温帯域毎の劣化判断の判定値とし、前記記憶装置に気温帯域別データとして登録する判定値生成部と、
    前記所定期間の気候的に対応する別の期間である劣化診断対応期間における前記日別変換効率データに基づき、前記単位時間毎に前記平均気温が前記所定の気温帯域に該当するか否かを判定し、該当する場合前記変換効率が前記判定値以下であるか否かを判定し、前記判定値以下である場合前記太陽電池パネルの劣化がある旨を出力装置に出力する劣化診断部とを備える
    ことを特徴とする太陽電池劣化診断装置。
  2. 前記判定値生成部は、前記所定期間を月別に前記気温帯域別データを生成し、
    前記劣化診断部は、次年度の対応する月から稼働する
    ことを特徴とする請求項1に記載の太陽電池劣化診断装置。
  3. 前記劣化診断部は、前記劣化がある旨の出力が所定回数に達した場合、劣化警告を前記出力装置に出力する
    ことを特徴とする請求項1に記載の太陽電池劣化診断装置。
  4. 前記判定値生成部は、前記判定値を生成する際に、前記日別変換効率データのうち前記平均日射量が所定の閾値以上の変換効率を用い、
    前記劣化診断部は、前記判定値以下であるか否かを判定するに際し、前記日別変換効率データのうち前記平均日射量が前記所定の閾値以上の変換効率を用いる
    ことを特徴とする請求項1に記載の太陽電池劣化診断装置。
JP2013046682A 2013-03-08 2013-03-08 太陽電池劣化診断装置 Expired - Fee Related JP5957741B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046682A JP5957741B2 (ja) 2013-03-08 2013-03-08 太陽電池劣化診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046682A JP5957741B2 (ja) 2013-03-08 2013-03-08 太陽電池劣化診断装置

Publications (2)

Publication Number Publication Date
JP2014176195A JP2014176195A (ja) 2014-09-22
JP5957741B2 true JP5957741B2 (ja) 2016-07-27

Family

ID=51696952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046682A Expired - Fee Related JP5957741B2 (ja) 2013-03-08 2013-03-08 太陽電池劣化診断装置

Country Status (1)

Country Link
JP (1) JP5957741B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6449670B2 (ja) * 2015-02-16 2019-01-09 北陸電力株式会社 太陽光発電出力の推定方法、及び装置
JP2016201921A (ja) * 2015-04-10 2016-12-01 株式会社東芝 太陽光発電設備の発電量の低下を検出する方法、装置、およびプログラム
JP2017027419A (ja) * 2015-07-24 2017-02-02 一般財団法人電気安全環境研究所 エネルギー変換手段の特性の時間変化を表現する方法及び装置
WO2017090152A1 (ja) * 2015-11-26 2017-06-01 三菱電機株式会社 配電系統管理装置、配電系統管理システムおよび発電量推定方法
KR102338511B1 (ko) * 2021-04-08 2021-12-13 주식회사 인코어드 테크놀로지스 태양광 발전 이상 감지 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5576215B2 (ja) * 2010-09-01 2014-08-20 株式会社Nttファシリティーズ 太陽光発電診断装置
JP5617695B2 (ja) * 2011-03-04 2014-11-05 ダイキン工業株式会社 太陽光発電ユニットの診断装置

Also Published As

Publication number Publication date
JP2014176195A (ja) 2014-09-22

Similar Documents

Publication Publication Date Title
Santiago et al. Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain
Akhsassi et al. Experimental investigation and modeling of the thermal behavior of a solar PV module
Seme et al. Analysis of the performance of photovoltaic systems in Slovenia
Ameur et al. Forecast modeling and performance assessment of solar PV systems
Canete et al. Energy performance of different photovoltaic module technologies under outdoor conditions
Mpholo et al. Yield and performance analysis of the first grid-connected solar farm at Moshoeshoe I International Airport, Lesotho
Micheli et al. Analysis of the outdoor performance and efficiency of two grid connected photovoltaic systems in northern Italy
US10409925B1 (en) Method for tuning photovoltaic power generation plant forecasting with the aid of a digital computer
JP5957741B2 (ja) 太陽電池劣化診断装置
Navabi et al. On the fast convergence modeling and accurate calculation of PV output energy for operation and planning studies
US9535135B2 (en) Method for calculating solar radiation amount and method for determining power to be supplied
JP6093465B1 (ja) 太陽光発電システムの発電診断方法、及び発電診断装置
JP6758273B2 (ja) 太陽電池診断装置および太陽電池診断方法
KR102578223B1 (ko) 태양광 발전량 예측 장치
Roumpakias et al. Comparative performance analysis of grid-connected photovoltaic system by use of existing performance models
JP2018019555A (ja) 影の影響を考慮した太陽光発電出力推定方法
Lurwan et al. Predicting power output of photovoltaic systems with solar radiation model
Yang et al. Photovoltaic cell temperature estimation for a grid-connect photovoltaic systems in Curitiba
Olczak Evaluation of degradation energy productivity of photovoltaic installations in long-term case study
Veldhuis et al. The influence of wind on the temperature of PV modules in tropical environments, evaluated on an hourly basis
Adiyabat et al. Evaluation of solar energy potential and PV module performance in the Gobi Desert of Mongolia
Deline et al. Progress & frontiers in PV performance
Kwon et al. Suggestion of PV System Performance Assessment Method using Meteorological Monitoring System and Performance Evaluation Model
van Sark et al. PV system monitoring and characterization
JP2015135882A (ja) 太陽電池の出力測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160531

R150 Certificate of patent or registration of utility model

Ref document number: 5957741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees