JP5945469B2 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP5945469B2
JP5945469B2 JP2012159702A JP2012159702A JP5945469B2 JP 5945469 B2 JP5945469 B2 JP 5945469B2 JP 2012159702 A JP2012159702 A JP 2012159702A JP 2012159702 A JP2012159702 A JP 2012159702A JP 5945469 B2 JP5945469 B2 JP 5945469B2
Authority
JP
Japan
Prior art keywords
pressure
conductive rubber
rubber member
load
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012159702A
Other languages
Japanese (ja)
Other versions
JP2014020915A5 (en
JP2014020915A (en
Inventor
池田 寛
寛 池田
浦野 竜太
竜太 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2012159702A priority Critical patent/JP5945469B2/en
Publication of JP2014020915A publication Critical patent/JP2014020915A/en
Publication of JP2014020915A5 publication Critical patent/JP2014020915A5/ja
Application granted granted Critical
Publication of JP5945469B2 publication Critical patent/JP5945469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、圧力を加えることにより電気抵抗値が変化する特性を持つ感圧センサに関する。   The present invention relates to a pressure-sensitive sensor having a characteristic that an electric resistance value is changed by applying pressure.

従来、部材に作用する圧力の大きさや圧力の分布状態を測定する手段として、ゴム、エラストマー、樹脂材料などの高分子材料を基材とし、この基材中に導電性粒子を分散させた導電性部材を用いることが知られている。   Conventionally, as a means of measuring the magnitude of pressure acting on a member and the distribution of pressure, a conductive material in which a polymer material such as rubber, elastomer or resin material is used as a base material and conductive particles are dispersed in this base material It is known to use members.

上記導電性部材による感圧特性は、以下の2つのタイプに大別される。その一つは、導電性部材中の導電性粒子によって形成される導電パスの状態が、加圧時と無加圧時で変化することよって、電気抵抗値が変化することを利用したものであり、抵抗値変化型である。なお、この電気抵抗値の変化は基材中における導電性粒子の分散状態が大きく影響する為、繰り返しの圧縮変形による電気抵抗値の変化の再現性が課題となっている。特に、押圧を繰り返すうちに、疲労により導電性部材が永久変形を起こし、導電性粒子による導電パスの形成状態が変化したままとなり、圧力を検出し難くなる問題を有している。   The pressure-sensitive characteristics due to the conductive member are roughly classified into the following two types. One of them is that the state of the conductive path formed by the conductive particles in the conductive member changes that the electric resistance value changes depending on whether the pressure is applied or not. The resistance value change type. In addition, since the change of the electrical resistance value greatly affects the dispersion state of the conductive particles in the base material, the reproducibility of the change in the electrical resistance value due to repeated compression deformation is a problem. In particular, as the pressing is repeated, the conductive member undergoes permanent deformation due to fatigue, and the state of formation of the conductive path by the conductive particles remains changed, which makes it difficult to detect the pressure.

もう一方のタイプは、上記導電性部材を用いて導電性塗膜を形成して、導電性塗膜同士を対向配置、あるいは、導電性塗膜と例えばくし型電極を対向配置させるタイプである。このタイプの感圧センサの場合、圧力の増加に伴い、導電性塗膜同士の接触面積、あるいは導電性塗膜とくし型電極間の接触面積が変化することで導通状態が変化する。従って、圧力の変化を電気抵抗値の変化として検出することが可能であり、接触面積変化型といえる。   The other type is a type in which a conductive coating film is formed using the conductive member, and the conductive coating films are arranged opposite to each other, or the conductive coating film and, for example, a comb-type electrode are arranged to face each other. In the case of this type of pressure-sensitive sensor, as the pressure increases, the contact area between the conductive coating films or the contact area between the conductive coating film and the comb-type electrode changes, thereby changing the conduction state. Therefore, it is possible to detect a change in pressure as a change in electric resistance value, which can be said to be a contact area change type.

このような感圧センサは、少なくとも、圧力を受ける導電性部材と電気抵抗値の変化の出力経路となる電極基板から構成される。さらに、実装使用時に安定した感圧性能が維持できるよう、感圧導電性部材と電極基板を固定したり、あるいは電極基板への感圧導電性部材の押付け状態を規定している。   Such a pressure-sensitive sensor is composed of at least a conductive member that receives pressure and an electrode substrate that serves as an output path for a change in electrical resistance value. Furthermore, the pressure-sensitive conductive member and the electrode substrate are fixed or the pressure-sensitive conductive member is pressed against the electrode substrate so that stable pressure-sensitive performance can be maintained during use.

たとえば、くし型電極上に感圧導電性弾性体を設けた感圧センサにおいて、感圧導電性弾性体に圧力を有して薄皮(フィルムなど)が被覆されていることを特徴とする感圧センサが提案されている(特許文献1)。この感圧センサは、押子により圧力を印加した後に解放するとき、感圧導電性弾性体の形状回復性に加え、薄皮自身の形状回復性が作用するので、圧力の増減に精度よく追従する構造となり、抵抗値−荷重曲線のヒステリシスが小さい感圧センサとなる。   For example, in a pressure-sensitive sensor in which a pressure-sensitive conductive elastic body is provided on a comb-shaped electrode, the pressure-sensitive conductive elastic body is covered with a thin skin (film or the like) having pressure. A sensor has been proposed (Patent Document 1). When the pressure sensor is released after pressure is applied by the pusher, the shape recovery property of the thin skin itself acts in addition to the shape recovery property of the pressure-sensitive conductive elastic body. It becomes a structure and it becomes a pressure-sensitive sensor with small hysteresis of a resistance value-load curve.

また、導電層を有する回路パターンを連続させて所望形状に形成した第1及び第2の絶縁フィルムを、前記回路パターンを対向させると共に、複数の開口部を有する第3の絶縁フィルムからなるスペーサを前記両絶縁フィルムの間に挟み込み、前記回路パターンが前記各開口部で対向する検知部を有するフィルムセンサであって、前記各回路パターンは、前記複数の開口部と対応する領域に第2の導電層が形成されると共に、当該第2の導電層の周縁のみに形成され、当該第2の導電層の内部側が省略されていることを特徴とするフィルムセンサが提案されている(特許文献2)。このフィルムセンサは、開口部において、導電層がスペーサの厚さ分の空間を隔てて対向し、開口部において圧力の検知部を形成している。上記のように構成されるフィルムセンサにおいては、検知部に圧力が作用するとフィルム基板の一方或いは双方が弾性変形して導電層間が接続され、圧力が解除されると導電層間の接続が解除される。   In addition, the first and second insulating films formed in a desired shape by continuously forming a circuit pattern having a conductive layer are opposed to the circuit pattern, and a spacer made of a third insulating film having a plurality of openings. A film sensor having a detection unit sandwiched between the two insulating films and facing the circuit pattern at each opening, wherein each circuit pattern has a second conductive property in a region corresponding to the plurality of openings. A film sensor is proposed in which a layer is formed and formed only on the periphery of the second conductive layer, and the inner side of the second conductive layer is omitted (Patent Document 2). . In this film sensor, the conductive layer is opposed to the spacer with a space corresponding to the thickness of the spacer in the opening, and a pressure detection unit is formed in the opening. In the film sensor configured as described above, when pressure is applied to the detection unit, one or both of the film substrates are elastically deformed to connect the conductive layers, and when the pressure is released, the connection between the conductive layers is released. .

特開2001−195945号公報JP 2001-195945 A 特開2001−21423号公報JP 2001-21423 A

特許文献1の感圧センサでは、次の点で課題があった。
(1)感圧導電性弾性体に常時圧力が加わっているため、外部からの圧力が加わる以前に電気信号が出力されており、誤検知の恐れがある。
The pressure-sensitive sensor of Patent Document 1 has problems in the following points.
(1) Since pressure is constantly applied to the pressure-sensitive conductive elastic body, an electrical signal is output before external pressure is applied, which may cause erroneous detection.

また、特許文献2のフィルムセンサでは、次の点で課題があった。
(1)検知部は開口部分に限定されており、スペーサ部分を避けて検知部に対してのみ圧力を加えないと、圧力が検知されない。
(2)また前記(1)の構造上の理由により、小型化に適していない。
Moreover, the film sensor of Patent Document 2 has problems in the following points.
(1) The detection unit is limited to the opening portion, and pressure is not detected unless pressure is applied only to the detection unit while avoiding the spacer portion.
(2) Further, for the structural reason of (1), it is not suitable for downsizing.

従って、本発明の課題は、誤検知し難く、感圧導電性ゴム部材が永久変形し難く、長期間に亘って信頼性の高い、荷重−出力特性を示し、検知部に対する圧力の負荷形状が限定されずに、小型化が可能な感圧センサを提供することにある。   Therefore, the problem of the present invention is that it is difficult to detect erroneously, the pressure-sensitive conductive rubber member is hard to be permanently deformed, shows a load-output characteristic that is highly reliable over a long period of time, and the pressure load shape on the detection unit is The present invention provides a pressure-sensitive sensor that can be downsized without being limited thereto.

本発明は、電極基板と導電性ゴム部材とが、近接非接触状態で対向配置されてなる感圧センサにおいて、前記電極基板および前記導電性ゴム部材は、少なくとも固定剤層が設けられた可撓性フィルムからなる絶縁性被覆部材によって周回被覆されていると共に、前記固定剤層を介して前記絶縁性被覆部材に固定されており、前記近接非接触状態の前記電極基板と前記導電性ゴム部材との隙間量が10μm以上、300μm以下であり、前記可撓性フィルムは、ヤング率が2GPa以上、10GPa以下であって、厚みが10μm以上、60μm以下であることを特徴とする感圧センサである。 The present invention provides a pressure-sensitive sensor in which an electrode substrate and a conductive rubber member are arranged to face each other in a close and non-contact state, and the electrode substrate and the conductive rubber member are provided with at least a fixing agent layer. And is covered with an insulating coating member made of a conductive film and fixed to the insulating coating member via the fixing agent layer, and the electrode substrate and the conductive rubber member in the proximity non-contact state, The flexible film has a Young's modulus of 2 GPa or more and 10 GPa or less and a thickness of 10 μm or more and 60 μm or less. .

本発明によれば、無負荷時の電気絶縁性が確保されており誤検知し難く、導電性ゴム部材が永久変形し難く、荷重の負荷−除荷における出力ヒステリシスが小さく、繰り返し使用に対する耐久性を有し、長期間に亘って再現性の高い荷重−出力特性を示し、検知部に対する圧力の負荷形状が限定されずに、負荷位置によるばらつきが小さく、小型化が可能な感圧センサが提供される。   According to the present invention, electrical insulation at no load is ensured, it is difficult to detect erroneously, the conductive rubber member is hard to be permanently deformed, load hysteresis at load-unloading is small, and durability against repeated use Provides a highly reproducible load-output characteristic over a long period of time, and provides a pressure-sensitive sensor that can be miniaturized with little variation in load position, without limiting the load shape of the pressure on the detector Is done.

本発明に係る感圧センサの断面図である。It is sectional drawing of the pressure-sensitive sensor which concerns on this invention. 荷重の大きさと導電性ゴム部材の大きさとの関係を示す図である。It is a figure which shows the relationship between the magnitude | size of a load and the magnitude | size of an electroconductive rubber member. 電極基板と導電性ゴム部材との隙間量を示す図である。It is a figure which shows the amount of clearance gaps between an electrode substrate and a conductive rubber member. 電極基板と導電性ゴム部材を絶縁性被覆部材によって周回被覆する状態を示す断面図である。It is sectional drawing which shows the state which coat | covers an electrode substrate and a conductive rubber member with an insulating coating member. 本発明に係る感圧センサの絶縁性被覆部材の投影面積が最大値となる方向からみた図である。It is the figure seen from the direction from which the projected area of the insulating coating | coated member of the pressure sensor which concerns on this invention becomes the maximum value. くし型電極基板を示す図である。It is a figure which shows a comb-type electrode substrate. 感圧特性の評価装置を示す図である。It is a figure which shows the evaluation apparatus of a pressure-sensitive characteristic. 検知部に対する押子の位置を示す図である。It is a figure which shows the position of the pusher with respect to a detection part.

