WO2015040801A1 - Conductive member for pressure-sensitive sensor, and pressure-sensitive sensor - Google Patents

Conductive member for pressure-sensitive sensor, and pressure-sensitive sensor Download PDF

Info

Publication number
WO2015040801A1
WO2015040801A1 PCT/JP2014/004453 JP2014004453W WO2015040801A1 WO 2015040801 A1 WO2015040801 A1 WO 2015040801A1 JP 2014004453 W JP2014004453 W JP 2014004453W WO 2015040801 A1 WO2015040801 A1 WO 2015040801A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
elastomer
sensitive sensor
elastomer layer
conductive member
Prior art date
Application number
PCT/JP2014/004453
Other languages
French (fr)
Japanese (ja)
Inventor
浦野 竜太
池田 寛
理賀 中嶋
Original Assignee
キヤノン化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン化成株式会社 filed Critical キヤノン化成株式会社
Publication of WO2015040801A1 publication Critical patent/WO2015040801A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress

Definitions

  • the present invention relates to a pressure-sensitive sensor conductive member used in a pressure-sensitive sensor that senses pressure by detecting a change in conduction resistance value.
  • the present invention also relates to a pressure sensor using the pressure sensitive sensor conductive member.
  • a pressure-sensitive sensor that senses pressure by using a conductive member in which conductive particles are dispersed in an elastomer and detecting a change in a conduction resistance value according to a pressure change.
  • the conductive member is disposed opposite to a flat substrate on which detection electrodes such as comb electrodes are formed.
  • a conductive member as a sensor element is rich in flexibility, but a rigid substrate such as a glass epoxy substrate is used as a substrate for forming an electrode.
  • two conductive members having a flexible film as a base material and a conductive ink layer as an electrode printed on the surface of the base material are used.
  • Patent Document 1 a plastic film made of a polyethylene-2,6-naphthalate film is used as a base material, and an electrode layer of a conductive ink composition and a semi-finished material mainly containing an epoxy resin are formed on the surface of the base material.
  • a film-like pressure sensor having a conductive pressure-sensitive ink layer is described. Since such a film-like pressure sensor has flexibility, it can be attached to a curved surface.
  • Patent Document 2 reports a capacitive sensor having an elastic flexibility composed of an elastomer dielectric layer and an electrode in which an elastomer is mixed with a specific amount of conductive filler. Since such a pressure-sensitive sensor is made of an elastomer, the pressure sensor is rich in flexibility and can be applied to a curved surface or an uneven surface.
  • the film-like pressure sensor disclosed in Patent Document 1 has flexibility because the substrate is a resin film, the flexibility may not be sufficient. For this reason, there may be variations in the contact state between the conductive ink layers according to changes in pressure, and the reproducibility of the electrical resistance value obtained as a detection signal may not be good, and pressure measurement may not be performed properly. is there.
  • the pressure-sensitive sensor disclosed in Patent Document 2 has good flexibility because the entire sensor is made of an elastomer. However, since it is a sensor that detects pressure based on a change in capacitance, it is susceptible to electrostatic noise depending on the usage environment, and may malfunction or detect erroneously.
  • the object of the present invention is for pressure-sensitive sensors that can be applied to curved surfaces and uneven surfaces, have good reproducibility of electrical resistance values obtained as pressure detection signals, and are less prone to malfunctions and false detections.
  • An object of the present invention is to provide a conductive member and a pressure sensor using the same.
  • the pressure-sensitive sensor conductive member of the present invention is a pressure-sensitive sensor conductive member used for a pressure-sensitive sensor that senses pressure by detecting a change in conduction resistance value.
  • the pressure-sensitive sensor of the present invention is a pressure-sensitive sensor comprising the pressure-sensitive sensor conductive member.
  • the pressure-sensitive sensor of the present invention is a pressure-sensitive sensor in which a pair of the pressure-sensitive sensor conductive members are arranged so that the second elastomer layer faces each other.
  • the conductive member for a pressure-sensitive sensor of the present invention can be attached to a curved surface or an uneven surface, and is excellent in reproducibility of an electrical resistance value as a detection signal against repeated pressure.
  • the pressure-sensitive sensor of the present invention is a pressure-sensitive sensor that senses pressure by detecting a change in conduction resistance value according to a change in pressure, erroneous detection and malfunction due to the influence of electrostatic noise are prevented. There is an effect that it hardly occurs.
  • the pressure-sensitive sensor conductive member of the present invention is a pressure-sensitive sensor conductive member used for a pressure-sensitive sensor that senses pressure by detecting a change in conduction resistance value.
  • FIG. 1 shows one embodiment of a conductive member for a pressure-sensitive sensor (hereinafter sometimes referred to as “conductive member”) according to the present invention, and is not limited to this embodiment.
  • the conductive member 1 includes an elastomer base material 2, a first elastomer layer 3, and a second elastomer layer 4.
  • FIG. 2 shows a pressure-sensitive sensor in which the conductive member 1 of the present invention is combined with a two-layered conductive member 10 composed of an elastomer base material 2 and a first elastomer layer 3.
  • the material of the elastomer base material 2 and the first elastomer layer 3 constituting the conductive member 10 may be the same material as the conductive member of the present invention, or may be different materials.
  • a DC power source 7 and a resistor 6 are wired so as to connect the first elastomer layers 3 of the two conductive members.
  • a voltage measuring device 5 for reading a voltage value is wired to the resistor 6.
  • the contact resistance value changes because the contact area between the second elastomer layer 4 of the conductive member 1 and the first elastomer layer 3 of the conductive member 10 disposed opposite to the conductive member 1 changes. . Therefore, it is possible to detect the pressure P as the electric resistance value by reading the voltage value applied to the resistor 6 with the voltage measuring device 5 and converting it to the electric resistance value.
  • FIG. 3 shows another example of the pressure-sensitive sensor of the present invention.
  • two conductive members 1 of the present invention are paired and the second elastomer layer 4 is disposed so as to face each other.
  • a DC power source 7 and a resistor 6 are wired so as to connect the first elastomer layers 3 of the conductive member 1.
  • a voltage measuring device 5 for reading a voltage value is wired to the resistor 6.
  • the first elastomer layer formed on the elastomer substrate functions as a wiring portion connected to either the power connection wiring or the output extraction wiring.
  • the second elastomer layer formed on the first elastomer layer functions as a detection element that converts the action of pressure into an electrical resistance value.
  • the elastomer substrate has a role of supporting the first elastomer layer and the second elastomer layer.
  • the thickness of the elastomer substrate is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less.
  • the thickness of the elastomer substrate is 0.1 mm or more, tearing and tearing are not likely to occur even when the elastomer base material is used by being attached to a curved surface or an uneven surface.
  • the thickness of the elastomer base material is 10 mm or less, even when it is used in contact with a curved surface or an uneven surface, it is difficult to float from the ground surface, and the pressure can be detected with higher accuracy.
  • the thickness of the first elastomer layer and the second elastomer layer is not particularly limited, but the thickness of each layer is preferably 5 ⁇ m or more and 500 ⁇ m or less. When the thickness of the layer is 5 ⁇ m or more, disconnection of the conduction circuit due to breakage is difficult to occur. Also, when the thickness of the layer is 500 ⁇ m or less, the first elastomer layer and the second elastomer layer are not peeled off from the elastomer base material or stable even when used in contact with a curved surface or an uneven surface. It is possible to obtain an electrical signal.
  • the type of elastomer constituting the elastomer substrate, the first elastomer layer, and the second elastomer layer is not particularly limited.
  • a vulcanized rubber obtained by kneading a raw material with a vulcanizing agent and then heating a thermosetting resin elastomer obtained by adding a curing agent to the raw material and then heating, and softening and flowing when heated
  • a thermoplastic resin elastomer having the property of returning to a rubber-like elastic body when cooled is not particularly limited.
  • a vulcanized rubber obtained by kneading a raw material with a vulcanizing agent and then heating
  • a thermosetting resin elastomer obtained by adding a curing agent to the raw material and then heating and softening and flowing when heated
  • a thermoplastic resin elastomer having the property of returning to a rubber-like elastic body when cooled a thermoplastic resin elastomer having the property of returning to
  • vulcanized rubber examples include isoprene rubber, chloroprene rubber, epichlorohydrin rubber, butyl rubber, fluoro rubber, styrene-butadiene rubber, butadiene rubber, nitrile rubber, ethylene propylene rubber, epichlorohydrin-ethylene oxide copolymer, epichlorohydride.
  • examples thereof include phosphorus-ethylene oxide-allyl glycidyl ether terpolymer, ethylene-propylene-diene rubber, acrylonitrile-butadiene rubber, natural rubber, and combinations thereof.
  • thermosetting resin elastomer examples include urethane resin elastomer and silicone resin elastomer.
  • thermoplastic resin elastomer examples include styrene-based thermoplastic elastomers such as styrene-butadiene block copolymers and styrene-ethylene-butylene-styrene block copolymers, urethane-based thermoplastic elastomers, olefin-based thermoplastic elastomers, Examples thereof include polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, fluorine-based thermoplastic elastomers, and vinyl chloride-based thermoplastic elastomers. These elastomer components may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the elastomer is preferably a urethane resin elastomer having high elasticity and good wear resistance.
  • a combination of elastomers constituting the elastomer base material, the first elastomer layer, and the second elastomer layer it is preferable to select a combination of elastomers having close solubility parameters (SP values).
  • SP values close solubility parameters
  • the SP value is 17 MP 1/2 or more and 24 MP as the elastomer used for the elastomer base material and the second elastomer layer.
  • One-half or less is preferable, and examples thereof include urethane resin elastomer, chloroprene rubber, acrylic rubber, acrylonitrile-butadiene rubber, phenol resin elastomer, and epoxy resin elastomer.
  • urethane resin elastomer chloroprene rubber, acrylic rubber, acrylonitrile-butadiene rubber, phenol resin elastomer, and epoxy resin elastomer.
  • volume resistivity of the elastomer base material is R 0
  • the volume resistivity of the first elastomer layer is R 1
  • the volume resistivity of the second elastomer layer is R 2 in the conductive member for a pressure sensitive sensor of the present invention.
  • Each volume resistivity satisfies a relational expression of R 0 > R 2 > R 1 .
  • the volume resistivity R 0 is preferably 1.0 ⁇ 10 8 ⁇ ⁇ cm or more. By setting the volume resistivity R 0 to 1.0 ⁇ 10 8 ⁇ ⁇ cm or more, it is possible to reliably prevent a phenomenon in which electricity flows out of the circuit (leak phenomenon).
  • the volume resistivity R 1 of the first elastomer layer is lower than the volume resistivity of the second elastomer layer, so that an electric signal can be used as a wiring portion connected to either the power connection wiring or the output extraction wiring. Can be reliably removed.
  • the volume resistivity R 1 is preferably 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or more and less than 1.0 ⁇ 10 3 ⁇ ⁇ cm.
  • volume resistivity R 1 is 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or more and less than 1.0 ⁇ 10 3 ⁇ ⁇ cm, output attenuation is less likely to occur due to the high resistance of the first elastomer layer used as the wiring portion. It becomes possible to detect the change of the conduction resistance value according to the change of the pressure with higher accuracy.
  • the volume resistivity R 2 of the second elastomer layer needs to be higher than the volume resistivity R 1 of the first elastomer layer in order to take out the action of pressure as a change in electric resistance value.
  • the volume resistivity R 2 is preferably 1.0 ⁇ 10 3 ⁇ ⁇ cm or more and less than 1.0 ⁇ 10 6 ⁇ ⁇ cm.
  • the volume resistivity R 2 is 1.0 ⁇ 10 3 ⁇ ⁇ cm or more and less than 1.0 ⁇ 10 6 ⁇ ⁇ cm, the amount of change in the conduction resistance value with respect to the change in pressure is suitable, and the detection accuracy and resolution are low. It becomes good.
  • the elastic modulus of the conductive member for pressure sensitive sensor of the present invention is preferably 0.5 MPa or more and 30 MPa or less.
  • the elastic modulus is less than 0.5 MPa, the flexibility of the pressure-sensitive sensor conductive member is too high, so the deformation-following property of the pressure-sensitive sensor conductive member against pressure unloading is not sufficient, and the reproducibility of the sensor output May be inferior.
  • the elastic modulus exceeds 30 MPa, the pressure-sensitive sensor conductive member is not sufficiently flexible and may not be able to handle sticking to a curved surface or an uneven surface.
  • the conductive agent examples include solid carbon materials such as carbon black, graphite, carbon nanotube, fullerene, graphene, and carbon nanowall; metal powder such as silver, copper, aluminum, nickel, and iron; conductive tin oxide, conductive oxidation Conductive metal oxides such as titanium; inorganic ionic substances such as lithium perchlorate, sodium perchlorate, calcium perchlorate; cationic surfactants, zwitterionic surfactants, quaternary ammonium salts, and organic Examples include acid lithium salts. These can be used alone or in combination of two or more.
  • the conductive agent used for the first elastomer layer one that can easily adjust the volume resistivity R 1 to a low resistance region of 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or more and less than 1.0 ⁇ 10 3 ⁇ ⁇ cm.
  • Preferable examples include solid carbon materials such as carbon black, graphite, carbon nanotubes, fullerenes, graphenes, and carbon nanowalls; and metal powders such as silver, copper, aluminum, nickel, and iron. More preferably, it is a carbon nanotube that can be easily adjusted to a low resistance region and can easily form an elastomer layer having a stable volume resistivity against expansion and contraction.
  • the volume resistivity of the second elastomer layer is adjusted to a medium resistance region of 1.0 ⁇ 10 3 ⁇ ⁇ cm or more and less than 1.0 ⁇ 10 6 ⁇ ⁇ cm.
  • Easy materials are preferred, and examples thereof include solid carbon materials such as carbon black, graphite, carbon nanotubes, fullerenes, graphene, and carbon nanowalls. More preferably, carbon black is preferable because it can be easily adjusted to a desired resistance region by appropriately selecting the particle diameter, structure, and the like.
  • each elastomer layer constituting the pressure-sensitive sensor conductive member of the present invention can be blended in each elastomer layer constituting the pressure-sensitive sensor conductive member of the present invention.
  • elasticity such as silicone, urethane, acrylic, styrene, polyamide, etc.
  • resin particles examples thereof include resin particles.
  • inorganic oxide fillers such as a silica, an alumina, a titanium oxide, a zinc oxide, magnesium oxide, etc. are mentioned.
  • additives may be blended.
  • additives include cross-linking agents, vulcanization accelerators, vulcanization aids, curing agents, anti-aging agents, plasticizers, softeners, colorants, dispersants, coupling agents, leveling agents, antifoaming agents, and the like. Is mentioned.
  • Method for producing conductive member Although it does not specifically limit as a method to manufacture the electrically conductive member for pressure sensitive sensors of this invention, For example, the method of forming a 1st elastomer layer and a 2nd elastomer layer by printing an elastomer paint on an elastomer base material Is mentioned. By such a method, the pressure-sensitive sensor conductive member can be easily manufactured.
  • an elastomer compound for forming a base material and an elastomer paint for forming a first elastomer layer and a second elastomer layer are prepared.
  • the elastomer compound used for the elastomer base material is prepared by kneading a polymer and a conductive agent and additives used as necessary with a pressure kneader such as a kneader or a Banbury mixer, a two roll or the like.
  • the elastomer base material is produced by molding or extruding the elastomer compound.
  • the elastomer paint used for the first and second elastomer layers is produced by dissolving a polymer in a solvent together with a predetermined additive, and further stirring and mixing a liquid mixture obtained by adding a conductive agent. The Next, an elastomer paint for the first elastomer layer is applied onto one surface of the elastomer substrate, and then a paint for the second elastomer layer is applied so as to cover the surface of the first elastomer layer. Then, the paint is dried by heating. In this case, the crosslinking reaction of the elastomer component may be allowed to proceed during the heat drying of the paint.
  • various known methods can be adopted as a coating method of the paint.
  • printing methods such as inkjet printing, flexographic printing, gravure printing, screen printing, pad printing, and lithography, dipping, spraying, bar coating, and the like can be given.
  • the screen printing method is preferred because the thickness adjustment of the first and second elastomer layers is easy.
  • the pressure-sensitive sensor of the present invention is a pressure-sensitive sensor comprising the pressure-sensitive sensor conductive member.
  • the pressure sensor is preferably a pressure sensor in which a pair of conductive members for a pressure sensor are arranged so that the second elastomer layer faces each other.
  • Example 1 [1. Elastomer substrate]
  • the raw materials other than the vulcanizing agent and the vulcanizing agent accelerator were kneaded at a ratio shown in Table 2 using a 3 L pressure type kneader (D3-10: manufactured by Moriyama Corporation). Only the raw rubber was masticated for 1 minute at a rotor rotation speed of 30 rpm, and then zinc oxide, zinc stearate and carbon black were added and kneaded for 10 minutes.
  • the filling amount of the material with respect to the kneader capacity was 65% by volume.
  • the obtained rubber composition was cooled at room temperature (25 ° C.) for 1 hour, and further, using an open roll machine (12 inch roll machine: manufactured by Kansai Roll Co., Ltd.), vulcanizing agents and vulcanizing agent acceleration shown in Table 2
  • the agent was kneaded. After kneading for 15 minutes with a front roll of 15 rpm and a back roll of 18 rpm as appropriate, after passing through a roll gap of 0.6 mm, it is cut into a length of 15 mm and a width of 15 mm. An unvulcanized product was obtained.
  • the unvulcanized product is filled in a 15 mm long, 15 mm wide, 1 mm deep mold preheated to 170 ° C., and press vulcanized at 170 ° C. and 100 kgf for 15 minutes to obtain a pressure sensitive sensor.
  • An elastomer base material for a conductive member for use was obtained.
  • Second elastomer layer Methyl isobutyl ketone was added to the raw materials in the proportions shown in Table 2 and sufficiently dispersed with a bead mill. After dispersion, methyl ethyl ketone was further added and mixed well. The viscosity of the coating solution was measured at 23 ⁇ 1 ° C., and a rotary viscometer (VISMETRON VDA; manufactured by Shibaura System Co., Ltd.), No. The viscosity was adjusted to 15 mPa ⁇ s at 1 rotor and a rotational speed of 60 rpm. In this way, a paint for the second elastomer layer was obtained.
  • VISMETRON VDA manufactured by Shibaura System Co., Ltd.
  • the coating material for the first elastomer layer was applied to the surface of the elastomer substrate in a range of 10 mm length and 10 mm width by screen printing, and air-dried for 30 minutes.
  • the coating material for the second elastomer layer was applied by a screen printing method so as to cover the entire surface of the first elastomer layer, and air-dried for 30 minutes. Thereafter, the coating film was cured by heating at 160 ° C. for 1 hour using an oven. 1 was obtained.
  • the thickness of the first elastomer layer was 20 ⁇ m
  • the thickness of the second elastomer layer was 30 ⁇ m.
  • the first elastomer layer paint and the second elastomer layer paint are respectively placed in a mold having a length of 15 mm, a width of 15 mm, and a depth of 2 mm.
  • a mold having a length of 15 mm, a width of 15 mm, and a depth of 2 mm.
  • volume resistivity was measured.
  • the volume resistivity R 1 of the first elastomer layer was 1.0 ⁇ 10 2 ⁇ ⁇ cm
  • the volume resistivity R 2 of the second elastomer layer was 3.0 ⁇ 10 4 ⁇ ⁇ cm. .
  • the “conductive member No. 1” (length 15 mm, width 15 mm) is wound around pipes having different diameters (diameter 10 mm, diameter 50 mm), and the winding start and end ends are double-sided tape (Nystack NW-5S, Nichiban Co., Ltd.).
  • the presence or absence of a gap between the pipe and the pressure-sensitive sensor conductive member and the presence or absence of cracks or breakage in the pressure-sensitive sensor conductive member were visually observed and used as an index of flexibility.
  • the evaluation results were displayed according to the following criteria.
  • A No gap, no crack or breakage.
  • There is a gap, and no crack or breakage occurs. Or there are no gaps, cracks and breaks.
  • X There is a gap, and cracks and breakage occur.
  • the conductive member No. 1 was allowed to stand for 24 hours or more in an environment at a temperature of 23 ° C. and a relative humidity of 60%, and then the reproducibility of the electrical resistance value against repeated compression deformation on the curved surface was evaluated.
  • a pair of conductive members 1 are arranged so that the second elastomer layers 4 face each other, mounted on a SUS half-moon-shaped support 8 having a diameter of 50 mm, and pressure is applied to the entire upper surface of the conductive member.
  • a 1 k ⁇ resistor 6 and a DC power source 7 were wired to the first elastomer layer 3, and a voltage measuring device 5 was connected to the resistor. In this state, a DC voltage of 5 V was applied, and while the pressure applied to the conductive member was read by the load measuring device 9, the compression was repeated 100 times at a speed of 5 mm / min in the pressure range of 0 to 100 kPa.
  • Examples 2 to 8 and Comparative Examples 1 and 2 In the same manner as in Example 1, except that the types and amounts of raw materials for the base material, the first elastomer layer, and the second elastomer layer were changed to the conditions shown in Table 2, Examples 2 to 8 and Conductive members of Comparative Examples 1 and 2 were obtained. Further, various evaluations were performed in the same manner as in Example 1, and the results shown in Table 3 were obtained. In Comparative Example 1, a PET plate (a plate made of polyethylene terephthalate having a thickness of 1 mm) was used instead of the elastomer base material.
  • a PET plate a plate made of polyethylene terephthalate having a thickness of 1 mm
  • the volume resistivity R 0 of the substrate is preferably 1.0 ⁇ 10 8 ⁇ ⁇ cm or more.
  • the standard deviation ⁇ which is an index of reproducibility of the electrical resistance value, tends to increase.
  • the volume resistivity R 1 of the first elastomer layer is preferably 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or more and less than 1.0 ⁇ 10 3 ⁇ ⁇ cm.
  • the standard deviation ⁇ which is an index of reproducibility of the electrical resistance value, tends to increase.
  • the volume resistivity R 2 of the second elastomer layer is preferably 1.0 ⁇ 10 3 ⁇ ⁇ cm or more and less than 1.0 ⁇ 10 6 ⁇ ⁇ cm.
  • the standard deviation ⁇ which is an index of reproducibility of the electrical resistance value, tends to increase.
  • Examples 7 and 8 show that the elastic modulus of the conductive member is preferably 0.5 MPa or more and 30 MPa or less.
  • Example 8 in which the elastic modulus of the conductive member is outside the above range a gap is generated in the gap evaluation using a pipe having a diameter of 10 mm.
  • the conductive member for a pressure-sensitive sensor of the present invention can be suitably used as a sensor that is molded into a desired shape and measures the magnitude and distribution of the applied pressure acting on the conductive member.

Abstract

Provided is a conductive member for a pressure-sensitive sensor thatcan be adhered to curved surfaces and uneven surfaces, that offers good reproducibility of electrical resistance values obtained as pressure detection signals, and that is less susceptible to malfunctions and misdetection. Also provided is a pressure-sensitive sensor that uses the conductive member. This conductive member for a pressure-sensitive sensor is characterized by the following: having an elastomer as the base material; being provided with a first elastomer layer formed atop the base material and a second elastomer layer formed atop the first elastomer layer; and in that if the volume resistivity of the base material is R0, the volume resistivity of the first elastomer layer is R1, and the volume resistivity of the second elastomer layer is R2, the relationship R0>R2> R1 is satisfied. Further, this pressure-sensitive sensor is characterized by being provided with the conductive member for a pressure-sensitive sensor.

Description

感圧センサ用導電部材及び感圧センサConductive member for pressure sensor and pressure sensor
 本発明は、導通抵抗値の変化を検出することによって、圧力を感知する感圧センサに用いられる感圧センサ用導電部材に関する。また、この感圧センサ用導電部材を用いた感圧センサに関する。 The present invention relates to a pressure-sensitive sensor conductive member used in a pressure-sensitive sensor that senses pressure by detecting a change in conduction resistance value. The present invention also relates to a pressure sensor using the pressure sensitive sensor conductive member.
 従来、柔軟性のある感圧センサとしては、エラストマー中に導電性粒子を分散させた導電部材を用い、圧力変化に応じた導通抵抗値の変化を検出することによって、圧力を感知する感圧センサが知られている。例えば、櫛型電極等の検出電極を形成した平面基板上に、前記導電部材を対向配置させたものがある。この種の感圧センサの場合、センサ素子である導電部材は柔軟性に富むが、電極を形成する基板としてはガラスエポキシ基板のように柔軟性のないリジッド基板が用いられている。このため、導電部材が平坦な面上に貼着されて配置された場合は、圧力の計測を適正に行うことができるものの、導電部材を曲面や凹凸面の上に貼着して配置することは容易ではないので、用途は平面上での測定に限られている。 Conventionally, as a flexible pressure-sensitive sensor, a pressure-sensitive sensor that senses pressure by using a conductive member in which conductive particles are dispersed in an elastomer and detecting a change in a conduction resistance value according to a pressure change. It has been known. For example, there is one in which the conductive member is disposed opposite to a flat substrate on which detection electrodes such as comb electrodes are formed. In the case of this type of pressure-sensitive sensor, a conductive member as a sensor element is rich in flexibility, but a rigid substrate such as a glass epoxy substrate is used as a substrate for forming an electrode. For this reason, when a conductive member is adhered and arranged on a flat surface, the pressure can be properly measured, but the conductive member is adhered and arranged on a curved surface or an uneven surface. Since it is not easy, the application is limited to measurement on a flat surface.
 これを解決する手段としては、可撓性のあるフィルムを基材とし、この基材の表面に電極となる導電性インク層を印刷した導電部材を2つ用いて、その導電性インク層同士を対向配置させたフィルム状感圧センサがある。この種の感圧センサは、圧力の変化に応じた導電性インク層同士の接触面積の変化に伴う導通抵抗値の変化を検出することによって、圧力を感知するものである。 As a means for solving this problem, two conductive members having a flexible film as a base material and a conductive ink layer as an electrode printed on the surface of the base material are used. There is a film-like pressure sensor arranged opposite to each other. This type of pressure sensor senses pressure by detecting a change in conduction resistance value accompanying a change in contact area between conductive ink layers in accordance with a change in pressure.
 例えば、特許文献1には、ポリエチレン-2,6-ナフタレートのフィルムからなるプラスチックフィルムを基材とし、この基材の表面に導電性インク組成物の電極層と、エポキシ樹脂を主成分とする半導電性感圧インク層を形成したフィルム状感圧センサが記載されている。このようなフィルム状感圧センサは可撓性を有するため、曲面上への貼着が可能である。 For example, in Patent Document 1, a plastic film made of a polyethylene-2,6-naphthalate film is used as a base material, and an electrode layer of a conductive ink composition and a semi-finished material mainly containing an epoxy resin are formed on the surface of the base material. A film-like pressure sensor having a conductive pressure-sensitive ink layer is described. Since such a film-like pressure sensor has flexibility, it can be attached to a curved surface.
 また、その他の方法としては、誘電体および電極に柔軟性を有する材料を用いた静電容量型センサがある。例えば特許文献2には、エラストマー製の誘電体層とエラストマーに特定の配合量の導電性フィラーを配合した電極からなる伸縮柔軟性を有する静電容量型センサが報告されている。このような感圧センサは、構成部材がエラストマーである為、柔軟性に富み、曲面や凹凸面への貼着等に対応可能である。 As another method, there is a capacitance type sensor using a flexible material for the dielectric and the electrode. For example, Patent Document 2 reports a capacitive sensor having an elastic flexibility composed of an elastomer dielectric layer and an electrode in which an elastomer is mixed with a specific amount of conductive filler. Since such a pressure-sensitive sensor is made of an elastomer, the pressure sensor is rich in flexibility and can be applied to a curved surface or an uneven surface.
特開2001-13015号公報Japanese Patent Laid-Open No. 2001-13015 特開2010-43880号公報JP 2010-43880 A
 しかしながら、特許文献1に開示されたフィルム状感圧センサは、基板が樹脂フィルムである為、可撓性を有するものの、柔軟性が十分でない場合がある。そのため、圧力の変化に応じた導電性インク層同士の当接状態にばらつきを生じる場合があり、検出信号として得られる電気抵抗値の再現性が良好でなく、圧力の計測が適正にできない場合がある。 However, although the film-like pressure sensor disclosed in Patent Document 1 has flexibility because the substrate is a resin film, the flexibility may not be sufficient. For this reason, there may be variations in the contact state between the conductive ink layers according to changes in pressure, and the reproducibility of the electrical resistance value obtained as a detection signal may not be good, and pressure measurement may not be performed properly. is there.
 これに対し、特許文献2に開示された感圧センサは、センサ全体がエラストマーで構成されているため、柔軟性が良好である。しかしながら、静電容量変化で圧力を検知するセンサであるため、使用環境によっては静電ノイズの影響を受け易く、誤動作や誤検知する場合がある。 In contrast, the pressure-sensitive sensor disclosed in Patent Document 2 has good flexibility because the entire sensor is made of an elastomer. However, since it is a sensor that detects pressure based on a change in capacitance, it is susceptible to electrostatic noise depending on the usage environment, and may malfunction or detect erroneously.
 本発明の目的は、曲面や凹凸面への貼着に対応可能であって、圧力の検出信号として得られる電気抵抗値の再現性が良好であり、誤動作や誤検知を生じにくい感圧センサ用導電部材、及びこれを用いた感圧センサを提供することにある。 The object of the present invention is for pressure-sensitive sensors that can be applied to curved surfaces and uneven surfaces, have good reproducibility of electrical resistance values obtained as pressure detection signals, and are less prone to malfunctions and false detections. An object of the present invention is to provide a conductive member and a pressure sensor using the same.
 本発明の感圧センサ用導電部材は、導通抵抗値の変化を検出することによって、圧力を感知する感圧センサに用いられる感圧センサ用導電部材において、エラストマーを基材とし、該基材上に形成された第一のエラストマー層と、該第一のエラストマー層上に形成された第二のエラストマー層とを備え、前記基材の体積抵抗率をR、前記第一のエラストマー層の体積抵抗率をR、前記第二のエラストマー層の体積抵抗率をRとしたとき、R>R>Rの関係を満たすことを特徴とする感圧センサ用導電部材である。 The pressure-sensitive sensor conductive member of the present invention is a pressure-sensitive sensor conductive member used for a pressure-sensitive sensor that senses pressure by detecting a change in conduction resistance value. A first elastomer layer formed on the first elastomer layer and a second elastomer layer formed on the first elastomer layer, wherein the volume resistivity of the substrate is R 0 , and the volume of the first elastomer layer is the resistivity R 1, when the volume resistivity of the second elastomer layer has a R 2, R 0> R 2 > is a conductive member for a pressure-sensitive sensor to satisfy the relationship of R 1.
 また本発明の感圧センサは、前記感圧センサ用導電部材を備えることを特徴とする感圧センサである。 The pressure-sensitive sensor of the present invention is a pressure-sensitive sensor comprising the pressure-sensitive sensor conductive member.
 更に本発明の感圧センサは、前記感圧センサ用導電部材の一対を、前記第二のエラストマー層が相互に向かい合うように配置してなる感圧センサである。 Furthermore, the pressure-sensitive sensor of the present invention is a pressure-sensitive sensor in which a pair of the pressure-sensitive sensor conductive members are arranged so that the second elastomer layer faces each other.
 本発明の感圧センサ用導電部材は、曲面や凹凸面への貼着が可能であって、繰り返し圧力に対し、検出信号である電気抵抗値の再現性に優れている。また、本発明の感圧センサは、圧力の変化に応じた導通抵抗値の変化を検出することによって、圧力を感知する感圧センサである為に、静電ノイズの影響による誤検知及び誤動作が生じにくいという効果を奏する。 The conductive member for a pressure-sensitive sensor of the present invention can be attached to a curved surface or an uneven surface, and is excellent in reproducibility of an electrical resistance value as a detection signal against repeated pressure. In addition, since the pressure-sensitive sensor of the present invention is a pressure-sensitive sensor that senses pressure by detecting a change in conduction resistance value according to a change in pressure, erroneous detection and malfunction due to the influence of electrostatic noise are prevented. There is an effect that it hardly occurs.
本発明の感圧センサ用導電部材の一例を表す断面図である。It is sectional drawing showing an example of the electrically-conductive member for pressure sensors of this invention. 本発明の感圧センサの一例を表す断面図である。It is sectional drawing showing an example of the pressure sensor of this invention. 本発明の感圧センサの他の一例を表す断面図である。It is sectional drawing showing another example of the pressure sensor of this invention. 圧力-電気抵抗特性を測定するための負荷・除荷試験を説明する模式図である。It is a schematic diagram explaining a load / unloading test for measuring pressure-electric resistance characteristics.
 <感圧センサ用導電部材>
 本発明の感圧センサ用導電部材は、導通抵抗値の変化を検出することによって、圧力を感知する感圧センサに用いられる感圧センサ用導電部材において、エラストマーを基材とし、該基材上に形成された第一のエラストマー層と、該第一のエラストマー層上に形成された第二のエラストマー層とを備え、前記基材の体積抵抗率をR、前記第一のエラストマー層の体積抵抗率をR、前記第二のエラストマー層の体積抵抗率をRとしたとき、R>R>Rの関係を満たすことを特徴とする感圧センサ用導電部材である。
<Conductive member for pressure sensor>
The pressure-sensitive sensor conductive member of the present invention is a pressure-sensitive sensor conductive member used for a pressure-sensitive sensor that senses pressure by detecting a change in conduction resistance value. A first elastomer layer formed on the first elastomer layer and a second elastomer layer formed on the first elastomer layer, wherein the volume resistivity of the substrate is R 0 , and the volume of the first elastomer layer is the resistivity R 1, when the volume resistivity of the second elastomer layer has a R 2, R 0> R 2 > is a conductive member for a pressure-sensitive sensor to satisfy the relationship of R 1.
 図1は、本発明の感圧センサ用導電部材(以下、「導電部材」という場合がある。)の一形態を示すものであり、本実施形態に限定されるものではない。導電部材1は、エラストマー基材2と第一のエラストマー層3と第二のエラストマー層4とを備えている。 FIG. 1 shows one embodiment of a conductive member for a pressure-sensitive sensor (hereinafter sometimes referred to as “conductive member”) according to the present invention, and is not limited to this embodiment. The conductive member 1 includes an elastomer base material 2, a first elastomer layer 3, and a second elastomer layer 4.
 図2は、本発明の導電部材1と、エラストマー基材2及び第一のエラストマー層3からなる2層構成の導電部材10とを組合せた感圧センサである。ただし、前記導電部材10を構成するエラストマー基材2と第一のエラストマー層3の材料は、それぞれ、本発明の導電部材と同一の材料であってもよく、異なる材料であってもよい。これら2つの導電部材のそれぞれの第一のエラストマー層3を接続する様に、直流電源7及び抵抗体6が配線されている。また、抵抗体6に対して電圧値を読み取るための電圧測定器5が配線されている。 FIG. 2 shows a pressure-sensitive sensor in which the conductive member 1 of the present invention is combined with a two-layered conductive member 10 composed of an elastomer base material 2 and a first elastomer layer 3. However, the material of the elastomer base material 2 and the first elastomer layer 3 constituting the conductive member 10 may be the same material as the conductive member of the present invention, or may be different materials. A DC power source 7 and a resistor 6 are wired so as to connect the first elastomer layers 3 of the two conductive members. A voltage measuring device 5 for reading a voltage value is wired to the resistor 6.
 導電部材1に対し圧力Pを付加すると、導電部材1の第二のエラストマー層4と対向配置する導電部材10の第一のエラストマー層3との接触面積が変化する為、導通抵抗値が変化する。したがって、抵抗体6にかかる電圧値を電圧測定器5により読み取り、電気抵抗値に換算することで圧力Pを電気抵抗値として検出することが可能である。 When pressure P is applied to the conductive member 1, the contact resistance value changes because the contact area between the second elastomer layer 4 of the conductive member 1 and the first elastomer layer 3 of the conductive member 10 disposed opposite to the conductive member 1 changes. . Therefore, it is possible to detect the pressure P as the electric resistance value by reading the voltage value applied to the resistor 6 with the voltage measuring device 5 and converting it to the electric resistance value.
 図3は、本発明の感圧センサの他の例を図示している。この感圧センサは、本発明の導電部材1の2つを1対とし、第二のエラストマー層4が相互に向かい合うように配置されている。導電部材1のそれぞれの第一のエラストマー層3を接続する様に、直流電源7及び抵抗体6が配線されている。また、抵抗体6に対して電圧値を読み取るための電圧測定器5が配線されている。導電部材1に対し圧力Pを付加すると、対向配置された第二のエラストマー層4間の接触面積が変化する為、導通抵抗値が変化する。したがって、抵抗体6にかかる電圧値を電圧測定器5により読み取り、電気抵抗値に換算することで圧力Pを電気抵抗値として検出することが可能である。 FIG. 3 shows another example of the pressure-sensitive sensor of the present invention. In this pressure sensor, two conductive members 1 of the present invention are paired and the second elastomer layer 4 is disposed so as to face each other. A DC power source 7 and a resistor 6 are wired so as to connect the first elastomer layers 3 of the conductive member 1. A voltage measuring device 5 for reading a voltage value is wired to the resistor 6. When the pressure P is applied to the conductive member 1, the contact area between the second elastomer layers 4 arranged opposite to each other changes, so that the conduction resistance value changes. Therefore, it is possible to detect the pressure P as the electric resistance value by reading the voltage value applied to the resistor 6 with the voltage measuring device 5 and converting it to the electric resistance value.
 つまり、本発明の感圧センサ用導電部材において、エラストマー基材上に形成される第一のエラストマー層は、電源接続用配線または出力取出し用配線のいずれかと接続される配線部として機能する。第一のエラストマー層上に形成される第二のエラストマー層は、圧力の作用を電気抵抗値に変換する検出素子として機能する。エラストマー基材は、第一のエラストマー層と第二のエラストマー層を支持する役割を有している。 That is, in the conductive member for a pressure-sensitive sensor of the present invention, the first elastomer layer formed on the elastomer substrate functions as a wiring portion connected to either the power connection wiring or the output extraction wiring. The second elastomer layer formed on the first elastomer layer functions as a detection element that converts the action of pressure into an electrical resistance value. The elastomer substrate has a role of supporting the first elastomer layer and the second elastomer layer.
 エラストマー基材の厚みは特に限定はされないが、0.1mm以上、10mm以下が好ましい。エラストマー基材の厚みが0.1mm以上の場合、曲面や凹凸面へ貼着して使用した場合においても、裂けや破れが生じ難い。またエラストマー基材の厚みが10mm以下の場合、曲面や凹凸面に接して使用する場合でも接地面から浮き難く、より精度よく圧力を検知することが可能である。 The thickness of the elastomer substrate is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less. When the thickness of the elastomer substrate is 0.1 mm or more, tearing and tearing are not likely to occur even when the elastomer base material is used by being attached to a curved surface or an uneven surface. Further, when the thickness of the elastomer base material is 10 mm or less, even when it is used in contact with a curved surface or an uneven surface, it is difficult to float from the ground surface, and the pressure can be detected with higher accuracy.
 第一のエラストマー層、および第二のエラストマー層の厚みは特に限定はされないが、各層の厚みは5μm以上、500μm以下が好ましい。層の厚みが5μm以上の場合、破断による導通回路の断線を生じ難い。また層の厚みが500μm以下の場合、曲面や凹凸面に接して使用する場合でも、エラストマー基材から第一のエラストマー層、および第二のエラストマー層が剥離したり、あるいは破断することなく安定した電気信号を得ること可能である。 The thickness of the first elastomer layer and the second elastomer layer is not particularly limited, but the thickness of each layer is preferably 5 μm or more and 500 μm or less. When the thickness of the layer is 5 μm or more, disconnection of the conduction circuit due to breakage is difficult to occur. Also, when the thickness of the layer is 500 μm or less, the first elastomer layer and the second elastomer layer are not peeled off from the elastomer base material or stable even when used in contact with a curved surface or an uneven surface. It is possible to obtain an electrical signal.
 〔エラストマー〕
 本発明において、エラストマー基材、第一のエラストマー層、第二のエラストマー層を構成するエラストマーの種類は、特に限定されない。例えば、原材料に加硫剤を混練したのち加熱することで得られる加硫ゴム、原材料に硬化剤を加えたのち加熱することで得られる熱硬化性樹脂エラストマー、熱を加えると軟化して流動性を示し、冷却すればゴム状弾性体に戻る性質を持つ熱可塑性樹脂エラストマーが挙げられる。
[Elastomer]
In the present invention, the type of elastomer constituting the elastomer substrate, the first elastomer layer, and the second elastomer layer is not particularly limited. For example, a vulcanized rubber obtained by kneading a raw material with a vulcanizing agent and then heating, a thermosetting resin elastomer obtained by adding a curing agent to the raw material and then heating, and softening and flowing when heated And a thermoplastic resin elastomer having the property of returning to a rubber-like elastic body when cooled.
 加硫ゴムとしては、例えば、イソプレンゴム、クロロプレンゴム、エピクロロヒドリンゴム、ブチルゴム、フッ素ゴム、スチレン-ブタジエンゴム、ブタジエンゴム、ニトリルゴム、エチレンプロピレンゴム、エピクロロヒドリン-エチレンオキシドコポリマー、エピクロロヒドリン-エチレンオキシド-アリルグリシジルエーテル3元共重合体、エチレン-プロピレン-ジエンゴム、アクリロニトリル-ブタジエンゴム、天然ゴム、および、これらの組み合わせ等が挙げられる。 Examples of the vulcanized rubber include isoprene rubber, chloroprene rubber, epichlorohydrin rubber, butyl rubber, fluoro rubber, styrene-butadiene rubber, butadiene rubber, nitrile rubber, ethylene propylene rubber, epichlorohydrin-ethylene oxide copolymer, epichlorohydride. Examples thereof include phosphorus-ethylene oxide-allyl glycidyl ether terpolymer, ethylene-propylene-diene rubber, acrylonitrile-butadiene rubber, natural rubber, and combinations thereof.
 また、熱硬化性樹脂エラストマーとしてはウレタン樹脂エラストマーやシリコーン樹脂エラストマーが挙げられる。また、熱可塑性樹脂エラストマーとしては、例えば、スチレン-ブタジエンブロック共重合体,スチレン-エチレン-ブチレン-スチレンブロック共重合体等のスチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、フッ素系熱可塑性エラストマー、および塩ビ系熱可塑性エラストマー等が挙げられる。これらのエラストマー成分は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Also, examples of the thermosetting resin elastomer include urethane resin elastomer and silicone resin elastomer. Examples of the thermoplastic resin elastomer include styrene-based thermoplastic elastomers such as styrene-butadiene block copolymers and styrene-ethylene-butylene-styrene block copolymers, urethane-based thermoplastic elastomers, olefin-based thermoplastic elastomers, Examples thereof include polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, fluorine-based thermoplastic elastomers, and vinyl chloride-based thermoplastic elastomers. These elastomer components may be used individually by 1 type, and may be used in combination of 2 or more types.
 なかでも、第二のエラストマー層は電極部材等の相手部材と当接して用いられる為、エラストマーとしては、弾性に富み、耐摩耗性の良好なウレタン樹脂エラストマーが好ましい。 Especially, since the second elastomer layer is used in contact with a mating member such as an electrode member, the elastomer is preferably a urethane resin elastomer having high elasticity and good wear resistance.
 エラストマー基材、第一のエラストマー層、第二のエラストマー層を構成するエラストマーの組み合わせとしては、溶解度パラメータ(SP値)の近いエラストマーの組み合わせを選択することが好ましい。例えば、第一のエラストマー層にウレタン樹脂エラストマー(SP値 20.5MP1/2)を用いた場合、エラストマー基材及び第二のエラストマー層に用いるエラストマーとしては、SP値が17MP1/2以上24MP1/2以下のものが好ましく、例えば、ウレタン樹脂エラストマー、クロロプレンゴム、アクリルゴム、アクリロニトリル-ブタジエンゴム、フェノール樹脂エラストマー、エポキシ樹脂エラストマー等が挙げられる。このような選択によって、各エラストマー層間の密着性が良好となり、繰り返し使用に対し、良好な再現性が得られる。 As a combination of elastomers constituting the elastomer base material, the first elastomer layer, and the second elastomer layer, it is preferable to select a combination of elastomers having close solubility parameters (SP values). For example, when a urethane resin elastomer (SP value 20.5 MP 1/2 ) is used for the first elastomer layer, the SP value is 17 MP 1/2 or more and 24 MP as the elastomer used for the elastomer base material and the second elastomer layer. One-half or less is preferable, and examples thereof include urethane resin elastomer, chloroprene rubber, acrylic rubber, acrylonitrile-butadiene rubber, phenol resin elastomer, and epoxy resin elastomer. By such selection, the adhesion between the respective elastomer layers becomes good, and good reproducibility is obtained for repeated use.
 また、各エラストマー層間の密着性を高めるその他の方法としては、紫外線照射により濡れ性を高める方法や各層間にプライマーを塗布する方法等が挙げられる。 Further, as other methods for improving the adhesion between the respective elastomer layers, there are a method for increasing wettability by ultraviolet irradiation, a method for applying a primer between the respective layers, and the like.
 〔体積抵抗率〕
 本発明の感圧センサ用導電部材は、エラストマー基材の体積抵抗率をR、第一のエラストマー層の体積抵抗率をR、第二のエラストマー層の体積抵抗率をRとしたとき、各体積抵抗率は、R>R>Rの関係式を満たす。
[Volume resistivity]
When the volume resistivity of the elastomer base material is R 0 , the volume resistivity of the first elastomer layer is R 1 , and the volume resistivity of the second elastomer layer is R 2 in the conductive member for a pressure sensitive sensor of the present invention. Each volume resistivity satisfies a relational expression of R 0 > R 2 > R 1 .
 エラストマー基材の体積抵抗率Rを最も高い値とすることで、配線や電極に金属を使用した際に生じる物質移動現象(マイグレーション現象)による接点の短絡を防ぐことが可能である。なお体積抵抗率Rは、1.0×10Ω・cm以上が好ましい。体積抵抗率Rを1.0×10Ω・cm以上とすることで、電気が回路外への流れる現象(リーク現象)を確実に防ぐことが可能である。 By setting the volume resistivity R0 of the elastomer base material to the highest value, it is possible to prevent a contact short circuit due to a mass transfer phenomenon (migration phenomenon) that occurs when a metal is used for the wiring or electrode. The volume resistivity R 0 is preferably 1.0 × 10 8 Ω · cm or more. By setting the volume resistivity R 0 to 1.0 × 10 8 Ω · cm or more, it is possible to reliably prevent a phenomenon in which electricity flows out of the circuit (leak phenomenon).
 第一のエラストマー層の体積抵抗率Rは、第二のエラストマー層の体積抵抗率よりも低くすることで、電源接続用配線または出力取出し用配線のいずれかへ接続する配線部として、電気信号を確実に取り出すことが可能である。体積抵抗率Rは1.0×10-2Ω・cm以上、1.0×10Ω・cm未満が好ましい。 The volume resistivity R 1 of the first elastomer layer is lower than the volume resistivity of the second elastomer layer, so that an electric signal can be used as a wiring portion connected to either the power connection wiring or the output extraction wiring. Can be reliably removed. The volume resistivity R 1 is preferably 1.0 × 10 −2 Ω · cm or more and less than 1.0 × 10 3 Ω · cm.
 体積抵抗率Rが1.0×10-2Ω・cm以上、1.0×10Ω・cm未満の場合、配線部として使用した第一エラストマー層の高抵抗化による出力減衰が生じ難く、圧力の変化に応じた導通抵抗値の変化をより精度よく検出することが可能となる。 When the volume resistivity R 1 is 1.0 × 10 −2 Ω · cm or more and less than 1.0 × 10 3 Ω · cm, output attenuation is less likely to occur due to the high resistance of the first elastomer layer used as the wiring portion. It becomes possible to detect the change of the conduction resistance value according to the change of the pressure with higher accuracy.
 第二のエラストマー層の体積抵抗率Rは、圧力の作用を電気抵抗値の変化として取り出すために、第一のエラストマー層の体積抵抗率Rよりも高いことが必要である。体積抵抗率Rは1.0×10Ω・cm以上、1.0×10Ω・cm未満が好ましい。体積抵抗率Rが1.0×10Ω・cm以上、1.0×10Ω・cm未満の場合、圧力の変化に対する導通抵抗値の変化量が好適であり、検知精度や分解能が良好となる。 The volume resistivity R 2 of the second elastomer layer needs to be higher than the volume resistivity R 1 of the first elastomer layer in order to take out the action of pressure as a change in electric resistance value. The volume resistivity R 2 is preferably 1.0 × 10 3 Ω · cm or more and less than 1.0 × 10 6 Ω · cm. When the volume resistivity R 2 is 1.0 × 10 3 Ω · cm or more and less than 1.0 × 10 6 Ω · cm, the amount of change in the conduction resistance value with respect to the change in pressure is suitable, and the detection accuracy and resolution are low. It becomes good.
 〔弾性率〕
 本発明の感圧センサ用導電部材の弾性率は、0.5MPa以上、30MPa以下が好ましい。弾性率が0.5MPa未満の場合、感圧センサ用導電部材の柔軟性が高すぎる為、圧力の負荷除荷に対する感圧センサ用導電部材の変形追従性が充分でなく、センサ出力の再現性に劣る場合がある。また、弾性率が30MPaを超える場合、感圧センサ用導電部材の柔軟性が充分でなく、曲面や凹凸面へ貼着等に対応できない場合がある。
[Elastic modulus]
The elastic modulus of the conductive member for pressure sensitive sensor of the present invention is preferably 0.5 MPa or more and 30 MPa or less. When the elastic modulus is less than 0.5 MPa, the flexibility of the pressure-sensitive sensor conductive member is too high, so the deformation-following property of the pressure-sensitive sensor conductive member against pressure unloading is not sufficient, and the reproducibility of the sensor output May be inferior. Further, when the elastic modulus exceeds 30 MPa, the pressure-sensitive sensor conductive member is not sufficiently flexible and may not be able to handle sticking to a curved surface or an uneven surface.
 〔導電剤〕
 本発明の感圧センサ用導電部材を構成する各エラストマー層を、所望の体積抵抗率に調整する方法としては、特に限定されないが、例えば、導電剤を添加する方法が挙げられる。
[Conductive agent]
Although it does not specifically limit as a method of adjusting each elastomer layer which comprises the electrically-conductive member for pressure sensitive sensors of this invention to desired volume resistivity, For example, the method of adding a electrically conductive agent is mentioned.
 導電剤としては、例えば、カーボンブラック、グラファイト、カーボンナノチューブ、フラーレン、グラフェン、カーボンナノウォール等の固体炭素材料;銀、銅、アルミニウム、ニッケル、鉄等の金属粉;導電性酸化錫、導電性酸化チタン等の導電性金属酸化物;過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カルシウム等の無機イオン物質;陽イオン性界面活性剤、両性イオン界面活性剤、第四級アンモニウム塩、および有機酸リチウム塩等が挙げられる。これらは1種を単独で又は2種類以上を組み合わせて用いることができる。 Examples of the conductive agent include solid carbon materials such as carbon black, graphite, carbon nanotube, fullerene, graphene, and carbon nanowall; metal powder such as silver, copper, aluminum, nickel, and iron; conductive tin oxide, conductive oxidation Conductive metal oxides such as titanium; inorganic ionic substances such as lithium perchlorate, sodium perchlorate, calcium perchlorate; cationic surfactants, zwitterionic surfactants, quaternary ammonium salts, and organic Examples include acid lithium salts. These can be used alone or in combination of two or more.
 第一のエラストマー層に用いる導電剤としては、体積抵抗率Rを1.0×10-2Ω・cm以上、1.0×10Ω・cm未満の低抵抗領域に調整しやすいものが好ましく、例えば、カーボンブラック、グラファイト、カーボンナノチューブ、フラーレン、グラフェン、カーボンナノウォール等の固体炭素材料;銀、銅、アルミニウム、ニッケル、鉄等の金属粉等が挙げられる。より好ましくは、低抵抗領域に調整しやすく伸縮や伸長に対して体積抵抗率が安定なエラストマー層を形成しやすいカーボンナノチューブである。 As the conductive agent used for the first elastomer layer, one that can easily adjust the volume resistivity R 1 to a low resistance region of 1.0 × 10 −2 Ω · cm or more and less than 1.0 × 10 3 Ω · cm. Preferable examples include solid carbon materials such as carbon black, graphite, carbon nanotubes, fullerenes, graphenes, and carbon nanowalls; and metal powders such as silver, copper, aluminum, nickel, and iron. More preferably, it is a carbon nanotube that can be easily adjusted to a low resistance region and can easily form an elastomer layer having a stable volume resistivity against expansion and contraction.
 第二のエラストマー層に用いる導電剤としては、第二のエラストマー層の体積抵抗率を1.0×10Ω・cm以上、1.0×10Ω・cm未満の中抵抗領域に調整しやすいものが好ましく、例えば、カーボンブラック、グラファイト、カーボンナノチューブ、フラーレン、グラフェン、カーボンナノウォール等の固体炭素材料等が挙げられる。より好ましくは、粒子径やストラクチャー等を適宜選択することで、所望の抵抗領域に調整しやすいことから、カーボンブラックが好ましい。 As a conductive agent used for the second elastomer layer, the volume resistivity of the second elastomer layer is adjusted to a medium resistance region of 1.0 × 10 3 Ω · cm or more and less than 1.0 × 10 6 Ω · cm. Easy materials are preferred, and examples thereof include solid carbon materials such as carbon black, graphite, carbon nanotubes, fullerenes, graphene, and carbon nanowalls. More preferably, carbon black is preferable because it can be easily adjusted to a desired resistance region by appropriately selecting the particle diameter, structure, and the like.
 また、本発明の感圧センサ用導電部材を構成する各エラストマー層には、その他成分を配合することも可能であり、例えば、シリコーン系、ウレタン系、アクリル系、スチレン系、ポリアミド系等の弾性樹脂粒子等が挙げられる。また、シリカ、アルミナ、酸化チタン、酸化亜鉛、酸化マグネシウム等の無機酸化物フィラー等が挙げられる。 In addition, other components can be blended in each elastomer layer constituting the pressure-sensitive sensor conductive member of the present invention. For example, elasticity such as silicone, urethane, acrylic, styrene, polyamide, etc. Examples thereof include resin particles. Moreover, inorganic oxide fillers, such as a silica, an alumina, a titanium oxide, a zinc oxide, magnesium oxide, etc. are mentioned.
 更に、各種添加剤が配合されていてもよい。添加剤としては、例えば、架橋剤、加硫促進剤、加硫助剤、硬化剤、老化防止剤、可塑剤、軟化剤、着色剤、分散剤、カップリング剤、レベリング剤、消泡剤等が挙げられる。 Furthermore, various additives may be blended. Examples of additives include cross-linking agents, vulcanization accelerators, vulcanization aids, curing agents, anti-aging agents, plasticizers, softeners, colorants, dispersants, coupling agents, leveling agents, antifoaming agents, and the like. Is mentioned.
 〔導電部材の製造方法〕
 本発明の感圧センサ用導電部材を製造する方法しては、特に限定されないが、例えば、エラストマー基材にエラストマー塗料を印刷することで第一のエラストマー層および第二のエラストマー層を形成する方法が挙げられる。このような方法によって、感圧センサ用導電部材を容易に製造することが可能である。
[Method for producing conductive member]
Although it does not specifically limit as a method to manufacture the electrically conductive member for pressure sensitive sensors of this invention, For example, the method of forming a 1st elastomer layer and a 2nd elastomer layer by printing an elastomer paint on an elastomer base material Is mentioned. By such a method, the pressure-sensitive sensor conductive member can be easily manufactured.
 まず、基材を形成するためのエラストマーコンパウンドと、第一のエラストマー層および第二のエラストマー層を各々形成するためのエラストマー塗料を調製する。 First, an elastomer compound for forming a base material and an elastomer paint for forming a first elastomer layer and a second elastomer layer are prepared.
 エラストマー基材に用いるエラストマーコンパウンドは、ポリマー並びに必要に応じて使用される導電剤および添加剤等を、ニーダー、バンバリーミキサー等の加圧式混練機、二本ロール等により混練することで調製される。エラストマー基材は、上記エラストマーコンパウンドを金型成形や押出成形することにより製造される。 The elastomer compound used for the elastomer base material is prepared by kneading a polymer and a conductive agent and additives used as necessary with a pressure kneader such as a kneader or a Banbury mixer, a two roll or the like. The elastomer base material is produced by molding or extruding the elastomer compound.
 また、第一および第二のエラストマー層に用いるエラストマー塗料は、ポリマーを所定の添加剤と共に溶剤に溶解し、更に導電剤を添加して得られた混合液を、攪拌、混合することで製造される。次に、第一のエラストマー層用のエラストマー塗料を上記エラストマー基材の一方の表面上に塗布し、次いで、第二のエラストマー層用の塗料を第一のエラストマー層の表面を被覆するように塗布し、加熱により塗料を乾燥させる。この場合、塗料の加熱乾燥時に、エラストマー成分の架橋反応を進行させてもよい。 The elastomer paint used for the first and second elastomer layers is produced by dissolving a polymer in a solvent together with a predetermined additive, and further stirring and mixing a liquid mixture obtained by adding a conductive agent. The Next, an elastomer paint for the first elastomer layer is applied onto one surface of the elastomer substrate, and then a paint for the second elastomer layer is applied so as to cover the surface of the first elastomer layer. Then, the paint is dried by heating. In this case, the crosslinking reaction of the elastomer component may be allowed to proceed during the heat drying of the paint.
 ここで、塗料の塗布方法は、既に公知の種々の方法を採用することができる。例えば、インクジェット印刷、フレキソ印刷、グラビア印刷、スクリーン印刷、パッド印刷、リソグラフィー等の印刷法の他、ディップ法、スプレー法、バーコート法等が挙げられる。なかでも、第一および第二のエラストマー層の厚さ調整が容易なスクリーン印刷法が好適である。 Here, various known methods can be adopted as a coating method of the paint. For example, in addition to printing methods such as inkjet printing, flexographic printing, gravure printing, screen printing, pad printing, and lithography, dipping, spraying, bar coating, and the like can be given. Of these, the screen printing method is preferred because the thickness adjustment of the first and second elastomer layers is easy.
 <感圧センサ>
 本発明の感圧センサは、前記感圧センサ用導電部材を備えることを特徴とする感圧センサである。この感圧センサは、感圧センサ用導電部材の一対を、前記第二のエラストマー層が相互に向かい合うように配置してなる感圧センサであることが好ましい。
<Pressure-sensitive sensor>
The pressure-sensitive sensor of the present invention is a pressure-sensitive sensor comprising the pressure-sensitive sensor conductive member. The pressure sensor is preferably a pressure sensor in which a pair of conductive members for a pressure sensor are arranged so that the second elastomer layer faces each other.
 以下に、実施例、比較例を挙げて、本発明の感圧センサ用導電部材及び感圧センサを具体的に説明する。使用した材料は下記の通りである。 Hereinafter, the conductive member for a pressure sensor and the pressure sensor of the present invention will be specifically described with reference to examples and comparative examples. The materials used are as follows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔実施例1〕
 [1.エラストマー基材]
 加硫剤及び加硫剤促進剤以外の原材料について、表2に示す割合で3L加圧型ニーダー(D3-10:(株)モリヤマ製)を用い混練した。ローター回転数30rpmで、原料ゴムのみを1分間素練りし、次いで酸化亜鉛、ステアリン酸亜鉛、カーボンブラックを投入して10分間混練した。ニーダー容量に対する材料の充填量は65体積%で行った。得られたゴム組成物を室温(25℃)で1時間冷却後、更に、オープンロール機(12inchロール機:関西ロール(株)製)を用い、表2に示す加硫剤及び加硫剤促進剤を混練した。フロントロール15rpm、バックロール18rpmで、適宜、切返しながら15分間混練した後、ロール間隙0.6mmにて薄通した後、縦15mm、横15mmに裁断することにより、基材となるゴム組成物の未加硫物を得た。次に、前記未加硫物を予め170℃に加熱した長さ15mm、幅15mm、深さ1mmの金型内に充填し、170℃、100kgfにて15分間プレス加硫を行い、感圧センサ用導電部材のエラストマー基材を得た。
[Example 1]
[1. Elastomer substrate]
The raw materials other than the vulcanizing agent and the vulcanizing agent accelerator were kneaded at a ratio shown in Table 2 using a 3 L pressure type kneader (D3-10: manufactured by Moriyama Corporation). Only the raw rubber was masticated for 1 minute at a rotor rotation speed of 30 rpm, and then zinc oxide, zinc stearate and carbon black were added and kneaded for 10 minutes. The filling amount of the material with respect to the kneader capacity was 65% by volume. The obtained rubber composition was cooled at room temperature (25 ° C.) for 1 hour, and further, using an open roll machine (12 inch roll machine: manufactured by Kansai Roll Co., Ltd.), vulcanizing agents and vulcanizing agent acceleration shown in Table 2 The agent was kneaded. After kneading for 15 minutes with a front roll of 15 rpm and a back roll of 18 rpm as appropriate, after passing through a roll gap of 0.6 mm, it is cut into a length of 15 mm and a width of 15 mm. An unvulcanized product was obtained. Next, the unvulcanized product is filled in a 15 mm long, 15 mm wide, 1 mm deep mold preheated to 170 ° C., and press vulcanized at 170 ° C. and 100 kgf for 15 minutes to obtain a pressure sensitive sensor. An elastomer base material for a conductive member for use was obtained.
 [2.第一のエラストマー層]
 表2に示す割合の原料にメチルイソブチルケトンを加え、ビーズミルで充分分散させた。分散後さらにメチルエチルケトンを加え充分混合し、塗工液の粘度が測定温度23±1℃にて、回転式粘度計(VISMETRON VDA;芝浦システム(株)製)、No.1ロータ、回転速度60rpmにて15mPa・sになるよう粘度を調整した。このようにして、第一エラストマー層用塗料を得た。
[2. First elastomer layer]
Methyl isobutyl ketone was added to the raw materials in the proportions shown in Table 2 and sufficiently dispersed with a bead mill. After dispersion, methyl ethyl ketone was further added and mixed well. The viscosity of the coating solution was measured at 23 ± 1 ° C., and a rotary viscometer (VISMETRON VDA; manufactured by Shibaura System Co., Ltd.), No. The viscosity was adjusted to 15 mPa · s at 1 rotor and a rotational speed of 60 rpm. In this way, a paint for the first elastomer layer was obtained.
 [3.第二のエラストマー層]
 表2に示す割合の原料にメチルイソブチルケトンを加え、ビーズミルで充分分散させた。分散後さらにメチルエチルケトンを加え充分混合し、塗工液の粘度が測定温度23±1℃にて、回転式粘度計(VISMETRON VDA;芝浦システム(株)製)、No.1ロータ、回転速度60rpmにて15mPa・sになるよう粘度を調整した。このようにして、第二エラストマー層用塗料を得た。
[3. Second elastomer layer]
Methyl isobutyl ketone was added to the raw materials in the proportions shown in Table 2 and sufficiently dispersed with a bead mill. After dispersion, methyl ethyl ketone was further added and mixed well. The viscosity of the coating solution was measured at 23 ± 1 ° C., and a rotary viscometer (VISMETRON VDA; manufactured by Shibaura System Co., Ltd.), No. The viscosity was adjusted to 15 mPa · s at 1 rotor and a rotational speed of 60 rpm. In this way, a paint for the second elastomer layer was obtained.
 [4.感圧センサ用導電部材]
 前記第一エラストマー層用塗料を、スクリーン印刷法により、前記エラストマー基材の表面に縦10mm、横10mmの範囲に塗工し、30分間風乾した。つぎに、前記第二エラストマー層用塗料を、スクリーン印刷法により、前記第一エラストマー層の全面を被覆するように塗工し、30分間風乾した。その後、オーブンを用い、160℃で1時間加熱することによって塗膜を硬化させ、導電部材No.1を得た。なお、第一のエラストマー層の厚みは20μmであり、第二のエラストマー層の厚みは30μmであった。
[4. Conductive member for pressure sensor]
The coating material for the first elastomer layer was applied to the surface of the elastomer substrate in a range of 10 mm length and 10 mm width by screen printing, and air-dried for 30 minutes. Next, the coating material for the second elastomer layer was applied by a screen printing method so as to cover the entire surface of the first elastomer layer, and air-dried for 30 minutes. Thereafter, the coating film was cured by heating at 160 ° C. for 1 hour using an oven. 1 was obtained. The thickness of the first elastomer layer was 20 μm, and the thickness of the second elastomer layer was 30 μm.
 [5.体積抵抗率の測定]
 (1)エラストマー基材
 前記エラストマー基材を、温度23℃、相対湿度55%の環境下にて24時間置いた後、同環境下にて、印加電圧500Vとして、JIS K6911に記載の方法で体積抵抗率を測定し、エラストマー基材の体積抵抗率とした。なお、体積抵抗率の測定には、(株)ダイアインスツルメンツ製の高抵抗抵抗率計「ハイレスタ」(商品名)を用いた。エラストマー基材の体積抵抗率Rは、2×10Ω・cmであった。
[5. Measurement of volume resistivity]
(1) Elastomer base material After the elastomer base material is placed in an environment of a temperature of 23 ° C. and a relative humidity of 55% for 24 hours, the volume is applied by the method described in JIS K6911 under the same environment with an applied voltage of 500V. The resistivity was measured and used as the volume resistivity of the elastomer substrate. Note that a high resistivity meter “HIRESTA” (trade name) manufactured by Dia Instruments Co., Ltd. was used for measuring the volume resistivity. The volume resistivity R 0 of the elastomer base material was 2 × 10 8 Ω · cm.
(2)第一のエラストマー層、第二のエラストマー層
 次いで、前記第一エラストマー層用塗料及び前記第二エラストマー層用塗料を、それぞれ、長さ15mm、幅15mm、深さ2mmの金型内に流し込み、乾燥および固化させ、脱型後に、ロレスタGP MCP-T610型((株)ダイアインスツルメンツ製)にて、常温常湿環境下(温度25℃、相対湿度50%)、印加電圧250V下で、体積抵抗率を測定した。第一のエラストマー層の体積抵抗率Rは、1.0×10Ω・cmであり、第二のエラストマー層の体積抵抗率Rは、3.0×10Ω・cmであった。
(2) First elastomer layer, second elastomer layer Next, the first elastomer layer paint and the second elastomer layer paint are respectively placed in a mold having a length of 15 mm, a width of 15 mm, and a depth of 2 mm. After pouring, drying and solidifying, and after demolding, in a Loresta GP MCP-T610 type (manufactured by Dia Instruments Co., Ltd.) in a normal temperature and humidity environment (temperature 25 ° C., relative humidity 50%) under an applied voltage of 250 V, Volume resistivity was measured. The volume resistivity R 1 of the first elastomer layer was 1.0 × 10 2 Ω · cm, and the volume resistivity R 2 of the second elastomer layer was 3.0 × 10 4 Ω · cm. .
 [6.弾性率の測定]
 弾性率の測定には、(株)島津製作所製「島津ダイナミック超微小硬度計」DUH-W201Sを用いた。測定条件は、試験モード:負荷-除荷試験、負荷速度:0.28mN/sec、保持時間:5sec、圧子の種類:三角すい圧子115である。試験力は、圧子の押し込み深さが、測定対象物の厚みの1/10以下なるよう調整した。つまり、導電部材の厚みが1.0mmの時は、押し込み深さが0.1mm以下となるよう、試験力を調整した。三角すい圧子の押し込みは、第二のエラストマー層の表面側から行った。
[6. Measurement of elastic modulus]
For the measurement of elastic modulus, “Shimadzu Dynamic Ultra Hardness Tester” DUH-W201S manufactured by Shimadzu Corporation was used. The measurement conditions are: test mode: load-unload test, load speed: 0.28 mN / sec, holding time: 5 sec, indenter type: triangular pan indenter 115. The test force was adjusted so that the indentation depth of the indenter was 1/10 or less of the thickness of the measurement object. That is, when the thickness of the conductive member was 1.0 mm, the test force was adjusted so that the indentation depth was 0.1 mm or less. The indentation of the triangular cone indenter was performed from the surface side of the second elastomer layer.
 [7.柔軟性の評価]
 前記「導電部材No.1」(縦15mm、横15mm)を直径が異なるパイプ(直径10mm、直径50mm)にそれぞれ巻きつけ、巻きつけの開始端と終了端を両面テープ(ナイスタックNW-5S、ニチバン株式会社製)で固定した。パイプと感圧センサ用導電部材間の隙間の有無、感圧センサ用導電部材に生じる亀裂や破断の有無を目視により観察し、柔軟性の指標とした。評価結果を以下の基準で表示した。
◎:隙間なし、亀裂や破断の発生なし。
○:隙間あり、亀裂や破断の発生なし。または隙間なし、亀裂や破断の発生あり。
×:隙間あり、亀裂や破断の発生あり。
[7. Flexibility evaluation]
The “conductive member No. 1” (length 15 mm, width 15 mm) is wound around pipes having different diameters (diameter 10 mm, diameter 50 mm), and the winding start and end ends are double-sided tape (Nystack NW-5S, Nichiban Co., Ltd.). The presence or absence of a gap between the pipe and the pressure-sensitive sensor conductive member and the presence or absence of cracks or breakage in the pressure-sensitive sensor conductive member were visually observed and used as an index of flexibility. The evaluation results were displayed according to the following criteria.
A: No gap, no crack or breakage.
○: There is a gap, and no crack or breakage occurs. Or there are no gaps, cracks and breaks.
X: There is a gap, and cracks and breakage occur.
 [8.再現性の評価]
 前記導電部材No.1を、温度23℃、相対湿度60%の環境に24時間以上放置した後、曲面における繰り返し圧縮変形に対する電気抵抗値の再現性を評価した。
[8. Evaluation of reproducibility]
The conductive member No. 1 was allowed to stand for 24 hours or more in an environment at a temperature of 23 ° C. and a relative humidity of 60%, and then the reproducibility of the electrical resistance value against repeated compression deformation on the curved surface was evaluated.
 図4に示すように、一対の導電部材1を第二のエラストマー層4同士が向き合うように配置し、直径50mmのSUS製半月状の支持具8上に搭載し、導電部材の上面全体に圧力が加わるようにした。また、第一のエラストマー層3に対して1kΩ抵抗体6と直流電源7を配線し、抵抗体には電圧測定器5を接続した。この状態で直流電圧5Vを印加し、荷重測定器9にて導電部材にかかる圧力を読み取りながら、圧力0~100kPaの範囲で速度5mm/分にて繰り返し圧縮を100回行った。抵抗体にかかる電圧から10kPa、50kPa、100kPaにおける電気抵抗値LogR10、LogR50、LogR100を測定した。また、50kPaにおける100回測定した電気抵抗値LogR50の標準偏差(σ)を求め、再現性の指標とした。結果を表3に示す。再現性の評価結果を以下の基準で表示した。
◎:σ≦0.1。
○:0.1<σ≦0.13。
×:0.13<σ。
As shown in FIG. 4, a pair of conductive members 1 are arranged so that the second elastomer layers 4 face each other, mounted on a SUS half-moon-shaped support 8 having a diameter of 50 mm, and pressure is applied to the entire upper surface of the conductive member. Was added. In addition, a 1 kΩ resistor 6 and a DC power source 7 were wired to the first elastomer layer 3, and a voltage measuring device 5 was connected to the resistor. In this state, a DC voltage of 5 V was applied, and while the pressure applied to the conductive member was read by the load measuring device 9, the compression was repeated 100 times at a speed of 5 mm / min in the pressure range of 0 to 100 kPa. Electrical resistance values LogR 10 , LogR 50 , and LogR 100 at 10 kPa, 50 kPa, and 100 kPa were measured from the voltage applied to the resistor. Further, the standard deviation (σ) of the electrical resistance value LogR 50 measured 100 times at 50 kPa was obtained and used as an index of reproducibility. The results are shown in Table 3. The evaluation results of reproducibility were displayed according to the following criteria.
A: σ ≦ 0.1.
○: 0.1 <σ ≦ 0.13.
X: 0.13 <σ.
 〔実施例2~8並びに比較例1及び2〕
 基材、第一のエラストマー層、及び第二のエラストマー層用の原料の種類及び使用量を表2に示す条件に変更したこと以外は、実施例1と同様にして、実施例2~8及び比較例1~2の導電部材を得た。また、実施例1と同様にして、各種評価を実施して、表3に示す結果を得た。尚、比較例1においては、エラストマー基材の代わりに、PET板(厚み1mmのポリエチレンテレフタレート製の板)を用いた。
[Examples 2 to 8 and Comparative Examples 1 and 2]
In the same manner as in Example 1, except that the types and amounts of raw materials for the base material, the first elastomer layer, and the second elastomer layer were changed to the conditions shown in Table 2, Examples 2 to 8 and Conductive members of Comparative Examples 1 and 2 were obtained. Further, various evaluations were performed in the same manner as in Example 1, and the results shown in Table 3 were obtained. In Comparative Example 1, a PET plate (a plate made of polyethylene terephthalate having a thickness of 1 mm) was used instead of the elastomer base material.
 〔評価結果の考察〕
 実施例1並びに比較例1及び2の結果より、本発明の感圧センサ用導電部材は柔軟性及び再現性が良好であることがわかる。すなわち、樹脂基板を用いた比較例1は柔軟性、電気抵抗値の再現性が劣る。また、R>R>Rの関係を満たさない比較例2は、電気抵抗値の再現性が劣る。
[Consideration of evaluation results]
From the results of Example 1 and Comparative Examples 1 and 2, it can be seen that the pressure-sensitive sensor conductive member of the present invention has good flexibility and reproducibility. That is, Comparative Example 1 using a resin substrate is inferior in flexibility and reproducibility of the electrical resistance value. Also, R 0> R 2> Comparative Example 2 not satisfying the relationship R 1 is poor reproducibility of the electrical resistance.
 実施例1及び2より、基材の体積抵抗率Rは1.0×10Ω・cm以上が好ましいことがわかる。基材の体積抵抗率Rが1.0×10Ω・cmである実施例2は、電気抵抗値の再現性の指標である標準偏差σが大きくなる傾向にある。 From Examples 1 and 2, it can be seen that the volume resistivity R 0 of the substrate is preferably 1.0 × 10 8 Ω · cm or more. In Example 2 in which the volume resistivity R 0 of the substrate is 1.0 × 10 7 Ω · cm, the standard deviation σ, which is an index of reproducibility of the electrical resistance value, tends to increase.
 実施例3及び4より、第一のエラストマー層の体積抵抗率Rが1.0×10-2Ω・cm以上、1.0×10Ω・cm未満が好ましいことがわかる。Rが上記範囲外である実施例4は、電気抵抗値の再現性の指標である標準偏差σが大きくなる傾向にある。 From Examples 3 and 4, it can be seen that the volume resistivity R 1 of the first elastomer layer is preferably 1.0 × 10 −2 Ω · cm or more and less than 1.0 × 10 3 Ω · cm. In Example 4 where R 1 is outside the above range, the standard deviation σ, which is an index of reproducibility of the electrical resistance value, tends to increase.
 実施例5及び6より、第二のエラストマー層の体積抵抗率Rが1.0×10Ω・cm以上、1.0×10Ω・cm未満が好ましいことがわかる。Rが上記範囲外である実施例6は、電気抵抗値の再現性の指標である標準偏差σが大きくなる傾向にある。 From Examples 5 and 6, it can be seen that the volume resistivity R 2 of the second elastomer layer is preferably 1.0 × 10 3 Ω · cm or more and less than 1.0 × 10 6 Ω · cm. In Example 6 where R 2 is outside the above range, the standard deviation σ, which is an index of reproducibility of the electrical resistance value, tends to increase.
 実施例7及び8より、導電部材の弾性率が0.5MPa以上、30MPa以下が好ましいことがわかる。導電部材の弾性率が上記範囲外である実施例8は、直径10mmのパイプによる隙間評価において隙間が生じている。 Examples 7 and 8 show that the elastic modulus of the conductive member is preferably 0.5 MPa or more and 30 MPa or less. In Example 8 in which the elastic modulus of the conductive member is outside the above range, a gap is generated in the gap evaluation using a pipe having a diameter of 10 mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の感圧センサ用導電部材は、所望の形状に成形し、該導電部材に作用する加圧力の大きさ、分布状態を測定するセンサとして好適に使用することができる。 The conductive member for a pressure-sensitive sensor of the present invention can be suitably used as a sensor that is molded into a desired shape and measures the magnitude and distribution of the applied pressure acting on the conductive member.
 この出願は2013年9月20日に出願された日本国特許出願第2013-195288の優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。 This application claims the priority of Japanese Patent Application No. 2013-195288 filed on September 20, 2013, the contents of which are incorporated herein by reference.
1 感圧センサ用導電部材
2 エラストマー基材
3 第一のエラストマー層
4 第二のエラストマー層
5 電圧測定器
6 抵抗体
7 直流電源
8 半月状支持具
9 荷重測定器
 

 
DESCRIPTION OF SYMBOLS 1 Conductive member 2 for pressure sensitive sensors Elastomer base material 3 1st elastomer layer 4 2nd elastomer layer 5 Voltage measuring device 6 Resistor 7 DC power supply 8 Half-moon shaped support 9 Load measuring device

Claims (5)

  1.  導通抵抗値の変化を検出することによって圧力を感知する感圧センサに用いられる感圧センサ用導電部材において、エラストマーを基材とし、該基材上に形成された第一のエラストマー層と、該第一のエラストマー層上に形成された第二のエラストマー層とを備え、前記基材の体積抵抗率をR、前記第一のエラストマー層の体積抵抗率をR、前記第二のエラストマー層の体積抵抗率をRとしたとき、R>R>Rの関係を満たすことを特徴とする、感圧センサ用導電部材。 In a pressure-sensitive sensor conductive member used for a pressure-sensitive sensor that senses pressure by detecting a change in conduction resistance value, an elastomer is used as a base material, and a first elastomer layer formed on the base material, A second elastomer layer formed on the first elastomer layer, wherein the substrate has a volume resistivity R 0 , a volume resistivity of the first elastomer layer R 1 , and the second elastomer layer A conductive member for a pressure-sensitive sensor satisfying a relationship of R 0 > R 2 > R 1 when the volume resistivity of R 2 is R 2 .
  2.  前記基材の体積抵抗率Rが1.0×10Ω・cm以上であり、前記第一のエラストマー層の体積抵抗率Rが1.0×10-2Ω・cm以上、1.0×10Ω・cm未満であり、前記第二のエラストマー層の体積抵抗率Rが1.0×10Ω・cm以上、1.0×10Ω・cm未満であることを特徴とする、請求項1に記載の感圧センサ用導電部材。 The volume resistivity R 0 of the substrate is 1.0 × 10 8 Ω · cm or more, and the volume resistivity R 1 of the first elastomer layer is 1.0 × 10 −2 Ω · cm or more. It is less than 0 × 10 3 Ω · cm, and the volume resistivity R 2 of the second elastomer layer is 1.0 × 10 3 Ω · cm or more and less than 1.0 × 10 6 Ω · cm. The pressure-sensitive sensor conductive member according to claim 1.
  3.  前記感圧センサ用導電部材の弾性率が0.5MPa以上、30MPa以下であることを特徴とする、請求項1または請求項2に記載の感圧センサ用導電部材。 The pressure-sensitive sensor conductive member according to claim 1 or 2, wherein the pressure-sensitive sensor conductive member has an elastic modulus of 0.5 MPa or more and 30 MPa or less.
  4.  請求項1~3のいずれかの1項に記載の感圧センサ用導電部材を備えることを特徴とする、感圧センサ。 A pressure-sensitive sensor comprising the pressure-sensitive sensor conductive member according to any one of claims 1 to 3.
  5.  請求項1~3のいずれかの1項に記載の感圧センサ用導電部材の一対を、前記第二のエラストマー層が相互に向かい合うように配置してなる、感圧センサ。
     

     
    A pressure-sensitive sensor comprising a pair of conductive members for a pressure-sensitive sensor according to any one of claims 1 to 3 arranged so that the second elastomer layer faces each other.


PCT/JP2014/004453 2013-09-20 2014-08-29 Conductive member for pressure-sensitive sensor, and pressure-sensitive sensor WO2015040801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-195288 2013-09-20
JP2013195288A JP2015059900A (en) 2013-09-20 2013-09-20 Conductive member for pressure sensor and pressure sensor

Publications (1)

Publication Number Publication Date
WO2015040801A1 true WO2015040801A1 (en) 2015-03-26

Family

ID=52688473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004453 WO2015040801A1 (en) 2013-09-20 2014-08-29 Conductive member for pressure-sensitive sensor, and pressure-sensitive sensor

Country Status (2)

Country Link
JP (1) JP2015059900A (en)
WO (1) WO2015040801A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112898830A (en) * 2021-01-22 2021-06-04 无锡托基泰克生物科技有限公司 UV (ultraviolet) curing conductive ink and film pressure sensor
US11573102B2 (en) 2020-11-17 2023-02-07 Ford Global Technologies, Llc Method of manufacturing multi-layer electrode for a capacitive pressure sensor and multi-layer electrodes formed therefrom

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448474B2 (en) * 2015-06-16 2019-01-09 三菱電機株式会社 Pressure sensor and robot with pressure sensor
JP7059795B2 (en) * 2018-05-18 2022-04-26 オムロン株式会社 Pressure sensor, pressure sensor module, and robot hand
JP7119566B2 (en) * 2018-05-18 2022-08-17 オムロン株式会社 Pressure sensor, pressure sensor module, and robot hand
WO2022264472A1 (en) * 2021-06-17 2022-12-22 パナソニックIpマネジメント株式会社 Optical tactile sensor and sensor system
CN113520617B (en) * 2021-07-21 2023-10-20 天津大学 Passive three-dimensional force sensing head and optical force sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035621B2 (en) * 2005-02-05 2012-09-26 スン ヒュク パク Displacement reaction sensor by pressing contact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035621B2 (en) * 2005-02-05 2012-09-26 スン ヒュク パク Displacement reaction sensor by pressing contact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11573102B2 (en) 2020-11-17 2023-02-07 Ford Global Technologies, Llc Method of manufacturing multi-layer electrode for a capacitive pressure sensor and multi-layer electrodes formed therefrom
CN112898830A (en) * 2021-01-22 2021-06-04 无锡托基泰克生物科技有限公司 UV (ultraviolet) curing conductive ink and film pressure sensor

Also Published As

Publication number Publication date
JP2015059900A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
WO2015040801A1 (en) Conductive member for pressure-sensitive sensor, and pressure-sensitive sensor
JP4650538B2 (en) Capacitive sensor
JP5486268B2 (en) Conductive film, transducer including the same, and flexible wiring board
JP5363592B2 (en) Conductive film, transducer using the same, and flexible wiring board
JP4565359B2 (en) Capacitance type surface pressure distribution sensor
KR100949644B1 (en) Conductive rubber roller and transfer roller
TWI668409B (en) Capacitance type sensor
EP2853950A1 (en) Semiconductive roller of an image-forming apparatus
WO2013022030A1 (en) Flexible conductive material
JP5622405B2 (en) Capacitance-type pressure-sensitive sensor and manufacturing method thereof
US20120073388A1 (en) Force sensing compositions, devices and methods
CN109952540B (en) Charging roller for electrophotographic apparatus
CN105372962B (en) Conductive roller and image forming apparatus
WO2016158813A1 (en) Electrophotographic equipment-use electrically conductive member
JP4196779B2 (en) Process for producing conductive composition for electrophotographic equipment
JP7284952B2 (en) Chloride ion sensor and method for measuring chloride ion concentration
CN105607439B (en) Developing roller and image forming apparatus
JP2004125823A (en) Conductive roll
JP2015161572A (en) Conductive member for pressure sensor, and pressure sensor
JP2014020915A (en) Pressure-sensitive sensor
JP2012159463A (en) Pressure-sensitive sensor body
WO2015198906A1 (en) Pressure-responsive laminate, coating layer and pressure responsiveness-imparting material
JP3656904B2 (en) Conductive rubber roller
JP5980993B1 (en) Pressure sensor
JP2009198482A (en) Sensor thin film, manufacturing method thereof and deformation sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845890

Country of ref document: EP

Kind code of ref document: A1