JP5950715B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP5950715B2
JP5950715B2 JP2012140857A JP2012140857A JP5950715B2 JP 5950715 B2 JP5950715 B2 JP 5950715B2 JP 2012140857 A JP2012140857 A JP 2012140857A JP 2012140857 A JP2012140857 A JP 2012140857A JP 5950715 B2 JP5950715 B2 JP 5950715B2
Authority
JP
Japan
Prior art keywords
current
magnetic field
power supply
coil
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012140857A
Other languages
English (en)
Other versions
JP2014005762A (ja
Inventor
民田 太一郎
太一郎 民田
弘行 大須賀
弘行 大須賀
直嗣 山本
直嗣 山本
春貴 竹ヶ原
春貴 竹ヶ原
潤一郎 青柳
潤一郎 青柳
恭一 栗木
恭一 栗木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Mitsubishi Electric Corp
Tokyo Metropolitan University
Original Assignee
Kyushu University NUC
Mitsubishi Electric Corp
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Mitsubishi Electric Corp, Tokyo Metropolitan University filed Critical Kyushu University NUC
Priority to JP2012140857A priority Critical patent/JP5950715B2/ja
Publication of JP2014005762A publication Critical patent/JP2014005762A/ja
Application granted granted Critical
Publication of JP5950715B2 publication Critical patent/JP5950715B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電源装置に関する。
ホールスラスタは、環状の放電空間(チャネル空間)の一方(アノード電極側)からガスを導入し、放電空間内でガスをイオン化して加速し、放電空間の他方(カソード側)に出力する。このイオンの出力の反作用によってホールスラスタの推力が得られる。環状の放電空間には径方向に磁界が形成されており、カソードから放出され環状の放電空間に入った電子は、磁界の磁束によるホール効果のために、環状の放電空間の周方向にドリフトする。これによって、電子がガスを電離(イオン化)させてイオンが生成される。また、環状の放電空間には軸方向に電界が形成されているが、電子はホール効果により軸方向の動きが抑制されるので、生成されたイオンが選択的に軸方向に加速される。
ホールスラスタを安定に動作させる上での問題の1つとして、放電振動現象の発生が挙げられる。放電振動現象に関しては、いくつかの種類の振動現象があるが、そのうち、10kHz前後の周波数でアノード電流の電流波形が振動する放電振動と呼ばれる現象がある。放電振動は、ホールスラスタを搭載したシステムの安定性、信頼性および耐久性に重大な影響を及ぼす。このため、この放電振動を安定に制御することが必要である。
特許文献1には、アノード電極、磁場生成用コイル、及びガス流量調節器を有するホールスラスタを制御する電源装置において、アノード電流の振動の強さがアノード電圧とガス流量とコイル電流とに関係付けられた関数を実験的に得て、この関数に従ってアノード電圧とガス流量とコイル電流とを制御することが記載されている。これにより、特許文献1によれば、アノード電流の振動(放電振動)を抑制することができるとされている。
特開2007−177639号公報
特許文献1に記載されているように、アノード電圧とガス流量とコイル電流との組み合わせで、放電振動が十分に少なくなる安定制御領域が存在する。この安定制御領域の内部でアノード電圧とガス流量とコイル電流とを制御することで、放電振動の生じない安定な動作が可能になる。たとえばアノード電圧およびガス流量をある値に設定した場合、コイル電流を安定制御領域に設定することで、安定動作が可能になる。
しかしながら、この安定制御領域は、チャネル空間を形成する隔壁であるスラスタチャネルの状態に強く依存するため、ホールスラスタ(イオン加速装置)を長時間動作させた場合、この安定制御領域が変化してしまう。この経年的な変化は、1つにはスラスタチャネルの磨耗に起因する。
特許文献1に記載の技術は、ホールスラスタ及び電源装置の出荷前に、アノード電流の振動の強さがアノード電圧とガス流量とコイル電流とに関係付けられた関数を実験的に得て、電源装置に設定しておくものであると考えられる。このため、ホールスラスタ及び電源装置の出荷後に、ホールスラスタを長時間動作させてスラスタチャネルが経年的に変化した場合、放電振動の生じ方が大きく変化してしまい、スラスタを安定に動作させることが困難になる可能性がある。
この傾向は、アノードレイヤー型のホールスラスタについて特に顕著である。ホールスラスタには通常SPT型(Stationary Plasma Thruster)と呼ばれるマグネティックレイヤー型と、TAL型(Thruster with Anode Layer)と呼ばれるアノードレイヤー型の2種類があるが、TAL型は性能は良いものの、SPT型と比較して放電振動の抑制が難しく、実用化されていない。経年的に安定制御領域が変動しても放電振動を制御して十分に安定に動作できる方法があれば、原理的に性能の良いTAL型ホールスラスタの実用化が大きく前進することになる。
本発明は、上記に鑑みてなされたものであって、経年的にイオン加速装置の安定制御条件が変化してもスラスタを安定に動作できる電源装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかる電源装置は、アノード電極と、前記アノード電極に隣接して配され電流に応じて磁場を発生させる磁場発生部と、前記アノード電極側から前記アノード電極と前記磁場発生部との間のチャネル空間にガスを供給する供給部とを有するイオン加速装置を制御する電源装置であって、前記イオン加速装置は、前記チャネル空間に供給された電子をホール効果により前記ガスに作用させて前記チャネル空間内でイオン加速を行い、前記電源装置は、前記磁場発生部に供給する電流を制御する制御部を備え、前記制御部は、前記磁場発生部の少なくとも一部に供給される電流が、直流電流に交流電流が重畳された電流波形を有するように制御することを特徴とする。
本発明によれば、コイル電流を周期的に変動させることができ、スラスタチャネルの状態によらず、コイル電源のパルス動作に同期してアノード電流を振動動作させることができる。これにより、経年的にイオン加速装置の安定制御条件が変化してもスラスタを安定に動作させることができる。
図1は、実施の形態1にかかる電源装置の構成を示す図である。 図2は、実施の形態1におけるイオン加速装置の構成を示す図である。 図3は、実施の形態1における放電振動の現象を示す図である。 図4は、実施の形態1における安定制御領域を示す図である。 図5は、実施の形態1にかかる電源装置の動作を示す図である。 図6は、実施の形態1にかかる電源装置の動作を示す図である。 図7は、実施の形態1にかかる電源装置の動作を示す図である。 図8は、実施の形態2にかかる電源装置の動作を示す図である。 図9は、実施の形態2にかかる電源装置の動作を示す図である。 図10は、実施の形態4にかかる電源装置の構成を示す図である。 図11は、実施の形態5にかかる電源装置の構成を示す図である。 図12は、実施の形態6にかかる電源装置の構成を示す図である。 図13は、実施の形態1〜6の変形例における交流電流生成回路の構成を示す図である。 図14は、実施の形態1〜6の変形例における交流電流生成回路の構成を示す図である。 図15は、実施の形態1〜6の変形例におけるイオン加速装置の構成を示す図である。
以下に、本発明にかかる電源装置の実施の形態を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
実施の形態1.
実施の形態1にかかる電源装置100について説明する。図1は、電源装置100の構成を示す図である。
電源装置100は、イオン加速を行うための放電機器であるイオン加速装置10に用いる電源装置である。イオン加速装置10は、例えば、人工衛星などに搭載される電気推進装置であり、例えば、図1に示すようなSPT型(Stationary Plasma Thruster)のホールスラスタである。
電源装置100は、イオン加速装置10及びカソード部20を制御する。カソード部20は、電子を発生させてイオン加速装置10へ供給する。イオン加速装置10は、供給された電子を用いてイオンを発生させ加速させる。
イオン加速装置10は、例えば、環状の装置であり(図2参照)、図1では、イオン加速装置10の中心軸を通り、中心軸に平行な面でのイオン加速装置10の断面図を示し、図2では、イオン加速装置10を図1のA−A線で切った場合の断面図を示している。
イオン加速装置10は、図1及び図2に示すように、アノード電極12、磁場発生部11、ガス供給部15、チャネル内壁16、及びチャネル外壁17を有する。
アノード電極12は、例えば、中空円盤状の導体板で形成されている。アノード電極12は、イオン加速装置10の軸方向におけるガス供給部15側に配されている。アノード電極12は、アノード電極12と磁場発生部11との間の環状のチャネル空間18に面している。
アノード電極12は、電源装置100から供給されるアノード電流Iaと、電源装置100により印加されるアノード電圧Vaとに従って、アノード電極12からイオン加速装置10の軸方向に沿って離れる電界を発生させる。
磁場発生部11は、アノード電極12に隣接した位置に配されている。すなわち、磁場発生部11は、内部コイル13、外部コイル14、ヨーク32、及びポールピース19を有する。内部コイル13は、アノード電極12の内側でアノード電極12に隣接し、例えば、アノード電極12の内側からイオン加速装置10の軸方向に沿ってカソード部20側に延びた略円柱形状を有している。外部コイル14は、アノード電極12の外側でアノード電極12に隣接し、例えば、アノード電極12の外側からイオン加速装置10の軸方向に沿ってカソード部20側に延びた略円筒形状のものが、一般に複数個、チャネル外壁17の外側に配置されている。
内部コイル13及び外部コイル14は、ポールピース19を介してそれぞれ電源装置100から供給されるコイル電流Icに従って、環状のチャネル空間18を径方向に貫く磁場を発生させる。ポールピース19は、チャネル空間18の出力端近傍において、内部コイル13及び外部コイル14に対応して設けられている。ポールピース19は、例えば、内部コイル13及び外部コイル14におけるチャネル空間18の出力端側を覆う。
ガス供給部15は、アノード電極12側から環状のチャネル空間18にガスを供給する。すなわち、ガス供給部15は、イオン化させるべきガスをチャネル空間18に供給する。イオン化させるべきガスは、例えば、Xeガスである。
ガス供給部15は、例えば、供給管15a及びガス流量調節器15bを有する。供給管15aは、アノード電極12に設けられた供給口15a1を介してチャネル空間18に連通されている。ガス流量調節器15bは、ガス供給源(図示せず)と供給管15aとの間に設けられ、ガス供給源から供給管15aへ導かれるガスの流量を調節する。ガス流量調節器15bは、例えば、開度を調整可能な調整弁である。
チャネル内壁16は、アノード電極12の内側側方からイオン加速装置10の軸方向に沿ってカソード部20側に延びた略円筒形状を有している。
チャネル外壁17は、アノード電極12の外側側方からイオン加速装置10の軸方向に沿ってカソード部20側に延びた略円筒形状を有している。
カソード部20は、イオン加速装置10の略軸方向に沿ってアノード電極12から離間した位置に配されている。カソード部20は、チャネル空間18の出力端に隣接した位置に配されている。
カソード部20は、例えば、ホローカソード21、供給管22、及びガス流量調節器23を有する。供給管22は、ホローカソード21内の空間に連通されている。ガス流量調節器23は、ガス供給源(図示せず)と供給管22との間に設けられ、ガス供給源から供給管22へ導かれるガスの流量を調節する。ガス流量調節器23は、例えば、開度を調整可能な調整弁である。すなわち、供給管22及びガス流量調節器23は、電子を発生させるために用いるガスをホローカソード21内の空間に供給する。電子を発生させるために用いるガスは、例えば、Xeガスである。ホローカソード21は、その空間に面した位置にヒータ21aを有し、供給されたガスをヒータ21aで加熱して電子を発生させる。ホローカソード21は、発生させた電子をチャネル空間18内及びチャネル空間18の出力端近傍へ供給する。
チャネル空間18は、チャネル内壁16、チャネル外壁17、及びアノード電極12に囲まれて形成された例えば略円筒状の空間である。このチャネル空間18の一方(図1の下方)からチャネル空間18内にガス供給部15によりガスが供給される。このとき、カソード部20からチャネル空間18内に電子も供給され、供給された電子は、磁場発生部11で発生された径方向の磁界の磁束によるホール効果のために、環状のチャネル空間18内を周方向にドリフトする。これによって、電子がガスを電離(イオン化)させてイオンを生成する。
チャネル空間18内でガスが電離(イオン化)されて生成されたイオンは、アノード電極12で発生された軸方向の電界により加速され、他方(図1の上方)から出力される。このイオンの出力の反作用によってイオン加速装置10の推力が得られる。
イオンを加速するために、アノード電極12にアノード電流Iaが供給され、それに応じて、陰極であるホローカソード21とアノード電極12との間にアノード電圧Vaが印加される。イオンを選択的かつ効率的に加速するために、電子は、上記のホール効果により軸方向の動きが抑制され環状のチャネル空間18内に閉じ込められる。
この磁場は、環状のチャネル空間18の内部および外部に設けられた電磁石すなわち内部コイル13及び外部コイル14によって形成され、チャネル空間18の出口付近のポールピース19によって、円環の半径方向にほぼ均一に印加されるように設計されている。内部コイル13、外部コイル14、ヨーク32、及びポールピース19を含む磁気回路の設計によって、例えば、チャネル空間18の出口付近の磁束密度が例えば最も高くなるように設計されている。
電磁石は内部(内部コイル13)だけ、あるいは外部(外部コイル14)だけ、あるいは一部が永久磁石で構成されている場合もある。一般には、内部および外部の電磁石に流れるコイル電流Icによって磁束密度を変化させる。このとき、コイル電流Icは、直流電流によって駆動され、この電流源の電流を制御することによってチャネル内部に形成される磁束密度を制御することが一般的である。
イオン加速装置10(例えば、ホールスラスタ)は、イオンを選択的に加速して噴射するものであるので、同時に電子を噴射して電気的中性を保つための電子源が必要である。図1に示すホローカソード21がこの電子源である。イオン加速装置10のアノード電極12には、ホローカソード21に対して例えば200〜300V程度の正の電圧が印加され、この電位差によりチャネル空間18内部に生じた電界によってイオンが加速される。このようなイオン加速装置10のシステムでは、イオン加速装置10およびカソード部20を駆動し、制御するための電源および制御システムが必要である。
電源装置100は、主電源110、電源処理部120、ガス制御部130、及び主制御部140を有する。主電源110は、主電源を発生させ、電源処理部120へ供給する。電源処理部120は、供給された主電源を用いて、所定の電源を生成しイオン加速装置10及びガス制御部130へ供給する。ガス制御部130は、電源処理部120から供給された電源を用いて動作し、イオン加速装置10及びカソード部20におけるガスの流量を制御する。主制御部140は、主電源110、電源処理部120、及びガス制御部130の各部を全体的に制御する。
電源処理部120は、アノード電源122、内部コイル電源123、外部コイル電源124、ヒータ電源126、及びキーパ電源127を有する。ガス制御部130は、ガス流量制御装置131及びガス流量制御装置132を有する。
電源装置100は、例えば、アノード電極12と、磁場生成用コイルである内部コイル13および外部コイル14と、ガス流量調節器15bとを制御する。アノード電源122は、アノード電極12へアノード電圧Vaを印加する。コイル電源である内部コイル電源123および外部コイル電源124は、磁場生成用コイルである内部コイル13および外部コイル14へコイル電流Icを流す。ガス流量制御装置131は、ガス流量調節器15bを介してガス流量を調整する。主制御部140は、アノード電極12へ印加されるアノード電圧Vaと磁場生成用コイルである内部コイル13および外部コイル14へ流されるコイル電流Icとガス流量調節器15bを介して流されるガス流量とを制御してイオン加速装置10のイオン加速量を調整し、少なくともアノード電圧とコイル電流とに関係付けられた関数に従ってアノード電圧とコイル電流とガス流量とを制御する。
ガス流量制御装置131は、主制御部140からの指令に従ってイオン加速装置10のガス導入部におけるガス流量を制御する。また、主制御部140からの指令に従って内部コイル電源123および外部コイル電源124は、内部コイル13および外部コイル14に流れるコイル電流Icを制御する。内部コイル13および外部コイル14には、通常は一定の直流電流であるコイル電流Icを流し、このコイル電流Icによってチャネル空間(イオン加速領域)18内に一定の磁界が形成される。内部コイル電源123および外部コイル電源124によって、内部コイル13に流れる電流および外部コイル14に流れる電流は、それぞれ独立して設定することができ、これによってチャネル空間(イオン加速領域)18内の磁束密度の微調整および磁界分布の微調整を行うことができる。
アノード電源122は、アノード電極12に印加するアノード電圧を制御する。通常、定常運転時には、略一定値すなわち直流のアノード電圧Vaがアノード電極12へ印加される。アノード電圧Vaによってイオンが加速され、イオン加速装置10の推力が得られる。また、通常、アノード電圧Vaは100〜400Vの範囲の中で設定される。加速されたイオンによるイオン電流および放電空間内の電子の移動による電子電流は、回路上ではアノード電源122によって流されることになる。このため、アノード電源122は、イオン加速装置10の推力を得るためのエネルギを供給する部分であり、イオン加速装置10のシステムでは最も容量の大きな電源である。
電子源であるホローカソード21は、ホローカソード21に供給されるガスの流量を制御するためのガス流量制御装置132、ホローカソード21の陰極を過熱するためのヒータ電源126、およびホローカソード21からの電子の流れを安定に維持するためのキーパ電源127によって制御されている。
イオン加速装置10を駆動するための主制御部140は、イオン加速装置10を搭載する人工衛星のシステム(図示せず)または地上からの指令(図示せず)によって制御されている。本実施の形態では、主制御部140によって、少なくとも、アノード電源122、コイル電源123、124およびガス流量制御装置131、132が制御されている。
例えば、アノード電極12とホローカソード21との間には、上記のように直流のアノード電圧Vaが印加される。このとき、直流のアノード電圧Vaを印加しているにもかかわらず、アノード電極12に供給されるアノード電流Iaが激しく振動するという現象が発生する。これがいわゆる放電振動の現象である。図3はその様子を示したものである。図3において、縦軸はアノード電圧Va及びアノード電流Iaそれぞれの振幅を示し、横軸は時間を示す。アノード電圧Vaは略一定値で安定しているがアノード電流Iaが大きく変動している。電源のインピーダンスが十分に大きくない場合は電流の変動の影響を受けてアノード電圧が若干変動するが、通常その変動は十分小さくなるように設計される。
この変動現象は理論的には詳細な説明が行われているが、そもそもの原因はイオン加速装置10内部(チャネル空間18内)の中性粒子の枯渇による電子密度の変動であり、非常に単純に言えば放電が点いたり消えたりしている、という現象である。この振動の周波数はイオン加速装置10の放電に関するさまざまなパラメータに依存しており、したがって周波数はコイル電流やガス流量などの運用条件、スラスタチャネル(すなわち、チャネル空間を形成する隔壁)の状態、経年劣化などによって変動しうる。
さて、コイル電流Icはイオン加速装置10のチャネル空間18の内部に磁束を形成し、この磁束の強さが振動の強さに影響する。横軸にコイル電流Icすなわち磁束密度をとり、縦軸に放電振動の強さをとると、図4のような曲線になる。振動が少ない領域が安定制御領域SCRで、通常はこの安定制御領域SCRにコイル電流Icを制御することで、安定な動作を得る。
しかし、この安定制御領域SCRは、チャネル空間18を形成する隔壁であるスラスタチャネル(すなわち、図1に示すチャネル内壁16、チャネル外壁17、及びアノード電極12)の状態に強く依存するため、イオン加速装置10を長時間動作させた場合、この安定制御領域SCRが変化あるいは消滅してしまう。安定制御領域SCRの経年的な変化は、1つにはスラスタチャネルの磨耗に起因する。
ここで、仮に、イオン加速装置10、カソード部20、及び電源装置100を含むシステムの出荷前に、アノード電流の振動の強さがアノード電圧とガス流量とコイル電流とに関係付けられた関数を実験的に得て、電源装置100に設定しておく場合を考えられる。この場合、イオン加速装置10、カソード部20、及び電源装置100を含むシステムの出荷後に、イオン加速装置10を長時間動作させてスラスタチャネル(チャネル内壁16、チャネル外壁17、及びアノード電極12)が経年的に変化した場合、それに応じて、放電振動を抑制する安定制御領域SCRも変化してしまい、放電振動を安定的に制御することが困難になる傾向にある。
そこで、本実施の形態では、磁場発生部11へ供給するコイル電流Icの一部または全部を、ある幅で変動させることを考える。すなわち、電源装置100の主制御部140は、磁場発生部11の少なくとも一部(例えば、内部コイル13及び外部コイル14の少なくとも一方)に供給されるコイル電流Icが、直流電流に交流電流が重畳された電流波形(図5〜図7参照)を有するように制御する。
コイル電流を変動させることは次のような効果がある。先にも述べたように、ホールスラスタのチャネル内部の放電生成領域では周期的に中性粒子が枯渇し、このため放電電流がパルス的に変動している。この状態で、その変動の周期と近い周期で磁場に強弱の変動を与えることで、まず、中性粒子が枯渇しそうになるときには磁場強度を上げて電子温度を抑制し、電子の流入を抑制することができる。一方、中性粒子が増加しそうになると磁場強度を下げて電子温度を上昇させ、電子の流入を助長する。磁場の強度を周期的に変動させてこのような動作を繰り返し行うことで、中性粒子の変動つまりは放電電流の変動を安定に生じさせることができ、ホールスラスタの性能を改善することができる。
具体的には、例えば、内部コイル13に供給される電流が、直流電流に交流電流が重畳された電流波形を有するように制御される場合、電源装置100の内部コイル電源123は、直流電流源123a、交流電流源123b、及び合成部123cを有する。直流電流源123aは、主制御部140による制御のもと、直流電流を発生させる。交流電流源123bは、主制御部140による制御のもと、交流電流を発生させる。合成部123cは、直流電流源123aにより発生された直流電流に、交流電流源123bにより発生された交流電流を重畳させて、コイル電流Icを合成する。合成部123cは、合成されたコイル電流Icを内部コイル13へ供給する。
あるいは、例えば、外部コイル14に供給される電流が、直流電流に交流電流が重畳された電流波形を有するように制御される場合、電源装置100の外部コイル電源124は、直流電流源124a、交流電流源124b、及び合成部124cを有する。直流電流源124aは、主制御部140による制御のもと、直流電流を発生させる。交流電流源124bは、主制御部140による制御のもと、交流電流を発生させる。合成部124cは、直流電流源124aにより発生された直流電流に、交流電流源124bにより発生された交流電流を重畳させて、コイル電流Icを合成する。合成部124cは、合成されたコイル電流Icを外部コイル14へ供給する。
主制御部140により、例えば、図4に示す変動範囲Aでコイル電流Icを変動させた場合(図5参照)、コイル電流Icつまり磁束密度が弱いときに振動が強くなる。磁束が弱くなり電子の速度を抑制できなくなるため、振動が生じやすくなる、と考えられる。これはつまり一定の周期で振動の生じやすい状況が発生するわけで、したがって、アノード電流Iaの波形は、図5に示すように、コイル電流Icの弱いところで強くなるような形状になると思われる。これは、磁束密度でQスイッチをかけたようなものとみなすことができる。図5に示すコイル電流Icの波形WV1は、直流電流DC1に例えば三角波の交流電流AC1が重畳された電流波形である。なお、図5の横軸は、時間である。
あるいは、例えば、図4に示す変動範囲Bでコイル電流Icを変動させた場合(図6参照)、アノード電流Iaは図6に示すように、コイル電流Icの強いところで高くなるような振動波形になると考えられる。図6に示すコイル電流Icの波形WV2は、直流電流DC2に例えば三角波の交流電流AC2が重畳された電流波形である。なお、図6の横軸は、時間である。
なお、図5及び図6では、コイル電流Icの波形は、スイッチングで生成することを念頭に直流電流に重畳される交流電流を三角波形で示しているが、直流電流に重畳される交流電流の波形は、パルス的な波形でもよいし、正弦波の波形でもかまわない。例えば、図7は、正弦波に近い波形の交流電流を直流電流に重畳した電流波形のコイル電流Icを変動範囲Aで印加した場合を示す。図7に示すコイル電流Icの波形WV3は、直流電流DC3に例えば略正弦波の交流電流AC3が重畳された電流波形である。なお、図7の横軸は、時間である。
あるいは、例えば、レベルがゼロである直流電流に、最低値がゼロあるいは一部マイナスに振れているような矩形波、あるいは正弦波などの波形の交流電流を重畳させたコイル電流Icを磁場発生部11の少なくとも一部に供給してもかまわない。
以上のように、実施の形態1では、電源装置100の主制御部140は、磁場発生部11の少なくとも一部に供給されるコイル電流Icが、直流電流に交流電流が重畳された電流波形(図5〜図7参照)を有するように制御する。これにより、コイル電流を周期的に変動させることができ、スラスタチャネル(チャネル内壁16、チャネル外壁17、及びアノード電極12)の状態によらず、コイル電源の駆動周期に同期してアノード電流を振動動作させることができる。すなわち、イオン加速装置10が自分で勝手に振動を始めるのではなく、その振動のしやすさを外部から変調することができる。これにより、放電振動の周期を外部から制御できるため、イオン加速装置10を安定に制御することができる。すなわち、経年的にイオン加速装置10の安定制御領域SCRが変動しても放電振動を安定的に制御できる。
また、実施の形態1では、直流電流に重畳される交流電流の周波数は、イオン加速装置10の放電振動の周波数と略同じ値を有する。これにより、放電振動の周期をコイル電源の駆動周期に同期したものに制御することが容易になる。
実施の形態2.
次に、実施の形態2にかかる電源装置について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態1では、直流電流に重畳される交流電流の周波数がイオン加速装置10の放電振動の周波数と略同じ値を有するが、実施の形態2では、直流電流に重畳される交流電流の周波数がイオン加速装置10の放電振動の周波数から若干ずれた値を有する。
例えば、イオン加速装置10の放電振動の周期とは、直流の電圧を印加してイオン加速装置10を動作させた場合にアノード電流が振動する周波数であると定義することができる。この周波数は、イオン加速装置10の放電に関するさまざまなパラメータに依存しているが、イオン加速装置10の構造や大きさが決まれば概ね近い値になり、大きく変動するわけではない。このイオン加速装置10の放電が振動しやすい周波数で、コイル電流すなわち磁束密度を変動させるため、イオン加速装置10の放電状態とコイル電源とを安定して同期させることができる。もっとも、同じような周波数で駆動するが、厳密には同じ周波数か、少し高い周波数か、少し低い周波数かで現象が若干違ってくる。
実施の形態1では、コイル電源の周波数をイオン加速装置10の振動周波数とほぼ同じに設定した場合のコイル電流とアノード電流との波形の例を図5〜図7に示している。放電が周期的に変動しやすい周波数を選んでいるので、安定的にコイル電源の周波数に同期させることができる。
一方、実施の形態2では、例えば、イオン加速装置10の本来の振動周波数よりも高い周波数でコイル電源を変動させた場合、コイル電流Icとアノード電流Iaとの波形は、図8に示すようなものになる。放電が成長をはじめるよりも若干早くコイル電流Icが小さくなり放電がしやすくなるので、コイル電流Icに対してアノード電流Iaが遅れる遅れ位相の状態になる。電源の変動が積極的に放電の成長を促すような形になるので、安定性が向上すると思われる。なお、図8に示すコイル電流Icの波形WV4は、直流電流DC4に例えば三角波の交流電流AC4が重畳された電流波形である。また、図8の横軸は、時間である。
あるいは、例えば、イオン加速装置10の本来の振動周波数よりも低い周波数で電源を変動させた場合、コイル電流Icとアノード電流Iaとの波形は、図9に示すようなものになる。コイル電流Icが低くなるよりも前に放電が変動し始めているため、コイル電流Icに対してアノード電流Iaが進む進み位相の状態になる。放電の変化を磁束の変化が助長するような状態になる。なお、図9に示すコイル電流Icの波形WV5は、直流電流DC5に例えば三角波の交流電流AC5が重畳された電流波形である。また、図9の横軸は、時間である。
このように、実施の形態2では、直流電流に重畳される交流電流の周波数がイオン加速装置10の放電振動の周波数から若干ずれた値を有する。この場合も、放電振動の周期をコイル電源の駆動周期に同期したものに制御することができる。
なお、図7及び図8では、コイル電流Icの波形は、スイッチングで生成することを念頭に直流電流に重畳される交流電流を三角波形で示しているが、直流電流に重畳される交流電流の波形は、パルス的な波形でもよいし、正弦波の波形でもかまわない。あるいは、例えば、レベルがゼロである直流電流に、最低値がゼロあるいは一部マイナスに振れているような矩形波、あるいは正弦波などの波形の交流電流を重畳させたコイル電流Icを磁場発生部11の少なくとも一部に供給してもかまわない。
実施の形態3.
次に、実施の形態3にかかる電源装置について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態1では、イオン加速装置10の磁気回路の材料を特に限定していないが、イオン加速装置10のコイル電流Icを直流電流に交流電流が重畳されたものとする場合、イオン加速装置10の磁気回路の全部または一部に、この交流電流の周波数でも十分な透磁率があるような高周波用の磁性材料を用いる必要がある。
すなわち、通常の電磁石コイルでは、直流の電流を流すため、周波数特性は特に必要なく、たとえば電磁軟鉄のような磁性材料が用いられる。しかしながら電磁軟鉄は、直流電流に重畳させる交流電流の周波数として想定される数kHz以上の周波数では透磁率がほとんど1になってしまうので、インダクタンス値としても十分な値を得ることが困難になる。また、コイルにより形成させる磁束密度も数kHzの変動に追従させることが困難になる。
そこで、実施の形態3では、直流電流に交流電流が重畳されたコイル電流Icを供給する磁場発生部11における部分(又は全体)を含む磁気回路(すなわち、図1に示す内部コイル13、外部コイル14、ヨーク32、及びポールピース19により形成される磁束の通る回路)の少なくとも一部を、高周波用の磁性材料で形成する。
そのような高周波用の磁性材料は、例えばフェライト、アモルファス、ダストなどの材料である。フェライトは、例えばソフトフェライトであり、例えば、マンガン亜鉛フェライト、ニッケル亜鉛フェライト、又は銅亜鉛フェライトなどである。フェライトは、例えば、軟磁性体の粉末を成型・焼成して製造される。アモルファスは、例えばアモルファス合金であり、例えば軟磁性体を溶融させ急冷して製造される。ダストは、例えばセンダストであり、軟磁性体のバルクを粉末(ダスト)にして押し固めて製造される。
このように、実施の形態3では、直流電流に交流電流が重畳されたコイル電流Icを供給する磁場発生部11の部分を含む磁気回路における少なくとも一部を、高周波用の磁性材料で形成する。これにより、直流電流に交流電流が重畳されたコイル電流Icを磁場発生部11の少なくとも一部に供給する場合に、その少なくとも一部に対する高周波特性を向上できる。
実施の形態4.
次に、実施の形態4にかかる電源装置について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態1では、直流電流に交流電流が重畳されたコイル電流Icを磁場発生部11の少なくとも一部に供給しているが、実施の形態4では、磁場発生部11iの一部に直流電流を供給し他の一部に交流電流を供給する。
具体的には、図10に示すように、磁場発生部11iにおける外部コイル14iを、第1の磁場発生要素14aと第2の磁場発生要素14bとに分割し、第1の磁場発生要素14aに直流電流を供給し第2の磁場発生要素14bに交流電流を供給する。すなわち、電源装置100iの外部コイル電源124iは、直流電流源124i1及び交流電流源124i2を有する。直流電流源124i1は、第1の磁場発生要素14aに直流電流を供給する。交流電流源124i2は、第2の磁場発生要素14bに交流電流を供給する。
イオン加速装置10(例えば、ホールスラスタ)ではひとつの磁気回路に複数のコイルが設けられていることが多いが、この一部のコイルに、あるいはインダクタンスを調節するために、コイルを複数に分割することによって、その一部に交流波形を印加することができる。これにより、目的に適した磁束密度の変化を得ることができる。
このように、実施の形態4では、電源装置100iの主制御部140が、第1の磁場発生要素14aに直流電流が供給され、第2の磁場発生要素14bに交流電流が供給されるように制御する。これにより、磁場発生部11iにより発生される磁束の変化は、全体として、直流的な成分+周期的な変動となる。すなわち、実施の形態4によっても、コイル電流を周期的に変動させることができ、スラスタチャネル(チャネル内壁16、チャネル外壁17、及びアノード電極12)の状態によらず、コイル電源のパルス動作に同期してアノード電流を振動動作させることができる。
実施の形態5.
次に、実施の形態5にかかる電源装置について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態1では、直流電流に交流電流が重畳されたコイル電流Icを磁場発生部11の少なくとも一部に供給しているが、実施の形態5では、磁場発生部11jの一部に直流電流を供給し他の一部に交流電流を供給する。
具体的には、図11に示すように、磁場発生部11jは、第1の磁場発生要素11j1と第2の磁場発生要素11j2とを有する。第1の磁場発生要素11j1は、内部コイル13を有し、第2の磁場発生要素11j2は、外部コイル14を有する。そして、内部コイル13に直流電流を供給し外部コイル14に交流電流を供給する。すなわち、電源装置100jの内部コイル電源123jは、直流電流源123j1を有する。外部コイル電源124jは、交流電流源124j1を有する。直流電流源123j1は、内部コイル13に直流電流を供給する。交流電流源124j1は、外部コイル14に交流電流を供給する。
このように、実施の形態5では、電源装置100jの主制御部140が、第1の磁場発生要素11j1に直流電流が供給され、第2の磁場発生要素11j2に交流電流が供給されるように制御する。これにより、磁場発生部11jにより発生される磁束の変化は、全体として、直流的な成分+周期的な変動となる。すなわち、実施の形態5によっても、コイル電流を周期的に変動させることができ、スラスタチャネル(チャネル内壁16、チャネル外壁17、及びアノード電極12)の状態によらず、コイル電源のパルス動作に同期してアノード電流を振動動作させることができる。
実施の形態6.
次に、実施の形態6にかかる電源装置について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態1では、直流電流に交流電流が重畳されたコイル電流Icを磁場発生部11の少なくとも一部に供給しているが、実施の形態6では、磁場発生部11kの一部に直流電流を供給し他の一部に交流電流を供給する。
具体的には、図12に示すように、磁場発生部11kは、内部コイル13及び外部コイル14に加えて第3のコイル31kを有する。第3のコイル31kは、例えばアノード電極12の近傍に配され、例えば、トリムコイルである。すなわち、磁場発生部11kは、第1の磁場発生要素11k1と第2の磁場発生要素11k2とを有する。第1の磁場発生要素11k1は、第3のコイル31kを有し、第2の磁場発生要素11k2は、外部コイル14を有する。そして、第3のコイル31kに直流電流を供給し外部コイル14に交流電流を供給する。
すなわち、電源装置100kは、第3のコイル電源125kをさらに有する。第3のコイル電源125kは、直流電流源125k1を有する。外部コイル電源124kは、交流電流源124k1を有する。直流電流源125k1は、第3のコイル電源125kに直流電流を供給する。交流電流源124k1は、外部コイル14に交流電流を供給する。
このように、実施の形態6では、電源装置100kの主制御部140が、第1の磁場発生要素11k1に直流電流が供給され、第2の磁場発生要素11k2に交流電流が供給されるように制御する。これにより、磁場発生部11kにより発生される磁束の変化は、全体として、直流的な成分+周期的な変動となる。すなわち、実施の形態6によっても、コイル電流を周期的に変動させることができ、スラスタチャネル(チャネル内壁16、チャネル外壁17、及びアノード電極12)の状態によらず、コイル電源のパルス動作に同期してアノード電流を振動動作させることができる。
また、実施の形態6では、内部の磁束分布の制御をより積極的に行うことができるので、推進効率を改善できる。
実施の形態7.
次に、実施の形態7にかかる電源装置について説明する。以下では、実施の形態1〜6と異なる部分を中心に説明する。
実施の形態1〜6では、磁場発生部の全部または一部に、交流電流あるいは直流電流を重畳させた交流電流を流すというものであるが、実施の形態7では、磁場発生部の全部または一部に、交流電流あるいは直流電流を重畳させた交流電流を流すのと並行して(例えば、同時に)、アノード電圧にも直流電圧を重畳させた交流電圧波形を印加する。これにより、さらに独自の効果を得ることができる。本実施の形態ではそのことについて説明する。
磁場電流を振ると、たとえば磁場を安定制御領域SCRよりも弱くすると電子電流が増加し、イオン加速装置10(例えば、ホールスラスタ)の推進性能が低下してしまう。したがって磁場を変動させる効果をより限定して用いて、アノード電圧Vaを変動させることで効率的な加速を行うことが考えられる。具体的には、磁場を減らしてプラズマを生成し、放電が開始して電流が流れ始めたところで、その電流のピークを抑えるために、アノード電圧Vaを抑える、というような制御が考えられる。このように、磁場電流とアノード電圧の両方を、並行して(例えば、同時に)、同じ周波数でしかるべき位相差で制御することで、高い推進性能を得ることが可能である。
なお、上記の実施の形態1〜7において、交流電流の波形を生成するための回路(交流電流源)として、例えば、図13に示すハーフブリッジ回路を用いてもよい。例えば、主電源110に対して、トランジスタTr1及び還流ダイオードD1を含むスイッチSW1と、トランジスタTr2及び還流ダイオードD2を含むスイッチSW2とが直列に接続され、この直列接続に対して、スイッチSW1及びスイッチSW2の間のノードN1とスイッチSW2及び主電源110の間のノードN2との間でコンデンサC1及びリアクトルL1の直列接続が並列に接続される。この構成では、負荷であるリアクトルL1に直列にコンデンサC1を付加することで、電力を効率的に用いることができる。但し、この場合は直流電流を流すことはできないので、交流電流のみを流す回路となる。リアクトルL1とコンデンサC1の値の調整によって電流波形は、正弦波に近いものから、三角波に近い波形になる。この波形は、共振を利用しているため、コンデンサの容量と同時に、周波数にも依存する。
あるいは、交流電流の波形を生成するための回路(交流電流源)として、例えば、図14に示すフルブリッジ回路を用いてもよい。例えば、主電源110に対して、トランジスタTr3及び還流ダイオードD3を含むスイッチSW3と、整流ダイオードD5とが直列に接続される。この直列接続に対して、主電源110及びスイッチSW3の間のノードN3と主電源110及び整流ダイオードD5の間のノードN4との間で、整流ダイオードD6とトランジスタTr4及び還流ダイオードD4を含むスイッチSW4との直列接続が並列に接続される。さらに、スイッチSW3及び整流ダイオードD5の間のノードN5と整流ダイオードD6及びスイッチSW4の間のノードN6との間にリアクトルL2が並列に接続される。この構成では、スイッチの調整によって、直流成分を含む電流も流すことができる。この回路ではコンデンサは用いられていないので、流れる電流波形は三角波になる。
このように、コイルなどのインダクタンス(リアクトル)に電流を流す場合は、三角波が最も生成しやすい。リアクトルに加えてコンデンサを追加して、リアクトル及びコンデンサによる共振を利用すれば正弦波に近い電流を流すことも可能である。
あるいは、上記の実施の形態1〜7において、イオン加速装置10は、SPT型(Stationary Plasma Thruster)である場合を例示しているが、チャネル空間に供給された電子をホール効果によりガスに作用させてチャネル空間内でイオン加速を行うようなものであれば、他の型の装置であってもよい。
SPT型は、現在ホールスラスタの方式として主流であり、いくつものフライト実績もあるが、イオン加速装置10(例えば、ホールスラスタ)にはこのほかに、TAL(Thruster with Anode Layer)型と呼ばれるものがあり、若干形状が異なり、スラスタ内部の放電生成領域の維持機構も若干異なる。例えば、図15に示すイオン加速装置10pでは、アノード電極12(図1参照)に代えてホローアノード12pが設けられている。ホローアノード12pは、アノード電極12p1、内側リング12p2、及び外側リング12p3を有する。アノード電極12p1は、例えば、中空円盤状の導体板で形成されている。内側リング12p2は、アノード電極12の内側端部からイオン加速装置10pの軸方向に沿ってカソード部20側に延びた略円筒形状を有している。外側リング12p3は、アノード電極12の外側端部からイオン加速装置10pの軸方向に沿ってカソード部20側に延びた略円筒形状を有している。
TAL型のイオン加速装置(例えば、図15参照)はSPT型のイオン加速装置(例えば、図1参照)に比べて原理的に性能が良いと言われているが、放電振動が非常に不安定なため実用化されていない。しかしながら、上記の実施の形態1〜6に示すような方式を用いれば、振動の安定性が大幅に向上すると思われる。上記の実施の形態1〜6に示すような方式をTAL型のイオン加速装置に適用すれば、非常に大きなメリットがある。
なお、イオン加速装置(例えば、ホールスラスタ)の振動安定性はスラスタの磁束密度に敏感に影響する。このため、磁束密度つまりコイル電流を制御することは、特に出力が変化するときや、スラスタの点火時など、駆動条件がトランジェントに変化する場合の安定制御を行ううえで重要である。コイルには直流電流か、あるいは本発明の方式であれば直流電流に交流成分が重畳されたものが流されるが、この場合コイルの磁性材料が偏磁して、電流を一旦ゼロにしても磁束密度がゼロに戻らず、立ち上げ時などの微妙な制御を行うときに問題となる。これを避けるために、コイル電流を正、負に切り替えることができるような電流源を用いることが考えられる。本発明では交流波形をコイルに流す機構があるため、これをうまく用いるか、あるいは直流電源の電流の向きを切り替える機構を設ける、あるいは正側の電源と負側の電源を設けることが考えられる。
また、本発明は特に、磁場の制御を行うことでホールスラスタを安定に動作させるためのものであり、ホールスラスタに適用することが有効である。したがって、全ての実施の形態において、イオン加速装置として、ホールスラスタという人工衛星の推進装置について述べている。しかしながら、本発明を、ホールスラスタと同様の装置をイオン源装置として用いる場合などに適用してもよい。また、本発明は、円環状のイオン源装置だけではなく、電圧によってイオンを加速し、磁場によって電子の動きを制限しようとするような一般的な電気推進装置やイオン加速装置、たとえばイオンスラスタなどにも適用が可能である。
以上のように、本発明にかかる電源装置は、ホールスラスタに有用である。
10 イオン加速装置
10p イオン加速装置
11 磁場発生部
11j 磁場発生部
11j1 第1の磁場発生要素
11j2 第2の磁場発生要素
11k 磁場発生部
11k1 第1の磁場発生要素
11k2 第2の磁場発生要素
12 アノード電極
12p ホローアノード
12p1 アノード電極
12p2 内側リング
12p3 外側リング
13 内部コイル
14 外部コイル
14a 第1の磁場発生要素
14b 第2の磁場発生要素
15 ガス供給部
15a 供給管
15b ガス流量調節器
16 内側リング
17 外側リング
18 チャネル空間
19 ポールピース
20 カソード部
21 ホローカソード
21a ヒータ
22 供給管
23 ガス流量調節器
31k 第3のコイル
32 ヨーク
100 電源装置
100i 電源装置
100j 電源装置
100k 電源装置
110 主電源
120 電源処理部
122 アノード電源
123 内部コイル電源
123a 直流電流源
123b 交流電流源
123c 合成部
123j 内部コイル電源
123j1 直流電流源
124 外部コイル電源
124i 外部コイル電源
124i1 直流電流源
124i2 交流電流源
124a 直流電流源
124b 交流電流源
124c 合成部
124j 外部コイル電源
124i1 直流電流源
124i2 交流電流源
124j1 交流電流源
124k 外部コイル電源
124k1 交流電流源
125k 第3のコイル電源
125k1 直流電流源
126 ヒータ電源
127 キーパ電源
130 ガス制御部
131 ガス流量制御装置
132 ガス流量制御装置
140 主制御部

Claims (7)

  1. アノード電極と、前記アノード電極に隣接して配され電流に応じて磁場を発生させる磁場発生部と、前記アノード電極側から前記アノード電極と前記磁場発生部との間のチャネル空間にガスを供給する供給部とを有するイオン加速装置を制御する電源装置であって、
    前記イオン加速装置は、前記チャネル空間に供給された電子をホール効果により前記ガスに作用させて前記チャネル空間内でイオン加速を行い、
    前記電源装置は、前記磁場発生部に供給する電流を制御する制御部を備え、
    前記制御部は、前記磁場発生部の少なくとも一部に供給される電流が、直流電流に交流電流が重畳された電流波形を有するように制御し、
    前記交流電流の周波数は、前記イオン加速装置の放電振動の周波数近傍の値または前記放電振動の周波数の値を有する
    ことを特徴とする電源装置。
  2. アノード電極と、前記アノード電極に隣接して配され電流に応じて磁場を発生させる磁場発生部と、前記アノード電極側から前記アノード電極と前記磁場発生部との間のチャネル空間にガスを供給する供給部とを有するイオン加速装置を制御する電源装置であって、
    前記イオン加速装置は、前記チャネル空間に供給された電子をホール効果により前記ガスに作用させて前記チャネル空間内でイオン加速を行い、
    前記磁場発生部は、第1の磁場発生要素と第2の磁場発生要素とを有し、
    前記電源装置は、前記磁場発生部に供給する電流を制御する制御部を備え、
    前記制御部は、前記第1の磁場発生要素に直流電流が供給され、前記第2の磁場発生要素に交流電流が供給されるように制御し、
    前記交流電流の周波数は、前記イオン加速装置の放電振動の周波数近傍の値または前記放電振動の周波数の値を有する
    ことを特徴とする電源装置。
  3. 前記磁場発生部の前記少なくとも一部を含む磁気回路における少なくとも一部は、高周波用の磁性材料で形成されている
    ことを特徴とする請求項1に記載の電源装置。
  4. 前記磁場発生部の前記第2の磁場発生要素を含む磁気回路における少なくとも一部は、高周波用の磁性材料で形成されている
    ことを特徴とする請求項2に記載の電源装置。
  5. 前記交流電流の波形は、三角波である
    ことを特徴とする請求項1又は2に記載の電源装置。
  6. 前記制御部は、前記磁場発生部に供給される電流の制御と並行して、前記アノード電極に印加される電圧が、直流電圧に前記交流電流と同じ周波数の交流電圧が重畳された電圧波形を有するように制御する
    ことを特徴とする請求項1又は2に記載の電源装置。
  7. 前記イオン加速装置は、TAL(Thruster with Anode Layer)型のホールスラスタである
    ことを特徴とする請求項1又は2に記載の電源装置。
JP2012140857A 2012-06-22 2012-06-22 電源装置 Expired - Fee Related JP5950715B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140857A JP5950715B2 (ja) 2012-06-22 2012-06-22 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140857A JP5950715B2 (ja) 2012-06-22 2012-06-22 電源装置

Publications (2)

Publication Number Publication Date
JP2014005762A JP2014005762A (ja) 2014-01-16
JP5950715B2 true JP5950715B2 (ja) 2016-07-13

Family

ID=50103707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140857A Expired - Fee Related JP5950715B2 (ja) 2012-06-22 2012-06-22 電源装置

Country Status (1)

Country Link
JP (1) JP5950715B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230083683A1 (en) * 2020-01-10 2023-03-16 University Of Miami Ion booster for thrust generation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318447B2 (ja) 2014-05-23 2018-05-09 三菱重工業株式会社 プラズマ加速装置及びプラズマ加速方法
FR3040442B1 (fr) * 2015-08-31 2019-08-30 Ecole Polytechnique Propulseur ionique a grille avec propergol solide integre
CN105390357B (zh) * 2015-10-29 2017-05-03 兰州空间技术物理研究所 一种环型离子推力器放电室
US11652397B2 (en) * 2016-10-12 2023-05-16 Mitsubishi Electric Corporation Hall thruster power supply device and control method of hall thruster power supply device
CN110145446B (zh) * 2019-06-13 2020-05-12 哈尔滨工业大学 一种脉冲电励磁微牛推进装置
CN115681058B (zh) * 2023-01-03 2023-06-02 国科大杭州高等研究院 多工作模式霍尔推进系统及具有其的航天器
CN116066319A (zh) * 2023-03-14 2023-05-05 哈尔滨工业大学 抑制电推进空心阴极放电振荡的阴极外部电子补偿方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650258B2 (ja) * 2005-12-27 2011-03-16 三菱電機株式会社 電源装置
DE102008022181B4 (de) * 2008-05-05 2019-05-02 Arianegroup Gmbh Ionentriebwerk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230083683A1 (en) * 2020-01-10 2023-03-16 University Of Miami Ion booster for thrust generation

Also Published As

Publication number Publication date
JP2014005762A (ja) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5950715B2 (ja) 電源装置
US7115185B1 (en) Pulsed excitation of inductively coupled plasma sources
JP6976434B2 (ja) 多重パルスプラズマを用いた負イオン供給システム及び方法
RU2594939C2 (ru) Реактивный двигатель на основе эффекта холла
US7309961B2 (en) Driving frequency modulation system and method for plasma accelerator
JP6000325B2 (ja) イオンエンジン
US10327322B2 (en) Radio-frequency power unit
JP2005312133A (ja) リニア振動モータ
JP5558376B2 (ja) 電源装置
KR101953930B1 (ko) 플라즈마 발생 장치 및 증착 장치
WO2021140667A1 (ja) 電源装置および電気推進システム
US9232627B2 (en) Radio-frequency oscillation circuit
JP6045179B2 (ja) 電源装置
US9246495B2 (en) Resonator arrangement and method for exciting a resonator
KR20220071212A (ko) 일정한 애노딕 임피던스를 갖는 마이크로웨이브 마그네트론 및 이를 이용하는 시스템들
JP2020045517A (ja) 成膜装置
US20240062920A1 (en) Resonant Pinch Thermonuclear Fusion Reactor
JP5194523B2 (ja) X線発生装置
RU2230441C1 (ru) Импульсная система питания двойного бетатрона
RU2330363C2 (ru) Устройство возбуждения плазмы газового разряда
JP2023506892A (ja) 圧電プラズマ発生器の動作方法
JPH10326573A (ja) ジャイロトロン装置
JP4391924B2 (ja) ベータトロン加速装置
JP2015115399A (ja) レーザ電源装置およびレーザ電源装置の制御方法
JP4408137B2 (ja) ベータトロン加速装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R150 Certificate of patent or registration of utility model

Ref document number: 5950715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees