JP5954492B2 - Silicon oxide production apparatus and method - Google Patents

Silicon oxide production apparatus and method Download PDF

Info

Publication number
JP5954492B2
JP5954492B2 JP2015508521A JP2015508521A JP5954492B2 JP 5954492 B2 JP5954492 B2 JP 5954492B2 JP 2015508521 A JP2015508521 A JP 2015508521A JP 2015508521 A JP2015508521 A JP 2015508521A JP 5954492 B2 JP5954492 B2 JP 5954492B2
Authority
JP
Japan
Prior art keywords
chamber
silicon oxide
substrate
deposition
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015508521A
Other languages
Japanese (ja)
Other versions
JPWO2014157154A1 (en
Inventor
敦雄 川田
敦雄 川田
健 大橋
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Application granted granted Critical
Publication of JP5954492B2 publication Critical patent/JP5954492B2/en
Publication of JPWO2014157154A1 publication Critical patent/JPWO2014157154A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、包装用フィルム蒸着用、リチウムイオン二次電池負極活物質等として好適に使用される酸化珪素の製造方法及び製造装置に関するものである。   TECHNICAL FIELD The present invention relates to a method and an apparatus for producing silicon oxide which are suitably used for packaging film vapor deposition, a lithium ion secondary battery negative electrode active material and the like.

従来、酸化珪素粉末の製造方法として、二酸化珪素系酸化粉末からなる原料混合物を減圧非酸化性雰囲気中で熱処理することにより酸化珪素蒸気を発生させ、この酸化珪素蒸気を気相中で凝縮させて、0.1μm以下の微細アモルファス状の酸化珪素粉末を連続的に製造する方法(特許文献1:特開昭63−103815号公報)、及び原料珪素を加熱蒸発させて、表面組織を粗とした基体の表面に蒸着させる方法(特許文献2:特開平9−110412号公報)が知られている。また、二酸化珪素を含む混合原料粉末を反応炉内に供給し、酸化珪素ガスを発生させ、冷却した基体表面に析出させ、ついでこの酸化珪素析出物を連続的に回収する方法(特許文献3:特開2001−220123号公報)がある。   Conventionally, as a method for producing silicon oxide powder, a raw material mixture composed of silicon dioxide-based oxide powder is heat-treated in a reduced pressure non-oxidizing atmosphere to generate silicon oxide vapor, and the silicon oxide vapor is condensed in the gas phase. , A method of continuously producing fine amorphous silicon oxide powder of 0.1 μm or less (Patent Document 1: Japanese Patent Laid-Open No. 63-103815), and raw material silicon is heated and evaporated to roughen the surface structure A method of vapor deposition on the surface of a substrate (Patent Document 2: JP-A-9-110412) is known. Also, a mixed raw material powder containing silicon dioxide is supplied into the reaction furnace, silicon oxide gas is generated and deposited on the cooled substrate surface, and then this silicon oxide precipitate is continuously recovered (Patent Document 3: JP 2001-220123 A).

しかしながら、上述した特開昭63−103815号公報の方法は、連続的な製造が可能であるが、生成したSiO粉末は微粉であり、大気に取り出した際の酸化反応により高純度の酸化珪素粉末が製造できない問題がある。一方で、特開平9−110412号公報に記載の方法は、高純度酸化珪素はできるものの回分法を前提としているため、量産化が困難であり、結果として高価な酸化珪素粉末しか製造できない。特開2001−220123号公報に記載の方法は、高純度酸化珪素粉末を連続的に回収することはできるが、酸化珪素が硬いため回収機構である掻き取り装置のブレードが磨耗し易く、長期の使用に耐えないという問題点があった。   However, although the above-mentioned method disclosed in JP-A-63-103815 can be continuously produced, the generated SiO powder is fine, and high-purity silicon oxide powder is obtained by an oxidation reaction when taken out to the atmosphere. There is a problem that can not be manufactured. On the other hand, the method described in JP-A-9-110412 is premised on a batch method, although it can produce high-purity silicon oxide. Therefore, mass production is difficult, and as a result, only expensive silicon oxide powder can be produced. Although the method described in JP-A-2001-220123 can continuously recover high-purity silicon oxide powder, since the silicon oxide is hard, the blade of the scraping device, which is a recovery mechanism, is easily worn, There was a problem that it could not be used.

特開昭63−103815号公報JP-A 63-103815 特開平9−110412号公報JP-A-9-110412 特開2001−220123号公報JP 2001-220123 A

本発明は上記事情に鑑みなされたもので、効率的かつ長期間安定的に、高純度の酸化珪素を連続的に製造することができる酸化珪素の製造方法、及び製造装置を提供する。   This invention is made | formed in view of the said situation, and provides the manufacturing method and manufacturing apparatus of a silicon oxide which can manufacture highly purified silicon oxide continuously efficiently and stably over a long period of time.

本発明者らは、上記目的を達成するため鋭意検討した結果、酸化珪素ガスを発生させ、これを基体に析出させる酸化珪素の製造方法において、2つ以上の基体と、上記基体に酸化珪素固体を析出させる析出室と回収室を有し、析出室と酸化珪素固体を析出させる基体を配置する準備室とが、それぞれゲート弁を介して連結された製造装置を用いて、酸化珪素ガスを、基体が配置された析出室内に導入し、(1)回収室側ゲート弁及び準備室側ゲート弁を閉じた状態で、析出室内の基体表面に酸化珪素を析出させる工程、次いで(2)両ゲート弁を開いて、酸化珪素が析出した基体を、析出室から回収室へ移動させると共に、準備室に配置された基体を析出室に移動させた後、回収室側ゲート弁及び準備室側ゲート弁を閉じる工程、次いで(3)酸化珪素が析出した基体、又は析出した酸化珪素及び基体を、回収室から取り出すと共に、準備室に別の基体を配置する工程を有し、上記(2)工程に引き続き、準備室から移動した基体を用いて上記(1)工程を行い、上記(1)〜(3)を繰り返すことにより、効率的かつ長期間安定的に、高純度の酸化珪素を連続的に製造できることを知見し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the inventors of the present invention have disclosed a method for producing silicon oxide in which a silicon oxide gas is generated and deposited on the substrate. Using a manufacturing apparatus in which a deposition chamber and a collection chamber for depositing a deposition chamber and a preparation chamber in which a substrate for depositing a silicon oxide solid is disposed are connected via a gate valve, respectively, (1) a step of depositing silicon oxide on the surface of the substrate in the deposition chamber with the recovery chamber side gate valve and the preparation chamber side gate valve closed, and then (2) both gates. The valve is opened to move the substrate on which silicon oxide is deposited from the deposition chamber to the recovery chamber, and after moving the substrate disposed in the preparation chamber to the deposition chamber, the recovery chamber side gate valve and the preparation chamber side gate valve , Then (3 The substrate having silicon oxide deposited thereon or the deposited silicon oxide and the substrate are removed from the recovery chamber and another substrate is disposed in the preparation chamber, and the substrate moved from the preparation chamber following the step (2). It is found that high purity silicon oxide can be continuously produced efficiently and stably for a long period of time by repeating the above steps (1) to (3) using That led to

従って、本発明は下記発明を提供する。
[1].二酸化珪素粉末を含む混合原料粉末を反応させて酸化珪素ガスを生成させる反応室と、この反応室内に上記混合原料粉末を供給する原料供給機構と、上記酸化珪素ガスを酸化珪素固体としてその表面に析出させる2つ以上の基体と、上記基体に酸化珪素固体を析出させる析出室と、上記酸化珪素ガスを上記反応室から上記析出室に搬送する搬送管と、回収室と、酸化珪素固体を析出させる基体を配置する準備室とを具備し、上記析出室と回収室とが回収室側ゲート弁を介して連結され、上記析出室と準備室とが準備室側ゲート弁を介して連結されている、酸化珪素の製造装置。
[2].[1]記載の装置を用い、二酸化珪素粉末を含む混合原料粉末を反応室内に供給し、この反応室内で、常圧又は減圧下で1,200〜1,600℃に加熱して酸化珪素ガスを発生させ、反応室と同じ温度以上に保持された搬送管を通して、(1)回収室側ゲート弁及び準備室側ゲート弁を閉じた状態で、析出室内の基体表面に酸化珪素を析出させる工程、次いで(2)両ゲート弁を開いて、酸化珪素が析出した基体を、析出室から回収室へ移動させると共に、準備室に配置された基体を析出室に移動させた後、回収室側ゲート弁及び準備室側ゲート弁を閉じる工程、次いで(3)酸化珪素が析出した基体、又は析出した酸化珪素及び基体を、回収室から取り出すと共に、準備室に別の基体を配置する工程を有し、上記(2)工程に引き続き、準備室から移動した基体を用いて上記(1)工程を行い、上記(1)〜(3)工程を繰り返す酸化珪素の製造方法。
[3].混合原料粉末が二酸化珪素と金属珪素粉末との混合物である[2]記載の製造方法。
[4].析出室の基体の温度が200〜1,000℃である[2]又は[3]記載の製造方法。
[5].さらに、得られた酸化珪素固体を粉砕し、得られた酸化珪素粉末の平均粒径が0.01〜30μmであり、BET比表面積が0.5〜30m2/gである[2]〜[4]のいずれかに記載の製造方法。
[6].酸化珪素が、包装用フィルム蒸着用である[2]〜[5]のいずれかに記載の製造方法。
[7].酸化珪素が、リチウムイオン二次電池負極活物質用である[2]〜[5]のいずれかに記載の製造方法。
Accordingly, the present invention provides the following inventions.
[1]. A reaction chamber for reacting mixed raw material powder containing silicon dioxide powder to generate silicon oxide gas; a raw material supply mechanism for supplying the mixed raw material powder into the reaction chamber; and the silicon oxide gas as silicon oxide solid on the surface thereof Two or more substrates to be deposited, a deposition chamber for depositing a silicon oxide solid on the substrate, a transport pipe for transporting the silicon oxide gas from the reaction chamber to the deposition chamber, a recovery chamber, and a silicon oxide solid A deposition chamber and a recovery chamber are connected via a recovery chamber side gate valve, and the deposition chamber and the preparation chamber are connected via a preparation chamber side gate valve. An apparatus for producing silicon oxide.
[2]. [1] A mixed raw material powder containing silicon dioxide powder is supplied into a reaction chamber using the apparatus described in [1], and heated to 1,200 to 1,600 ° C. under normal pressure or reduced pressure in this reaction chamber. And (1) depositing silicon oxide on the surface of the substrate in the deposition chamber with the collection chamber side gate valve and the preparation chamber side gate valve closed, through a transfer tube maintained at the same temperature as the reaction chamber Next, (2) both gate valves are opened to move the substrate on which silicon oxide has been deposited from the deposition chamber to the collection chamber, and after moving the substrate disposed in the preparation chamber to the deposition chamber, the collection chamber side gate A step of closing the valve and the preparation chamber side gate valve, and then (3) a step of removing the silicon oxide-deposited substrate or the deposited silicon oxide and the substrate from the recovery chamber and disposing another substrate in the preparation chamber. Following the step (2) above, Perform the above (1) step using a substrate that has moved from the chamber, (1) to (3) The method for producing a silicon oxide-repeating process.
[3]. [2] The production method according to [2], wherein the mixed raw material powder is a mixture of silicon dioxide and metal silicon powder.
[4]. The method according to [2] or [3], wherein the temperature of the substrate in the deposition chamber is 200 to 1,000 ° C.
[5]. Furthermore, the obtained silicon oxide solid is pulverized, and the obtained silicon oxide powder has an average particle diameter of 0.01 to 30 μm and a BET specific surface area of 0.5 to 30 m 2 / g [2] to [ [4] The production method according to any one of [4].
[6]. The production method according to any one of [2] to [5], wherein the silicon oxide is used for film deposition for packaging.
[7]. The production method according to any one of [2] to [5], wherein the silicon oxide is used for a negative electrode active material for a lithium ion secondary battery.

本発明によれば、効率的かつ長期間安定的な、高純度酸化珪素の連続製造が可能となる。   According to the present invention, it is possible to continuously produce high-purity silicon oxide that is efficient and stable for a long period of time.

本発明の一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example of this invention. 本発明の一実施例の態様の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state of the aspect of one Example of this invention. 比較例1で使用した装置の概略断面図である。2 is a schematic cross-sectional view of an apparatus used in Comparative Example 1. FIG.

以下、本発明につき更に詳しく説明する。
本発明の製造方法は、二酸化珪素粉末を含む混合原料粉末を反応室内に供給し、この反応室内で、常圧又は減圧下で1,200〜1,600℃に加熱して酸化珪素ガスを発生させ、反応室と同じ温度以上に保持された搬送管を通して、(1)回収室側ゲート弁及び準備室側ゲート弁を閉じた状態で、析出室内の基体表面に酸化珪素を析出させる工程、次いで(2)両ゲート弁を開いて、酸化珪素が析出した基体を、析出室から回収室へ移動させると共に、準備室に配置された基体を析出室に移動させた後、回収室側ゲート弁及び準備室側ゲート弁を閉じる工程、次いで(3)酸化珪素が析出した基体、又は析出した酸化珪素及び基体を、回収室から取り出すと共に、準備室に別の基体を配置する工程を有し、上記(2)工程に引き続き、準備室から移動した基体を用いて上記(1)工程を行い、上記(1)〜(3)工程を繰り返す酸化珪素の製造方法である。
Hereinafter, the present invention will be described in more detail.
In the production method of the present invention, mixed raw material powder containing silicon dioxide powder is supplied into a reaction chamber and heated to 1,200 to 1,600 ° C. under normal pressure or reduced pressure to generate silicon oxide gas. And (1) depositing silicon oxide on the surface of the substrate in the deposition chamber with the recovery chamber side gate valve and the preparation chamber side gate valve closed, through a transfer tube maintained at the same temperature or higher as the reaction chamber, (2) Open both gate valves to move the substrate on which the silicon oxide is deposited from the deposition chamber to the collection chamber, and move the substrate disposed in the preparation chamber to the deposition chamber; A step of closing the preparation chamber side gate valve, and then (3) a step of removing the silicon oxide deposited substrate or the deposited silicon oxide and the substrate from the recovery chamber and disposing another substrate in the preparation chamber, (2) Following the process, preparation Perform the above (1) step using the moved substrate from a method for producing a silicon oxide repeating the above steps (1) to (3).

二酸化珪素粉末を含む混合原料粉末としては、二酸化珪素粉末とこれを還元する粉末との混合物を用いる。具体的な還元粉末としては、金属珪素化合物、炭素含有粉末等が挙げられるが、反応性を高め、収率を高めるといった点から、金属珪素粉末が好ましい。二酸化珪素粉末と金属珪素粉末の場合、下記の反応スキームによって進行する。
Si(s)+SiO2(s)→2SiO(g)
As the mixed raw material powder containing silicon dioxide powder, a mixture of silicon dioxide powder and powder that reduces the powder is used. Specific examples of the reducing powder include metal silicon compounds and carbon-containing powders, and metal silicon powder is preferable from the viewpoint of increasing reactivity and increasing yield. In the case of silicon dioxide powder and metal silicon powder, the reaction proceeds according to the following reaction scheme.
Si (s) + SiO 2 (s) → 2SiO (g)

本発明に用いる二酸化珪素粉末の平均粒径は0.1μm以下であり、通常0.005〜0.1μm、好ましくは0.005〜0.08μmである。また金属珪素粉末の平均粒径は30μm以下であり、通常0.05〜30μm、好ましくは0.1〜20μmである。二酸化珪素粉末の平均粒径が0.1μmより大きい、又は金属珪素粉末の平均粒径が30μmより大きいと、反応性が低下し、生産性が低下するおそれがある。なお、本発明において、平均粒径はレーザー光回折法による粒度分布測定における累積重量平均値D50で表すことができる。The average particle diameter of the silicon dioxide powder used for this invention is 0.1 micrometer or less, and is 0.005-0.1 micrometer normally, Preferably it is 0.005-0.08 micrometer. The average particle size of the metal silicon powder is 30 μm or less, and is usually 0.05 to 30 μm, preferably 0.1 to 20 μm. When the average particle diameter of the silicon dioxide powder is larger than 0.1 μm, or the average particle diameter of the metal silicon powder is larger than 30 μm, the reactivity is lowered and the productivity may be lowered. In the present invention, the average particle diameter can be represented by the cumulative weight average value D 50 in the particle size distribution measurement by the laser light diffraction method.

本発明では、上記混合原料粉末を反応室内において1,200〜1,600℃、好ましくは1,300〜1,500℃の温度に加熱、保持し、酸化珪素ガスを生成させる。反応温度が1,200℃未満では反応が進行しがたく、生産性が低下してしまい、一方、1,600℃を超えると、混合原料粉末が溶融して炉材料の選定が困難になる場合がある。   In the present invention, the mixed raw material powder is heated and held in the reaction chamber at a temperature of 1,200 to 1,600 ° C., preferably 1,300 to 1,500 ° C., to generate silicon oxide gas. If the reaction temperature is less than 1,200 ° C, the reaction is difficult to proceed and the productivity is lowered. There is.

一方、炉内(反応室)雰囲気は、常圧又は減圧(好ましくは1,000Pa以下)下で行う。酸化珪素がガスとして発生しやすい減圧下で行うことが好ましい。炉内を不活性ガス中としてもよい。不活性ガスとしては、アルゴンガス、ヘリウムガス等が挙げられる。   On the other hand, the atmosphere in the furnace (reaction chamber) is performed under normal pressure or reduced pressure (preferably 1,000 Pa or less). It is preferable to carry out under reduced pressure at which silicon oxide is easily generated as a gas. The inside of the furnace may be in an inert gas. Examples of the inert gas include argon gas and helium gas.

上記反応室には、原料供給機構にて、上記混合原料粉末を適宜間隔ごと、又は連続的に供給し、反応を連続的に行うものである。上記原料供給機構としては、スクリューフィーダー等による連続供給や、上下にダンパーを設けた中間ホッパーによる間欠供給、及びこれらの組み合わせが挙げられる。   In the reaction chamber, the mixed raw material powder is supplied at appropriate intervals or continuously by a raw material supply mechanism, and the reaction is continuously performed. Examples of the raw material supply mechanism include continuous supply using a screw feeder or the like, intermittent supply using an intermediate hopper having upper and lower dampers, and combinations thereof.

上記反応室で生成した酸化珪素ガスは、搬送管を介して析出室に連続的に供給される。搬送管は反応室と同じ温度以上に保持される。搬送管の温度が反応室以下の温度では、酸化珪素ガスが搬送管内壁に析出、付着して運転上の支障をきたし、安定的な運転ができなくなる。逆に、反応室を著しく超える温度に加熱しても、電力コストの上昇を招くだけで効果が得られないため、反応室と同じ温度〜反応室温度+200℃が妥当である。   The silicon oxide gas generated in the reaction chamber is continuously supplied to the deposition chamber via the transport pipe. The transfer tube is maintained at the same temperature as the reaction chamber. When the temperature of the transfer pipe is lower than the reaction chamber, the silicon oxide gas is deposited on and adhered to the inner wall of the transfer pipe, causing troubles in operation and preventing stable operation. On the other hand, heating to a temperature significantly exceeding the reaction chamber causes an increase in power cost and does not produce an effect, and therefore, the same temperature as the reaction chamber to the reaction chamber temperature + 200 ° C. is appropriate.

(1)回収室側ゲート弁及び準備室側ゲート弁を閉じた状態で、析出室内の基体表面に酸化珪素を析出させる工程
基体が配置された析出室内に酸化珪素ガスを導入する場合、酸化珪素ガスが準備室や回収室に流入しないように、析出室と回収室との間にある回収室側ゲート弁、析出室と準備室との間にある準備室側ゲート弁を閉じた状態としておくことが必要である。上記析出室内には、酸化珪素を析出させる基体が配置され、この析出室に導入された上記酸化珪素ガスがこの基体に接触し冷却されることにより、この基体表面上に塊状の酸化珪素(固体)として析出する。析出室の基体の温度(析出温度)は、200〜1,000℃に保持することが好ましく、300〜900℃がより好ましく、300〜800℃がさらに好ましい。1,000℃より高いと酸化珪素が析出し難くなるおそれがあり、200℃より低いと、得られた酸化珪素は微粉となり、活性が強すぎるものとなるおそれがある。なお、基体温度の測定は、酸化珪素蒸気が直接当たる面の裏側を測定する。測定は、熱電対を基体に接触させる方法、放射温度計により非接触で測定する方法等で行えるが、本発明における温度は、熱電対を基体に接触させる方法で測定した値である。
(1) Step of depositing silicon oxide on the substrate surface in the deposition chamber with the recovery chamber side gate valve and the preparation chamber side gate valve closed. When introducing silicon oxide gas into the deposition chamber in which the substrate is disposed, The recovery chamber side gate valve between the deposition chamber and the recovery chamber and the preparation chamber side gate valve between the deposition chamber and the preparation chamber are closed so that the gas does not flow into the preparation chamber or the recovery chamber. It is necessary. A substrate for depositing silicon oxide is disposed in the deposition chamber, and the silicon oxide gas introduced into the deposition chamber is brought into contact with the substrate to be cooled, whereby bulk silicon oxide (solid) is formed on the surface of the substrate. ). The temperature of the substrate in the deposition chamber (precipitation temperature) is preferably maintained at 200 to 1,000 ° C, more preferably 300 to 900 ° C, and even more preferably 300 to 800 ° C. If the temperature is higher than 1,000 ° C., silicon oxide may be difficult to precipitate. If the temperature is lower than 200 ° C., the obtained silicon oxide may become fine powder and may have too strong activity. The substrate temperature is measured by measuring the back side of the surface directly exposed to silicon oxide vapor. The measurement can be performed by a method in which the thermocouple is brought into contact with the substrate, a method in which the thermocouple is measured in a non-contact manner, and the temperature in the present invention is a value measured by a method in which the thermocouple is brought into contact with the substrate.

(2)両ゲート弁を開いて、酸化珪素が析出した基体を、析出室から回収室へ移動させると共に、準備室に配置された基体を析出室に移動させた後、回収室側ゲート弁及び準備室側ゲート弁を閉じる工程
この際、両ゲート弁を同時に開いて、析出室から回収室への酸化珪素が析出した基体の移動と、準備室から析出室への基体の移動を同時に行って、両ゲート弁を同時に閉じてもよいし、回収室側ゲート弁を開いて、析出室から回収室への酸化珪素が析出した基体の移動を行い、回収室側ゲート弁を閉じた後で、準備室側のゲート弁を開いて、準備室から析出室への基体の移動を行い、準備室側のゲート弁を閉じてもよいが、前者の同時に行うことが好ましい。
(2) Open both gate valves to move the substrate on which the silicon oxide is deposited from the deposition chamber to the collection chamber, and move the substrate disposed in the preparation chamber to the deposition chamber; Step of closing the preparation chamber side gate valve At this time, both gate valves are opened simultaneously, and the substrate on which silicon oxide is deposited from the deposition chamber to the recovery chamber and the substrate from the preparation chamber to the deposition chamber are simultaneously moved. Both gate valves may be closed at the same time, or the recovery chamber side gate valve is opened, the substrate on which silicon oxide is deposited from the deposition chamber to the recovery chamber is moved, and after the recovery chamber side gate valve is closed, The gate valve on the preparation chamber side may be opened to move the substrate from the preparation chamber to the deposition chamber, and the gate valve on the preparation chamber side may be closed, but the former is preferably performed simultaneously.

析出室の基体が移動した回収室では、酸化珪素ガスによって基体に持ち込まれる熱量がなくなるため、基体の温度が低下する。この際に、空冷や水冷等の冷却手段によって、基体を強制冷却してもよい。基体の温度は、基体に析出した酸化珪素が大気中で安定な500℃以下まで低下させることが好ましく、300℃以下まで低下させることがより好ましい。析出室中への酸化珪素蒸気の導入停止と基体の冷却とにより、析出した酸化珪素が基体表面から剥離し易くなる。   In the recovery chamber in which the substrate in the deposition chamber has moved, the amount of heat brought into the substrate by the silicon oxide gas is eliminated, and the temperature of the substrate decreases. At this time, the substrate may be forcibly cooled by a cooling means such as air cooling or water cooling. The temperature of the substrate is preferably lowered to 500 ° C. or lower, more preferably 300 ° C. or lower, in which silicon oxide deposited on the substrate is stable in the air. By stopping the introduction of the silicon oxide vapor into the deposition chamber and cooling the substrate, the deposited silicon oxide is easily separated from the substrate surface.

基体の種類については特に限定されないが、析出温度での耐熱性と酸化珪素ガスに対する耐蝕性があるもの、具体的には金属材料やセラミックス材料が好ましい。また、酸化珪素との線膨張係数の差が大きいものは、基体と酸化珪素析出体との熱収縮差によって、析出した酸化珪素が基体表面から剥離し易く、回収が容易になるのでより好ましい。具体的には金属材料が好ましく、加工性の点でステンレス鋼(SUS)、ニッケル合金、チタン合金等が好適に用いられる。   The type of the substrate is not particularly limited, but those having heat resistance at the deposition temperature and corrosion resistance to the silicon oxide gas, specifically, metal materials and ceramic materials are preferable. Further, a material having a large difference in linear expansion coefficient from silicon oxide is more preferable because the deposited silicon oxide is easily peeled off from the surface of the substrate due to a difference in thermal contraction between the substrate and the silicon oxide precipitate and can be easily recovered. Specifically, a metal material is preferable, and stainless steel (SUS), a nickel alloy, a titanium alloy, or the like is preferably used in terms of workability.

準備室に配置された基体が移動した析出室には、上記と同様に酸化珪素ガスが供給され、上記(2)工程に引き続き、準備室から移動した基体を用いて上記(1)工程を行い、 析出室の基体表面上に塊状の酸化珪素が析出し、酸化珪素ガスの連続供給、酸化珪素を連続的に析出させることが可能となる。   A silicon oxide gas is supplied to the deposition chamber in which the substrate disposed in the preparation chamber has moved in the same manner as described above, and the step (1) is performed using the substrate moved from the preparation chamber following the step (2). A lump of silicon oxide is deposited on the surface of the substrate in the deposition chamber, and it becomes possible to continuously supply silicon oxide gas and to deposit silicon oxide continuously.

(3)酸化珪素が析出した基体、又は析出した酸化珪素及び基体を、回収室から取り出すと共に、準備室に別の基体を配置する工程
回収室は析出室から回収室側ゲート弁によって隔離されているので、装置の運転を停止させずに、回収室から、酸化珪素が析出した基体、又は析出した酸化珪素及び基体を取り出すことができる。なお、回収室の基体は析出室から次の基体を移動させるために、回収室から取り出される。同様に、準備室は析出室から準備室側ゲート弁によって隔離されているので、運転を停止させずに、準備室に別の基体を配置することができる。基体の移動時の析出室温度を所定の範囲に保つため、準備室に配置された基体をヒーター等の加熱機構により予熱しておいてもよい。
(3) A step in which the substrate on which silicon oxide is deposited or the deposited silicon oxide and substrate is taken out from the collection chamber and another substrate is arranged in the preparation chamber. The collection chamber is isolated from the deposition chamber by a collection chamber side gate valve. Therefore, the substrate on which silicon oxide is deposited or the deposited silicon oxide and substrate can be taken out from the recovery chamber without stopping the operation of the apparatus. The substrate in the collection chamber is taken out from the collection chamber in order to move the next substrate from the deposition chamber. Similarly, since the preparation chamber is isolated from the deposition chamber by the preparation chamber side gate valve, another substrate can be arranged in the preparation chamber without stopping the operation. In order to keep the deposition chamber temperature during the movement of the substrate within a predetermined range, the substrate disposed in the preparation chamber may be preheated by a heating mechanism such as a heater.

なお、析出室が減圧雰囲気の場合、ゲート弁を開く前には、準備室及び回収室を減圧して析出室と均圧にする必要があり、回収室から酸化珪素が付着した基体を取り出したり、準備室に次の基体を入れて配置する前には、準備室及び回収室を大気圧まで復圧しておく必要がある。なお、この場合でも運転を停止せず、酸化珪素ガスの析出室への導入等を停止することなく、基体の取り出し、配置が可能である。   When the deposition chamber is in a reduced pressure atmosphere, it is necessary to decompress the preparation chamber and the recovery chamber to make the pressure equal to the deposition chamber before opening the gate valve. Before the next substrate is placed in the preparation chamber, the preparation chamber and the recovery chamber must be restored to atmospheric pressure. Even in this case, the substrate can be taken out and arranged without stopping the operation and without stopping the introduction of the silicon oxide gas into the deposition chamber.

本発明においては、上記(2)工程に引き続き、準備室から移動した基体を用いて上記(1)工程を行い、上記(1)〜(3)工程を繰り返す。これにより、運転を停止することなく、酸化珪素が析出した基体、又は析出した酸化珪素及び基体を取り出すこと、次の基体を準備室に配置することが可能である。また、析出室での酸化珪素の析出と、回収室での酸化珪素の剥離の進行、回収室からの酸化珪素が析出した基体等の取り出し、さらに準備室への新しい基体の配置とを並行して進行させることができ、析出等が順次又は連続して行われ、効率的に酸化珪素が連続製造できる。このため基体は2以上が必要であり、3以上でもよく、析出した酸化珪素が回収された後の基体を次の基体として用いてもよい。   In the present invention, following the step (2), the step (1) is performed using the substrate moved from the preparation chamber, and the steps (1) to (3) are repeated. Thereby, it is possible to take out the substrate on which the silicon oxide is deposited or the deposited silicon oxide and the substrate and to dispose the next substrate in the preparation chamber without stopping the operation. In parallel with the deposition of silicon oxide in the deposition chamber, the progress of exfoliation of silicon oxide in the recovery chamber, the removal of the substrate on which silicon oxide has been deposited from the recovery chamber, and the placement of a new substrate in the preparation chamber. The deposition can be carried out sequentially or continuously, and silicon oxide can be continuously produced efficiently. For this reason, two or more substrates are required, three or more substrates may be used, and the substrate after the deposited silicon oxide is recovered may be used as the next substrate.

基体の移動方法は特に限定されるものではなく、ベルトコンベアやローラーコンベア等が例示される。基体を移動させる間隔は、原料の供給速度、基体の冷却速度等により適宜選定されるが、1〜8時間が好ましい。   The method for moving the substrate is not particularly limited, and examples thereof include a belt conveyor and a roller conveyor. The interval for moving the substrate is appropriately selected depending on the feed rate of the raw material, the cooling rate of the substrate, and the like, but preferably 1 to 8 hours.

酸化珪素中の酸化珪素の純度は99.9〜99.95質量%であり、高純度のものを得ることができる。   The purity of silicon oxide in silicon oxide is 99.9 to 99.95% by mass, and a high-purity product can be obtained.

得られた塊状の酸化珪素固体は、適切な粉砕機と分級器を使用することによって酸化珪素粉末とすることができる。例えば、平均粒径0.01〜30μm、BET比表面積0.5〜30m2/gの酸化珪素粉末とすることができる。このような酸化珪素粉末は、包装用フィルム蒸着用、リチウムイオン二次電池負極活物質用等として好適である。The obtained bulk silicon oxide solid can be made into silicon oxide powder by using an appropriate pulverizer and classifier. For example, a silicon oxide powder having an average particle size of 0.01 to 30 μm and a BET specific surface area of 0.5 to 30 m 2 / g can be obtained. Such silicon oxide powder is suitable for film deposition for packaging, negative electrode active material for lithium ion secondary battery, and the like.

上記方法に用いる装置としては、例えば、図1に示すような、二酸化珪素粉末を含む混合原料粉末を反応させて酸化珪素ガスを生成させる反応室と、この反応室内に上記混合原料粉末を供給する原料供給機構と、上記酸化珪素ガスを酸化珪素固体としてその表面に析出させる2つ以上の基体と、上記基体に酸化珪素固体を析出させる析出室と、上記酸化珪素ガスを上記反応室から上記析出室に搬送する搬送管と、回収室と、酸化珪素固体を析出させる基体を配置する準備室とを具備し、上記析出室と回収室とが回収室側ゲート弁を介して連結され、上記析出室と準備室とが準備室側ゲート弁を介して連結されている酸化珪素の連続製造装置が挙げられる。   As an apparatus used in the above method, for example, as shown in FIG. 1, a reaction chamber in which a mixed raw material powder containing silicon dioxide powder is reacted to generate silicon oxide gas, and the mixed raw material powder is supplied into the reaction chamber. A raw material supply mechanism, two or more substrates on which the silicon oxide gas is deposited as a silicon oxide solid, a deposition chamber in which the silicon oxide solid is deposited on the substrate, and the silicon oxide gas is deposited from the reaction chamber into the deposition chamber. A transport pipe for transporting to the chamber, a recovery chamber, and a preparation chamber for disposing a substrate on which the silicon oxide solid is deposited, the deposition chamber and the recovery chamber being connected via a recovery chamber side gate valve, Examples include a continuous production apparatus for silicon oxide in which a chamber and a preparation chamber are connected via a preparation chamber side gate valve.

装置の一例について、より詳細に説明する。
反応炉1はその内部に反応室2を有する。反応室2には反応室ヒーター3が備えられており、反応室2には原料供給機構5が連結し、反応室2は搬送管6を介して析出室7と連結している。搬送管6は搬送管ヒーター8を具備しており、析出室7には基体9aが配置されている。析出室7は回収室側ゲート弁13aを介して回収室11が連結され、また、析出室7は準備室側ゲート弁13bを介して準備室15が連結されており、準備室15には基体9bが配置されており、予熱機構16及び準備室扉17が備えられている。回収室11は、冷却機構12を具備し、回収室扉14が設置されている。18a〜18dは真空ポンプであり、それぞれ、析出室7、回収室11、準備室15、原料供給機構5と連結している。
An example of the apparatus will be described in more detail.
The reaction furnace 1 has a reaction chamber 2 therein. A reaction chamber heater 3 is provided in the reaction chamber 2, a raw material supply mechanism 5 is connected to the reaction chamber 2, and the reaction chamber 2 is connected to a deposition chamber 7 through a transport pipe 6. The transfer tube 6 includes a transfer tube heater 8, and a substrate 9 a is disposed in the deposition chamber 7. The deposition chamber 7 is connected to a recovery chamber 11 via a recovery chamber side gate valve 13a, and the deposition chamber 7 is connected to a preparation chamber 15 via a preparation chamber side gate valve 13b. 9b is arranged, and a preheating mechanism 16 and a preparation chamber door 17 are provided. The collection chamber 11 includes a cooling mechanism 12 and a collection chamber door 14 is installed. 18a to 18d are vacuum pumps, which are connected to the deposition chamber 7, the recovery chamber 11, the preparation chamber 15, and the raw material supply mechanism 5, respectively.

反応室2は反応室ヒーター3によって1,200〜1,600℃に加熱される。二酸化珪素粉末を含む混合原料粉末4が、原料供給機構5によって、反応室2に連続もしくは間欠的に供給される。反応室2内で発生した酸化珪素ガスは、搬送管6により析出室7に搬送される。搬送管6は搬送管ヒーター8により、反応室2の温度以上に保持されている。析出室7は基体9aが配置され、析出室ヒーター10によって所定温度に保持される。回収室側ゲート弁13a、準備室側ゲート弁13bの両ゲート弁を閉じ、析出室7が回収室11及び準備室15から隔離された状態で、酸化珪素ガスを析出室7に所望時間導入しし、基体9aの表面に酸化珪素を析出させる。準備室15は予熱機構16により適温にされており、準備室側ゲート弁13bによって析出室7と隔離されているため、基体9bは適宜連続運転中に準備室扉17から入れることができる。   The reaction chamber 2 is heated to 1,200 to 1,600 ° C. by the reaction chamber heater 3. A mixed raw material powder 4 containing silicon dioxide powder is continuously or intermittently supplied to the reaction chamber 2 by a raw material supply mechanism 5. The silicon oxide gas generated in the reaction chamber 2 is transported to the deposition chamber 7 through the transport pipe 6. The transfer tube 6 is held above the temperature of the reaction chamber 2 by a transfer tube heater 8. The deposition chamber 7 is provided with a substrate 9 a and is kept at a predetermined temperature by a deposition chamber heater 10. Both the recovery chamber side gate valve 13a and the preparation chamber side gate valve 13b are closed, and the deposition chamber 7 is isolated from the recovery chamber 11 and the preparation chamber 15, and silicon oxide gas is introduced into the precipitation chamber 7 for a desired time. Then, silicon oxide is deposited on the surface of the substrate 9a. Since the preparatory chamber 15 is set to an appropriate temperature by the preheating mechanism 16 and is isolated from the deposition chamber 7 by the preparatory chamber side gate valve 13b, the substrate 9b can be appropriately inserted from the preparatory chamber door 17 during continuous operation.

その後、両ゲート弁を開いて析出室7の基体9aを回収室11へ移動させると共に、準備室15に配置された基体9bを析出室7に移動させた後、両ゲート弁を閉じることにより、回収室11と析出室7とは回収室側ゲート弁13a、析出室7と準備室15とは準備室側ゲート弁13bによりそれぞれ隔離されている。   Thereafter, both gate valves are opened to move the substrate 9a of the deposition chamber 7 to the recovery chamber 11, and after moving the substrate 9b disposed in the preparation chamber 15 to the deposition chamber 7, both gate valves are closed, The collection chamber 11 and the deposition chamber 7 are isolated from each other by the collection chamber side gate valve 13a, and the deposition chamber 7 and the preparation chamber 15 are separated from each other by the preparation chamber side gate valve 13b.

回収室11は冷却機構12により所定温度に冷却されている。回収室11は回収室側ゲート弁13aによって析出室7と隔離されているため、酸化珪素が析出した基体、又は析出した酸化珪素及び基体9aは、連続運転中に回収室扉14から取り出すことができる。これと並行して、析出室7には準備室から移動してきた基体9bが配置され、酸化珪素ガスを析出室7に所望時間導入し、基体9bの表面に酸化珪素を析出させる。準備室15は予熱機構16により適温にされており、準備室側ゲート弁13bによって析出室7と隔離され、新しい基体9cは連続運転中に、準備室扉17から適宜入れることができる。なお、基体9cは、析出した酸化珪素が回収された後の基体9aを用いてもよい。なお、回収室11、析出室7、準備室15は真空ポンプにより減圧されていてもよい。   The collection chamber 11 is cooled to a predetermined temperature by the cooling mechanism 12. Since the collection chamber 11 is isolated from the deposition chamber 7 by the collection chamber side gate valve 13a, the substrate on which silicon oxide is deposited, or the deposited silicon oxide and the substrate 9a can be taken out from the collection chamber door 14 during continuous operation. it can. In parallel with this, a substrate 9b moved from the preparation chamber is disposed in the deposition chamber 7, and silicon oxide gas is introduced into the deposition chamber 7 for a desired time to deposit silicon oxide on the surface of the substrate 9b. The preparatory chamber 15 is kept at an appropriate temperature by the preheating mechanism 16, and is isolated from the deposition chamber 7 by the preparatory chamber side gate valve 13b. A new substrate 9c can be appropriately inserted from the preparatory chamber door 17 during continuous operation. Note that the substrate 9c may be the substrate 9a after the deposited silicon oxide is collected. The collection chamber 11, the deposition chamber 7, and the preparation chamber 15 may be decompressed by a vacuum pump.

上記製造方法及び装置によれば、基体を入れ替えることによって、酸化珪素を連続的に安定して、低コストで製造できる。   According to the manufacturing method and apparatus described above, silicon oxide can be manufactured continuously and stably at low cost by replacing the substrate.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
図1に示す連続製造装置を用いて酸化珪素を製造した。原料は、二酸化珪素粉末(平均粒径0.02μm、BET比表面積200m2/g)と金属珪素粉末(平均粒径10μm、BET比表面積3m2/g)を等量モルの割合で撹拌混合機を用いて混合した混合粉末であり、反応炉1内の反応室2(容積0.5m3)に20kgの混合原料粉を初期仕込した。次に、回収室側ゲート弁13a,準備室側ゲート弁13bを閉じた状態で、真空ポンプ18aを用いて炉内を10Pa以下に減圧した後、反応室ヒーター3に通電し、反応室2の温度を1,400℃に保持した。一方で、搬送管ヒーター8に通電し、搬送管6を1,400℃に保持すると共に、析出室ヒーター10に通電し、あらかじめ析出室7に入れておいたSUS製の基体9aを650℃に保持した。反応室の圧力上昇から、酸化珪素ガスが発生していることを確認できた。次に、原料供給機構5を作動させ、混合原料粉末を2kg/hの割合で連続供給した。その後も反応室圧力が安定していることから、連続反応していることを確認した。その間に準備室15には準備室扉17から基体9bを入れ、予熱機構16(ヒーター)により300℃に予熱しておいた。酸化珪素ガスが析出室7に導入されて、析出室7内で基体9a表面に酸化珪素固体が析出した。反応室が1,400℃に達してから4時間運転後、真空ポンプ18b,18cにより回収室11,準備室15を析出室7とほぼ同じ圧力になるまで減圧し、回収室側ゲート弁13a,準備室側ゲート弁13bを開き、基体9aを析出室7から回収室11へ移動すると同時に、基体9bを準備室15から析出室7へ移動し、回収室側ゲート弁13a,準備室側ゲート弁13bを再度閉じた。基体9aを析出室7から回収室11へ、基体9bを準備室15から析出室7へ移動し、次の基体9cが準備されている状態を図2に示す。基体9bは酸化珪素ガスにより持ち込まれる熱量と、さらに析出室ヒーター10で加熱され、5分後に基体9bの温度は650℃で安定した。一方、基体9aは酸化珪素ガスにより持ち込まれる熱量がなくなり、さらに冷却機構12で冷やされ、基体9aの温度は次第に低下した。2時間後に基体9aの温度が200℃まで低下したので、回収室11を大気圧に復圧し、回収室扉14から基体9aを取り出した。基体9a表面に付着した酸化珪素は熱収縮差により容易に剥離し、回収することができた。同時に準備室15も大気圧に復圧し、準備室扉17から準備室15に次の基体9cを入れた。上記運転を600時間連続して行った結果、酸化珪素は1.9kg/h(収率=95%)で回収された。このようにして得られた酸化珪素をボールミルで粉砕して得られた平均粒径D50が5μmの粉末は、BET比表面積8m2/g、純度99.9質量%以上の非晶質粉末であった。また、運転終了後、装置内を観察して特に問題がないことが確認された。
[Example 1]
Silicon oxide was manufactured using the continuous manufacturing apparatus shown in FIG. The raw material was a silicon dioxide powder (average particle size 0.02 μm, BET specific surface area 200 m 2 / g) and metal silicon powder (average particle size 10 μm, BET specific surface area 3 m 2 / g) in an equimolar mole ratio. 20 kg of mixed raw material powder was initially charged in the reaction chamber 2 (volume 0.5 m 3 ) in the reaction furnace 1. Next, with the recovery chamber side gate valve 13a and the preparation chamber side gate valve 13b being closed, the inside of the furnace is depressurized to 10 Pa or less using the vacuum pump 18a, and then the reaction chamber heater 3 is energized. The temperature was kept at 1,400 ° C. On the other hand, the transfer tube heater 8 is energized, the transfer tube 6 is held at 1,400 ° C., the deposition chamber heater 10 is energized, and the SUS substrate 9a previously placed in the deposition chamber 7 is heated to 650 ° C. Retained. From the pressure increase in the reaction chamber, it was confirmed that silicon oxide gas was generated. Next, the raw material supply mechanism 5 was operated, and the mixed raw material powder was continuously supplied at a rate of 2 kg / h. Since the reaction chamber pressure was stable after that, it was confirmed that the reaction was continuous. In the meantime, the base body 9b was put into the preparation chamber 15 from the preparation chamber door 17 and preheated to 300 ° C. by the preheating mechanism 16 (heater). Silicon oxide gas was introduced into the deposition chamber 7, and a silicon oxide solid was deposited on the surface of the substrate 9 a in the deposition chamber 7. After operating for 4 hours after the reaction chamber reaches 1,400 ° C., the recovery chamber 11 and the preparation chamber 15 are depressurized by the vacuum pumps 18b and 18c until the pressure is almost the same as that of the precipitation chamber 7, and the recovery chamber side gate valve 13a, The preparation chamber side gate valve 13b is opened, and the substrate 9a is moved from the deposition chamber 7 to the collection chamber 11, and at the same time, the substrate 9b is moved from the preparation chamber 15 to the precipitation chamber 7, and the collection chamber side gate valve 13a and the preparation chamber side gate valve are moved. 13b was closed again. FIG. 2 shows a state in which the substrate 9a is moved from the deposition chamber 7 to the recovery chamber 11, the substrate 9b is moved from the preparation chamber 15 to the deposition chamber 7, and the next substrate 9c is prepared. The substrate 9b was heated by the silicon oxide gas and the deposition chamber heater 10, and the temperature of the substrate 9b was stabilized at 650 ° C. after 5 minutes. On the other hand, the base body 9a loses the amount of heat brought in by the silicon oxide gas, and is further cooled by the cooling mechanism 12, and the temperature of the base body 9a gradually decreases. After 2 hours, the temperature of the base body 9a dropped to 200 ° C., so the recovery chamber 11 was restored to atmospheric pressure, and the base body 9a was taken out from the recovery chamber door. The silicon oxide adhering to the surface of the substrate 9a could be easily peeled off due to the difference in thermal shrinkage and recovered. At the same time, the preparatory chamber 15 was also restored to atmospheric pressure, and the next base 9c was put into the preparatory chamber 15 from the preparatory chamber door 17. As a result of continuously performing the above operation for 600 hours, silicon oxide was recovered at 1.9 kg / h (yield = 95%). The powder having an average particle diameter D 50 of 5 μm obtained by pulverizing the silicon oxide thus obtained with a ball mill is an amorphous powder having a BET specific surface area of 8 m 2 / g and a purity of 99.9% by mass or more. there were. In addition, it was confirmed that there was no particular problem by observing the inside of the apparatus after the operation was completed.

[比較例1]
特開2001−220123号公報の図1(図3)に示された連続製造装置を用いて酸化珪素粉末を製造した。原料は、実施例と同一の二酸化珪素粉末と金属珪素粉末の混合粉末であり、実施例1と同様に反応炉内の反応室(容積0.5m3)に20kgの混合原料粉を初期仕込した。次に、真空ポンプを用いて炉内を10Pa以下に減圧した後、ヒーターに通電し、実施例1と同じ1,400℃に昇温、保持した。一方で、搬送管を1,400℃に加熱、保持し、冷媒導入管に水を流入し、SUS製の基体を冷却した。次に、フィーダーを作動させ、混合原料粉末を2kg/hの割合で連続供給し、連続反応を行った。基体上に析出した酸化珪素は、超硬材であるタングステンカーバイド製のブレードをもつスクレーパーにより連続的に掻き取り、回収室に回収した。上記運転を120時間連続して行った時点で、酸化珪素は1.9kg/h(収率=95%)で回収された。このようにして得られた酸化珪素をボールミルで粉砕して得られた平均粒径D50が5μmの粉末は、BET比表面積8m2/g、純度99.9質量%以上の非晶質粉末であり、不純物元素として微量のタングステンが確認された。その後、連続運転が300時間を過ぎた時点から回収率が急激に低下し始めたため運転を終了し、装置内を観察したところ、スクレーパーの先端のブレードが磨耗し、これ以上は掻き取ることができない状態になっていた。
[Comparative Example 1]
Silicon oxide powder was manufactured using the continuous manufacturing apparatus shown by FIG. 1 (FIG. 3) of Unexamined-Japanese-Patent No. 2001-220123. The raw material was the same mixed powder of silicon dioxide powder and metal silicon powder as in the example, and 20 kg of mixed raw material powder was initially charged in the reaction chamber (volume 0.5 m 3 ) in the reaction furnace as in Example 1. . Next, after reducing the pressure in the furnace to 10 Pa or less using a vacuum pump, the heater was energized, and the temperature was raised to 1,400 ° C., which was the same as in Example 1. On the other hand, the conveyance pipe was heated and held at 1,400 ° C., water was introduced into the refrigerant introduction pipe, and the SUS substrate was cooled. Next, the feeder was operated, and the mixed raw material powder was continuously supplied at a rate of 2 kg / h to carry out a continuous reaction. The silicon oxide deposited on the substrate was continuously scraped by a scraper having a tungsten carbide blade, which is a super hard material, and recovered in a recovery chamber. When the above operation was continuously performed for 120 hours, silicon oxide was recovered at 1.9 kg / h (yield = 95%). The powder having an average particle diameter D 50 of 5 μm obtained by pulverizing the silicon oxide thus obtained with a ball mill is an amorphous powder having a BET specific surface area of 8 m 2 / g and a purity of 99.9% by mass or more. There was a trace amount of tungsten as an impurity element. After that, the recovery rate began to drop sharply after 300 hours of continuous operation, and the operation was terminated. When the inside of the apparatus was observed, the blade at the tip of the scraper was worn and no more could be scraped off. It was in a state.

1 反応炉
2 反応室
3 反応室ヒーター
4 混合原料粉末
5 原料供給機構
6 搬送管
7 析出室
8 搬送管ヒーター
9a、9b、9c 基体
10 析出室ヒーター
11 回収室
12 冷却機構
13a 回収室側ゲート弁
13b 準備室側ゲート弁
14 回収室扉
15 準備室
16 予熱機構
17 準備室扉
18a〜18d 真空ポンプ
101 反応炉
102 反応室
103 混合原料粉末
104 ヒーター
105 断熱材
106 原料供給機構
107 補給ホッパー
108 フィーダー
109 原料供給管
110 搬送管(搬送ライン)
111 析出槽
112 析出室
113 基体
114 冷媒導入管
115 冷媒排出管
116 掻き取り装置(回収機構)
117 回収管
118 回収槽
119 真空ポンプ
120 真空ポンプ
121 真空ポンプ
DESCRIPTION OF SYMBOLS 1 Reaction furnace 2 Reaction chamber 3 Reaction chamber heater 4 Mixed raw material powder 5 Raw material supply mechanism 6 Conveyance pipe 7 Deposition chamber 8 Conveyance pipe heater 9a, 9b, 9c Base | substrate 10 Deposition chamber heater 11 Collection chamber 12 Cooling mechanism 13a Collection chamber side gate valve 13b Preparation chamber side gate valve 14 Recovery chamber door 15 Preparation chamber 16 Preheating mechanism 17 Preparation chamber doors 18a to 18d Vacuum pump 101 Reactor 102 Reaction chamber 103 Mixed raw material powder 104 Heater 105 Heat insulating material 106 Raw material supply mechanism 107 Replenishment hopper 108 Feeder 109 Raw material supply pipe 110 Conveyance pipe (conveyance line)
111 Deposition tank 112 Deposition chamber 113 Base 114 Refrigerant introduction pipe 115 Refrigerant discharge pipe 116 Scraping device (recovery mechanism)
117 Recovery pipe 118 Recovery tank 119 Vacuum pump 120 Vacuum pump 121 Vacuum pump

Claims (7)

二酸化珪素粉末を含む混合原料粉末を反応させて酸化珪素ガスを生成させる反応室と、この反応室内に上記混合原料粉末を供給する原料供給機構と、上記酸化珪素ガスを酸化珪素固体としてその表面に析出させる2つ以上の基体と、上記基体に酸化珪素固体を析出させる析出室と、上記酸化珪素ガスを上記反応室から上記析出室に搬送する搬送管と、回収室と、酸化珪素固体を析出させる基体を配置する準備室とを具備し、上記析出室と回収室とが回収室側ゲート弁を介して連結され、上記析出室と準備室とが準備室側ゲート弁を介して連結されている、酸化珪素の製造装置。   A reaction chamber for reacting mixed raw material powder containing silicon dioxide powder to generate silicon oxide gas; a raw material supply mechanism for supplying the mixed raw material powder into the reaction chamber; and the silicon oxide gas as silicon oxide solid on the surface thereof Two or more substrates to be deposited, a deposition chamber for depositing a silicon oxide solid on the substrate, a transport pipe for transporting the silicon oxide gas from the reaction chamber to the deposition chamber, a recovery chamber, and a silicon oxide solid A deposition chamber and a recovery chamber are connected via a recovery chamber side gate valve, and the deposition chamber and the preparation chamber are connected via a preparation chamber side gate valve. An apparatus for producing silicon oxide. 請求項1記載の装置を用い、二酸化珪素粉末を含む混合原料粉末を反応室内に供給し、この反応室内で、常圧又は減圧下で1,200〜1,600℃に加熱して酸化珪素ガスを発生させ、反応室と同じ温度以上に保持された搬送管を通して、(1)回収室側ゲート弁及び準備室側ゲート弁を閉じた状態で、析出室内の基体表面に酸化珪素を析出させる工程、次いで(2)両ゲート弁を開いて、酸化珪素が析出した基体を、析出室から回収室へ移動させると共に、準備室に配置された基体を析出室に移動させた後、回収室側ゲート弁及び準備室側ゲート弁を閉じる工程、次いで(3)酸化珪素が析出した基体、又は析出した酸化珪素及び基体を、回収室から取り出すと共に、準備室に別の基体を配置する工程を有し、上記(2)工程に引き続き、準備室から移動した基体を用いて上記(1)工程を行い、上記(1)〜(3)工程を繰り返す酸化珪素の製造方法。   A mixed raw material powder containing silicon dioxide powder is supplied into a reaction chamber using the apparatus according to claim 1, and heated to 1,200 to 1,600 ° C. under normal pressure or reduced pressure in the reaction chamber to produce silicon oxide gas And (1) depositing silicon oxide on the surface of the substrate in the deposition chamber with the collection chamber side gate valve and the preparation chamber side gate valve closed, through a transfer tube maintained at the same temperature as the reaction chamber Next, (2) both gate valves are opened to move the substrate on which silicon oxide has been deposited from the deposition chamber to the collection chamber, and after moving the substrate disposed in the preparation chamber to the deposition chamber, the collection chamber side gate A step of closing the valve and the preparation chamber side gate valve, and then (3) a step of removing the silicon oxide-deposited substrate or the deposited silicon oxide and the substrate from the recovery chamber and disposing another substrate in the preparation chamber. Continued from step (2) above Perform the above (1) step using a substrate that has moved from the preparation chamber, (1) to (3) The method for producing a silicon oxide-repeating process. 混合原料粉末が二酸化珪素と金属珪素粉末との混合物である請求項2記載の製造方法。   The method according to claim 2, wherein the mixed raw material powder is a mixture of silicon dioxide and metal silicon powder. 析出室の基体の温度が200〜1,000℃である請求項2又は3記載の製造方法。   The method according to claim 2 or 3, wherein the temperature of the substrate in the deposition chamber is 200 to 1,000 ° C. さらに、得られた酸化珪素固体を粉砕し、得られた酸化珪素粉末の平均粒径が0.01〜30μmであり、BET比表面積が0.5〜30m2/gである請求項2〜4のいずれか1項に記載の製造方法。Further, the obtained silicon oxide solid is pulverized, and the silicon oxide powder obtained has an average particle size of 0.01 to 30 μm and a BET specific surface area of 0.5 to 30 m 2 / g. The manufacturing method of any one of these. 酸化珪素が、包装用フィルム蒸着用である請求項2〜5のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 2 to 5, wherein the silicon oxide is for packaging film deposition. 酸化珪素が、リチウムイオン二次電池負極活物質用である請求項2〜5のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 2 to 5, wherein the silicon oxide is used for a negative electrode active material for a lithium ion secondary battery.
JP2015508521A 2013-03-29 2014-03-25 Silicon oxide production apparatus and method Active JP5954492B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013072964 2013-03-29
JP2013072964 2013-03-29
PCT/JP2014/058206 WO2014157154A1 (en) 2013-03-29 2014-03-25 Method and apparatus for producing silicon oxide

Publications (2)

Publication Number Publication Date
JP5954492B2 true JP5954492B2 (en) 2016-07-20
JPWO2014157154A1 JPWO2014157154A1 (en) 2017-02-16

Family

ID=51624125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015508521A Active JP5954492B2 (en) 2013-03-29 2014-03-25 Silicon oxide production apparatus and method

Country Status (3)

Country Link
JP (1) JP5954492B2 (en)
TW (1) TW201504144A (en)
WO (1) WO2014157154A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4022050B1 (en) * 1962-06-22 1965-09-30
JPS63103814A (en) * 1986-10-17 1988-05-09 Kawasaki Steel Corp Apparatus for producing sio fine powder
WO1999033749A1 (en) * 1997-12-25 1999-07-08 Nippon Steel Corporation PROCESS FOR THE PREPARATION OF HIGH-PURITY Si AND EQUIPMENT THEREFOR
JP2001220123A (en) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd Continuous manufacturing method and continuous manufacturing device of silicon oxide powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091556A (en) * 2005-09-30 2007-04-12 Hitachi Zosen Corp Continuous production apparatus for carbon-based thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4022050B1 (en) * 1962-06-22 1965-09-30
JPS63103814A (en) * 1986-10-17 1988-05-09 Kawasaki Steel Corp Apparatus for producing sio fine powder
WO1999033749A1 (en) * 1997-12-25 1999-07-08 Nippon Steel Corporation PROCESS FOR THE PREPARATION OF HIGH-PURITY Si AND EQUIPMENT THEREFOR
JP2001220123A (en) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd Continuous manufacturing method and continuous manufacturing device of silicon oxide powder

Also Published As

Publication number Publication date
JPWO2014157154A1 (en) 2017-02-16
WO2014157154A1 (en) 2014-10-02
TW201504144A (en) 2015-02-01

Similar Documents

Publication Publication Date Title
JP3865033B2 (en) Continuous production method and continuous production apparatus for silicon oxide powder
JP5942897B2 (en) Continuous production method and production apparatus for silicon oxide precipitate
US20180178292A1 (en) Novel Methods of Metals Processing
WO2005123583A1 (en) Method for producing polycrystalline silicon and polycrystalline silicon for solar cell produced by the method
JP2001226112A (en) Highly active silicon oxide powder and its manufacturing method
JP5954492B2 (en) Silicon oxide production apparatus and method
JP5971406B2 (en) Silicon oxide production apparatus and method
TWI429792B (en) Method and apparatus for producing solid product
WO2014157160A1 (en) Method and apparatus for producing silicon oxide
JP5920172B2 (en) Manufacturing method of silicon oxide manufacturing apparatus, processing method of silicon oxide manufacturing apparatus, and manufacturing method of silicon oxide
JP2007223822A (en) Production apparatus for high purity polycrystal silicon
US20230322562A1 (en) Preparation method of high purity sic powder
JP2005225690A (en) METHOD AND APPARATUS FOR MANUFACTURING SiO
JP2001220124A (en) Device for manufacturing silicon oxide powder
JP6028702B2 (en) Method for producing silicon oxide
JP2009107896A (en) Process for production of silicon
KR20120095755A (en) Method of preparing feed seed for granular polycrystalline polysilicon preparation
JP3951107B2 (en) Porous silicon oxide powder
JP6468240B2 (en) Silicon monoxide manufacturing apparatus and manufacturing method
JP5574295B2 (en) High purity silicon fine powder production equipment
JP5001238B2 (en) Silicon manufacturing apparatus and method
JP2007099621A (en) Manufacture method of porous silicon oxide powder
KR20120007143A (en) The method of heating and melting for high purity metal particles using qrd microwave in cvd furnace
JP2011121799A (en) Method for producing polycrystalline silicon and reaction furnace for producing polycrystalline silicon

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5954492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150