以下、図面を参照しつつ本発明の感圧センサについて説明する。尚、以下の説明において、導電性ゴム部材の電極基板と対向する面およびその反対側の面を、それぞれ、「A面」および「B面」という場合がある。また、電極基板の電極を有する面およびその反対側の面を、それぞれ、「a面」および「b面」という場合がある。   Hereinafter, the pressure sensor of the present invention will be described with reference to the drawings. In the following description, the surface of the conductive rubber member that faces the electrode substrate and the opposite surface may be referred to as “A surface” and “B surface”, respectively. In addition, the surface of the electrode substrate having the electrode and the surface on the opposite side may be referred to as “a surface” and “b surface”, respectively.

図1は、本発明に係る感圧センサの断面図の一例である。導電性ゴム部材(110)のA面は、電極基板(120)の電極を有する面(即ち、a面)と近接非接触状態で対向配置されている。これらの電極基板と導電性ゴム部材は、絶縁性被覆部材(130)によって周回被覆されている。この絶縁性被覆部材は、可撓性フィルム(131)と、その一方の表面(内面)の全体に亘って形成された接着性の固定剤層(132)とを有している。導電性ゴム部材と電極基板は、この接着性の固定剤層を介して絶縁性被覆部材に固定されている。   FIG. 1 is an example of a cross-sectional view of a pressure-sensitive sensor according to the present invention. The A surface of the conductive rubber member (110) is disposed so as to face the surface of the electrode substrate (120) having the electrodes (that is, the a surface) in a proximity non-contact state. These electrode substrate and conductive rubber member are covered with an insulating covering member (130). This insulating covering member has a flexible film (131) and an adhesive fixing agent layer (132) formed over the entire one surface (inner surface). The conductive rubber member and the electrode substrate are fixed to the insulating covering member via this adhesive fixing agent layer.

絶縁性被覆部材は、図示するように撓んでおり、フィルムの腰により、無負荷状態であるときには、導電性ゴム部材のA面と電極基板のa面とを近接非接触状態としている。荷重が加わると、図1−bに示すように、絶縁性被覆部材が撓み、電極基板のa面にある電極と導電性ゴム部材のA面とが接触して導通抵抗が変化する。   The insulating covering member is bent as shown in the figure, and the A surface of the conductive rubber member and the a surface of the electrode substrate are in close proximity and non-contact state due to the waist of the film when in an unloaded state. When a load is applied, as shown in FIG. 1B, the insulating covering member bends, the electrode on the a-side of the electrode substrate contacts the A-side of the conductive rubber member, and the conduction resistance changes.

本形態の感圧センサは、負荷される荷重の圧力印加面の大きさ(面積)が感圧センサの導電性ゴム部材の面積よりも小さい場合(図2−a)のみならず、大きい場合(図2−b)においても、電極と導電性ゴム部材の間にスペーサ等の介在物が存在しないため、電極と導電性ゴム部材は接触することができ、感圧センサとして機能することができる。   The pressure-sensitive sensor of the present embodiment is not only when the size (area) of the pressure application surface of the applied load is smaller than the area of the conductive rubber member of the pressure-sensitive sensor (FIG. 2-a), but also when it is large ( Also in FIG. 2B, since there is no inclusion such as a spacer between the electrode and the conductive rubber member, the electrode and the conductive rubber member can be in contact with each other and can function as a pressure-sensitive sensor.

感圧センサが実装使用される環境においては、高速で移動したり、振動したりすることによって生じるノイズによって電極と導電性ゴム部材が接触して導通抵抗が変化し、誤検知の原因となる場合がある。本発明の感圧センサにおいては導電性ゴム部材と電極とを絶縁性被覆部材によって近接非接触状態に固定し、導電性被覆部材のヤング率及び厚み、並びに導電性ゴム部材と電極との隙間量を調整することによって効果的に最小検出荷重を調整することが出来るので、このような誤検知を防止することが出来る。   In an environment where a pressure sensor is mounted and used, the conductive resistance may change due to contact between the electrode and the conductive rubber member due to noise caused by high-speed movement or vibration, causing false detection. There is. In the pressure-sensitive sensor of the present invention, the conductive rubber member and the electrode are fixed in proximity and non-contact by the insulating coating member, and the Young's modulus and thickness of the conductive coating member, and the gap amount between the conductive rubber member and the electrode By adjusting the value, the minimum detection load can be adjusted effectively, so that such erroneous detection can be prevented.

上記近接非接触状態については、対向する導電性ゴム部材のA面と電極基板の電極を有するa面との隙間量(図3の141)が、10μm以上、300μm以下であることが好ましい。隙間量が10μm以上である場合は、繰り返し負荷−除荷を行なった際に安定して離間状態への復元ができ、最小検出荷重の再現精度に優れ、誤検知の発生を防止する。隙間量が300μm以下である場合は、圧力の位置、角度等が変化した場合にも導電性ゴム部材と対向する電極との接触状態が均一に保たれ、出力特性のばらつきは生じ難い。   In the proximity non-contact state, the gap amount (141 in FIG. 3) between the A surface of the conductive rubber member and the a surface having the electrode of the electrode substrate is preferably 10 μm or more and 300 μm or less. When the gap amount is 10 μm or more, it can be stably restored to the separated state when repeated load-unloading is performed, and the reproduction accuracy of the minimum detection load is excellent, and the occurrence of erroneous detection is prevented. When the gap amount is 300 μm or less, the contact state between the conductive rubber member and the facing electrode is kept uniform even when the pressure position, angle, and the like change, and variations in output characteristics hardly occur.

<絶縁性被覆部材>
本発明に係る絶縁性被覆部材は、少なくとも可撓性フィルムと固定剤層とを有する部材であって、導電性ゴム部材と電極基板を被覆すると共に固定するための部材である。このような絶縁性被覆部材を用いることで、導電性ゴム部材と電極基板とを近接非接触状態で対向配置することが可能であり、上記隙間量を容易に調整することが可能である。
<Insulating coating member>
The insulating covering member according to the present invention is a member having at least a flexible film and a fixing agent layer, and is a member for covering and fixing the conductive rubber member and the electrode substrate. By using such an insulating covering member, the conductive rubber member and the electrode substrate can be arranged to face each other in a close proximity and non-contact state, and the gap amount can be easily adjusted.

図4は、本発明に係る導電性ゴム部材(110)と電極基板(120)とを絶縁性被覆部材(130)を用いて周回被覆する際に、離間形成冶具(140)を使用する状態を示す断面図の一例である。先ず、導電性ゴム部材と電極基板との間に離間形成冶具を挟んだ状態で、導電性ゴム部材と電極基板を絶縁性被覆部材によって周回被覆する。その際、絶縁性被覆部材の内側の面に存在する接着性の固定剤層によって、導電性ゴム部材と電極基板は絶縁性被覆部材に固定される。その後に、離間形成冶具を抜き去ることで図1―aに示すように、電極基板と導電性ゴム部材とが近接非接触状態で対向配置された状態とすることができる。近接非接触状態は、離間形成冶具の厚みおよび幅を所定の寸法に形成しておくことで精度よく形成可能であり、さらに上記離間形成冶具の寸法を調整することで隙間量の調整が可能である。   FIG. 4 shows a state in which the separation forming jig (140) is used when the conductive rubber member (110) and the electrode substrate (120) according to the present invention are covered with the insulating covering member (130). It is an example of sectional drawing shown. First, the conductive rubber member and the electrode substrate are covered with an insulating covering member in a state where a gap forming jig is sandwiched between the conductive rubber member and the electrode substrate. At that time, the conductive rubber member and the electrode substrate are fixed to the insulating covering member by an adhesive fixing agent layer present on the inner surface of the insulating covering member. Thereafter, by removing the separation forming jig, as shown in FIG. 1A, the electrode substrate and the conductive rubber member can be arranged to face each other in the proximity non-contact state. The proximity non-contact state can be formed with high precision by forming the thickness and width of the separation forming jig to predetermined dimensions, and the gap amount can be adjusted by adjusting the dimensions of the separation forming jig. is there.

[可撓性フィルム]
本発明に係る可撓性フィルムは、前記絶縁性被覆部材の主要な構成要素である。導電性ゴム部材と電極基板とが絶縁性被覆部材によって近接非接触状態に固定されている際に、可撓性フィルムの撓んでいる部分は腰として作用し、無負荷状態における電極と導電性ゴム部材との離間状態を維持し、誤検知を防止する。また荷重が加わった際に可撓性フィルムは撓み変形して導電性ゴム部材と電極を接触させることができる。さらに、荷重を除いた場合には、フィルムの腰の力によって導電性ゴム部材と電極とを離間状態に復元することができ、荷重の負荷−除荷における出力のヒステリシスを生じ難くすることができる。さらに長期間に亘って繰り返し使用した際にも安定した離間状態を維持し、誤検知を防止することができる。
[Flexible film]
The flexible film according to the present invention is a main component of the insulating covering member. When the conductive rubber member and the electrode substrate are fixed in the proximity non-contact state by the insulating coating member, the bent portion of the flexible film acts as a waist, and the electrode and the conductive rubber in the no-load state Maintains a separated state from the member and prevents false detection. Further, when a load is applied, the flexible film is bent and deformed so that the conductive rubber member and the electrode can be brought into contact with each other. Furthermore, when the load is removed, the conductive rubber member and the electrode can be restored to the separated state by the waist force of the film, and the output hysteresis in the load-unloading can be made difficult to occur. . Furthermore, even when used repeatedly over a long period of time, a stable separation state can be maintained and erroneous detection can be prevented.

可撓性フィルムの厚みは、10μm以上、60μm以下である。可撓性フィルムの厚みが上記範囲内であれば、フィルムの腰が適度になり、無負荷状態においては電極と導電性ゴム部材との離間状態を維持し、誤検知を防止することができる。さらに長期間の使用においても安定した離間状態を維持し、誤検知を防止することができる。   The thickness of the flexible film is 10 μm or more and 60 μm or less. If the thickness of the flexible film is within the above range, the film is moderately stretched, and in a no-load state, the separated state between the electrode and the conductive rubber member can be maintained to prevent erroneous detection. Furthermore, a stable separation state can be maintained even during long-term use, and erroneous detection can be prevented.

フィルムの腰は、フィルムのヤング率Eと、幅bの積と、厚みdの3乗に比例する。即ち以下の関係式が成立する。従って、フィルムの厚みの影響が特に大きく重要である。
式(1) フィルムの腰の強さ∝E・b・d
The waist of the film is proportional to the product of the Young's modulus E of the film, the width b, and the cube of the thickness d. That is, the following relational expression is established. Therefore, the influence of the film thickness is particularly important.
Formula (1) The waist strength of the film ∝E · b · d 3 .

可撓性フィルムの厚みが10μmに満たない場合、可撓性フィルムの腰は弱過ぎて、荷重の負荷−除荷に追従することができず、出力のヒステリシスが大きくなる場合がある。また無負荷時において導電性ゴム部材と電極基板とが近接非接触状態であっても、繰り返し負荷−除荷を行なった際に安定した離間状態への復元が困難になり、最小検出荷重の再現精度に劣り、誤検知の恐れがある。また、最小検出荷重が限りなく無負荷に近くなり、ノイズとの判別が困難になり、誤検知の恐れがある。   When the thickness of the flexible film is less than 10 μm, the flexibility of the flexible film is too weak to follow the load-unloading of the load, and the output hysteresis may increase. In addition, even when the conductive rubber member and the electrode substrate are not in close contact with each other when there is no load, it is difficult to restore a stable separation state when repeated loading and unloading, and the minimum detected load is reproduced. Inaccurate and may cause false detection. In addition, the minimum detection load becomes almost no load, making it difficult to distinguish from noise, and there is a risk of erroneous detection.

一方、可撓性フィルムの厚みが60μmを超える場合、可撓性フィルムの腰は強過ぎて、導電性ゴム部材の固定維持が困難になり、絶縁性被覆部材から導電性ゴム部材が剥離するおそれがある。あるいは剥離しなくても、導電性部材が可撓性フィルムに追従して撓んでしまい、荷重が加わった際に、荷重の加わる位置によって、対向する電極と導電性ゴム部材との接触状態が不均一になってしまい、感圧センサの出力特性にばらつきが生じてしまう場合がある。   On the other hand, when the thickness of the flexible film exceeds 60 μm, the flexibility of the flexible film is too strong, making it difficult to maintain and fix the conductive rubber member, and the conductive rubber member may be peeled off from the insulating covering member. There is. Alternatively, even if not peeled off, the conductive member bends following the flexible film, and when a load is applied, the contact state between the opposing electrode and the conductive rubber member is not good depending on the position where the load is applied. In some cases, the output characteristics of the pressure-sensitive sensor may vary.

また、可撓性フィルムのヤング率は、2GPa以上、10GPa以下である。ヤング率が上記範囲内であれば、様々な圧力の形態による感圧特性のばらつきを抑制し、感圧センサの繰り返し使用においても再現性の高い感圧特性を示す。感圧センサに外部より圧力を加えたとき、前記可撓性フィルムを介して、導電性ゴム部材に圧力が伝わる。接触面積変化型の感圧導電性部材を使用する場合、安定した感圧特性を得るためには、導電性ゴム部材がある一定圧力を受けたときに導電性ゴム部材と電極基板との接触状態が一定となるようにすることが重要である。本発明のような特定範囲内の一定のヤング率を有する絶縁性被覆部材を用いることで、様々な圧力の形態、すなわち押子の形状や加える圧力の角度等が用途に応じて変化しても、感圧導電性部材の全面に圧力を分散させて安定した接触面積が確保できるので、圧力の形態に左右されない安定した感圧特性を得ることができる。   The Young's modulus of the flexible film is 2 GPa or more and 10 GPa or less. If the Young's modulus is within the above range, variations in pressure-sensitive characteristics due to various pressure forms are suppressed, and highly reproducible pressure-sensitive characteristics are exhibited even when the pressure-sensitive sensor is repeatedly used. When pressure is applied from the outside to the pressure sensitive sensor, the pressure is transmitted to the conductive rubber member via the flexible film. When using a pressure-sensitive conductive member that changes the contact area, in order to obtain stable pressure-sensitive characteristics, the contact state between the conductive rubber member and the electrode substrate when the conductive rubber member receives a certain pressure. It is important to ensure that is constant. By using an insulating covering member having a certain Young's modulus within a specific range as in the present invention, various forms of pressure, that is, even if the shape of the presser and the angle of the applied pressure change depending on the application. Since a stable contact area can be ensured by dispersing pressure over the entire surface of the pressure-sensitive conductive member, stable pressure-sensitive characteristics that are not affected by the form of pressure can be obtained.

可撓性フィルムのヤング率が2GPaに満たない場合、荷重が加わった際の導電性ゴム部材全体への圧力分散が不十分となることから、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態が不均一になって、出力特性にばらつきが生じてしまう場合がある。一方、可撓性フィルムのヤング率が10GPaを超える場合、繰り返し屈曲に対する耐久性が劣ることから、出力が徐々に変化してしまい、再現性に劣る場合がある。   When the Young's modulus of the flexible film is less than 2 GPa, pressure dispersion to the entire conductive rubber member when a load is applied becomes insufficient, and therefore the conductive rubber member faces the conductive rubber member depending on the position where the load is applied. In some cases, the contact state with the electrode becomes non-uniform, resulting in variations in output characteristics. On the other hand, when the Young's modulus of the flexible film exceeds 10 GPa, the durability against repeated bending is inferior, so that the output gradually changes and the reproducibility may be inferior.

可撓性フィルムの材質としては、絶縁性でかつ上記ヤング率と厚みを満たすものであれば、特に制限されず、たとえば、以下のものが挙げられる。二軸延伸ナイロンフィルム、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリフェニレンサルファイドフィルム、ポリスルフェンサルファイドフィルム、ポリエステルフィルム、ポリスチレンフィルム等。中でも、耐熱性、耐吸湿性の高いポリイミドフィルムが好適である。   The material of the flexible film is not particularly limited as long as it is insulating and satisfies the above Young's modulus and thickness, and examples thereof include the following. Biaxially stretched nylon film, polyimide film, polyethylene terephthalate film, polyphenylene sulfide film, polysulfene sulfide film, polyester film, polystyrene film and the like. Among them, a polyimide film having high heat resistance and high moisture absorption resistance is preferable.

[最大投影面積]
前記電極基板および前記導電性ゴム部材を、前記絶縁性被覆部材によって周回被覆した状態において、面積が最大となる方向からみた前記絶縁性被覆部材の投影面積は3mm2以上、80mm2以下であることが好ましい。図5は、本発明に係る感圧センサの絶縁性被覆部材の投影面積が最大となる方向からみた図の一例である。絶縁性被覆部材(130)は、電極基板(120)と導電性ゴム部材(図示省略)を内包し固定している。最大投影面積Sは、絶縁性被覆部材の横幅bと、長手方向の長さ(縦長さ)cの積(S=b×c)で表わされる。最大投影面積が上記範囲内であれば、絶縁性被覆部材による導電性ゴム部材と電極の固定ができ、また出力特性のばらつきが抑えられる。最大投影面積が3mm2以上である場合は、絶縁性被覆部材において導電性ゴム部材及び電極基板との固定しろが十分に確保できるため固定力が不足することなく、導電性ゴム部材や電極基板が剥離し難い。最大投影面積が80mm2以下である場合は、荷重が加わった際に、荷重の加わる位置によって、対向する電極と導電性ゴム部材との接触状態が不均一になり難く、出力特性のばらつきは生じ難い。
[Maximum projected area]
In the state where the electrode substrate and the conductive rubber member are covered with the insulating coating member, the projected area of the insulating coating member as viewed from the direction in which the area becomes maximum is 3 mm 2 or more and 80 mm 2 or less. Is preferred. FIG. 5 is an example of a view seen from the direction in which the projected area of the insulating covering member of the pressure-sensitive sensor according to the present invention is maximized. The insulating covering member (130) encloses and fixes the electrode substrate (120) and a conductive rubber member (not shown). The maximum projected area S is represented by the product (S = b × c) of the lateral width b of the insulating covering member and the length (vertical length) c in the longitudinal direction. If the maximum projected area is within the above range, the conductive rubber member and the electrode can be fixed by the insulating covering member, and variations in output characteristics can be suppressed. When the maximum projected area is 3 mm 2 or more, the insulating covering member can secure a sufficient margin for fixing with the conductive rubber member and the electrode substrate, so that the conductive rubber member and the electrode substrate are not short of fixing force. Hard to peel. When the maximum projected area is 80 mm 2 or less, when a load is applied, the contact state between the opposing electrode and the conductive rubber member is unlikely to be uneven depending on the position where the load is applied, resulting in variations in output characteristics. hard.

また、絶縁性被覆部材の横幅は特に限定されないが、1.5mm以上、20mm以下であることが好ましい。フィルムの幅が1.5mm以上である場合は、導電性ゴム部材及び電極基板との固定しろが十分に確保できるため固定力が不足することなく、導電性ゴム部材や電極基板が剥離し難い。フィルムの幅が20mm以下である場合は、荷重が加わった際に、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態が不均一になり難く、出力特性のばらつきは生じ難い。   Further, the lateral width of the insulating covering member is not particularly limited, but is preferably 1.5 mm or more and 20 mm or less. When the width of the film is 1.5 mm or more, a sufficient margin for securing the conductive rubber member and the electrode substrate can be secured, so that the conductive rubber member and the electrode substrate are not easily peeled without insufficient fixing force. When the width of the film is 20 mm or less, when a load is applied, the contact state between the conductive rubber member and the facing electrode is less likely to be uneven depending on the position where the load is applied, and variations in output characteristics are unlikely to occur. .

絶縁性被覆部材の縦長さは特に限定されないが、1.5mm以上、20mm以下であることが好ましい。フィルムの長さが1.5mm以上である場合は、導電性ゴム部材及び電極基板との固定しろが十分に確保できるため固定力が不足することなく、導電性ゴム部材や電極基板が剥離し難い。フィルムの長さが20mm以下である場合は、荷重が加わった際に、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態が不均一になり難く、出力特性のばらつきは生じ難い。   The longitudinal length of the insulating covering member is not particularly limited, but is preferably 1.5 mm or more and 20 mm or less. When the length of the film is 1.5 mm or more, it is difficult to peel off the conductive rubber member and the electrode substrate without a shortage of fixing force because a sufficient margin can be secured between the conductive rubber member and the electrode substrate. . When the length of the film is 20 mm or less, when a load is applied, the contact state between the conductive rubber member and the opposing electrode is less likely to be uneven depending on the position where the load is applied, resulting in variations in output characteristics. hard.

[固定剤層]
本発明の絶縁性被覆部材を構成する可撓性フィルムにおいては、少なくとも固定剤層が設けられている。固定剤層は、例えば、可撓性フィルムの少なくとも一方の表面に粘着剤を塗布することによって形成することができる。図1〜図4の感圧センサにおいて、固定剤層は可撓性フィルムの一方の表面(内面)の全体に亘って形成されている。固定剤層は、少なくとも導電性ゴム部材のB面と電極基板のb面に対応する領域、及び、可撓性フィルムが互いに重なり合う領域に形成されていることが好ましい。
[Fixing agent layer]
In the flexible film which comprises the insulating coating member of this invention, the fixing agent layer is provided at least. The fixing agent layer can be formed, for example, by applying an adhesive to at least one surface of the flexible film. In the pressure-sensitive sensor of FIGS. 1 to 4, the fixing agent layer is formed over the entire one surface (inner surface) of the flexible film. The fixing agent layer is preferably formed in at least a region corresponding to the B surface of the conductive rubber member and the b surface of the electrode substrate, and a region where the flexible films overlap each other.

可撓性フィルムの表面に塗布される固定剤としては、接着剤でも粘着剤でもよいが、アクリル系粘着剤が好ましい。また、ゴム系やシリコーンゴム系等の粘着剤を使用することもできる。しかし、ゴム系粘着剤では、粘着性を得るために粘着付与剤等が配合されている。このため、特定の使用環境や長期間の使用では粘着付与剤が染み出して、電気的な接点障害を引き起こす要因となったり、使用するゴムの種類によっては、硬化、劣化等により、粘着性自体が失われることが懸念される。また、シリコーンゴム系粘着剤では、含有する低分子シロキサン成分の染み出しによる電気的な接点障害の要因となる場合がある。一方、アクリル系粘着剤では主成分であるアクリル酸エステル共重合体自身が粘着性を有し、ゴム系やシリコーン系の粘着剤と比較して、粘着力も高いため、より好適である。粘着剤層の厚みは、特に制限されないが、一般に10〜50μmの範囲で使用される。   The fixing agent applied to the surface of the flexible film may be an adhesive or an adhesive, but an acrylic adhesive is preferred. Also, rubber-based or silicone rubber-based adhesives can be used. However, in the rubber-based adhesive, a tackifier or the like is blended in order to obtain adhesiveness. For this reason, the tackifier oozes out in a specific use environment or for a long period of time, causing electric contact failure, or depending on the type of rubber used, due to curing, deterioration, etc., the tackiness itself Concern about being lost. In addition, the silicone rubber-based pressure-sensitive adhesive may cause an electrical contact failure due to the leakage of the low molecular siloxane component contained. On the other hand, an acrylic adhesive is more suitable because the acrylic ester copolymer itself, which is a main component, has adhesiveness and has higher adhesive strength than rubber-based and silicone-based adhesives. Although the thickness in particular of an adhesive layer is not restrict | limited, Generally it uses in the range of 10-50 micrometers.

<電極基板>
本発明の感圧センサにおいて、電極基板としては公知の電極基板が使用できる。例えばガラスエポキシ基板等の絶縁性基板に銅箔等をプリントしてパターンを形成したもの、及び、フレキシブルプリント基板のようにポリアミド等の絶縁性フィルムと銅箔等の導体を組み合わせたもの等が挙げられる。また、感圧センサの小型化や柔軟化のために、ポリアミドやポリエチレンテレフタレート(PET)製の絶縁性フィルム上に銀やカーボンブラックを含む導電性ペーストを任意のパターンでスクリーン印刷したものを使用することもできる。
<Electrode substrate>
In the pressure-sensitive sensor of the present invention, a known electrode substrate can be used as the electrode substrate. For example, a pattern formed by printing a copper foil or the like on an insulating substrate such as a glass epoxy substrate, or a combination of an insulating film such as polyamide and a conductor such as copper foil as in a flexible printed substrate It is done. Also, in order to reduce the size and flexibility of the pressure sensor, use a screen paste of conductive paste containing silver or carbon black on an insulating film made of polyamide or polyethylene terephthalate (PET) in an arbitrary pattern. You can also.

<導電性ゴム部材>
本発明の感圧センサにおいて、導電性ゴム部材は、圧縮に伴い弾性変形し、導電性ゴム部材と対向して配置される電極との導通抵抗が有為に変化する作用を有するゴム部材である。導電性ゴム部材は、導電性付与剤を含有するゴム組成物を架橋した導電性ゴム基材であってもよく、イオン導電性ゴムからなるゴム組成物を架橋した導電性ゴム基材であってもよい。また、これらのゴム基材の表面に導電性被覆層が形成された二層以上の構成を有するものであってもよい。表面に導電性被覆層が形成されているものは、形成されていないものに比べて、導電性ゴム部材の粘着性に由来するヒステリシスロスを抑制することができるので好適に用いられる。導電性ゴム部材のA面(電極基板と対向する面)には、少なくとも一層の導電性被覆層が形成されていることが好ましい。
<Conductive rubber member>
In the pressure-sensitive sensor of the present invention, the conductive rubber member is a rubber member that is elastically deformed with compression and has a function of significantly changing the conduction resistance with the electrode disposed facing the conductive rubber member. . The conductive rubber member may be a conductive rubber base material obtained by cross-linking a rubber composition containing a conductivity-imparting agent, or a conductive rubber base material obtained by cross-linking a rubber composition made of ionic conductive rubber. Also good. Moreover, you may have a structure of two or more layers in which the electroconductive coating layer was formed on the surface of these rubber base materials. Those having a conductive coating layer formed on the surface are preferably used because hysteresis loss derived from the adhesiveness of the conductive rubber member can be suppressed as compared with those having no conductive coating layer. It is preferable that at least one conductive coating layer is formed on the A surface of the conductive rubber member (the surface facing the electrode substrate).

ゴム基材を構成するゴム組成物のゴム成分として具体的には、以下のものが挙げられる。天然ゴム(NR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、エチレンプロピレンゴム(EPM、EPDM)、クロロプレンゴム(CR)、イソプレンゴム(IR)、エピクロルヒドリンゴム(CO、ECO)、シリコーンゴム、及びウレタンゴム(U)等。これらは、単独で或いは2種以上を混合して用いることができる。中でも、ヒステリシスロスを考慮すると、NR、BR、低スチレンSBR、低ニトリルNBR(AN量18%)が好適に用いられる。   Specific examples of the rubber component of the rubber composition constituting the rubber substrate include the following. Natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), ethylene propylene rubber (EPM, EPDM), chloroprene rubber (CR), isoprene rubber (IR), epichlorohydrin rubber ( CO, ECO), silicone rubber, urethane rubber (U) and the like. These can be used alone or in admixture of two or more. Among these, in consideration of hysteresis loss, NR, BR, low styrene SBR, and low nitrile NBR (AN amount 18%) are preferably used.

ゴム組成物は通常、ゴム成分の他に各種配合剤を含有する。例えば、導電性付与剤、加硫剤、加硫促進剤、充填剤、老化防止剤、スコーチ防止剤、軟化剤、可塑剤、分散剤などの従来からゴムの配合剤として使用されているものが適宜配合される。   The rubber composition usually contains various compounding agents in addition to the rubber component. For example, those conventionally used as rubber compounding agents such as conductivity imparting agents, vulcanizing agents, vulcanization accelerators, fillers, anti-aging agents, anti-scorching agents, softeners, plasticizers, dispersants, etc. It mix | blends suitably.

上記ゴム組成物の未加硫物の混合は、例えば、加圧式ニーダー、オープンロール等の混練機を用いて行うことができる。ゴム組成物の未加硫物を成形、架橋する方法は、特に限定されない。成形方法としては、押出成形、プレス成形等を挙げることができる。押出成形は、上記未加硫物をスクリューで混練し、先端の押出金型(ダイ)を通過させて連続成形する方法である。プレス成形は、金型に上記未加硫物を充填し加圧成型する方法である。成形後の未加硫ゴム混合物の加硫方法としては、加熱、冷却等の温度制御により加硫を行う方法であれば、特に条件は問わない。   The unvulcanized product of the rubber composition can be mixed using, for example, a kneader such as a pressure kneader or an open roll. The method for molding and crosslinking the unvulcanized rubber composition is not particularly limited. Examples of the molding method include extrusion molding and press molding. Extrusion molding is a method in which the unvulcanized product is kneaded with a screw and passed through an extrusion die (die) at the tip to be continuously molded. Press molding is a method in which a mold is filled with the above unvulcanized product and pressure molded. The vulcanization method for the unvulcanized rubber mixture after molding is not particularly limited as long as the vulcanization is performed by temperature control such as heating and cooling.

ゴム基材の弾性率は、特に限定されないが、0.5MPa以上30MPa以下が好ましい。上記範囲内であれば、圧縮に伴い弾性変形し、導電性ゴム部材と対向して配置される電極との導通抵抗が有為に変化する作用を有する弾性ゴム基材が得られる。弾性率が0.5MPa以上である場合は、圧縮に伴い、ゴム基材が即座に変形しきってしまうことなく少しずつ変形し、検知荷重域が広いセンサとすることができる。弾性率が、30MPa以下である場合は、荷重の増減に追従してゴム基材が弾性変形し、検知抵抗値が滑らかな曲線になる。   Although the elasticity modulus of a rubber base material is not specifically limited, 0.5 MPa or more and 30 MPa or less are preferable. If it is in the said range, the elastic rubber base material which has the effect | action which elastically deforms with compression and the conduction resistance with the electrode arrange | positioned facing a conductive rubber member will change significantly will be obtained. When the elastic modulus is 0.5 MPa or more, the rubber base material is deformed little by little without being immediately deformed with compression, and a sensor having a wide detection load range can be obtained. When the elastic modulus is 30 MPa or less, the rubber base material is elastically deformed following the increase and decrease of the load, and the detection resistance value becomes a smooth curve.

また、ゴム基材の厚み(d)は、特に限定はされないが、0.1mm以上5mm以下が好ましい。ゴム基材の厚みが0.1mm以上である場合は、導電性ゴム部材としての圧縮に伴う弾性変形量を有し、導電性ゴム部材と対向して配置される電極との導通抵抗の変化が得られる。ゴム基材の厚みが5mm以下である場合は、導電性ゴム部材としての小型・形状自由性に適するので好ましい。   The thickness (d) of the rubber base material is not particularly limited, but is preferably 0.1 mm or more and 5 mm or less. When the thickness of the rubber substrate is 0.1 mm or more, there is an amount of elastic deformation accompanying compression as the conductive rubber member, and there is a change in conduction resistance with the electrode disposed facing the conductive rubber member. can get. When the thickness of the rubber substrate is 5 mm or less, it is preferable because it is suitable for small size and shape freedom as a conductive rubber member.

導電性ゴム部材としては、上記のようにして得られるゴム基材そのものを用いることもでき、また、ゴム基材の表面にさらに導電性被覆層を形成した構成のものを用いることもできる。   As the conductive rubber member, the rubber base material obtained as described above can be used, or a structure in which a conductive coating layer is further formed on the surface of the rubber base material can be used.

[導電性被覆層]
導電性被覆層がゴム基材の表面に形成された導電性ゴム部材は、導電性被覆層が形成されていない導電性ゴム部材に比べて、導電性ゴム部材の粘着性に由来するヒステリシスロスを抑制することができる。導電性被覆層としては、ゴム基材の表面に紫外線や電子線を照射して表面に変性層を設けたものでもよく、また、ゴム基材の表面に樹脂を塗工して樹脂塗膜層を設けたものであってもよい。より効果的に粘着性に由来するヒステリシスロスを抑制するには、樹脂塗膜層を設けたものが好適である。
[Conductive coating layer]
The conductive rubber member in which the conductive coating layer is formed on the surface of the rubber base material has a hysteresis loss derived from the adhesiveness of the conductive rubber member, compared to the conductive rubber member in which the conductive coating layer is not formed. Can be suppressed. The conductive coating layer may be one in which the surface of the rubber base material is irradiated with ultraviolet rays or electron beams and a modified layer is provided on the surface, or a resin coating layer is formed by applying a resin to the surface of the rubber base material. May be provided. In order to more effectively suppress the hysteresis loss derived from adhesiveness, a resin coating layer is preferably used.

樹脂塗膜層の原料となる塗料組成物を構成する樹脂成分として、具体的には以下のものが挙げられる。フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂、ブチラール樹脂、スチレン−エチレン・ブチレン−オレフィン共重合体(SEBC)及びオレフィン−エチレン・ブチレン・オレフィン共重合体(CEBC)等。これらの樹脂は1種または2種以上を組み合わせて用いてもよい。また、樹脂は架橋系のものでもよく、そのための硬化剤としては、例えば、イソシアネート化合物、アミン化合物を適宜配合することができる。   Specific examples of the resin component constituting the coating composition that is a raw material for the resin coating layer include the following. Fluorine resin, polyamide resin, acrylic resin, polyurethane resin, polyester resin, epoxy resin, silicone resin, butyral resin, styrene-ethylene-butylene-olefin copolymer (SEBC) and olefin-ethylene-butylene-olefin copolymer (CEBC) )etc. These resins may be used alone or in combination of two or more. Further, the resin may be a cross-linked resin, and as a curing agent therefor, for example, an isocyanate compound and an amine compound can be appropriately blended.

また、所望の電気抵抗値を得るために、導電性カーボン、グラファイト、銅、アルミニウム、ニッケル、鉄粉及び金属酸化物である導電性酸化錫や導電性酸化チタン等の導電剤を塗料組成物中に配合することができる。これらは1種または2種以上を組み合わせて用いてもよい。樹脂塗膜層の電気抵抗値は特に限定されないが、500kPa以上の圧力下において、10−1Ω・cm以上、10Ω・cm以下であることが好ましい。この値が10−1Ω・cm以上であれば無負荷時の絶縁性が保たれ、また、負荷時には荷重に応じた接触面積の変化とともに滑らかな導通変化特性が得られる。またこの値が10Ω・cm以下であれば、負荷をかけても出力が得られないような事はなく、負荷に応じた出力が得られる。 In order to obtain a desired electric resistance value, conductive carbon, graphite, copper, aluminum, nickel, iron powder, and conductive agents such as conductive tin oxide and conductive titanium oxide, which are metal oxides, are contained in the coating composition. Can be blended. These may be used alone or in combination of two or more. The electric resistance value of the resin coating layer is not particularly limited, but it is preferably 10 −1 Ω · cm or more and 10 3 Ω · cm or less under a pressure of 500 kPa or more. If this value is 10 −1 Ω · cm or more, insulation under no load is maintained, and a smooth conduction change characteristic is obtained with a change in contact area according to the load during load. Moreover, if this value is 10 3 Ω · cm or less, there is no such thing that an output cannot be obtained even when a load is applied, and an output corresponding to the load can be obtained.

また、上記樹脂および導電剤の他に、その他成分を配合することも可能であり、例えば、有機弾性フィラー、無機酸化物フィラー、分散剤などが挙げられる。   In addition to the resin and the conductive agent, other components can be blended, and examples thereof include organic elastic fillers, inorganic oxide fillers, and dispersants.

樹脂塗膜層の形成は、例えば以下の方法で行うことができる。先ず、上記の樹脂塗膜を構成する材料、及び有機溶剤からなる塗工液を、サンドミル、ペイントシェイカー、ダイノミル、及びパールミル等のビーズを利用した分散装置を用いて分散調製する。次いで、得られた塗工液を、ディッピング法やスプレーコート法により、ゴム基材の表面に塗工する。塗料組成物の利用効率を考慮すると、ディッピング法が好ましい。さらに熱風循環乾燥機や赤外線乾燥炉などを用いて溶剤を除去してゴム基材の表面に樹脂塗膜を形成する。   The resin coating layer can be formed, for example, by the following method. First, a coating liquid composed of a material constituting the resin coating film and an organic solvent is prepared by dispersion using a dispersion apparatus using beads such as a sand mill, a paint shaker, a dyno mill, and a pearl mill. Next, the obtained coating solution is applied to the surface of the rubber substrate by dipping or spray coating. In consideration of the utilization efficiency of the coating composition, the dipping method is preferable. Further, the solvent is removed using a hot air circulating dryer or an infrared drying furnace to form a resin coating on the surface of the rubber substrate.

なお、ゴム基材と塗工液の濡れ性が良好でない場合には、塗工する前に、ゴム基材に対して紫外線照射することにより表面自由エネルギーを高めたり、ゴム基材にプライマーを塗布して、濡れ性を良好にする事で、均一な塗膜を形成する事が可能である。樹脂塗膜は弾性ゴム基材の少なくとも一面に形成すればよく、電極に樹脂塗膜が対向するよう導電性ゴム部材を配置すればよい。   If the wettability between the rubber base material and the coating liquid is not good, the surface free energy is increased by irradiating the rubber base material with ultraviolet rays or a primer is applied to the rubber base material before coating. Thus, a uniform coating film can be formed by improving the wettability. The resin coating film may be formed on at least one surface of the elastic rubber substrate, and the conductive rubber member may be disposed so that the resin coating film faces the electrode.

本発明の樹脂塗膜が形成される面の導電性ゴム部材の弾性率は特に限定されないが、10MPa以上、700MPa以下が好ましい。弾性率が10MPa以上である場合は、一定の力がセンサに加えられている時に徐々に変形量が増大してしまうことなく、出力が経時と共に変化する事を抑制できる。弾性率が700MPa以下である場合は、部材としての柔軟性を損なうことなく、電極との接触状態の均一性に優れ、負荷−除荷試験を繰り返し行なった場合の再現性が良好である。   The elastic modulus of the conductive rubber member on the surface on which the resin coating film of the present invention is formed is not particularly limited, but is preferably 10 MPa or more and 700 MPa or less. When the elastic modulus is 10 MPa or more, the amount of deformation does not gradually increase when a certain force is applied to the sensor, and the change in output with time can be suppressed. When the elastic modulus is 700 MPa or less, the flexibility as a member is not impaired, the contact state with the electrode is excellent, and the reproducibility when the load-unloading test is repeated is good.

また、樹脂塗膜の膜厚(d)は、特に限定はされないが、5μm以上100μm以下が好ましい。樹脂塗膜の膜厚が100μm以下である場合は、導電性ゴム部材としての柔軟性を損なうことなく、荷重の変化に応じた接触面積の変化が得られる。樹脂塗膜の膜厚が5μm以上である場合は、導電性ゴム部材として所望の弾性率が得られ、一定の力がセンサに加えられている時に徐々に変形量が増大してしまうことなく、出力が経時と共に変化する事を抑制できる。   The film thickness (d) of the resin coating film is not particularly limited, but is preferably 5 μm or more and 100 μm or less. When the film thickness of the resin coating film is 100 μm or less, a change in contact area corresponding to a change in load can be obtained without impairing the flexibility as the conductive rubber member. When the film thickness of the resin coating is 5 μm or more, a desired elastic modulus is obtained as the conductive rubber member, and the amount of deformation does not gradually increase when a certain force is applied to the sensor. It can suppress that an output changes with time.

また、本発明の導電性ゴム部材を構成するゴム基材の弾性率(E1)と前記樹脂塗膜が形成される面の導電性ゴム部材の弾性率(E2)の比は特に限定されないが、1<E2/E1<1,000であることが好ましい。E2/E1が1よりも大きい場合は、弾性率(E1)よりも導電性ゴム部材の弾性率(E2)が大きい場合であり、一定の力がセンサに加えられている時に徐々に変形量が増大してしまうことなく、出力が経時と共に変化する事を抑制できる。また、導電性ゴム部材には粘着性等がなく検知抵抗値のヒステリシスロスが生じ難い。E2/E1が1,000よりも小さい場合は、導電性ゴム部材の弾性率が高すぎることなく、電極との接触状態の均一性に優れ、負荷−除荷試験を繰り返し行なった場合の再現性に優れる。また、一定の力がセンサに加えられている時の接触状態は均一に保たれ、出力が経時と共に変化するという問題が生じ難い。   Further, the ratio of the elastic modulus (E1) of the rubber base material constituting the conductive rubber member of the present invention and the elastic modulus (E2) of the conductive rubber member on the surface on which the resin coating film is formed is not particularly limited. It is preferable that 1 <E2 / E1 <1,000. When E2 / E1 is larger than 1, the elastic modulus (E2) of the conductive rubber member is larger than the elastic modulus (E1), and the amount of deformation gradually increases when a certain force is applied to the sensor. It is possible to suppress the output from changing with time without increasing. Further, the conductive rubber member does not have adhesiveness and the like, and hysteresis loss of the detection resistance value hardly occurs. When E2 / E1 is smaller than 1,000, the elastic modulus of the conductive rubber member is not too high, the contact state with the electrode is excellent, and the reproducibility when the load-unloading test is repeated Excellent. Further, the contact state when a constant force is applied to the sensor is kept uniform, and the problem that the output changes with time hardly occurs.

本発明で使用される導電性ゴム部材は、圧力を印加したときに生じる、導電性ゴム部材と電極基板との接触面積の変化を電気抵抗値の変化として検出するものが好適に用いられる。この接触面積を制御するために当接面に適宜凹凸形状を設けたり、粗し処理を行うことができる。表面凹凸形状を設ける方法としては、例えば導電性塗料中に粗し粒子として、シリコーン系、ウレタン系、アクリル系、スチレン系、ポリアミド系などの樹脂からなる球状粒子を添加する方法等が挙げられる。   As the conductive rubber member used in the present invention, one that detects a change in the contact area between the conductive rubber member and the electrode substrate, which occurs when pressure is applied, as a change in electric resistance value is preferably used. In order to control the contact area, the contact surface can be appropriately provided with an uneven shape or roughened. Examples of the method for providing the surface uneven shape include a method of adding spherical particles made of a resin such as silicone, urethane, acrylic, styrene, or polyamide as rough particles in the conductive paint.

以下に、実施例、比較例を挙げて、本発明の感圧センサについてより具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。尚、「部」は「質量部」を意味する。   Hereinafter, the pressure sensor of the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. “Part” means “part by mass”.

(実施例1)
<1.導電性ゴム部材の作成>
[1−1.ゴム基材の作成]
表1に示す7種類の材料を2本ロールにて20分間混合し、未加硫ゴムコンパウンドを作製した。次に、この未加硫ゴムコンパウンドを、予め170℃に加熱した縦50mm、横50mm、深さ0.5mmの金型内に充填し、170℃、100kgfにて15分間プレス加硫を行い、導電性ゴム部材の基材となるゴム基材を得た。
Example 1
<1. Creation of conductive rubber member>
[1-1. Creation of rubber base]
Seven types of materials shown in Table 1 were mixed with two rolls for 20 minutes to produce an unvulcanized rubber compound. Next, this unvulcanized rubber compound is filled in a mold having a length of 50 mm, a width of 50 mm, and a depth of 0.5 mm previously heated to 170 ° C., and press vulcanized at 170 ° C. and 100 kgf for 15 minutes, A rubber base material to be a base material for the conductive rubber member was obtained.

[1−2.塗料組成物の作成]
続いて、表2に示す6種類の材料を配合し、インデックス(NCO/OH比)1.0、固形分30質量%の樹脂溶液を得た。この樹脂溶液200質量部に対して、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェイカーを使用して12時間分散した。最後に200メッシュの網で溶液をろ過して、塗料組成物を作成した。
[1-2. Preparation of coating composition]
Subsequently, six materials shown in Table 2 were blended to obtain a resin solution having an index (NCO / OH ratio) of 1.0 and a solid content of 30% by mass. To 200 parts by mass of this resin solution, 200 parts by mass of glass beads having a diameter of 0.8 mm were added, placed in a 450 ml mayonnaise bottle, and dispersed for 12 hours using a paint shaker. Finally, the solution was filtered through a 200 mesh screen to prepare a coating composition.

[1−3.導電性被覆層の形成]
前記塗料組成物を浴槽に入れ、前記ゴム基材を浸漬して、引き上げ速度10mm/secでゴム基材の表面に塗膜を形成し、30分間風乾後、オーブンを用い、160℃で1時間加熱することによって塗膜を硬化させ、膜厚13μmの導電性被覆層を形成した。このようにして導電性ゴム部材1を作成した。
[1-3. Formation of conductive coating layer]
The coating composition is placed in a bath, the rubber base material is immersed, a coating film is formed on the surface of the rubber base material at a lifting speed of 10 mm / sec, air-dried for 30 minutes, and then heated at 160 ° C. for 1 hour using an oven. The coating was cured by heating to form a conductive coating layer having a thickness of 13 μm. Thus, the conductive rubber member 1 was created.

<2.絶縁性被覆部材の作成>
可撓性フィルムとして、ポリイミドフィルム(東レ・デュポン(株)製、商品名「カプトン100H(ヤング率3.4GPa、厚み25μm)」)を使用した。このフィルムの片面にアクリル系粘着剤(東洋インキ(株)製、商品名「オリバインBPS−5127」)をグラビアロール方式で塗布して塗膜を形成し、これを乾燥して、厚み15μmの粘着剤層(固定剤層)を有する絶縁性被覆部材1を得た。
<2. Creation of insulating covering member>
A polyimide film (trade name “Kapton 100H (Young's modulus 3.4 GPa, thickness 25 μm)” manufactured by Toray DuPont Co., Ltd.) was used as the flexible film. An acrylic pressure-sensitive adhesive (trade name “Olivein BPS-5127” manufactured by Toyo Ink Co., Ltd.) was applied to one side of this film by a gravure roll method, and a coating film was formed. An insulating covering member 1 having an agent layer (fixing agent layer) was obtained.

<3.感圧センサの作成>
前記導電性ゴム部材1から、小片形状の導電性ゴム部材1’(縦3.5mm、横4mm、厚み0.5mm)を得た。また前記絶縁性被覆部材1から、幅4mmに裁断した絶縁性被覆部材1’を得た。
<3. Creation of pressure-sensitive sensor>
From the conductive rubber member 1, a small-piece-shaped conductive rubber member 1 ′ (length 3.5 mm, width 4 mm, thickness 0.5 mm) was obtained. In addition, an insulating covering member 1 ′ cut to a width of 4 mm was obtained from the insulating covering member 1.

導電性ゴム部材1’と、図6に示すくし型電極基板(縦3.5mm、横4mm、厚み0.5mm)とを、離間形成冶具(幅3.8mm、厚み130μm)を介して積層した。次いで、この積層物を絶縁性被覆部材1’によって周回被覆し、図1に示す電極基板と導電性ゴム部材が近接非接触状態である感圧センサ1を得た。   The conductive rubber member 1 ′ and the comb-shaped electrode substrate (length 3.5 mm, width 4 mm, thickness 0.5 mm) shown in FIG. 6 were laminated via a separation forming jig (width 3.8 mm, thickness 130 μm). . Next, this laminate was covered with an insulating covering member 1 'to obtain a pressure-sensitive sensor 1 in which the electrode substrate and the conductive rubber member shown in FIG.

<4.感圧センサの評価>
このようにして得られた感圧センサについて以下の各評価を実施した。評価結果を表9に示す。
<4. Evaluation of pressure-sensitive sensor>
The following evaluations were performed on the pressure-sensitive sensor thus obtained. Table 9 shows the evaluation results.

[4−1.最大投影面積の測定]
最大投影面積の測定には、(株)キーエンス製「マイクロスコープ」VHX−900を用いた。測定条件は、倍率50倍である。作成した感圧センサを図5に示す方向(紙面に垂直な方向)から投影し、投影図における絶縁性被覆部材の横幅(b)および縦長さ(c)を測定し、絶縁性被覆部材の投影図の面積(S=b×c)を求めた。
[4-1. Maximum projected area measurement]
For measurement of the maximum projected area, “Microscope” VHX-900 manufactured by Keyence Corporation was used. The measurement condition is 50 times magnification. The created pressure-sensitive sensor is projected from the direction shown in FIG. 5 (perpendicular to the paper surface), the horizontal width (b) and the vertical length (c) of the insulating coating member in the projection are measured, and the projection of the insulating coating member is measured. The area of the figure (S = b × c) was determined.

[4−2.隙間量の測定]
隙間量の測定には、(株)キーエンス製「マイクロスコープ」VHX−900を用いた。測定条件は、倍率50倍である。作成した感圧センサを図1に示す方向(紙面に垂直な方向)から観察し、導電性ゴム部材と電極基板との隙間量(141)を求めた。
[4-2. Measurement of gap amount]
For measurement of the gap amount, “Microscope” VHX-900 manufactured by Keyence Corporation was used. The measurement condition is 50 times magnification. The created pressure-sensitive sensor was observed from the direction shown in FIG. 1 (direction perpendicular to the paper surface), and the gap amount (141) between the conductive rubber member and the electrode substrate was determined.

[4−3.弾性率の測定]
弾性率の測定には、(株)島津製作所製「島津ダイナミック超微小硬度計」DUH−W 201Sを用いた。測定条件は、試験モード:負荷−除荷試験、負荷速度:0.28mN/sec、保持時間:5sec、圧子の種類:三角すい圧子115である。試験力は、圧子の押し込み深さが、測定対象物の厚みの1/10以下なるよう調整した。つまり、例えば、ゴム基材の厚みが0.5mmの時は、押し込み深さが50μm以下となるように、試験力を調整した。また例えば、樹脂塗膜層の厚みが13μmの時は、押し込み深さが1.3μm以下となるように、試験力を調整した。
[4-3. Measurement of elastic modulus]
For the measurement of the elastic modulus, “Shimadzu Dynamic Ultra Hardness Tester” DUH-W 201S manufactured by Shimadzu Corporation was used. The measurement conditions are: test mode: load-unload test, load speed: 0.28 mN / sec, holding time: 5 sec, indenter type: triangular pan indenter 115. The test force was adjusted so that the indentation depth of the indenter was 1/10 or less of the thickness of the measurement object. That is, for example, when the thickness of the rubber base material is 0.5 mm, the test force is adjusted so that the indentation depth is 50 μm or less. For example, when the thickness of the resin coating layer is 13 μm, the test force is adjusted so that the indentation depth is 1.3 μm or less.

なお、ゴム基材の弾性率については、前記[1−1.ゴム基材の作成]において作成した平板状ゴム基材の表面に三角すい圧子を押し込むことによって、弾性率を求めた。樹脂塗膜が形成された面の導電性ゴム部材の弾性率については、前記[1−3.導電性被覆層の形成]において作成した平板状ゴム基材の表面に形成された樹脂塗膜層の表面に三角すい圧子を押し込むことによって、弾性率を求めた。   In addition, about the elasticity modulus of a rubber base material, said [1-1. The elastic modulus was obtained by pushing a triangular pan indenter into the surface of the flat rubber base material prepared in [Production of rubber base material]. About the elasticity modulus of the conductive rubber member of the surface in which the resin coating film was formed, [1-3. The elastic modulus was determined by pushing a triangular pan indenter into the surface of the resin coating layer formed on the surface of the flat rubber substrate prepared in [Formation of conductive coating layer].

得られたゴム基材の弾性率E1は3.5MPa、導電性被覆層が形成された面の弾性率E2は226MPa、及びこの弾性率の比、E2/E1は64.6であった。   The obtained rubber base material had an elastic modulus E1 of 3.5 MPa, a surface on which the conductive coating layer was formed, an elastic modulus E2 of 226 MPa, and a ratio of the elastic modulus, E2 / E1 was 64.6.

[4−4.感圧センサとしての荷重検知性能]
感圧センサを、温度23℃、相対湿度60%の環境(N/N環境)に24時間以上放置した後、図7に示すような感圧特性の評価装置を用い、固定された感圧センサの上部から押圧部の面積が1mmの立方形状の押子(410)によって検知部(101)に対して荷重が加わるようにした。この状態でくし型電極に直流電圧5Vを印加し、荷重測定器にて感圧センサの厚さ方向に5mm/minの速度で0〜1MPaの範囲で、負荷−除荷試験を行ない、くし型電極に直列接続した1kΩの抵抗体にかかる電圧を測定した。
[4-4. Load detection performance as a pressure sensor]
After the pressure sensor is left in an environment (N / N environment) at a temperature of 23 ° C. and a relative humidity of 60% for 24 hours or more, the pressure sensor is fixed using an evaluation device for pressure sensitivity as shown in FIG. A load was applied to the detection unit (101) by a cubic pusher (410) having an area of a pressing part of 1 mm 2 from above. In this state, a DC voltage of 5 V is applied to the comb-shaped electrode, and a load-unloading test is performed in the range of 0 to 1 MPa at a speed of 5 mm / min in the thickness direction of the pressure sensor with a load measuring instrument. The voltage applied to a 1 kΩ resistor connected in series with the electrode was measured.

1)最小検出荷重安定性
図8に示すように、検知部中央の位置(符号「1」の箇所)に押子を設置して荷重が加わるようにした。このときの負荷時において、50mV以上の電圧が検出され始める時の荷重(N検知)を最小検出荷重の指標とした。この負荷−除荷試験を1000回繰り返して、最小検出荷重の最大値(N検知max)および最小値(N検知min)を求め、表3の数式で示される値によって最小検出荷重の安定性を評価した。
1) Minimum Detected Load Stability As shown in FIG. 8, a load is applied by installing a pusher at the center of the detection unit (location indicated by “1”). At the time of the load at this time, the load (N detection) when a voltage of 50 mV or higher starts to be detected was used as an indicator of the minimum detection load. This load-unloading test is repeated 1000 times to obtain the maximum value (N detection max) and minimum value (N detection min) of the minimum detection load, and the stability of the minimum detection load is determined by the values shown in Table 3. evaluated.

2)ヒステリシスロス
図8に示すように、検知部中央の位置(符号「1」の箇所)に押子を設置して荷重が加わるようにした。200kPaから1MPaまでの荷重における、負荷時の抵抗値(LogR負荷)と除荷時の抵抗値(LogR除荷)の差の絶対値を求め、これの最大値をヒステリシスロスの指標とした。また、表4に示す基準でランク付けした。
2) Hysteresis loss As shown in FIG. 8, a load was applied by installing a pusher at a position in the center of the detection portion (location of reference numeral “1”). The absolute value of the difference between the resistance value at the time of loading (LogR load) and the resistance value at the time of unloading (LogR unloading) under a load from 200 kPa to 1 MPa was determined, and the maximum value was used as an index of hysteresis loss. Also, the ranking was based on the criteria shown in Table 4.

3)再現性
図8に示すように、検知部中央の位置(符号「1」の箇所)に押子を設置して荷重が加わるようにした。上記負荷−除荷試験を1000回繰り返し行ない、200kPaから1MPaまでの荷重における、検出抵抗値の再現性を評価した。負荷時の抵抗値(LogR負荷)の各荷重における1000回測定した値の標準偏差(3σ)、及び、除荷時の抵抗値(LogR除荷)の各荷重における1000回測定した値の標準偏差(3σ)を求め、これの最大値(3σmax)を再現性の指標とした。また、表5に示す基準でランク付けした。
3) Reproducibility As shown in FIG. 8, a pusher was installed at a position in the center of the detection unit (location of reference numeral “1”) so that a load was applied. The load-unloading test was repeated 1000 times, and the reproducibility of the detected resistance value under a load from 200 kPa to 1 MPa was evaluated. Standard deviation (3σ) of the value measured 1000 times at each load of the resistance value at the time of loading (LogR load), and standard deviation of the value measured 1000 times at each load of the resistance value at the time of unloading (LogR unloading) (3σ) was determined, and the maximum value (3σmax) was used as an index of reproducibility. Also, the ranking was based on the criteria shown in Table 5.

4)位置によるばらつき
図8に示すように、押子を「符号1〜5」の5箇所に順次設置し、500kPaの荷重が加わるようにし、そのときの感圧センサの電気抵抗値のばらつきから評価した。即ち、先ず、各測定箇所1、2、3、4、及び5における電気抵抗値R1、R2、R3、R4、及びR5を測定し、次いで、それぞれの対数値logR1、logR2、logR3、logR4、及びlogR5を求めた。表6に示す基準でランク付けした。
4) Variation due to position As shown in FIG. 8, the pushers are sequentially installed at five locations “reference numerals 1 to 5” so that a load of 500 kPa is applied, and from the variation in the electric resistance value of the pressure sensor at that time evaluated. That is, first, the electrical resistance values R1, R2, R3, R4, and R5 at each measurement location 1, 2, 3, 4, and 5 are measured, and then the respective logarithmic values logR1, logR2, logR3, logR4, and logR5 was determined. Ranking was based on the criteria shown in Table 6.

5)荷重検知性能の総合評価
感圧センサの荷重検知性能の総合評価は、表7に示す基準にて行った。
5) Comprehensive evaluation of load detection performance Comprehensive evaluation of the load detection performance of the pressure sensor was performed according to the criteria shown in Table 7.

(実施例2および3)
感圧センサの作成の際に、表8に示す大きさの離間形成冶具を用いたこと以外は実施例1と同様にして感圧センサを得た。評価結果を表9に示す。
(Examples 2 and 3)
A pressure-sensitive sensor was obtained in the same manner as in Example 1 except that a separation forming jig having the size shown in Table 8 was used when the pressure-sensitive sensor was created. Table 9 shows the evaluation results.

(実施例4〜7)
可撓性フィルムとして表9に示す可撓性フィルムを用いたこと以外は実施例1と同様にして感圧センサを得た。評価結果を表9に示す。
(Examples 4 to 7)
A pressure-sensitive sensor was obtained in the same manner as in Example 1 except that the flexible film shown in Table 9 was used as the flexible film. Table 9 shows the evaluation results.

(実施例8〜12)
感圧センサの作成の際に、表8に示す大きさの導電性ゴム部材、くし型電極基板および離間形成冶具を用いたこと以外は実施例1と同様にして感圧センサを得た。評価結果を表9に示す。
(Examples 8 to 12)
A pressure-sensitive sensor was obtained in the same manner as in Example 1 except that a conductive rubber member, a comb-shaped electrode substrate, and a separation forming jig having the sizes shown in Table 8 were used in the production of the pressure-sensitive sensor. Table 9 shows the evaluation results.

(比較例1)
感圧センサの作成の際に、離間形成冶具を用いなかったこと以外は実施例1と同様にして電極基板と導電性ゴム部材が接触状態の感圧センサを得た。評価結果を表10に示す。
(Comparative Example 1)
A pressure-sensitive sensor in which the electrode substrate and the conductive rubber member were in contact with each other was obtained in the same manner as in Example 1 except that the separation forming jig was not used when creating the pressure-sensitive sensor. Table 10 shows the evaluation results.

(比較例2〜5)
可撓性フィルムとして表10に示す可撓性フィルムを用いたこと以外は実施例1と同様にして感圧センサを得た。尚、比較例2及び3における可撓性フィルムの厚みは、それぞれ5.7μm及び75μmである。また、比較例4及び5における可撓性フィルムのヤング率は、それぞれ0.71GPa及び15GPaである。評価結果を表10に示す。
(Comparative Examples 2 to 5)
A pressure-sensitive sensor was obtained in the same manner as in Example 1 except that the flexible film shown in Table 10 was used as the flexible film. In addition, the thickness of the flexible film in Comparative Examples 2 and 3 is 5.7 μm and 75 μm, respectively. Moreover, the Young's modulus of the flexible film in Comparative Examples 4 and 5 is 0.71 GPa and 15 GPa, respectively. Table 10 shows the evaluation results.

(評価結果の纏め)
実施例1においては、導電性ゴム部材と電極基板とが近接非接触状態であって、最小検出荷重安定性、ヒステリシスロス、再現性、および位置によるばらつきが、すべて優れており、本発明の導電性ゴム部材を適用することにより、好適な感圧センサを提供できることがわかる。
(Summary of evaluation results)
In Example 1, the conductive rubber member and the electrode substrate are in close proximity and non-contact state, and minimum detection load stability, hysteresis loss, reproducibility, and variation due to position are all excellent, and the conductive property of the present invention is excellent. It can be seen that a suitable pressure-sensitive sensor can be provided by applying a conductive rubber member.

実施例2においては、導電性ゴム部材と電極基板との近接非接触状態の隙間量が小さいことに起因して、繰り返し使用した際の最小検出荷重のばらつき(N検知max−N検知min)が少し大きい傾向にあり、また最小値(N検知min)も小さいことから、相対的に最小検出荷重安定性が少し劣る傾向にある。しなしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、ヒステリシスロス、再現性、および位置によるばらつきは優れており、感圧センサとしては良好であることがわかる。   In Example 2, the variation in the minimum detection load (N detection max-N detection min) when repeatedly used due to the small amount of the gap between the conductive rubber member and the electrode substrate in the non-contact state is small. Since it tends to be a little larger and the minimum value (N detection min) is also small, the minimum detected load stability tends to be slightly inferior. However, it can be seen that the conductive rubber member and the electrode substrate are in close proximity and non-contact state, and hysteresis loss, reproducibility, and variation due to position are excellent, and the pressure sensor is good.

実施例3においては、導電性ゴム部材と電極基板との近接非接触状態の隙間量が大きいことに起因して、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態の均一性が少し劣り、出力特性の位置によるばらつきが少し劣る傾向にある。しなしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、最小検出荷重安定性、ヒステリシスロス、および再現性は優れており、感圧センサとしては良好であることがわかる。   In Example 3, the contact state between the conductive rubber member and the electrode facing the electrode is uniform depending on the position where the load is applied due to the large gap amount in the proximity non-contact state between the conductive rubber member and the electrode substrate. The characteristics tend to be slightly inferior, and the variation in output characteristics depending on the position tends to be slightly inferior. However, it can be seen that the conductive rubber member and the electrode substrate are in close proximity and non-contact state, and the minimum detection load stability, hysteresis loss, and reproducibility are excellent, and the pressure sensor is good.

実施例4においては、可撓性フィルムの厚みが小さいことに起因して、繰り返し使用した際の最小検出荷重のばらつき(N検知max−N検知min)が少し大きい傾向にあり、また最小値(N検知min)も小さいことから、相対的に最小検出荷重安定性が少し劣る傾向にあり、再現性も少し劣る傾向にある。また、フィルムの腰が弱く、荷重の負荷−除荷に対する追従性が少し劣り、出力のヒステリシスロスが少し劣る傾向にある。しなしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、位置によるばらつきは優れ、感圧センサとしては良好であることがわかる。   In Example 4, due to the small thickness of the flexible film, the variation in the minimum detection load when repeatedly used (N detection max-N detection min) tends to be slightly large, and the minimum value ( Since N detection min) is also small, the minimum detected load stability tends to be slightly inferior and the reproducibility tends to be slightly inferior. In addition, the film is weak, the load following-unloading performance is slightly inferior, and the output hysteresis loss tends to be slightly inferior. However, it can be seen that the conductive rubber member and the electrode substrate are in close proximity and non-contact state, and the variation due to the position is excellent, and the pressure sensor is good.

実施例5においては、可撓性フィルムの厚みが大きいことに起因して、可撓性フィルムの腰は強く、導電性部材が可撓性フィルムに追従して撓んでしまう。従って、荷重が加わった際に、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態が不均一になってしまい、出力特性の位置によるばらつきが少し劣る傾向にある。しなしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、最小検出荷重安定性、ヒステリシスロス、および再現性は優れており、感圧センサとしては良好であることがわかる。   In Example 5, due to the large thickness of the flexible film, the flexible film is strong and the conductive member bends following the flexible film. Therefore, when a load is applied, the contact state between the conductive rubber member and the electrode facing the conductive rubber member becomes non-uniform depending on the position where the load is applied, and the variation due to the position of the output characteristics tends to be slightly inferior. However, it can be seen that the conductive rubber member and the electrode substrate are in close proximity and non-contact state, and the minimum detection load stability, hysteresis loss, and reproducibility are excellent, and the pressure sensor is good.

実施例6においては、可撓性フィルムのヤング率が小さいことに起因して、荷重が加わった際の導電性ゴム部材全体への圧力分散が不十分となる。従って、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態が不均一になってしまい、出力特性の位置によるばらつきが少し劣る傾向にある。しなしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、最小検出荷重安定性、ヒステリシスロス、および再現性は優れており、感圧センサとしては良好であることがわかる。   In Example 6, due to the small Young's modulus of the flexible film, the pressure distribution to the entire conductive rubber member when a load is applied becomes insufficient. Therefore, depending on the position where the load is applied, the contact state between the conductive rubber member and the opposing electrode becomes non-uniform, and variations in output characteristics depending on the position tend to be slightly inferior. However, it can be seen that the conductive rubber member and the electrode substrate are in close proximity and non-contact state, and the minimum detection load stability, hysteresis loss, and reproducibility are excellent, and the pressure sensor is good.

実施例7においては、可撓性フィルムのヤング率が大きいことに起因して、繰り返し屈曲に対する耐久性に劣り、出力が徐々に変化してしまい、再現性が少し劣る傾向にある。しなしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、最小検出荷重安定性、ヒステリシスロス、および位置によるばらつきは優れており、感圧センサとしては良好であることがわかる。   In Example 7, due to the large Young's modulus of the flexible film, the durability against repeated bending is poor, the output gradually changes, and the reproducibility tends to be slightly inferior. However, it can be seen that the conductive rubber member and the electrode substrate are in close contact and non-contact state, and the minimum detection load stability, hysteresis loss, and variation due to position are excellent, and the pressure sensor is good. .

実施例8においては、絶縁性被覆部材の最大投影面積及び横幅が小さいことに起因して、フィルムの腰が弱く、荷重の負荷−除荷に対する追従性が劣り、出力のヒステリシスロスが少し劣る傾向にある。しなしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、最小検出荷重安定性、再現性、および位置によるばらつきは優れており、感圧センサとしては良好であることがわかる。   In Example 8, due to the fact that the maximum projected area and the lateral width of the insulating covering member are small, the film is weak, the load-following performance with respect to unloading is inferior, and the output hysteresis loss tends to be slightly inferior. It is in. However, it can be seen that the conductive rubber member and the electrode substrate are in close contact and non-contact state, and the minimum detection load stability, reproducibility, and variation due to position are excellent, and the pressure sensor is good. .

実施例9においては、絶縁性被覆部材の最大投影面積、横幅及び縦長さが大きいことに起因して、荷重が加わった際に、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態が不均一で、出力特性の位置によるばらつきが少し劣る傾向にある。しなしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、最小検出荷重安定性、ヒステリシスロス、および再現性は優れており、感圧センサとしては良好であることがわかる。   In Example 9, due to the large maximum projected area, width, and length of the insulating covering member, when a load is applied, depending on the position where the load is applied, the electrode facing the conductive rubber member The contact state is non-uniform, and the variation due to the position of the output characteristics tends to be slightly inferior. However, it can be seen that the conductive rubber member and the electrode substrate are in close proximity and non-contact state, and the minimum detection load stability, hysteresis loss, and reproducibility are excellent, and the pressure sensor is good.

実施例10においては、導電性ゴム部材と電極基板との近接非接触状態の隙間量が小さいことに起因して、繰り返し使用した際の最小検出荷重のばらつき(N検知max−N検知min)が少し大きい傾向にあり、また最小値(N検知min)も小さいことから、相対的に最小検出荷重安定性が少し劣る傾向にある。しなしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、ヒステリシスロス、再現性、および位置によるばらつきは優れており、感圧センサとしては使用可能であることがわかる。   In Example 10, the variation in the minimum detection load when repeatedly used (N detection max-N detection min) due to the small gap amount in the non-contact state between the conductive rubber member and the electrode substrate. Since it tends to be a little larger and the minimum value (N detection min) is also small, the minimum detected load stability tends to be slightly inferior. However, it can be seen that the conductive rubber member and the electrode substrate are in close proximity and non-contact state, and hysteresis loss, reproducibility, and variation due to position are excellent, and can be used as a pressure-sensitive sensor.

実施例11においては、導電性ゴム部材と電極基板との近接非接触状態の隙間量が大きいことに起因して、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態の均一性が少し劣り、出力特性の位置によるばらつきが少し劣る傾向にある。しかしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、最小検出荷重安定性、ヒステリシスロス、および再現性は優れており、感圧センサとしては使用可能であることがわかる。   In Example 11, the contact state between the conductive rubber member and the electrode facing the electrode is uniform depending on the position where the load is applied due to the large gap amount in the non-contact state between the conductive rubber member and the electrode substrate. The characteristics tend to be slightly inferior, and the variation in output characteristics depending on the position tends to be slightly inferior. However, it can be seen that the conductive rubber member and the electrode substrate are in close proximity and non-contact state, and the minimum detection load stability, hysteresis loss, and reproducibility are excellent, and can be used as a pressure-sensitive sensor.

実施例12においては、絶縁性被覆部材の最大投影面積、横幅及び縦長さが大きいことに起因して、荷重が加わった際に、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態が不均一で、出力特性の位置によるばらつきが少し劣る傾向にある。しかしながら、導電性ゴム部材と電極基板とが近接非接触状態であって、最小検出荷重安定性、ヒステリシスロス、および再現性は優れており、感圧センサとしては使用可能であることがわかる。   In Example 12, due to the large maximum projected area, width, and length of the insulating covering member, when a load is applied, depending on the position where the load is applied, the electrode facing the conductive rubber member The contact state is non-uniform, and the variation due to the position of the output characteristics tends to be slightly inferior. However, it can be seen that the conductive rubber member and the electrode substrate are in close proximity and non-contact state, and the minimum detection load stability, hysteresis loss, and reproducibility are excellent, and can be used as a pressure-sensitive sensor.

比較例1においては、導電性ゴム部材と電極基板の隙間量が零であって両者が接触状態になっていることに起因して、無負荷時に電気信号が出力されており、荷重の加わった時との判別ができず誤検知の恐れがある。また、絶縁性被覆部材の締め付けによって導電性ゴム部材に常時圧力が加わっていることに起因して、永久変形が生じてしまい、再現性が劣り、感圧センサとしては適さないことがわかる。   In Comparative Example 1, an electrical signal was output when there was no load due to the fact that the gap between the conductive rubber member and the electrode substrate was zero and both were in contact, and a load was applied. There is a risk of misdetection because it cannot be distinguished from the time. It can also be seen that permanent deformation occurs due to the constant pressure applied to the conductive rubber member by tightening the insulating covering member, resulting in poor reproducibility, and is not suitable as a pressure-sensitive sensor.

比較例2においては、可撓性フィルムの厚みが小さいことに起因して、繰り返し使用した際に最小検出荷重が徐々に変化し、最小値(N検知min)は0を示し、センサの出力値から荷重の有無の判別が出来ずに、誤検知の恐れがあり、再現性も劣る。また、フィルムの腰が弱く、荷重の負荷−除荷に対する追従性が劣り、出力のヒステリシスロスが劣り、感圧センサとしては適さないことがわかる。   In Comparative Example 2, due to the small thickness of the flexible film, the minimum detection load gradually changes when repeatedly used, the minimum value (N detection min) indicates 0, and the output value of the sensor Therefore, the presence or absence of a load cannot be determined, and there is a risk of erroneous detection, and the reproducibility is poor. Further, it can be seen that the film is weak, the followability to load-unloading is poor, the output hysteresis loss is poor, and it is not suitable as a pressure-sensitive sensor.

比較例3においては、可撓性フィルムの厚みが大きいことに起因して、可撓性フィルムの腰は強くなり、導電性ゴム部材が可撓性フィルムに追従して撓んでしまう。従って、荷重が加わった際に、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態が不均一になってしまい、出力特性の位置によるばらつきが劣り、感圧センサとしては適さないことがわかる。   In Comparative Example 3, due to the large thickness of the flexible film, the flexibility of the flexible film becomes strong, and the conductive rubber member bends following the flexible film. Therefore, when a load is applied, depending on the position where the load is applied, the contact state between the conductive rubber member and the opposing electrode becomes non-uniform, resulting in poor variation in the position of the output characteristics, making it suitable as a pressure-sensitive sensor. I understand that there is no.

比較例4においては、可撓性フィルムのヤング率が小さいことに起因して、荷重が加わった際の導電性ゴム部材全体への圧力分散が不十分となる。従って、荷重の加わる位置によって、導電性ゴム部材と対向する電極との接触状態が不均一になってしまい、出力特性の位置によるばらつきが劣り、感圧センサとしては適さないことがわかる。   In Comparative Example 4, due to the small Young's modulus of the flexible film, the pressure dispersion to the entire conductive rubber member when a load is applied becomes insufficient. Accordingly, it can be understood that the contact state between the conductive rubber member and the electrode facing the conductive rubber member becomes non-uniform depending on the position where the load is applied, and the variation in the position of the output characteristic is inferior, making it unsuitable as a pressure sensor.

比較例5においては、可撓性フィルムのヤング率が大きいことに起因して、繰り返し屈曲に対する耐久性に劣る。従って、経時的に出力が徐々に変化してしまい、再現性が劣り、感圧センサとしては適さないことがわかる。   In Comparative Example 5, the durability against repeated bending is inferior due to the large Young's modulus of the flexible film. Accordingly, it can be seen that the output gradually changes over time, the reproducibility is poor, and it is not suitable as a pressure-sensitive sensor.

100 感圧センサ
101 検知部
110 導電性ゴム部材
120 電極基板
111 導電性ゴム部材の電極基板と対向する面(A面)
112 導電性ゴム部材の電極基板と対向する面の反対側の面(B面)
121 電極基板の電極を有する面(a面)
122 電極基板の電極を有する面の反対側の面(b面)
130 絶縁性被覆部材
131 可撓性フィルム
132 固定剤層
140 離間形成冶具
140a 離間形成冶具の幅
140b 離間形成冶具の厚み
141 導電性ゴム部材と電極基板との隙間量
b 絶縁性被覆部材が最大投影面積を示すときの横幅
c 絶縁性被覆部材が最大投影面積を示すときの縦長さ
410 押子
420 直流電圧発生器
430 抵抗体
440 電圧測定器
450 荷重測定器
DESCRIPTION OF SYMBOLS 100 Pressure-sensitive sensor 101 Detection part 110 Conductive rubber member 120 Electrode board | substrate 111 The surface (A surface) facing an electrode board | substrate of a conductive rubber member
112 Surface (B surface) opposite to the surface facing the electrode substrate of the conductive rubber member
121 surface having electrode of electrode substrate (a surface)
122 surface (b surface) opposite to the surface having electrodes of the electrode substrate
130 Insulating Cover Member 131 Flexible Film 132 Fixing Agent Layer 140 Spacing Forming Tool 140a Spacing Forming Tool Width 140b Spacing Forming Tool Thickness 141 Gap Amount Between Conductive Rubber Member and Electrode Substrate b Insulating Covering Member Projects Maximum Width c when showing the area c Vertical length when the insulating covering member shows the maximum projected area 410 Pusher 420 DC voltage generator 430 Resistor 440 Voltage measuring instrument 450 Load measuring instrument

Claims (3)

電極基板と導電性ゴム部材とが、近接非接触状態で対向配置されてなる感圧センサにおいて、前記電極基板および前記導電性ゴム部材は、少なくとも固定剤層が設けられた可撓性フィルムからなる絶縁性被覆部材によって周回被覆されていると共に、前記固定剤層を介して前記絶縁性被覆部材に固定されており、前記近接非接触状態の前記電極基板と前記導電性ゴム部材との隙間量が10μm以上、300μm以下であり、前記可撓性フィルムは、ヤング率が2GPa以上、10GPa以下であって、厚みが10μm以上、60μm以下であることを特徴とする感圧センサ。 In the pressure-sensitive sensor in which the electrode substrate and the conductive rubber member are arranged to face each other in the close proximity non-contact state, the electrode substrate and the conductive rubber member are made of a flexible film provided with at least a fixing agent layer. It is covered with an insulating covering member and is fixed to the insulating covering member via the fixing agent layer, and the gap amount between the electrode substrate in the proximity non-contact state and the conductive rubber member is small. The pressure-sensitive sensor , wherein the flexible film has a Young's modulus of 2 GPa or more and 10 GPa or less and a thickness of 10 μm or more and 60 μm or less. 前記電極基板および前記導電性ゴム部材を、前記絶縁性被覆部材によって周回被覆した状態において、面積が最大となる方向からみた前記絶縁性被覆部材の投影面積が3mm2以上、80mm2以下であることを特徴とする請求項1に記載の感圧センサ。 In a state where the electrode substrate and the conductive rubber member are covered with the insulating coating member, the projected area of the insulating coating member as viewed from the direction in which the area is maximized is 3 mm 2 or more and 80 mm 2 or less. The pressure-sensitive sensor according to claim 1. 前記導電性ゴム部材の、前記電極基板と対向する面には、少なくとも一層の導電性被覆層が形成されていることを特徴とする請求項1または2に記載の感圧センサ。
The pressure-sensitive sensor according to claim 1, wherein at least one conductive coating layer is formed on a surface of the conductive rubber member facing the electrode substrate.
JP2012159702A 2012-07-18 2012-07-18 Pressure sensor Expired - Fee Related JP5945469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012159702A JP5945469B2 (en) 2012-07-18 2012-07-18 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159702A JP5945469B2 (en) 2012-07-18 2012-07-18 Pressure sensor

Publications (3)

Publication Number Publication Date
JP2014020915A JP2014020915A (en) 2014-02-03
JP2014020915A5 JP2014020915A5 (en) 2015-06-18
JP5945469B2 true JP5945469B2 (en) 2016-07-05

Family

ID=50195958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159702A Expired - Fee Related JP5945469B2 (en) 2012-07-18 2012-07-18 Pressure sensor

Country Status (1)

Country Link
JP (1) JP5945469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945331A (en) * 2017-07-26 2020-03-31 株式会社村田制作所 Press sensor and electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009878B1 (en) * 2017-11-16 2019-10-21 이경환 Manufacture device of parts for pressure sensor and pressure sensor
US11460362B2 (en) * 2019-07-23 2022-10-04 Toyota Motor Engineering & Manufacturing North America, Inc. Flexible printed pressure transducer with sensor diffusion stack materials and methods incorporating the same
JP2023031809A (en) * 2021-08-25 2023-03-09 株式会社ブリヂストン Conductive rubber composition for sensing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321075A (en) * 1997-05-15 1998-12-04 Teikoku Tsushin Kogyo Co Ltd Membrane-type switch
JP2001067971A (en) * 1999-08-25 2001-03-16 Polymatech Co Ltd Pressure sensitive conductive sensor
JP2002350250A (en) * 2001-03-19 2002-12-04 Auto Network Gijutsu Kenkyusho:Kk Sensor unit, sensor mounting bag body and sensor mounting method
DE10218613A1 (en) * 2002-04-25 2003-12-04 Wet Automotive Systems Ag Mechanical power detection apparatus has detection plate including measurement layers whose characteristics change, if power that is to be detected acts on measurement layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945331A (en) * 2017-07-26 2020-03-31 株式会社村田制作所 Press sensor and electronic device

Also Published As

Publication number Publication date
JP2014020915A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5496446B2 (en) Capacitive sensor
JP5636290B2 (en) Pressure sensor
JP5945469B2 (en) Pressure sensor
JP4650538B2 (en) Capacitive sensor
JP5411227B2 (en) Comb-shaped force switch and sensor
WO2015040801A1 (en) Conductive member for pressure-sensitive sensor, and pressure-sensitive sensor
KR20130001305A (en) Flexible conductive material and transducer, flexible circuit board, and electromagnetic shield using said flexible conductive material
EP1862862B1 (en) Conductive roll and its inspection method
CN105157891B (en) The stretching-sensitive sensor and its manufacture method of a kind of negative resistance effect
JP2008525579A (en) Adhesive film for force switches and sensors
JPS648403B2 (en)
JP5662637B2 (en) Load sensor
CN100578710C (en) Foil-type pressure sensor with enhanced carrier foil
WO2009078621A3 (en) Conductive material and manufacturing method thereof
JP2012159463A (en) Pressure-sensitive sensor body
JP2010054296A (en) Load sensor
JP2003344185A (en) Pressure sensitive sensor
US7119556B2 (en) Probe for surface-resistivity measurement and method for measuring surface resistivity
JP5980993B1 (en) Pressure sensor
JP2015161572A (en) Conductive member for pressure sensor, and pressure sensor
JP2003139630A (en) Pressure sensitive film resistor and pressure sensitive sensor
JP6146694B2 (en) Electric adhesive holding member, sheet conveying belt, and sheet conveying apparatus
CN106660310A (en) Pressure-responsive laminate, coating layer and pressure responsiveness-imparting material
JP2003004552A (en) Resistor for pressure-sensitive sensor and pressure- sensitive sensor using the same
US10139747B2 (en) Electrophotographic roller and charging apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5945469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees