近年の光アクセス等の普及に伴った様々な大容量サービスに対応するため、無線通信の伝送速度の向上が要求されている。占有する周波数帯域と伝送速度とは比例するため、周波数帯域を拡大することでこれを実現することができる。しかし、実際の周波数資源は有限であるため、周波数帯域の拡大には限界がある。また、WiFi(登録商標)をはじめ、WiMAX(登録商標)やLTE(登録商標)のような様々な無線アクセスシステムが普及しており、特にこれらのシステムに割り当てられているマイクロ波帯の周波数資源は逼迫している状況にある。
そこで、限られた周波数資源環境下において伝送容量を向上するためには、送受信局に複数のアンテナを具備し、MIMOないしはマルチユーザMIMO(MU−MIMO)技術の適用による空間分割多重伝送が有効である。この手法を拡張し、複数の基地局間におけるチャネル情報や、送信信号、受信信号を共有、もしくはそれらを一括で扱う集中制御局を配置し、(MU−)MIMO技術を適用することで隣接する基地局間の干渉を除去可能とする基地局連携も検討されている。このように、同一システム間においては干渉信号に関する情報を事前に把握することで干渉に対処することが可能であった。
また、周波数帯域幅を拡大し、更に伝送容量を向上するためには、複数のシステム間における周波数資源を共用し、複数システム相互の共存を許容する必要がある。異なるシステム間における未知の同一チャネル干渉に対処するためには、非特許文献1に示されるようなアダプティブアレーアンテナ技術が有効である。アダプティブアレーアンテナ技術には様々なアルゴリズムがある。例えば、送受信局間にて互いに共有しているトレーニング信号のような既知情報を利用する最小平均二乗誤差(Minimum Mean Square Error:MMSE)法や、既知情報を必要としないブラインド型のアルゴリズムとしてはパワーインバージョン(Power Inversion;PI)や定包絡線アルゴリズム(Constant Modulus Algorithm;CMA)がある。パケットベースの無線通信においてはタイミング検出等のためにトレーニング信号が付与されているためにMMSEは有効であるが、どのようなタイミングで、またどのようなレベルで干渉が到来するかも予測できない状況においては、トレーニング信号を必要としないPIやCMAが有効であると考えられる。
図15は、無線通信システムの構成例を示すブロック図である。同図には、無線通信装置120a及び無線通信装置120bを具備する無線通信システムが示されている。以下、無線通信装置120aと無線通信装置120bとのいずれか一方又は両方を総称して無線通信装置120という。無線通信装置120は、データ入出力部121と、MAC層処理部122と、通信制御部123と、受信信号処理部124と、送信信号処理部126と、スイッチ(SW)127と、アンテナ128とを備えている。なお、図15における構成は、無線通信装置120が複数本のアンテナ128を備える構成である。
データ入出力部121は、宛先局に送信するデータを入力する。また、データ入出力部121は、MAC層処理部122から入力されるデータをユーザに対して出力する。MAC層処理部122は、受信信号処理部124から入力されるデータに対してMAC層に関する処理を施してデータ入出力部121に出力する。また、MAC層処理部122は、データ入出力部121から入力されるデータに対してMAC層に関する処理を施して送信信号処理部126に出力する。
通信制御部123は、アンテナ128における送受信のタイミング、すなわちスイッチ127における送受信の切り替えに関わる制御や、それに伴う受信信号処理部124及び送信信号処理部126における動作タイミングの制御、また通信相手先となる他の無線通信装置120を選択する処理、無線通信システム全体のタイミング制御など、全体の通信に係る制御を行う。
受信信号処理部124は、アンテナ128にて受信した受信信号に対して受信信号処理を行う。送信信号処理部126は、MAC層処理部122から入力される送信データに対して送信信号処理を施して、アンテナ128から送信する。スイッチ127は、通信制御部123からの指示に従って、送信時にはアンテナ128と送信信号処理部126とを接続し、受信時にはアンテナ128と受信信号処理部124とを接続する。
無線通信装置120における送信の動作について説明する。
データ入出力部121に宛先局に送信すべきデータが外部から入力されると、MAC層処理部122は、データ入出力部121に入力されたデータに対して無線回線上で送受信されるデータに変換する。MAC層処理部122は、更にMAC層のヘッダ情報を付加する等の処理を行って得られた送信データを送信信号処理部126に出力する。
送信信号処理部126は、MAC層処理部122から出力される送信データに変調処理を施す。送信信号処理部126は、変調処理により得られた送信信号を、スイッチ127を経由してアンテナ128から送信する。
続いて、無線通信装置120における受信の動作について説明する。
宛先から送信された自装置宛ての信号を複数のアンテナ128にて受信すると、受信した信号(受信信号)は、スイッチ127を経由して受信信号処理部124に入力される。受信信号処理部124は、複数のアンテナ128それぞれが受信した受信信号に対してアレー処理を施し、受信信号から所望の信号を取得するための受信ウェイトを算出する。受信信号処理部124は、算出した受信ウェイトを用いて受信信号から所望の信号を取得し、取得した所望の信号に対して復調や復号などの各種信号処理を施してデータを取得する。受信信号処理部124は、取得したデータをMAC層処理部122に出力する。
MAC層処理部122は、受信信号処理部124から出力されるデータに対して、MAC層に関する処理(例えば、データ入出力部121に対して入出力データと無線回線上で送受信されるデータとの変換や、MAC層のヘッダ情報の終端など)を行う。MAC層処理部122は、MAC層に関する処理を施したデータを、データ入出力部121を介して外部ディスプレイないしは外部ネットワーク等の出力装置に出力させる。
なお、特に明記はしていないがアンテナ128においては、送信時には送信信号処理部126においてベースバンド変調処理が施された信号に対してD/A(Digital/Analog:デジタル/アナログ)変換、無線周波数信号へのアップコンバート、更に帯域外の周波数成分を除去するためのフィルタ処理等が行われたのち、送信される。また、受信時にはその逆の処理が施されたのち、ベースバンド受信信号が受信信号処理部124へ入力される。
図16は、無線通信装置120がシングルキャリア通信を行う場合の送信信号処理部126の構成例を示すブロック図である。送信信号処理部126は、変調部131を有している。変調部131は、MAC層処理部122から出力されるデータに対して、誤り訂正符号化処理を実施した後にシンボルマッピング処理を行う。例えば、各シンボルのI−Q平面上の情報に基づいて、所定の帯域幅の搬送波を変調する。また、変調部131は、FFT(Fast Fourier Transform;高速フーリエ変換)処理のために送信信号に周期性を持たせることを目的として、必要に応じてガードインターバルを挿入する。
図17は、無線通信装置120がOFDM変調方式を用いて通信を行う場合の送信信号処理部126の構成例を示すブロック図である。送信信号処理部126は、変調部131と、直列/並列変換部132と、IDFT(Inverse Discrete Fourier Transform;逆離散フーリエ変換)部133とを有している。変調部131は、MAC層処理部122から出力されるデータに対して、誤り訂正符号化処理を実施した後にシンボルマッピング処理を行う。
直列/並列変換部132は、変調部131によりマッピングされたシンボルに対して直列/並列変換を行い、得られた複数のシンボル列をIDFT部133に出力する。IDFT部133は、直列/並列変換部132から出力される複数のシンボル列に対してIDFTを施して、周波数領域の信号から時間領域に信号に変換してアンテナ128に出力する。また、送信信号処理部126では、必要に応じて、ガードインターバルの挿入や、OFDMシンボル間の波形整形処理などが行われ、送信する電気的な信号をアンテナ128に出力する。
図18は、無線通信装置120がシングルキャリア通信を行う場合の受信信号処理部124の構成例を示すブロック図である。同図には、無線通信装置120に2つのアンテナ128が備えられている場合の構成が示されている。受信信号処理部124は、アダプティブアレー処理部152と、アンテナ128に対応して設けられている乗算器153と、加算器154と、復調部156とを有している。アンテナ128から受信信号処理部124に入力される2つの受信信号(受信信号1、受信信号2)は、アダプティブアレー処理部152と、各受信信号に対して設けられている乗算器153とに入力される。
アダプティブアレー処理部152は、入力される受信信号1及び受信信号2に基づいて、受信信号1及び受信信号2に含まれる干渉信号を抑圧するためのウェイトを所定のアルゴリズム(PI又はCMAなど)により算出する。アダプティブアレー処理部152は、算出したウェイトを乗算器153に入力する。乗算器153は、入力される受信信号1とウェイトとを乗算し、乗算結果を加算器154に出力する。加算器154は、2つの乗算器153から出力される乗算結果を加算し、加算結果を復調部156に入力する。このように、ウェイトの乗算及び合成を含むアレー処理により干渉信号の抑圧された1系統の信号が得られる。
復調部156は、アレー処理が施された受信信号に対して直交復調処理によりデマッピングされたシンボルを取り出し、取り出したシンボルに対して誤り訂正復号処理を施すことで最終的なデータ系列を取得する。復調部156は、取得したデータ系列をMAC層処理部122に出力する。
次に、無線通信装置120がマルチキャリア伝送方式を用いて通信を行う場合の動作を示す。その一例として、OFDM又はOFDMA変調方式を用いて説明する。図19は、無線通信装置120がOFDM変調方式を用いて通信を行う場合の受信信号処理部124の構成を示すブロック図である。同図には、図18に示した構成例と同様に、無線通信装置120に2つのアンテナ128が備えられている場合の構成が示されている。受信信号処理部124は、DFT部151と、複数のアダプティブアレー処理部152と、複数の乗算器153と、複数の加算器154と、並列/直列変換部155と、復調部156とを有している。DFT部151はアンテナ128に対応して設けられている。アダプティブアレー処理部152及び加算器154はサブキャリアごとに設けられている。乗算器153はDFT部151から出力されるサブキャリアの信号ごとに設けられている。
DFT部151は、対応するアンテナ128により受信された受信信号(受信信号1又は受信信号2)を入力し、入力した受信信号に対してDFTを施して、時間領域の信号から周波数領域の信号に変換して各サブキャリアの信号を取得する。DFT部151は、取得した各サブキャリアの信号を、アダプティブアレー処理部152と乗算器153とに出力する。
アダプティブアレー処理部152は、対応するサブキャリアの信号を各DFT部151から入力する。アダプティブアレー処理部152は、受信信号1における対応するサブキャリアの信号と受信信号2における対応するサブキャリアの信号とに基づいて、それぞれの信号に含まれル干渉信号を抑圧するためのウェイトを所定のアルゴリズム(PI又はCMAなど)により算出する。
乗算器153それぞれは、各DFT部151から出力されるサブキャリアの信号ごとに設けられており、対応するサブキャリアの信号と、対応するサブキャリアのアダプティブアレー処理部152により算出されたウェイトとが入力される。乗算器153は、入力されたサブキャリアの信号とウェイトとを乗算し、乗算結果を対応するサブキャリアの加算器154に出力する。加算器154それぞれは、対応するサブキャリアの乗算器153から出力される乗算結果を加算し、加算結果を並列/直列変換部155に入力する。このように、ウェイトの乗算及び合成を含むアレー処理により干渉信号の抑圧された各サブキャリアの信号が得られる。
並列/直列変換部155は、アレー処理が施された各サブキャリアの信号を各加算器154から入力し、入力される各サブキャリアの信号に対して並列/直列変換を施して、1系統の信号を取得し、取得した1系統の信号を復調部156に出力する。復調部156は、並列/直列変換部155から出力される1系統の信号に対して直交復調処理によりデマッピングされたシンボルを取り出し、取り出したシンボルに対して誤り訂正復号処理を施すことで最終的なデータ系列を取得する。復調部156は、取得したデータ系列をMAC層処理部122に出力する。
ここでは、サブキャリアごとのアレー処理を実施する構成として、サブキャリアごとにアダプティブアレー処理部152、乗算器153、加算器154を備える場合を用いて説明したが、この例に限らず本処理は実施可能である。例えば、受信信号処理部124はアダプティブアレー処理部152、乗算器153、加算器154を一つずつ、ないしはサブキャリア数よりも少ない数だけ備え、サブキャリア毎のアレー処理を時分割にて実施する構成としても構わない。また、複数のサブキャリアをまとめて一つのサブチャネルとし、サブチャネル単位で上記アレー処理を実施しても構わない。このように、いかなる方法を用いてもOFDM(マルチキャリア伝送)におけるアレー処理は実現可能である。
なお、図16及び図17の例では受信アンテナが2本の場合を例にとり説明したが、アンテナ数は3本以上であっても構わない。一般に、アンテナ数をN本とすると、アダプティブアレーの適用によりN−1の干渉波を抑圧することが可能となる。
以上のように構成された無線通信装置120では、PIやCMAのアルゴリズムを用いることにより、トレーニング信号などの既知信号を用いることなく、到来する干渉信号を抑圧して通信を行うことができる。
<本発明の概要>
本発明に係る無線通信方式、無線通信装置、及び無線通信方法では、アダプティブアレーアンテナ技術を適用した通信において利用する周波数帯域を予め定められた複数の帯域に分割し、送信側の無線通信装置は、それぞれの帯域における送信電力(又は送信電力密度)に差を設けて信号を送信する。受信側の無線通信装置は、送信側において各帯域に割り当てられた送信電力に応じたアダプティブアレーアルゴリズム(例えば、PI規範やCMA規範など)でウェイトを帯域ごとに算出し、当該ウェイトを用いたアレー処理を帯域ごとに行う。受信側の無線通信装置は、アレー処理を施した受信信号に対して復調及び復号等の信号処理を行い受信の成否を判定する。
受信が成功した場合、各帯域への送信電力を維持した無線通信が無線通信装置間で行われる。受信が失敗した場合、受信側の無線通信装置は、受信が失敗したことを送信側の無線通信装置へ通知し、送信側の無線通信装置は、各帯域への送信電力の割り当てを変更して再度送信を行う。受信側の無線通信装置は、再度送信された信号における各帯域に割り当てられた送信電力に応じたアダプティブアレーアルゴリズムでウェイトを帯域ごとに算出し、当該ウェイトを用いたアレー処理を帯域ごとに行う。受信側の無線通信装置は、再度、アレー処理を施した受信信号に対して復調及び復号等の信号処理を行い受信の成否を判定する。送信側及び受信側の無線通信装置は、受信が成功するまで各帯域の送信電力の割り当ての変更を繰り返し行う。これにより、他の無線通信装置が送信する信号が干渉信号として受信され、干渉信号の存在する帯域及び受信電力を事前に把握できない場合であっても、干渉信号を抑圧する効果を高めることができる。
図1は、本発明に係る無線通信装置による無線通信の概要を示す図である。同図には、2組の無線通信装置(送信局Aと受信局Aとの組、送信局Bと受信局Bとの組)が存在し、無線通信において利用周波数帯を2つの帯域に分けて、帯域における送信電力に差を設けて信号を送信する例が示されている。図1(A)に示すように、送信局Aと受信局Aとが通信を行い、送信局Bと受信局Bとが通信を行う。また、互いの送信信号が干渉信号として受信される。
図1(B)には送信局A及び送信局Bの送信信号における各帯域への送信電力の割り当ての一例が示されている。同図において、横軸は周波数を示し、縦軸は送信電力を示している。図1(B)に示すように、送信局Aの送信信号は、周波数f1を境に分けられた低周波数側の帯域に割り当てる送信電力を、周波数f1を境に分けられた高周波数側の帯域に割り当てる送信電力より低くしている。送信局Bの送信信号は、送信局Bの送信信号とは逆に、低周波数側の帯域に割り当てる送信電力を高周波数側の帯域に割り当てる送信電力より高くしている。
図1(C)には受信局A及び受信局Bにおける受信信号の電力分布が示されている。同図において、横軸は周波数を示し、縦軸は送信電力を示している。受信局A及び受信局Bでは、図1(C)に示すように、送信局Aから送信された送信信号と、送信局Bから送信された送信信号とが重畳された信号が受信される。このとき、受信局Aでは、送信局Aにおける各帯域への送信電力の割り当てに応じて、ウェイトの算出に用いるブラインド型アルゴリズムを選択する。具体的には、低周波数側の帯域では送信局Aからの送信信号における送信電力が低くなっているので受信信号において干渉信号の受信電力より低くなる(SIR<0)可能性が高いため、PI規範を選択する。高周波数側の帯域では送信局Aからの送信信号における送信電力が高くなっているので受信信号において干渉信号の受信電力より高くなる(SIR>0)可能性が高いため、CMA規範を選択する。
また、受信局Bでも、同様に、送信局Bにおける各帯域への送信電力の割り当てに応じて、ウェイトの算出に用いるブラインド型アルゴリズムを選択する。受信局Bでは、低周波数側の帯域においてCMA規範を選択し、高周波数側の帯域においてPI規範を選択する。
このように、通信を行う無線通信装置の組が複数存在し、互いの送信信号が干渉信号となる場合においても、各帯域に対する送信電力の割り当てに関して異なるパターンを用いることで、受信信号における所望信号の受信電力と干渉信号の受信電力とに差を生じさせて、(SIR>0)におけるCMA規範の適用、及び、(SIR<0)におけるPI規範の適用を容易にすることができる。換言すると、CMA規範及びPI規範によるウェイトの算出を適切に行うことが難しいSIR≒0となる状態を発生しにくくすることができ、受信側の無線通信装置において干渉信号を抑圧する精度を向上させることができる。
図2は、無線通信を行う無線通信装置の組が3つある場合における受信信号の概要を示す図である。ここでは、送信局A、送信局B、送信局Cから送信された信号が伝送路中で重畳され受信局A、受信局B、受信局Cに受信される場合を示している。なお、受信局A、B、Cは2つのアンテナを備えているとする。図2(A)は、前述の各帯域における送信電力の割り当ての変更を行う前の状態である。同図に示すように、通信において利用する周波数帯域を周波数f1及び周波数f2を境に3つの帯域(低帯域、中帯域、高帯域)に分け、送信局A、B、Cは異なる割り当てパターンで各帯域に異なる送信電力を割り当てている。送信局Aは高帯域、中帯域、低帯域の順に送信電力が低くなる割り当てを行い、送信局Bは中帯域、低帯域、高帯域の順に送信電力が低くなる割り当てを行い、送信局Cは低帯域、高帯域、中帯域の順に送信電力が低くなる割り当てを行っている。
図2(B)は、前述の各帯域における送信電力の割り当ての変更を行った後の状態である。送信局Aは高帯域に高い送信電力を割り当て、中帯域に低い送信電力を割り当て、低帯域に0の送信電力を割り当てている。送信局Bは中帯域に高い送信電力を割り当て、低帯域に低い送信電力を割り当て、高低帯域に0の送信電力を割り当てている。送信局Cは低帯域に高い送信電力を割り当て、高帯域に低い送信電力を割り当て、中帯域に0の送信電力を割り当てている。このような送信電力の割り当てが行われている場合には、受信局A、B、Cは、高い送信電力が割り当てられている帯域においてCMA規範に基づいたウェイトを用い、低い送信電力が割り当てられている帯域においてPI規範に基づいたウェイトを用いることにより、干渉信号を抑圧する精度を向上させることができる。
このように、受信局においてアンテナの自由度を超える干渉信号が存在する場合には送信局が送信電力を割り当てる帯域を減少させることにより、他の受信局に対して与える干渉を減らす。これにより、他の受信局における干渉信号を互いに減らすことになり、それぞれの受信局においてアンテナの自由度を超える干渉信号が存在しない状態にすることができる。
図3は、OFDM変調方式(マルチキャリア)による無線通信を行う無線通信装置の組が3つある場合における受信信号の概要を示す図である。図2の場合と同様に、送信局A、送信局B、送信局Cから送信された信号が伝送路中で重畳され受信局A、受信局B、受信局Cに受信される場合を示している。なお、受信局A、B、Cは2つのアンテナを備えているとする。図2に示した例では通信において利用する周波数帯域を分けていたが、OFDMA変調方式などのマルチキャリアを利用する場合には、サブキャリアごとに送信電力の割り当てに差を設けるようにする。図3(A)は前述の各サブキャリアにおける送信電力の割り当ての変更を行う前の状態であり、図3(B)は各サブキャリアにおける送信電力の割り当ての変更を行った後の状態である。受信局A、B、Cは、通信相手の送信局A、B、Cにおいて高い送信電力が割り当てられたサブキャリアにおいてはCMA規範に基づくウェイトを用いてアレー処理を行い、低い送信電力が割り当てられたサブキャリアにおいてはPI規範に基づくウェイトを用いてアレー処理を行い、送信電力が割り当てられていない(0の送信電力が割り当てられている)サブキャリアにおいては処理の対処外とすることにより、干渉信号を抑圧する精度を向上させることができる。以下、本発明に係る無線通信装置の具体的な構成について説明する。
<第1の実施形態>
第1の実施形態におけるアダプティブアレーアンテナ技術を適用した無線通信システム(無線通信方式)における無線通信装置は、図15に示した無線通信装置120と同じ機能部を有している。本実施形態における無線通信装置120では、送信信号処理部126と受信信号処理部124との構成が図15に示した構成と異なっている。以下、本実施形態における送信信号処理部126と受信信号処理部124との構成について説明する。
図4は、本発明に係る第1の実施形態における送信信号処理部126の構成例を示すブロック図である。同図に示す送信信号処理部126の構成は、無線通信装置120がシングルキャリア通信を行う場合の構成である。送信信号処理部126は、変調部131と、フィルタ部141−1〜141−kと、電力割当部142−1〜142−kと、信号合成部143とを有している。フィルタ部141−1〜141−k及び電力割当部142−1〜142−kは、本実施形態における無線通信装置120が通信において利用する周波数帯域をk(k≧2)分割した帯域(サブチャネル)それぞれに対応して設けられている。
変調部131は、MAC層処理部122から出力される送信データに対して、誤り訂正符号化処理を実施した後にシンボルマッピング処理を行い、所定の帯域幅の搬送波を変調する。変調部131は、変調により得られた送信信号を各フィルタ部141−1〜141−kに出力する。
フィルタ部141−1〜141−kそれぞれは、自身に対応付けられているサブチャネルの信号成分を通過させるバンドパスフィルタを用いて構成される。フィルタ部141−1〜141−kは、変調部131から出力される送信信号のうち、自身に対応付けられているサブチャネルにおける成分の信号を、当該サブチャネルに対応付けられている電力割当部142−1〜142−kに入力する。
電力割当部142−1〜142−kは、フィルタ部141−1〜141−kから入力される各サブチャネルの信号に対して、サブチャネルごとに所定の電力を割り当てる。具体的には、電力割当部142−1〜142−kは、入力される各サブチャネルの信号を、予め割り当てられた電力になるように増幅又は減衰させる。電力割当部142−1〜142−kは、各サブチャネルの信号を割り当てた電力にして信号合成部143に出力する。k個のサブチャネルそれぞれに割り当てる電力は、送信側の無線通信装置120と受信側の無線通信装置120とで共有しておく。なお、k個のサブチャネルそれぞれに割り当てる電力の総和を一定にするように各サブチャネルに電力を割り当てるようにしてもよい。
信号合成部143は、電力割当部142−1〜142−kから出力される各サブチャネルの信号を一つの信号に合成し、合成した信号を送信信号としてアンテナ128に出力し、宛先局の無線通信装置120に向けて送信する。
図5は、本実施形態における受信信号処理部124の構成例を示すブロック図である。同図に示す受信信号処理部124の構成は、無線通信装置120が2つのアンテナ128を備え、シングルキャリア通信を行う場合の構成である。受信信号処理部124は、フィルタ部161−1−1〜161−1−kと、フィルタ部161−2−1〜161−2−kと、アダプティブアレー処理部152−1〜152−kと、乗算器153−1−1〜153−1−kと、乗算器153−2−1〜153−2−kと、加算器154−1〜154−kと、信号合成部164と、復調部156と、アレー処理制御部163とを有している。
フィルタ部161−1−1〜161−1−kと、フィルタ部161−2−1〜161−2−kと、アダプティブアレー処理部152−1〜152−kと、乗算器153−1−1〜153−1−kと、乗算器153−2−1〜153−2−kと、加算器154−1〜154−kとは、通信において利用する周波数帯域をk個に分割したサブチャネルに対応して設けられている。
フィルタ部161−1−1〜161−1−kと、フィルタ部161−2−1〜161−2−kとは、無線通信装置120に備えられている2つのアンテナ128に対応して設けられている。2つのアンテナ128のいずれか一方のアンテナ128で受信された受信信号1がフィルタ部161−1−1〜161−1−kそれぞれに入力され、他方のアンテナ128で受信された受信信号2がフィルタ部161−2−1〜161−2−kに入力される。
フィルタ部161−1−1〜161−1−kは、送信信号処理部126が有するフィルタ部141−1〜141−kと同様に、予め対応付けられているサブチャネルの信号成分を通過させるバンドパスフィルタを用いて構成される。フィルタ部161−1−1〜161−1−kは、入力される受信信号1のうち、自身に対応付けられているサブチャネルにおける成分の信号を、当該サブチャネルに対応付けられている乗算器153−1−1〜153−1−kに出力する。
フィルタ部161−2−1〜161−2−kは、フィルタ部161−1−1〜161−1−kと同様に、入力される受信信号2のうち、自身に対応付けられているサブチャネルの成分を、当該サブチャネルに対応付けられている乗算器153−2−1〜153−2−kに出力する。
アダプティブアレー処理部152−1〜152−kそれぞれは、自身に対応付けられているサブチャネルの信号を、フィルタ部161−1−1〜161−1−kとフィルタ部161−2−1〜161−2−kとから入力する。アダプティブアレー処理部152−1〜152−kは、アレー処理制御部163に指示されるブラインド型アルゴリズムを、受信信号1及び受信信号2のサブチャネルの信号に対して適用し、受信信号1及び受信信号2に対するウェイトを算出する。アダプティブアレー処理部152−1〜152−kは、算出したウェイトであって受信信号1のサブチャネルに対するウェイトを、対応するサブチャネルの信号を入力とする乗算器153−1−1〜153−1−kに出力する。また、アダプティブアレー処理部152−1〜152−kは、算出したウェイトであって受信信号2のサブチャネルに対するウェイトを、対応するサブチャネルの信号を入力とする乗算器153−2−1〜153−2−kに出力する。
アレー処理制御部163は、通信相手(送信側)の無線通信装置120において各サブチャネルに割り当てられる送信電力に基づいて、ウェイトの算出に用いるブラインド型アルゴリズムをアダプティブアレー処理部152−1〜152−kごとに選択する。アレー処理制御部163は、アダプティブアレー処理部152−1〜152−kごとに選択したブラインド型アルゴリズムを用いてウェイトを算出することを指示する制御信号をアダプティブアレー処理部152−1〜152−kに出力する。ブラインド型アルゴリズムの選択では、割り当てられる送信電力が最も高い帯域にはCMA規範が選択され、割り当てられる送信電力が最も低い帯域にはPI規範が選択される。他の帯域においては、予め定められた閾値以上の送信電力が割り当てられる帯域にはCMA規範が選択され、閾値未満の送信電力が割り当てられる帯域にはPI規範が選択される。
なお、通信相手の無線通信装置120が送信する送信信号において各サブチャネルに割り当てる送信電力のパターン(組み合わせ)は共有されている。送信側の無線通信装置120において、いずれの割り当てパターンが選択されるかは、例えば、予め定められているか、不図示の制御回線を通じて通知される。
乗算器153−1−1〜153−1−kは、自身に対応するサブチャネルの信号をフィルタ部161−1−1〜161−1−kから入力し、自身に対応するサブチャネルの信号に対するウェイトをアダプティブアレー処理部152−1〜152−kから入力する。乗算器153−1−1〜153−1−kは、入力したサブチャネルの信号とウェイトとを乗算し、対応するサブチャネルの加算器154−1〜154−kに乗算結果を出力する。
乗算器153−2−1〜153−2−kは、自身に対応するサブチャネルの信号をフィルタ部161−2−1〜161−2−kから入力し、自身に対応するサブチャネルの信号に対するウェイトをアダプティブアレー処理部152−1〜152−kから入力する。乗算器153−2−1〜153−2−kは、入力したサブチャネルの信号とウェイトとを乗算し、対応するサブチャネルの加算器154−1〜154−kに乗算結果を出力する。
加算器154−1〜154−kそれぞれは、自身に対応するサブチャネルの信号を乗算器153−1−1〜153−1−kと、乗算器153−2−1〜153−2−kとから入力する。加算器154−1〜154−kは、受信信号1のサブチャネルの信号と、受信信号2のサブチャネルの信号とを加算し、加算結果を信号合成部164に出力する。信号合成部164は、加算器154−1〜154−kから入力される加算された各サブチャネルの信号を一つの信号に合成し、合成した信号を復調部156に出力する。
復調部156は、信号合成部164において合成された信号に対して直交復調処理によりデマッピングされたシンボルを取り出し、取り出したシンボルに対して誤り訂正復号処理を施すことで最終的なデータ系列を取得する。復調部156は、取得したデータ系列をMAC層処理部122に出力する。
図6は、本実施形態において各サブチャネルに割り当てる電力密度を示すパターン・テーブルの一例を示す図である。同図に示すパターン・テーブルは、割り当てパターンを識別する識別番号の項目と、通信において利用する周波数帯域を分割した際の1番目の帯域からN番目の帯域それぞれに対応する項目との列を有している。パターン・テーブルにおいて各行は電力の割り当てパターンごとに存在する。同図に示す例では、M通りの電力割り当てパターンが示されている。なお、総送信電力が一定となるように割り当てパターンが定められている。Bnは通信において利用する周波数帯域を分ける際の各帯域の当該周波数帯域に占める割合を示し、Pnは分けた各帯域の送信電力(電力密度)の比を示している。
同図に示すパターン・テーブルでは、周波数帯域を2分割し各帯域に送信電力を割り当てるパターン(No.1〜No.3)、周波数帯域を3分割し各帯域に送信電力を割り当てるパターン(No.4〜No.7)、…、周波数帯域をM分割し各帯域に送信電力を割り当てるパターン(No.M)というように段階的に周波数帯域の分割数が段階的に定義されている。また、送信電力の割り当てを段階的に変化させている。なお、割り当てる送信電力が「0」であるとは、当該帯域を用いないことを示している。受信側の無線通信装置120において受信が失敗した場合(アレー処理を機能させることが不可能な場合)、一部の帯域の使用を制限し、サブチャネルで見た干渉数を減少させアンテナ自由度内でアレー処理を実施するようにさせる。
また、パターン・テーブルに記憶されている割り当てパターンでは、各帯域に割り当てる送信電力に差を設けて、受信側の無線通信装置120においてPI規範又はCMA規範によるウェイトの算出が機能するようにしている。すなわち、他の無線通信装置120から送信される送信信号(干渉信号)が受信側の無線通信装置120において受信された際に、干渉信号の受信電力と所望信号の受信電力とに差が生じやすいように(SIR>0又はSIR<0となるように)している。
パターン・テーブルは、例えば、送信信号処理部126と受信信号処理部124とに予め記憶させておき、送信側と受信側とで同期を取って割り当てパターンを切り替えるようにしてもよいし、送信側の無線通信装置120から受信側の無線通信装置120に制御回線などを通じて、用いる割り当てパターンを通知するようにしてもよい。
図7は、本実施形態における無線通信装置120が行う送信処理を示すフローチャートである。無線通信装置120において送信処理が開始されると、変調部131は、MAC層処理部122においてMAC層に関する処理が施された送信データに対して、誤り訂正符号化処理を実施した後にシンボルマッピング処理をして送信信号を生成する(ステップS11)。
フィルタ部141−1〜141−kは、それぞれが対応付けられているサブチャネルの成分の信号を、変調部131において生成された送信信号から抽出することにより、送信信号をサブチャネルごとの信号に分割する(ステップS12)。
電力割当部142−1〜142−kは、予め定められている割り当てパターン(例えば、図6のパターン・テーブルに定められている割り当てパターン)に基づいて、フィルタ部141−1〜141−kにおいてサブチャネルごとの信号に分割された送信信号に対して、サブチャネルごとに送信電力を割り当てる(ステップS13)。
信号合成部143は、電力割当部142−1〜142−kにおいてサブチャネルごとに電力が割り当てられたk個の信号を一つの信号に合成し(ステップS14)、合成した信号に対して無線周波数へアップコンバート等の信号処理を施してアンテナ128から宛先局の無線通信装置120に向けて送信し(ステップS15)、送信処理を終了させる。
図8は、本実施形態における無線通信装置120が行う受信処理を示すフローチャートである。無線通信装置120において受信処理が開始されると、アンテナ128において受信された信号が受信信号処理部124に入力され、ベースバンド周波数へダウンコンバートなどの信号処理が施された受信信号(受信信号1、受信信号2)がフィルタ部161−1−1〜161−1−kと、フィルタ部161−2−1〜161−2−kとに入力される(ステップS21)。
フィルタ部161−1−1〜161−1−kは、それぞれが対応付けられているサブチャネルの成分の信号を、入力された受信信号1から抽出することにより、受信信号1をサブチャネルごとの信号に分割する。フィルタ部161−2−1〜161−2−kも同様に、それぞれが対応付けられているサブチャネルの成分の信号を、入力された受信信号2から抽出することにより、受信信号1をサブチャネルごとの信号に分割する(ステップS22)。
アレー処理制御部163は、送信側の無線通信装置120が各帯域に割り当てたパターンに応じて、アダプティブアレー処理部152−1〜152−kそれぞれにおいて用いるアルゴリズム(PI規範又はCMA規範)を指示する。アダプティブアレー処理部152−1〜152−kは、アレー処理制御部163から指示されたアルゴリズムに基づいて、受信信号1のサブチャネルの信号と受信信号2のサブチャネルの信号とに対するウェイトを算出する。算出されたウェイトによるアレーアンテナ処理が乗算器153−1−1〜153−1−kと乗算器153−2−1〜153−2−kと加算器154−1〜154−kとにおいて行われる(ステップS23)。
信号合成部164は、アレーアンテナ処理が施された各サブチャネルの信号を一つの信号に合成し、合成した信号を復調部156に出力する(ステップS24)。
復調部156は、信号合成部164において合成された信号に対して復調及び復号を施してデータ系列を取得し、取得したデータ系列をMAC層処理部122に出力し(ステップS25)、受信処理を終了させる。
図9は、本実施形態において各サブチャネルに割り当てる送信電力を決定する動作例を示すシーケンス図である。同図に示す動作例では、送信開始時に図9(a)に示す干渉信号(他の無線通信装置120における図6の2番目の割り当てパターンの送信信号)が存在しているものとする。無線通信システムにおいて、無線通信装置120aと無線通信装置120bとが通信を開始すると、送信側の無線通信装置120aが図6の2番目の割り当てパターンで送信信号を送信する(ステップS31)。
受信側の無線通信装置120bでは、2番目の割り当てパターンに応じて選択されたアルゴリズム(PI規範又はCMA規範)に基づいたウェイトによるアレーアンテナ処理が行われる。しかし、干渉信号の受信電力と、所望信号(無線通信装置120aから送信された送信信号)の受信電力とに差がほとんどない(SIR≒0)であるため、受信処理が失敗してしまう。無線通信装置120bは、受信処理の失敗を無線通信装置120aに通知する(ステップS32)。
送信側の無線通信装置120aは、無線通信装置120bから受信処理の失敗が通知されると、割り当てパターンを3番目の割り当てパターンに切り替えて、送信信号を送信する(ステップS33)。
受信側の無線通信装置120bでは、3番目の割り当てパターンに応じて選択されたアルゴリズム(PI規範又はCMA規範)に基づいたウェイトによるアレーアンテナ処理が行われる。この場合、干渉信号の受信電力と所望信号の受信電力とに差が生じるため(SIR>0、SIR<0;図9(b))、ウェイトの算出を適切に行うことができ受信処理は成功する。無線通信装置120bは、受信処理の成功を無線通信装置120aに通知する(ステップS34)。
以降、無線通信装置120aと無線通信装置120bとは、受信処理が成功した割り当てパターン(3番目の割り当てパターン)による各帯域への送信電力の割り当てを用いて通信を行う。
続いて、無線通信装置120bの受信信号における干渉信号の受信電力が変化した場合について説明する。干渉信号となる他の無線通信装置120の送信信号が増えると、ステップS34において選択した割り当てパターンによる受信が行えなくなる。
受信側の無線通信装置120bは、受信処理の失敗を無線通信装置120aに通知する(ステップS35)。
送信側の無線通信装置120aは、無線通信装置120bから受信処理の失敗が通知されると、割り当てパターンを7番目の割り当てパターンに切り替えて、送信信号を送信する(ステップS36)。
受信側の無線通信装置120bでは、7番目の割り当てパターンに応じて選択されたアルゴリズム(PI規範又はCMA規範)に基づいたウェイトによるアレーアンテナ処理が行われる。この場合、干渉信号の受信電力と所望信号の受信電力とに差が生じるため(SIR>0、SIR<0;図9(c))、ウェイトの算出を適切に行うことができ受信処理は成功する。無線通信装置120bは、受信処理の成功を無線通信装置120aに通知する(ステップS37)。
前述した例では、ステップS36において7番目の割り当てパターンに切り替えることにより無線通信装置120bにおいて受信処理が成功するが、受信信号における干渉信号の電力分布によってはパターン・テーブルに定められている割り当てパターンを順に用いて受信処理が成功するまで割り当てパターンの変更をすることになる。
以上のように、本実施形態における無線通信システムでは、送信側の無線通信装置120が各サブチャネル(帯域)に割り当てる送信電力に差を設けて送信信号を送信し、受信側の無線通信装置120が当該割り当てに応じたブラインド型アルゴリズムに基づいたウェイトによるアレーアンテナ処理を用いて受信処理を行う。受信処理が成功するまで、順に各サブチャネルへの送信電力の割り当てパターンや、通信において利用する周波数帯域の分割数及び送信電力を切り替える。これにより、受信側の無線通信装置120の受信信号において、他の無線通信装置120から送信される信号の受信電力と、所望信号の受信電力とにブラインド型アダプティブアレーアルゴリズムを機能させることができる差(電力比)を設けることができ、干渉抑圧効果を向上させることができる。
また、各サブチャネルにおいて、干渉信号の受信電力と所望信号の受信電力とに十分な差を設けることができても、干渉信号の送信源が無線通信装置120のアンテナ自由度以上である場合には、干渉信号を抑圧することが困難になる。そのため、パターン・テーブルなどにおいて予め定められている割り当てパターンには、幾つかのサブチャネルに対して0の送信電力を割り当てるパターンがあり、干渉信号の抑圧が困難なサブチャネルの利用を制限するようにしている。
<第2の実施形態>
第1の実施形態の無線通信システムではシングルキャリア通信を行う場合の無線通信装置120の構成を示した、第2の実施形態ではマルチキャリア伝送方式により通信を行う場合を説明する。その例として、OFDM、もしくはOFDMA変調方式によって通信を行う場合の無線通信装置120の構成を説明する。図10は、第2の実施形態における送信信号処理部126の構成を示すブロック図である。送信信号処理部126は、変調部131と、直列/並列変換部132と、電力割当部142−1〜142−kと、IDFT部133とを有している。電力割当部142−1〜142−kは、本実施形態におけるOFDM変調方式で用いられるk個のサブキャリアに対応して設けられている。
変調部131は、第1の実施形態と同様に、MAC層処理部122から出力される送信データに対して、符号化及び変調などの信号処理を行う。変調部131は、信号処理を施して得られた送信信号を直列/並列変換部132に出力する。直列/並列変換部132は、入力された送信信号を各サブキャリアに対応するk個の信号列に変換し、それぞれの信号列を電力割当部142−1〜142−kに入力する。
電力割当部142−1〜142−kは、直列/並列変換部132から入力される信号列に対してサブキャリアごとに割り当てられた所定の電力となるように信号レベルの調整(増幅又は減衰)を行い、IDFT部133に出力する。電力割当部142−1〜142−kによる信号レベルの調整は、予め定められている割り当てパターンに応じて行われる。
IDFT部133は、電力割当部142−1〜142−kから出力される信号列を周波数領域の信号から時間領域の信号に変換してアンテナ128に出力する。
図11は、本実施形態における受信信号処理部124の構成を示すブロック図である。同図に示す受信信号処理部124の構成は、第1の実施形態と同様に、無線通信装置120が2つのアンテナ128を備える場合の構成である。受信信号処理部124は、DFT部151−1及び151−2と、アダプティブアレー処理部152−1〜152−kと、乗算器153−1−1〜153−1−kと、乗算器153−2−1〜153−2−kと、加算器154−1〜154−kと、並列/直列変換部155と、復調部156と、アレー処理制御部163とを有している。
アダプティブアレー処理部152−1〜152−kと、乗算器153−1−1〜153−1−kと、乗算器153−2−1〜153−2−kと、加算器154−1〜154−kとは、サブキャリアに対応して設けられている。
なお、アダプティブアレー処理部152−1〜152−kと、乗算器153−1−1〜153−1−kと、乗算器153−2−1〜153−2−kと、加算器154−1〜154−kと、復調部156とは第1の実施形態と同じであるので、その説明を省略する。
DFT部151−1には、無線通信装置120に備えられている2つのアンテナ128のいずれか一方のアンテナ128で受信された受信信号1が入力される。DFT部151−2には、他方のアンテナ128で受信された受信信号2が入力される。DFT部151−1は、入力された受信信号1を時間領域の信号から周波数領域の信号に変換し、当該変換により得られたk個のサブキャリアの信号をアダプティブアレー処理部152−1〜152−kと乗算器153−1−1〜153−1−kとに出力する。DFT部151−2は、入力された受信信号2を時間領域の信号から周波数領域の信号に変換し、当該変換により得られたk個のサブキャリアの信号をアダプティブアレー処理部152−1〜152−kと乗算器153−2−1〜153−2−kとに出力する。
アレー処理制御部163は、通信相手(送信側)の無線通信装置120において各キャリアに割り当てられる送信電力に基づいて、ウェイトの算出に用いるブラインド型アルゴリズムをアダプティブアレー処理部152−1〜152−kごとに選択する。アレー処理制御部163は、アダプティブアレー処理部152−1〜152−kごとに選択したブラインド型アルゴリズムを用いてウェイトを算出することを指示する制御信号をアダプティブアレー処理部152−1〜152−kに出力する。ブラインド型アルゴリズムの選択は第1の実施形態と同様である。
なお、通信相手の無線通信装置120が送信する送信信号において各サブキャリアに割り当てる送信電力のパターン(組み合わせ)は共有されている。送信側の無線通信装置120において、いずれの割り当てパターンが選択されるかは、例えば、予め定められているか、不図示の制御回線を通じて通知される。
並列/直列変換部155には、乗算器153−1−1〜153−1−kと乗算器153−2−1〜153−2−kと加算器154−1〜154−kとにおいてアレーアンテナ処理が施された各サブキャリアの信号が入力される。並列/直列変換部155は、各サブキャリアの信号に対して並列/直列変換を施して一つの信号列に変換して復調部156に出力する。
図12は、本実施形態における無線通信装置120が行う送信処理を行うフローチャートである。無線通信装置120において送信処理が開始されると、変調部131は、MAC層処理部122においてMAC層に関する処理が施された送信データに対して、誤り訂正符号化処理を実施した後にシンボルマッピング処理をして送信信号を生成する(ステップS41)。
直列/並列変換部132は、変調部131において生成された送信信号に対して直列/並列変換を施して、各サブキャリアに対応するk個の信号列に変換し、それぞれの信号を電力割当部142−1〜142−kに入力する(ステップS42)。
電力割当部142−1〜142−kは、直列/並列変換部132においてサブキャリアごとの信号列に変換された送信信号に対して、サブキャリアごとに電力を割り当てる(ステップS43)。
IDFT部133は、電力割当部142−1〜142−kにおいてサブキャリアごとに電力が割り当てられたk個の信号列に対してIDFTを施して、周波数領域の信号から時間領域の信号に変換し(ステップS44)、得られた時間領域の信号に対して無線周波数へのアップコンバートなどの信号処理を施してアンテナ128から宛先局の無線通信装置120に向けて送信し(ステップS45)、送信処理を終了させる。
図13は、本実施形態における無線通信装置120が行う受信処理を示すフローチャートである。無線通信装置120において受信処理が開始されると、アンテナ128において受信された信号が受信信号処理部124に入力され、ベースバンド周波数へダウンコンバートなどの信号処理が施された受信信号(受信信号1、受信信号2)がDFT部151−1及び151−2に入力される(ステップS51)。
DFT部151−1は、入力された受信信号1に対してDFTを施して、時間領域の信号から周波数領域の信号に変換することにより、受信信号1をサブキャリアごとの信号に変換する。DFT部151−2は、同様に、入力された受信信号2に対してDFTを施して、受信信号2をサブキャリアごとの信号に変換する(ステップS52)。
アレー処理制御部163は、送信側の無線通信装置120が各サブキャリアに割り当てたパターンに応じて、アダプティブアレー処理部152−1〜152−kそれぞれにおいて用いるアルゴリズム(PI規範又はCMA規範)を指示する。アダプティブアレー処理部152−1〜152−kは、アレー処理制御部163から指示されたアルゴリズムに基づいて、受信信号1のサブキャリアの信号と受信信号2のサブキャリアの信号とに対するウェイトを算出する。算出されたウェイトによるアレーアンテナ処理が乗算器153−1−1〜153−1−kと乗算器153−2−1〜153−2−kと加算器154−1〜154−kとにおいて行われる(ステップS53)。
並列/直列変換部155は、アレーアンテナ処理が施された各サブキャリアの信号に対して並列/直列変換を施して一つの信号列に変換し、変換により得られた信号列を復調部156に出力する(ステップS54)。
復調部156は、並列/直列変換部155において得られた信号列に対して復調及び復号を施してデータ系列を取得し、取得したデータ系列をMAC層処理部122に出力し(ステップS55)、受信処理を終了させる。
図14は、本実施形態において各サブキャリアに割り当てる送信電力を決定する動作例を示すシーケンス図である。同図に示す動作例では、送信開始時に図14(a)に示す干渉信号(他の無線通信装置120から送信されるOFDM変調方式の信号)が存在しているものとする。無線通信システムにおいて、無線通信装置120aと無線通信装置120bとが通信を開始すると、送信側の無線通信装置120aが予め定められた第1の割り当てパターンで送信信号を送信する(ステップS61)。
受信側の無線通信装置120bでは、第1の割り当てパターンに応じて選択されたアルゴリズム(PI規範又はCMA規範)に基づいたウェイトによるアレーアンテナ処理が行われる。しかし、各サブキャリアにおいて、干渉信号の受信電力と所望信号(無線通信装置120aから送信された送信信号)の受信電力とに差がほとんどない(SIR≒0)であるため、受信処理が失敗してしまう。無線通信装置120bは、受信処理の失敗を無線通信装置120aに通知する(ステップS62)。
送信側の無線通信装置120aは、無線通信装置120bから受信処理の失敗が通知されると、割り当てパターンを第2の割り当てパターンに切り替えて、送信信号を送信する(ステップS33)。
受信側の無線通信装置120bでは、第2の割り当てパターンに応じて選択されたアルゴリズム(PI規範又はCMA規範)に基づいたウェイトによるアレーアンテナ処理が行われる。この場合、干渉信号の受信電力と所望信号の受信電力とに差が生じるため(SIR>0、SIR<0;図14(b))、ウェイトの算出を適切に行うことができ受信処理は成功する。無線通信装置120bは、受信処理の成功を無線通信装置120aに通知する(ステップS64)。
以降、無線通信装置120aと無線通信装置120bとは、受信処理が成功した割り当てパターン(第2の割り当てパターン)による各帯域への送信電力の割り当てを用いて通信を行う。
続いて、無線通信装置120bの受信信号における干渉信号の受信電力が変化した場合について説明する。干渉信号となる他の無線通信装置120の送信信号が増えると、ステップS64において選択した割り当てパターンによる受信が行えなくなる。
受信側の無線通信装置120bは、受信処理の失敗を無線通信装置120aに通知する(ステップS65)。
送信側の無線通信装置120aは、無線通信装置120bから受信処理の失敗が通知されると、割り当てパターンを第3の割り当てパターンに切り替えて、送信信号を送信する(ステップS66)。
受信側の無線通信装置120bでは、第3の割り当てパターンに応じて選択されたアルゴリズム(PI規範又はCMA規範)に基づいたウェイトによるアレーアンテナ処理が行われる。この場合、干渉信号の受信電力と所望信号の受信電力とに差が生じるため(SIR>0、SIR<0;図14(c))、ウェイトの算出を適切に行うことができ受信処理は成功する。無線通信装置120bは、受信処理の成功を無線通信装置120aに通知する(ステップS67)。
前述した例では、ステップS66において第3の割り当てパターンに切り替えることにより無線通信装置120bにおいて受信処理が成功するが、受信信号における干渉信号の電力分布によってはパターン・テーブルに定められている割り当てパターンを順に用いて受信処理が成功するまで割り当てパターンの変更をすることになる。
以上のように、本実施形態における無線通信システムでは、送信側の無線通信装置120が各サブキャリア(帯域)に割り当てる送信電力に差を設けて送信信号を送信し、受信側の無線通信装置120が当該割り当てに応じたブラインド型アルゴリズムに基づいたウェイトによるアレーアンテナ処理を用いて受信処理を行う。受信処理が成功するまで、順に各サブキャリアへの送信電力の割り当てパターンや、通信において利用する周波数帯域の分割数及び送信電力を切り替える。これにより、受信側の無線通信装置120の受信信号において、他の無線通信装置120から送信される信号の受信電力と、所望信号の受信電力とにブラインド型アダプティブアレーアルゴリズムを機能させることができる差(電力比)を設けることができ、干渉抑圧効果を向上させることができる。
以上の実施形態の説明において、アダプティブアレーアルゴリズムとしてPI及びCMAを中心に説明したが、これらに限定されることはなく、割り当てた送信電力に応じて動作領域となるアダプティブアレー規範であれば、いかなるアルゴリズムを適用してよい。例えば、SIR>0となる周波数帯域においてはMMSEを適用することとしてもよい。また、MMSEを適用している無線通信システムにおいて、SIR≒0となるような状況である場合に、上述した実施形態のように、送信側において帯域ごとに送信電力に差を設けてSIR>0及びSIR<0となる状況として、MMSEを適用した受信を行ったり、上述の受信処理をしたりしてもよい。
上述した実施形態における無線通信装置をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。更に「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、更に前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。例えば、受信処理の失敗の通知に代えて、送信側の無線通信装置が送信信号を送信してから、所定時間以内に送信信号に対する応答がない場合には受信処理の失敗と見なして、割り当てパターンを切り替えるようにしてもよい。