JP2012159463A - Pressure-sensitive sensor body - Google Patents

Pressure-sensitive sensor body Download PDF

Info

Publication number
JP2012159463A
JP2012159463A JP2011020880A JP2011020880A JP2012159463A JP 2012159463 A JP2012159463 A JP 2012159463A JP 2011020880 A JP2011020880 A JP 2011020880A JP 2011020880 A JP2011020880 A JP 2011020880A JP 2012159463 A JP2012159463 A JP 2012159463A
Authority
JP
Japan
Prior art keywords
pressure
sensitive
sensor body
electrode substrate
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011020880A
Other languages
Japanese (ja)
Inventor
Akihisa Yamada
晃久 山田
Ryuta Urano
竜太 浦野
Hiroshi Ikeda
寛 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2011020880A priority Critical patent/JP2012159463A/en
Publication of JP2012159463A publication Critical patent/JP2012159463A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pressure-sensitive sensor body capable of stably obtaining a pressure-sensitive characteristic by reducing a stress received from a pressure that is repeatedly applied to a pressure-sensitive conducting member and, even when receiving the applied pressure multidirectionally or locally, suppressing attributable dispersion in a contact area.SOLUTION: The pressure-sensitive sensor body includes at least: an electrode substrate provided with at least a pair of electrodes on the substrate; the pressure-sensitive conducting member of which electric resistance value is changed by a change in the contact area with the electrode substrate when receiving the pressure; an insulation coating member covering at least a pressure application surface of the pressure-sensitive conducting member; and a wiring part conducting with the electrodes respectively. The insulation coating member includes at least an adhesive layer and a flexible film that has Young's modulus of not less than 1.7 GPa and not more than 6.5 GPa and has a thickness of not less than 10 μm and not more than 100 μm. The adhesive layer is stuck to the electrode substrate, so that the pressure-sensitive conducting member is fixed onto the electrode substrate.

Description

本発明は、無加圧状態では高い電気抵抗値を示し、圧力の増加に伴う圧縮変形に従って電気抵抗値が減少し導電性を示す感圧導電性部材を利用した、感圧センサ体に関する。   The present invention relates to a pressure-sensitive sensor body using a pressure-sensitive conductive member that exhibits a high electrical resistance value in a non-pressurized state and decreases in electrical resistance value according to compressive deformation accompanying an increase in pressure and exhibits conductivity.

従来、部材に作用する圧力の大きさ、分布状態を測定する手段として、チタン酸ジルコン酸鉛等の圧電セラミックスを用いた方式や、歪みゲージを用いる方式が使用されている。しかしながら、圧電セラミックスを用いた方式は、一般に剛性の高い材料が使用されるため、感圧センサの形状の自由度に制限があり、また、歪みゲージを用いる方式も同様に、感圧センサの形状設計の自由度が低いという問題を有している。   Conventionally, a method using piezoelectric ceramics such as lead zirconate titanate or a method using a strain gauge has been used as means for measuring the magnitude and distribution of pressure acting on a member. However, since the method using piezoelectric ceramics generally uses a material with high rigidity, the degree of freedom of the shape of the pressure sensor is limited, and the method using a strain gauge is also similar to the shape of the pressure sensor. There is a problem that the degree of freedom of design is low.

これらの問題に対して、ゴム、エラストマー、樹脂材料などの高分子材料を基材とし、この基材中に導電性粒子を分散させた導電性部材を用いることで、形状の自由度が高い感圧センサが得られることが知られている。   In response to these problems, a polymer material such as rubber, elastomer, or resin material is used as a base material, and a conductive member in which conductive particles are dispersed in the base material is used. It is known that a pressure sensor can be obtained.

上記導電性部材による感圧特性は、以下の2つのタイプに大別される。その一つは、無加圧時は高い電気抵抗値を示すが、圧力の増加に伴う圧縮変形により、基材中の導電性粒子同士の粒子間距離が狭まり、導電性粒子による導電パスが形成されることによって電気抵抗値が減少する、抵抗値変化型である。なお、この抵抗値変化は基材中における導電性粒子の分散状態が大きく影響する為、繰り返しの圧縮変形による電気抵抗値変化の再現性が課題となっている。特に、押圧を繰り返すうちに、疲労により導電性部材が永久変形を起こし、導電性粒子同士が接触したままとなり圧力を検出し難くなる問題を有している。   The pressure-sensitive characteristics due to the conductive member are roughly classified into the following two types. One of them shows a high electrical resistance value when no pressure is applied, but due to compressive deformation accompanying an increase in pressure, the interparticle distance between conductive particles in the substrate is narrowed, and a conductive path is formed by the conductive particles. This is a resistance value change type in which the electrical resistance value is reduced by being applied. In addition, since this resistance value change is greatly influenced by the dispersion state of the conductive particles in the base material, the reproducibility of the electrical resistance value change due to repeated compression deformation is a problem. In particular, during repeated pressing, the conductive member undergoes permanent deformation due to fatigue, and the conductive particles remain in contact with each other, making it difficult to detect pressure.

もう一方のタイプは、上記導電性部材を用いて導電性塗膜を形成し、導電性塗膜同士、あるいは、導電性塗膜と例えば櫛型電極を、対向配置させるタイプである。このタイプの感圧センサ体の場合、圧力の増加に伴い、導電性塗膜同士の接触面積、あるいは導電性塗膜と櫛型電極間の接触面積が変化することで導通状態が変化する。従って、圧力の変化を電気抵抗値変化として検出することが可能であり、接触面積変化型といえる。   The other type is a type in which a conductive coating film is formed using the conductive member, and the conductive coating films, or the conductive coating film and, for example, a comb-shaped electrode are arranged to face each other. In the case of this type of pressure-sensitive sensor body, as the pressure increases, the contact area between the conductive coating films or the contact area between the conductive coating film and the comb electrode changes, thereby changing the conduction state. Therefore, it is possible to detect a change in pressure as a change in electrical resistance value, which can be said to be a contact area change type.

このような感圧センサ体は、少なくとも、感圧性を得るための導電性部材とその抵抗値変化の出力経路となる電極基板から構成される。さらに、実装使用時に安定した感圧性能が維持できるよう、感圧導電性部材と電極基板を固定したり、あるいは電極基板への感圧導電性部材の押付け状態を規定している。   Such a pressure-sensitive sensor body is composed of at least a conductive member for obtaining pressure sensitivity and an electrode substrate serving as an output path for the change in resistance value. Furthermore, the pressure-sensitive conductive member and the electrode substrate are fixed or the pressure-sensitive conductive member is pressed against the electrode substrate so that stable pressure-sensitive performance can be maintained during use.

たとえば、短冊状の感圧導電性ゴムの短辺を電極基板に接着固定して、長辺の少なくとも一部を接着固定しないことを特徴とする感圧センサで、さらにその上に柔軟な保護フィルムが弛みを持たせて配置されている感圧センサが提案されている(特許文献1)。また、感圧導電性ゴムの細片を、柔軟な電極基板上に間隔をおいて設けた一対の電極間に配置し、粘着テープで固定することを特徴とする圧力センサが提案されている(特許文献2)。更に、くし状電極上に感圧導電性弾性体を設けた感圧導電センサにおいて、感圧導電性弾性体に圧力を有して薄皮(フィルムなど)が被覆されていることを特徴とする感圧導電センサが提案されている(特許文献3)。   For example, a pressure-sensitive sensor characterized in that a short side of a strip-shaped pressure-sensitive conductive rubber is bonded and fixed to an electrode substrate, and at least a part of the long side is not bonded and fixed, and a flexible protective film thereon Has been proposed (Patent Document 1). Further, a pressure sensor has been proposed in which a strip of pressure-sensitive conductive rubber is disposed between a pair of electrodes provided on a flexible electrode substrate at an interval and fixed with an adhesive tape ( Patent Document 2). Further, in the pressure-sensitive conductive sensor in which the pressure-sensitive conductive elastic body is provided on the comb-like electrode, the pressure-sensitive conductive elastic body is covered with a thin skin (film or the like) with pressure. A piezoelectric sensor has been proposed (Patent Document 3).

特開2005−351653号公報JP 2005-351653 A 特開平4−38432号公報JP-A-4-38432 特開2001−195945号公報JP 2001-195945 A

特許文献1の感圧センサ体は、感圧導電性ゴムと電極基板の間に接着剤層を設けて固定することで、それぞれの相対位置関係がずれることなく、安定した感圧特性を得ることができる。しかし接着剤層の介在は、感圧導電性ゴムと電極基板の間の固定だけでなく、スペーサーとして感圧特性に影響を及ぼすので、接着剤層の厚み精度が感圧特性のばらつきを生じる要因となる場合がある。この影響は、上述の接触面積変化型の感圧センサ体に適用する場合に特に顕著に現れ、使用できる感圧導電性部材が制約を受けざるを得なくなる。また、保護フィルムは弛ませて設けられているので、たとえばセンサ面に局部的に繰返して圧力が加わったり、多方向から圧力が加わった場合には、フィルム材が延伸等して寸法が変化することで、皺の発生や偏りが生じて感圧導電性部材に正確に圧力が伝わらなくなり、感圧センサとしての機能を損なう場合がある。   The pressure-sensitive sensor body of Patent Document 1 obtains a stable pressure-sensitive characteristic without shifting the relative positional relationship by providing an adhesive layer between the pressure-sensitive conductive rubber and the electrode substrate and fixing them. Can do. However, the presence of the adhesive layer not only fixes the pressure-sensitive conductive rubber and the electrode substrate, but also affects the pressure-sensitive characteristics as a spacer. Therefore, the thickness accuracy of the adhesive layer causes variations in the pressure-sensitive characteristics. It may become. This effect is particularly noticeable when applied to the above-described contact area change type pressure-sensitive sensor body, and the pressure-sensitive conductive member that can be used must be restricted. In addition, since the protective film is provided in a relaxed manner, for example, when pressure is repeatedly applied to the sensor surface locally or when pressure is applied from multiple directions, the film material is stretched and the dimensions change. As a result, wrinkles are generated or biased, and pressure is not accurately transmitted to the pressure-sensitive conductive member, and the function as a pressure-sensitive sensor may be impaired.

特許文献2の感圧センサ体において使用されるポリエチレン製の粘着テープは剛性が低いため、繰返し使用によりテープ材の変形や劣化による不具合が懸念される。   Since the polyethylene pressure-sensitive adhesive tape used in the pressure-sensitive sensor body of Patent Document 2 has low rigidity, there are concerns about problems due to deformation and deterioration of the tape material due to repeated use.

また特許文献3の感圧センサ体は、くし状電極上に感圧導電性弾性体を設け、感圧導電性弾性体に常時圧力がかかるように電極ごと薄皮で被覆されている。この感圧センサ体は、押し子により圧力を印加した後に解放するとき、感圧導電性弾性体の形状回復性に加え、薄皮自身の形状回復性が作用するので、圧力の増減に精度よく追従する構造であり、圧力増減時の感圧特性のばらつきが小さくなるとしている。しかし、感圧導電性弾性体に常時圧力を加えると、それだけで電気抵抗値が低下するため、その状態から圧力を加えても電気抵抗値の変化幅が小さくなる。つまり感圧センサとしての感度や感知できる圧力幅が狭くなるので、センサとして使用できる範囲が大きく損なわれ、用途が限定されることが懸念される。   In the pressure-sensitive sensor body of Patent Document 3, a pressure-sensitive conductive elastic body is provided on a comb-shaped electrode, and the pressure-sensitive conductive elastic body is covered with a thin skin so that pressure is constantly applied to the pressure-sensitive conductive elastic body. When the pressure sensor body is released after pressure is applied by the pusher, the shape recovery property of the thin skin itself acts in addition to the shape recovery property of the pressure-sensitive conductive elastic body. It is assumed that the variation in pressure-sensitive characteristics when the pressure is increased or decreased is reduced. However, when a pressure is constantly applied to the pressure-sensitive conductive elastic body, the electric resistance value is lowered by itself, so that even if pressure is applied from that state, the variation range of the electric resistance value becomes small. That is, since the sensitivity as a pressure-sensitive sensor and the pressure range that can be sensed are narrowed, there is a concern that the range that can be used as a sensor is greatly impaired and the application is limited.

以上を踏まえ、本発明者らは、上記課題を解決するため、接触面積変化型の感圧導電性部材において、圧力印加面にしかるべき剛性と厚みを有する絶縁層を設けることで、繰り返し使用に対する耐久性と感圧安定性が得られることを見出した。本発明の目的は、接触面積変化型の感圧導電性部材が繰返し印加される圧力から受けるストレスを軽減し、印加圧力を多方向あるいは局部的に受けても、これに起因する接触面積のばらつきを抑えることで、安定して感圧特性を得ることができる感圧センサ体を提供することにある。   Based on the above, in order to solve the above problems, the present inventors provide an insulating layer having appropriate rigidity and thickness on the pressure application surface in a contact area change type pressure-sensitive conductive member. It was found that durability and pressure-sensitive stability can be obtained. The object of the present invention is to reduce the stress that the pressure-sensitive conductive member of the contact area change type receives from the repeatedly applied pressure, and even if the applied pressure is received in multiple directions or locally, the contact area variation caused by this An object of the present invention is to provide a pressure-sensitive sensor body capable of stably obtaining pressure-sensitive characteristics by suppressing the above.

本発明は、基板上に少なくとも一対の電極を設けた電極基板と、圧力を受けたときの電極基板との接触面積の変化により電気抵抗値が変化する感圧導電性部材と、少なくとも前記感圧導電性部材の圧力印加面を被覆する絶縁性被覆部材と、前記電極にそれぞれ導通している配線部とを、少なくとも有する感圧センサ体において、前記絶縁性被覆部材が、粘着剤層と、ヤング率1.7GPa以上6.5GPa以下、かつ厚み10μm以上100μm以下の可撓性フィルムとを少なくとも有し、前記粘着剤層が前記電極基板に貼付けられることによって前記感圧導電性部材が前記電極基板上に固定されていることを特徴とする感圧センサ体である。   The present invention provides an electrode substrate having at least a pair of electrodes on the substrate, a pressure-sensitive conductive member whose electrical resistance value changes due to a change in contact area between the electrode substrate and the pressure substrate when subjected to pressure, and at least the pressure-sensitive member In a pressure-sensitive sensor body having at least an insulating covering member that covers a pressure application surface of a conductive member and a wiring portion that is electrically connected to each of the electrodes, the insulating covering member includes an adhesive layer, a Young At least 1.7 GPa or less and a flexible film having a thickness of 10 μm or more and 100 μm or less, and the pressure-sensitive conductive member is bonded to the electrode substrate by attaching the pressure-sensitive adhesive layer to the electrode substrate. It is a pressure sensitive sensor body characterized by being fixed on top.

本発明の感圧センサ体は、接触面積変化型の感圧導電性部材が繰返し印加される圧力から受けるストレスを軽減し、印加圧力を多方向あるいは局部的に受けても、これに起因する接触面積のばらつきを抑えることができ、安定した感圧特性を得ることができる。   The pressure-sensitive sensor body of the present invention reduces the stress that the pressure-sensitive conductive member of the contact area change type receives from the repeatedly applied pressure, and the contact caused by this even when the applied pressure is received in multiple directions or locally. Variation in area can be suppressed, and stable pressure-sensitive characteristics can be obtained.

本発明に係る感圧センサ体の一実施形態を示す図である。It is a figure which shows one Embodiment of the pressure-sensitive sensor body which concerns on this invention. 図1に示す感圧センサ体をA方向から見た透視図である。It is the perspective view which looked at the pressure-sensitive sensor body shown in FIG. 1 from the A direction. 本発明に係る感圧センサ体の他の実施形態を示す図である。It is a figure which shows other embodiment of the pressure-sensitive sensor body which concerns on this invention. 図3に示す感圧センサ体をA方向から見た透視図である。It is the perspective view which looked at the pressure-sensitive sensor body shown in FIG. 3 from the A direction. 実施例における櫛歯状電極の模式図である。It is a schematic diagram of the comb-like electrode in an Example. 荷重による感圧センサ体の電気抵抗値変化の測定方法を示す図である。It is a figure which shows the measuring method of the electrical resistance value change of the pressure-sensitive sensor body by a load. 実施例における感圧センサ体への荷重箇所を示す図である。It is a figure which shows the load location to the pressure-sensitive sensor body in an Example. 実施例1の感圧センサ体における荷重と電気抵抗値の関係を示す図である。It is a figure which shows the relationship between the load in the pressure-sensitive sensor body of Example 1, and an electrical resistance value. 実施例2の感圧センサ体における荷重と電気抵抗値の関係を示す図である。It is a figure which shows the relationship between the load in the pressure-sensitive sensor body of Example 2, and an electrical resistance value. 比較例1の感圧センサ体における荷重と電気抵抗値の関係を示す図である。It is a figure which shows the relationship between the load in the pressure-sensitive sensor body of the comparative example 1, and an electrical resistance value. 比較例2の感圧センサ体における荷重と電気抵抗値の関係を示す図である。It is a figure which shows the relationship between the load in a pressure-sensitive sensor body of the comparative example 2, and an electrical resistance value.

本発明は、基板上に少なくとも一対の電極を設けた電極基板と、圧力を受けたときの電極基板との接触面積の変化により電気抵抗値が変化する感圧導電性部材と、少なくとも前記感圧導電性部材の圧力印加面を被覆する絶縁性被覆部材と、前記電極にそれぞれ導通している配線部とを、少なくとも有する感圧センサ体において、前記絶縁性被覆部材が、粘着剤層と、ヤング率1.7GPa以上6.5GPa以下、かつ厚み10μm以上100μm以下の可撓性フィルムとを少なくとも有し、前記粘着剤層が前記電極基板に貼付けられることによって前記感圧導電性部材が前記電極基板上に固定されていることを特徴とする感圧センサ体である。   The present invention provides an electrode substrate having at least a pair of electrodes on the substrate, a pressure-sensitive conductive member whose electrical resistance value changes due to a change in contact area between the electrode substrate and the pressure substrate when subjected to pressure, and at least the pressure-sensitive member In a pressure-sensitive sensor body having at least an insulating covering member that covers a pressure application surface of a conductive member and a wiring portion that is electrically connected to each of the electrodes, the insulating covering member includes an adhesive layer, a Young At least 1.7 GPa or less and a flexible film having a thickness of 10 μm or more and 100 μm or less, and the pressure-sensitive conductive member is bonded to the electrode substrate by attaching the pressure-sensitive adhesive layer to the electrode substrate. It is a pressure sensitive sensor body characterized by being fixed on top.

<絶縁性被覆部材>
本発明に係る感圧センサ体は、少なくとも感圧導電性部材の圧力印加面を被覆する絶縁性被覆部材を有している。絶縁性被覆部材を設ける第1の目的は、様々な圧力の形態による感圧特性のばらつきを抑制し、安定化させることである。感圧センサ体に外部より圧力を加えたとき、前記可撓性フィルムを介して、感圧導電性部材に圧力が伝わる。接触面積変化型の感圧導電性部材を使用する場合、安定した感圧特性を得るためには、感圧導電性部材がある一定圧力を受けたときの感圧導電性部材と電極基板との接触状態が一定となるようにすることが重要である。本発明のように一定の剛性を有する絶縁性被覆部材とともに圧力を伝えることで、様々な圧力の形態、すなわち押し子の形状や加える圧力の角度等が用途に応じて変化しても、感圧導電性部材の全面に圧力を分散させて安定した接触面積が確保できるので、圧力の形態に左右されない安定した感圧特性を得ることができる。
<Insulating coating member>
The pressure-sensitive sensor body according to the present invention has an insulating covering member that covers at least the pressure application surface of the pressure-sensitive conductive member. The first purpose of providing the insulating covering member is to suppress and stabilize the variation in pressure-sensitive characteristics due to various pressure forms. When pressure is applied to the pressure-sensitive sensor body from the outside, the pressure is transmitted to the pressure-sensitive conductive member through the flexible film. When using a pressure-sensitive conductive member of a contact area change type, in order to obtain a stable pressure-sensitive characteristic, the pressure-sensitive conductive member and the electrode substrate when the pressure-sensitive conductive member receives a certain pressure are used. It is important to keep the contact state constant. By transmitting the pressure together with the insulating covering member having a certain rigidity as in the present invention, even if the form of various pressures, that is, the shape of the pusher and the angle of the applied pressure changes depending on the application, the pressure sensitive Since a stable contact area can be ensured by dispersing pressure over the entire surface of the conductive member, stable pressure-sensitive characteristics that are not affected by the form of pressure can be obtained.

絶縁性被覆部材を設ける第2の目的は、感圧導電性部材の保護である。感圧センサ体を小型化や柔軟化するとき、感圧導電性部材としてゴムやエラストマーに導電材を混合したものがしばしば選ばれる。絶縁性被覆部材は、繰返し圧力や応力集中等からこれらの材料の変形や劣化を防止するものである。   The second purpose of providing the insulating covering member is to protect the pressure-sensitive conductive member. When the pressure-sensitive sensor body is downsized or softened, a pressure-sensitive conductive member in which a conductive material is mixed with rubber or elastomer is often selected. The insulating covering member prevents deformation and deterioration of these materials due to repeated pressure, stress concentration, and the like.

〔可撓性フィルム〕
絶縁性被覆部材は、粘着剤層と、ヤング率1.7GPa以上6.5GPa以下、かつ厚み10μm以上100μm以下の可撓性フィルムとを少なくとも有している。ヤング率が3.0GPa以上4.0GPa以下であると本発明の効果をより好ましく得ることができる。ヤング率が1.7GPaに満たない場合、圧力を印加したとき、感圧導電性部材全体への圧力分散が不十分となって、感圧特性のばらつきが生じ、保護に対する耐久性も低下する。一方、ヤング率が6.5GPaを超えた場合、その剛性により、貼り付け時の撓んだ形状が維持できずに元の略平板状に戻ろうとする。そのため、使用時に絶縁性被覆部材が電極基板から剥離するおそれがある。あるいは剥離しなくても、感圧導電性部材を電極基板面に常時押付けるように力が働くので、無荷重時での接触面積が大きくなり、感圧センサ体の感度を示す電気抵抗値の変化幅を大きく損ねてしまう。
[Flexible film]
The insulating covering member has at least a pressure-sensitive adhesive layer and a flexible film having a Young's modulus of 1.7 GPa to 6.5 GPa and a thickness of 10 μm to 100 μm. The effect of the present invention can be more preferably obtained when the Young's modulus is 3.0 GPa or more and 4.0 GPa or less. When the Young's modulus is less than 1.7 GPa, when pressure is applied, the pressure dispersion to the entire pressure-sensitive conductive member becomes insufficient, resulting in variations in pressure-sensitive characteristics, and the durability against protection also decreases. On the other hand, when the Young's modulus exceeds 6.5 GPa, due to its rigidity, the bent shape at the time of pasting cannot be maintained, and it tries to return to the original substantially flat plate shape. Therefore, there exists a possibility that an insulating coating member may peel from an electrode substrate at the time of use. Or even if it does not peel, the force works so as to always press the pressure-sensitive conductive member against the electrode substrate surface, so that the contact area at no load increases, and the electric resistance value indicating the sensitivity of the pressure-sensitive sensor body The range of change is greatly impaired.

また、上記可撓性フィルムの厚みは、10μm以上100μm以下である。厚みが25μm以上75μm以下であると本発明の効果をより好ましく得ることができる。10μmに満たない場合、ヤング率が上記範囲にあっても印加圧力を感圧導電性部材の全体に均一に伝える効果や保護効果が不十分となる。また、100μmを超える場合、その厚みにより、貼り付け時の撓んだ形状が維持できずに元の略平板状に戻ろうとする。そのため、使用時に絶縁性被覆部材が電極基板から剥離するおそれがある。あるいは剥離しなくても、感圧導電性部材を電極基板面に常時押付けるように力が働くので、無荷重時での接触面積が大きくなり、感圧センサ体の感度を示す電気抵抗値の変化幅を大きく損ねてしまう。   The thickness of the flexible film is 10 μm or more and 100 μm or less. The effect of the present invention can be more preferably obtained when the thickness is 25 μm or more and 75 μm or less. If it is less than 10 μm, even if the Young's modulus is in the above range, the effect of uniformly transmitting the applied pressure to the entire pressure-sensitive conductive member and the protective effect are insufficient. Moreover, when exceeding 100 micrometers, it tries to return to the original substantially flat form, without maintaining the bent shape at the time of sticking by the thickness. Therefore, there exists a possibility that an insulating coating member may peel from an electrode substrate at the time of use. Or even if it does not peel, the force works so as to always press the pressure-sensitive conductive member against the electrode substrate surface, so that the contact area at no load increases, and the electric resistance value indicating the sensitivity of the pressure-sensitive sensor body The range of change is greatly impaired.

可撓性フィルムの材質としては、絶縁性でかつ上記ヤング率と厚みを満たすものであれば、特に制限されず、たとえば、二軸延伸ナイロンフィルム、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリスルフェンサルファイドフィルム、ポリスチレンフィルム等から選ばれる。   The material of the flexible film is not particularly limited as long as it is insulative and satisfies the above Young's modulus and thickness. For example, biaxially stretched nylon film, polyimide film, polyethylene terephthalate film, polysulfene sulfide film , Selected from polystyrene film and the like.

〔粘着剤層〕
絶縁性被覆部材は、粘着剤層と、可撓性フィルムとを少なくとも有している。粘着剤層は、例えば可撓性フィルムの少なくとも片面に設けられる。絶縁性被覆部材は、粘着剤層を有することから、上述の効果に加えて、電極基板上に感圧導電性部材を固定する粘着テープとしても機能する。本発明で使用される感圧導電性部材は電極との接触面積の変化により感圧特性を発現するものであるので、電極上への感圧導電性部材の固定は必須である。電極基板と感圧導電性部材の相対位置関係がずれなければ、どのような貼付け方でもよい。但し、本発明の目的である、様々な圧力の形態による感圧特性のばらつき抑制や感圧導電性部材の保護を達成するためには、少なくとも感圧導電性部材の圧力印加面が絶縁性被覆部材で被覆されている必要がある。
(Adhesive layer)
The insulating covering member has at least an adhesive layer and a flexible film. The pressure-sensitive adhesive layer is provided on at least one surface of the flexible film, for example. Since the insulating covering member has the pressure-sensitive adhesive layer, in addition to the above-described effects, the insulating covering member also functions as a pressure-sensitive adhesive tape that fixes the pressure-sensitive conductive member on the electrode substrate. Since the pressure-sensitive conductive member used in the present invention expresses pressure-sensitive characteristics by changing the contact area with the electrode, it is essential to fix the pressure-sensitive conductive member on the electrode. Any attachment method may be used as long as the relative positional relationship between the electrode substrate and the pressure-sensitive conductive member does not shift. However, in order to achieve the object of the present invention to suppress the dispersion of pressure-sensitive characteristics due to various pressure forms and to protect the pressure-sensitive conductive member, at least the pressure application surface of the pressure-sensitive conductive member is covered with an insulating coating. It must be covered with a member.

絶縁性被覆部材による被覆の実施形態の一例として、図1および2並びに図3および4に示す感圧センサ体が挙げられる。図1および2では、基板1および電極2からなる電極基板上に感圧導電性部材3を配置し、その上から面積が十分大きい絶縁性被覆部材4を被せて、絶縁性被覆部材の外周近傍を電極基板面に貼付けることによって、感圧導電性部材が粘着剤層4bを介して電極基板上に固定されている。また、図3および4のように、感圧導電性部材を配置した基板電極の外周面を1周以上、絶縁性被覆部材で巻きつける方法もある。   As an example of the embodiment of covering with an insulating covering member, there are pressure sensitive sensor bodies shown in FIGS. 1 and 2 and FIGS. 3 and 4. 1 and 2, a pressure-sensitive conductive member 3 is disposed on an electrode substrate including a substrate 1 and an electrode 2, and an insulating covering member 4 having a sufficiently large area is covered thereon, and the vicinity of the outer periphery of the insulating covering member. Is attached to the electrode substrate surface, whereby the pressure-sensitive conductive member is fixed on the electrode substrate via the adhesive layer 4b. Further, as shown in FIGS. 3 and 4, there is a method in which the outer peripheral surface of the substrate electrode on which the pressure-sensitive conductive member is disposed is wound with an insulating covering member at least once.

粘着剤層は、例えば、可撓性フィルムの少なくとも一方の表面に粘着剤を塗布することによって形成することができる。可撓性フィルムの表面に塗布される粘着剤としては、アクリル系粘着剤が好ましく使用できる。他にも粘着剤としてゴム系やシリコーンゴム系等の粘着剤があり、これらを使用することもできる。しかし、ゴム系粘着剤では、粘着性を得るために、粘着付与剤等が配合されている。このため、特定の使用環境や長期間使用では粘着付与剤が染み出して、電気的な接点障害を引き起こす要因となったり、使用するゴムの種類によっては、硬化、劣化等により、粘着性自体が失われることが懸念される。また、シリコーンゴム系粘着剤では、含有する低分子シロキサン成分の染み出しによる電気的な接点障害の要因となる場合がある。一方、アクリル系粘着剤では主成分であるアクリル酸エステル共重合体自身が粘着性を有し、ゴム系やシリコーン系の粘着剤と比較して、粘着力も高いためより好適である。粘着剤層の厚みとしては、特に制限されるものではないが、一般に10〜50μmの範囲で使用される。   The pressure-sensitive adhesive layer can be formed, for example, by applying a pressure-sensitive adhesive to at least one surface of the flexible film. As the adhesive applied to the surface of the flexible film, an acrylic adhesive can be preferably used. There are other adhesives such as rubber and silicone rubber as the adhesive, and these can also be used. However, in the rubber-based adhesive, a tackifier or the like is blended in order to obtain adhesiveness. For this reason, the tackifier oozes out in a specific use environment or for a long period of time, causing electric contact failure, or depending on the type of rubber used, the adhesive itself may be cured due to curing, deterioration, etc. There is concern about being lost. In addition, the silicone rubber-based pressure-sensitive adhesive may cause an electrical contact failure due to the leakage of the low molecular siloxane component contained. On the other hand, acrylic ester copolymers, which are the main components, are more suitable for acrylic adhesives because they have adhesiveness and have higher adhesive strength than rubber-based and silicone-based adhesives. Although it does not restrict | limit especially as thickness of an adhesive layer, Generally it uses in the range of 10-50 micrometers.

<感圧導電性部材>
感圧導電性部材としては、絶縁性エラストマーシートに導電材を含有する導電塗膜層が積層されたものを使用することができる。例えば、絶縁性エラストマーシートとしてゴム弾性体を用い、その表面に導電塗料を塗布して使用される。塗布層は電気抵抗値の調整や表面性状等、所望の特性に合わせるために、1層であっても2層以上であってもよい。厚みとしては、絶縁性エラストマーシート100〜1000μmに対し、塗布層10〜50μmで塗布される。塗布層が10μm以上であれば、絶縁性エラストマーシートからの染み出しをブロックすることができ、当接部材である電極部の汚染を防止することができる。導電塗料の樹脂成分としては、フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、ブチラール樹脂、スチレン−エチレン−ブチレン−オレフィン共重合体(SEBC)及びオレフィン−エチレン・ブチレン・オレフィン共重合体(CEBC)等を挙げることができる。これらの樹脂は1種または2種以上を組み合わせて用いてもよい。また、絶縁性エラストマーシートの基材樹脂は架橋系のものでもよく、このための硬化剤としては、例えば、イソシアネート化合物、アミン化合物を適宜配合することができる。
<Pressure-sensitive conductive member>
As the pressure-sensitive conductive member, a member obtained by laminating a conductive coating layer containing a conductive material on an insulating elastomer sheet can be used. For example, a rubber elastic body is used as the insulating elastomer sheet, and a conductive paint is applied on the surface thereof. The coating layer may be a single layer or two or more layers in order to match desired properties such as adjustment of electric resistance value and surface properties. As thickness, it is apply | coated by 10-50 micrometers of coating layers with respect to 100-1000 micrometers of insulating elastomer sheets. If the coating layer is 10 μm or more, the seepage from the insulating elastomer sheet can be blocked, and contamination of the electrode part which is the contact member can be prevented. Resin components of the conductive paint include fluororesin, polyamide resin, acrylic resin, polyurethane resin, silicone resin, butyral resin, styrene-ethylene-butylene-olefin copolymer (SEBC), and olefin-ethylene-butylene-olefin copolymer. (CEBC). These resins may be used alone or in combination of two or more. Further, the base resin of the insulating elastomer sheet may be a cross-linked resin, and as a curing agent for this purpose, for example, an isocyanate compound and an amine compound can be appropriately blended.

また、感圧導電性部材としては、感圧センサ体の柔軟性を損なわないように、ゴムや樹脂等のエラストマーに導電材を分散混合した導電性エラストマーを用いることができる。エラストマー種としては、前記可撓性フィルムよりもヤング率が小さいものであれば、特に制限されないが、圧力印加や解放による形状変化の追従性に優れるもの、すなわち反発弾性に優れるゴム弾性体が好適である。一般にゴム弾性体のヤング率は0.01〜0.1GPaであることから、従来公知のものが使用可能であるが、特に反発弾性に優れるブタジエンゴムが好ましい。また、所望の特性を得るために、各種ゴムをブレンドしても差し支えない。その場合、天然ゴムあるいはイソプレンゴムとのブレンドであれば、ブタジエンゴムの持つ反発弾性を損ねることなく、好適である。   As the pressure-sensitive conductive member, a conductive elastomer obtained by dispersing and mixing a conductive material in an elastomer such as rubber or resin can be used so as not to impair the flexibility of the pressure-sensitive sensor body. The elastomer type is not particularly limited as long as it has a Young's modulus smaller than that of the flexible film, but is preferably a rubber elastic body that is excellent in conformity to a shape change due to pressure application or release, that is, excellent in resilience. It is. In general, since the Young's modulus of the rubber elastic body is 0.01 to 0.1 GPa, a conventionally known one can be used, but a butadiene rubber excellent in rebound resilience is particularly preferable. In addition, various rubbers may be blended to obtain desired characteristics. In that case, a blend with natural rubber or isoprene rubber is preferable without impairing the resilience of butadiene rubber.

〔導電材〕
感圧導電性部材に配合される導電材としては、特に制限されることなく、従来公知のものが使用できる。例えば、導電性カーボン、グラファイト、黒鉛粒子、銅、アルミニウム、ニッケル、鉄粉及び金属酸化物である導電性酸化錫や導電性酸化チタン等が使用できる。これらは1種または2種以上を組み合わせて用いてもよい。配合量としては、ベースとなるゴムあるいは樹脂100質量部に対し、2〜200質量部、好ましくは5〜100質量部の範囲である。また、ゴムあるいは樹脂と導電材の他に、その他成分を配合することも可能であり、例えば、有機弾性フィラー、無機酸化物フィラーなどが挙げられる。有機弾性フィラーとしては、シリコーン系、ウレタン系などのエラストマーやアクリル系、スチレン系、ポリアミド系など樹脂からなる球状粒子が挙げられる。無機酸化物フィラーとしては、シリカ、アルミナ、酸化チタン、酸化亜鉛、酸化マグネシウム、などが挙げられる。
[Conductive material]
The conductive material blended in the pressure-sensitive conductive member is not particularly limited, and conventionally known materials can be used. For example, conductive carbon oxide, graphite, graphite particles, copper, aluminum, nickel, iron powder, and metal oxides such as conductive tin oxide and conductive titanium oxide can be used. These may be used alone or in combination of two or more. As a compounding quantity, it is 2-200 mass parts with respect to 100 mass parts of rubber | gum or resin used as a base, Preferably it is the range of 5-100 mass parts. In addition to rubber or resin and a conductive material, other components can be blended, and examples thereof include organic elastic fillers and inorganic oxide fillers. Examples of the organic elastic filler include spherical particles made of an elastomer such as silicone or urethane, or a resin such as acrylic, styrene, or polyamide. Examples of the inorganic oxide filler include silica, alumina, titanium oxide, zinc oxide, and magnesium oxide.

本発明で使用される感圧導電性部材は、圧力を印加したときに、電極基板との接触面積変化を電気抵抗値の変化として検出するものである。この接触面積を制御するために当接面に適宜凹凸形状を設けたり、粗し処理を行うことができる。表面凹凸形状を設ける方法としては、例えばキャビティ内に所望の凹凸を設けたり、あるいはブラスト処理等を行った金型に、未硬化のゴム材料を充填して硬化することで転写する方法等が挙げられる。また塗布層を有する感圧導電性部材の場合は、前記のように凹凸を転写した絶縁性エラストマーシートに導電塗料を塗布する方法や、導電塗料中に粗し粒子として、アクリル系、スチレン系、ポリアミド系など樹脂からなる球状粒子を添加する方法等が挙げられる。   The pressure-sensitive conductive member used in the present invention detects a change in contact area with the electrode substrate as a change in electrical resistance when pressure is applied. In order to control the contact area, the contact surface can be appropriately provided with an uneven shape or roughened. Examples of the method for providing the surface uneven shape include a method in which a desired unevenness is provided in the cavity, or a mold that has been subjected to blasting or the like is filled with an uncured rubber material and cured to transfer. It is done. Further, in the case of a pressure-sensitive conductive member having a coating layer, a method of applying a conductive paint to the insulating elastomer sheet having concavo-convex transferred as described above, or roughening particles in the conductive paint, acrylic, styrene, Examples thereof include a method of adding spherical particles made of a resin such as polyamide.

<電極基板>
電極基板としては公知の電極基板が使用できる。例えばガラスエポキシ基板等の絶縁性基板に銅箔等をプリントしてパターンを形成したものでも良いし、フレキシブルプリント基板のようにポリアミド等の絶縁性フィルムを銅箔等の導体を組み合わせたものでも良い。また、感圧センサの小型化や柔軟化のために、ポリアミドやポリエチレンテレフタレート(PET)絶縁性フィルム上に銀やカーボンブラックを含む導電性ペーストを任意のパターンでスクリーン印刷したものを使用しても良い。
<Electrode substrate>
A known electrode substrate can be used as the electrode substrate. For example, a pattern may be formed by printing copper foil or the like on an insulating substrate such as a glass epoxy substrate, or an insulating film such as polyamide may be combined with a conductor such as copper foil as in a flexible printed substrate. . In addition, in order to reduce the size and flexibility of the pressure-sensitive sensor, it is possible to use a screen-printed conductive paste containing silver or carbon black on a polyamide or polyethylene terephthalate (PET) insulating film in an arbitrary pattern. good.

<配線部>
配線部としては公知の配線形式のものが使用できる。例えば上記のように導電部分のパターンをプリントした基板において、所望の箇所からリード線を引き出す方法がある。また、基板として絶縁性フィルムを用いる場合では、電極部のパターンを設ける際に、配線部となる導電経路も同時にプリントしたものを使用することもできる。
<Wiring section>
A known wiring type can be used as the wiring portion. For example, there is a method of drawing out a lead wire from a desired position on a substrate on which a pattern of a conductive portion is printed as described above. Moreover, when using an insulating film as a board | substrate, when providing the pattern of an electrode part, what also printed the conductive path used as a wiring part simultaneously can also be used.

以下に、実施例及び比較例により本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

[実施例1]
<1.感圧導電性部材の作成>
表1に示す材料を準備した。3L加圧型ニーダー(D3−10:株式会社モリヤマ製)を用い、まずローター回転数30rpmで、原料ゴムのみを1分間素練りし、次いで酸化亜鉛、ステアリン酸亜鉛、カーボンブラックを投入して10分間混練りした。ニーダー容量に対する材料の充填量は65体積%とした。得られたゴム組成物を室温(25℃)で1時間冷ました後、更に、オープンロール機(12インチテスト用ロール機:関西ロール(株)製)を用い、TETD、MBTSおよび硫黄を添加して混練した。フロントロール15rpm、バックロール18rpmで、適宜切返しながら15分間混練した後、ロール間隙0.6mmにて薄通した後、縦10mm、横10mmのサイズに裁断することにより基材となるゴム組成物の未加硫物を得た。次に、この未加硫物を予め170℃に加熱した縦10mm、横10mm、深さ0.5mmの金型内に充填し、170℃、100kgfにて15分間プレス加硫を行い、ゴム弾性体を得た。
[Example 1]
<1. Creation of pressure-sensitive conductive member>
The materials shown in Table 1 were prepared. Using a 3L pressure type kneader (D3-10: manufactured by Moriyama Co., Ltd.), first masticating only the raw rubber for 1 minute at a rotor speed of 30 rpm, and then adding zinc oxide, zinc stearate and carbon black for 10 minutes Kneaded. The filling amount of the material with respect to the kneader capacity was 65% by volume. After cooling the obtained rubber composition at room temperature (25 ° C.) for 1 hour, using an open roll machine (12-inch test roll machine: manufactured by Kansai Roll Co., Ltd.), add TETD, MBTS and sulfur. And kneaded. After kneading for 15 minutes with a front roll of 15 rpm and a back roll of 18 rpm as appropriate, after passing through a roll gap of 0.6 mm, it is cut into a size of 10 mm in length and 10 mm in width to form a rubber composition as a base material. An unvulcanized product was obtained. Next, this unvulcanized product was filled in a 10 mm long, 10 mm wide, 0.5 mm deep mold preheated to 170 ° C., and press vulcanized at 170 ° C. and 100 kgf for 15 minutes to obtain rubber elasticity. Got the body.

一方、ミキサーを用いて表2に示す材料を撹拌し、混合溶液1を作製した。次いでこの混合溶液を、平均粒径が0.8mmのガラスビーズをメディアとして、容器の容積に対して80%の充填率で充填したビーズミル分散機(アイメックス社製、ウルトラビスコミル)を用いて、ディスク周速10m/s、処理速度200ml/minで6時間、循環運転を行い、分散処理をして一次分散液を調製した。   On the other hand, the materials shown in Table 2 were stirred using a mixer to prepare a mixed solution 1. Next, this mixed solution was used as a medium with glass beads having an average particle diameter of 0.8 mm, and a bead mill disperser (Ultra Visco Mill, manufactured by IMEX Co., Ltd.) filled at a filling rate of 80% with respect to the volume of the container. A primary dispersion was prepared by carrying out a circulation operation for 6 hours at a disk peripheral speed of 10 m / s and a processing speed of 200 ml / min, followed by dispersion treatment.

次いでこの一次分散液452質量部を含む表3に示す材料を、ミキサーを用いて撹拌し、混合溶液2を作製した。次いでこの混合溶液を、平均粒径が0.8mmのガラスビーズをメディアとして容器の容積に対して80%の充填率で充填したビーズミル分散機(アイメックス社製、ウルトラビスコミル)を用いて、ディスク周速6m/s、処理速度600ml/minで2時間、循環運転を行い、分散処理をして二次分散液を調製した。   Subsequently, the material shown in Table 3 containing 452 parts by mass of the primary dispersion liquid was stirred using a mixer to prepare a mixed solution 2. Next, this mixed solution was subjected to a disk using a bead mill disperser (made by IMEX, Ultra Visco Mill) filled with glass beads having an average particle diameter of 0.8 mm as a medium at a filling rate of 80% with respect to the volume of the container. Circulation operation was performed for 2 hours at a peripheral speed of 6 m / s and a processing speed of 600 ml / min, and dispersion treatment was performed to prepare a secondary dispersion.

この二次分散溶液をディッピング法にて上記ゴム弾性体(縦10mm、横10mm、厚み0.5mm)に塗布し、160℃で60分間、加熱することによって硬化させ、膜厚が15μmの導電性塗膜を形成して、感圧導電性部材を得た。   This secondary dispersion solution is applied to the rubber elastic body (length 10 mm, width 10 mm, thickness 0.5 mm) by the dipping method and cured by heating at 160 ° C. for 60 minutes, and the film thickness is 15 μm. A coating film was formed to obtain a pressure-sensitive conductive member.

<2.絶縁性被覆部材の作成>
可撓性フィルムとして、ポリイミドフィルム(東レ・デュポン株式会社製、カプトン100H/V、ヤング率3.4GPa、厚み25μm)を使用した。このフィルムの片面にアクリル系粘着剤(東洋インキ化学社製、オリバインBPS−5127)をグラビアロール方式で塗布して塗膜を形成し、これを乾燥して、厚み15μmの粘着剤層を有する絶縁性被覆部材を得た。
<2. Creation of insulating covering member>
A polyimide film (manufactured by Toray DuPont, Kapton 100H / V, Young's modulus 3.4 GPa, thickness 25 μm) was used as the flexible film. An acrylic pressure-sensitive adhesive (Olivein BPS-5127, manufactured by Toyo Ink Chemical Co., Ltd.) is applied to one side of this film by a gravure roll method to form a coating film, which is dried to provide an insulating layer having a pressure-sensitive adhesive layer having a thickness of 15 μm. A coated member was obtained.

<3.感圧センサ体の作成>
上記感圧導電性部材(縦10mm、横10mm)を図5で示す櫛歯状の試験用電極(外寸:縦15mm、横15mm、電極部サイズ:縦10mm、横10mm)上に配置した。次いで上記絶縁性被覆部材を縦15mm、横15mmのサイズに裁断し、図1および図2に示すように電極に貼り付けることによって、感圧導電性部材が電極上に固定された感圧センサ体を得た。
<3. Creation of pressure-sensitive sensor body>
The pressure-sensitive conductive member (length 10 mm, width 10 mm) was placed on a comb-like test electrode (outer dimensions: length 15 mm, width 15 mm, electrode size: length 10 mm, width 10 mm) shown in FIG. Next, the insulating covering member is cut into a size of 15 mm in length and 15 mm in width, and pasted on the electrode as shown in FIGS. 1 and 2, whereby the pressure-sensitive conductive member is fixed on the electrode. Got.

<4.評価方法>
得られた感圧センサ体は、23℃、60%RHの環境に24時間以上放置した後に評価を行なった。測定は図6に示す感圧特性評価装置を用い、固定された感圧センサ体の上部から直径3mmの円柱状押し圧子で荷重をかけた。その際に感圧センサ体に5Vの電圧を印加し、感圧センサ体に直列につないだ内部抵抗1kΩにかかる電圧から感圧センサ体の電気抵抗値を算出した。
<4. Evaluation method>
The obtained pressure-sensitive sensor body was evaluated after being left in an environment of 23 ° C. and 60% RH for 24 hours or more. For the measurement, a pressure-sensitive characteristic evaluation apparatus shown in FIG. 6 was used, and a load was applied from above the fixed pressure-sensitive sensor body with a cylindrical pusher having a diameter of 3 mm. At that time, a voltage of 5 V was applied to the pressure sensor body, and the electrical resistance value of the pressure sensor body was calculated from the voltage applied to the internal resistance 1 kΩ connected in series with the pressure sensor body.

〔4−1.ばらつき評価〕
図7に示す1〜5の箇所に上記感圧特性評価装置を用いてそれぞれ100kPaの荷重をかけ、そのときの感圧センサ体の電気抵抗値のばらつきから評価した。各測定箇所1、2、3、4、及び5における感圧センサ体の電気抵抗値をR1、R2、R3、R4、及びR5、それぞれの対数値をlogR1、logR2、logR3、logR4、及びlogR5として、以下の基準にしたがってランク付けした。
[4-1. (Variation evaluation)
A load of 100 kPa was applied to each of the points 1 to 5 shown in FIG. 7 using the pressure-sensitive characteristic evaluation apparatus, and evaluation was performed from variations in the electric resistance values of the pressure-sensitive sensor bodies at that time. Each measurement point 1, 2, 3, 4, and R 1 an electric resistance value of the pressure sensor body in 5, R 2, R 3, R 4, and R 5, logR 1, logR 2 each logarithmic values, The logR 3 , logR 4 , and logR 5 were ranked according to the following criteria.

〔4−1.センサ感度評価〕
上記の感圧特性評価装置を用いて、図7に示す1〜5の箇所に対して0kPa〜500kPaの範囲で荷重をかけ、0kPa時に示された感圧センサ体の抵抗値の平均値と500kPa時に示された感圧センサ体の抵抗値の平均値の差をセンサ感度とし、以下の基準にしたがってランク付けした。
[4-1. Sensor sensitivity evaluation)
Using the pressure sensitive characteristic evaluation apparatus described above, a load is applied in the range of 0 kPa to 500 kPa to the locations 1 to 5 shown in FIG. 7, and the average value of the resistance values of the pressure sensitive sensor body shown at 0 kPa and 500 kPa is applied. The difference in the average value of the resistance values of the pressure-sensitive sensor bodies indicated at times was defined as sensor sensitivity and ranked according to the following criteria.

総合評価として、ばらつき評価およびセンサ感度評価が、共にAであったものをAランクとし、AとBあるいは共にBであったものをBランクとし、少なくとも一方がCであったものをCランクとした。評価結果を表5に示す。   As a comprehensive evaluation, when the variation evaluation and the sensor sensitivity evaluation are both A, the rank is A, A and B or both B are B rank, and at least one is C rank is C rank did. The evaluation results are shown in Table 5.

[実施例2〜7及び比較例1〜4]
可撓性フィルムとして表4に示すフィルムを用いて実施例1と同様にして粘着剤層を設けた絶縁性被覆部材を作製したこと以外は、実施例1と同様にして感圧センサ体を作製し評価した。評価結果を表5に示す。
[Examples 2 to 7 and Comparative Examples 1 to 4]
A pressure-sensitive sensor body was produced in the same manner as in Example 1 except that an insulating covering member provided with an adhesive layer was produced in the same manner as in Example 1 using the film shown in Table 4 as a flexible film. And evaluated. The evaluation results are shown in Table 5.

実施例1および2並びに比較例1および2における、荷重に対する感圧センサ体の電気抵抗値の変化を図8〜図11に示す。これらの実施例と比較例は、厚みが同じでヤング率が異なるフィルムを用いた例である。実施例1および2に対し、比較例1では絶縁性被覆部材のヤング率(剛性)が小さすぎるために、荷重を局部的に加えた場合、荷重の偏りや場所によるわずかな有効接触面積の違いが、ばらつきとして電気抵抗値に現れることが分かる。このように絶縁性被覆部材のヤング率が小さくなると、感圧センサ体の電気抵抗値がばらつきやすくなる傾向になるといえる。また、比較例2ではヤング率が大きすぎるために、感圧導電性部材の全面を覆うように貼り付けると、絶縁性被覆部材により感圧導電性部材に常時荷重がかかった状態となるため、0kPa時でも電気抵抗値が低下し、500kPaの荷重をかけたときの電気抵抗値との差が小さくなる。つまりヤング率が大きいほどセンサとしての感度が小さくなる傾向にあるといえる。以上の結果と実施例3および4から、本発明の感圧センサ体に使用される絶縁性被覆部材の適切なヤング率は、1.7GPa以上6.5GPa以下であり、より好ましくは3.0GPa以上4.0GPa以下である。   The change of the electrical resistance value of the pressure-sensitive sensor body with respect to the load in Examples 1 and 2 and Comparative Examples 1 and 2 is shown in FIGS. These Examples and Comparative Examples are examples using films having the same thickness but different Young's moduli. In contrast to Examples 1 and 2, in Comparative Example 1, the Young's modulus (rigidity) of the insulating covering member is too small, so when a load is applied locally, a slight difference in effective contact area depending on the load bias and location However, it can be seen that variations appear in the electric resistance value. Thus, it can be said that when the Young's modulus of the insulating covering member decreases, the electric resistance value of the pressure-sensitive sensor body tends to vary. Moreover, since the Young's modulus is too large in Comparative Example 2, when pasting so as to cover the entire surface of the pressure-sensitive conductive member, a load is always applied to the pressure-sensitive conductive member by the insulating covering member. Even at 0 kPa, the electric resistance value decreases, and the difference from the electric resistance value when a load of 500 kPa is applied becomes small. That is, it can be said that the sensitivity as a sensor tends to decrease as the Young's modulus increases. From the above results and Examples 3 and 4, the appropriate Young's modulus of the insulating covering member used for the pressure-sensitive sensor body of the present invention is 1.7 GPa or more and 6.5 GPa or less, more preferably 3.0 GPa. The above is 4.0 GPa or less.

実施例2、5、6、7並びに比較例3、4は、同じヤング率のフィルムにおいてその厚みを変えたものである。比較例3のように厚みが小さいほど感圧センサ体の電気抵抗値がばらつきやすくなり、厚みが大きいほど感圧センサ体としての感度が小さくなるうえに、貼り付け固定すること自体が困難となることがわかる。比較例4の場合は、フィルム厚みが大きすぎるために絶縁性被覆部材を電極基板上に貼付けることができなかった。以上の結果より本発明の感圧センサ体に使用される絶縁性被覆部材の適切なフィルム厚みは、10μm以上100μm以下であり、より好ましくは25μm以上75μm以下である。   Examples 2, 5, 6, and 7 and Comparative Examples 3 and 4 are films having the same Young's modulus with different thicknesses. As in Comparative Example 3, the electrical resistance value of the pressure-sensitive sensor body tends to vary as the thickness decreases, and the sensitivity as the pressure-sensitive sensor body decreases as the thickness increases, and it becomes difficult to attach and fix itself. I understand that. In the case of the comparative example 4, since the film thickness was too large, the insulating coating member could not be stuck on the electrode substrate. From the above results, the appropriate film thickness of the insulating covering member used in the pressure-sensitive sensor body of the present invention is 10 μm or more and 100 μm or less, and more preferably 25 μm or more and 75 μm or less.

1 基板
2 電極
3 感圧導電性部材
4 絶縁性被覆部材
4a 可撓性フィルム
4b 粘着剤層
5 配線部
6 荷重測定器
7 円柱状押し圧子
8 感圧センサ体
9 電圧測定器
10 1kΩ内部抵抗体
11 電圧印加装置
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Electrode 3 Pressure sensitive conductive member 4 Insulating coating | coated member 4a Flexible film 4b Adhesive layer 5 Wiring part 6 Load measuring instrument 7 Cylindrical presser 8 Pressure sensor 9 Voltage measuring instrument 10 1kohm internal resistor 11 Voltage application device

Claims (5)

基板上に少なくとも一対の電極を設けた電極基板と、圧力を受けたときの電極基板との接触面積の変化により電気抵抗値が変化する感圧導電性部材と、少なくとも前記感圧導電性部材の圧力印加面を被覆する絶縁性被覆部材と、前記電極にそれぞれ導通している配線部とを、少なくとも有する感圧センサ体において、前記絶縁性被覆部材が、粘着剤層と、ヤング率1.7GPa以上6.5GPa以下、かつ厚み10μm以上100μm以下の可撓性フィルムとを少なくとも有し、前記粘着剤層が前記電極基板に貼付けられることによって前記感圧導電性部材が前記電極基板上に固定されていることを特徴とする感圧センサ体。   An electrode substrate having at least a pair of electrodes on the substrate, a pressure-sensitive conductive member whose electrical resistance value changes due to a change in contact area between the electrode substrate and the electrode substrate when subjected to pressure, and at least the pressure-sensitive conductive member In a pressure-sensitive sensor body having at least an insulating covering member that covers a pressure application surface and a wiring portion respectively connected to the electrode, the insulating covering member includes an adhesive layer, a Young's modulus of 1.7 GPa. At least 6.5 GPa and a flexible film having a thickness of 10 μm or more and 100 μm or less, and the pressure-sensitive conductive member is fixed on the electrode substrate by the adhesive layer being attached to the electrode substrate. A pressure-sensitive sensor body. 前記可撓性フィルムは、ヤング率が3.0GPa以上4.0GPa以下、かつ厚みが25μm以上75μm以下であることを特徴とする請求項1に記載の感圧センサ体。   2. The pressure-sensitive sensor body according to claim 1, wherein the flexible film has a Young's modulus of 3.0 GPa to 4.0 GPa and a thickness of 25 μm to 75 μm. 前記粘着剤層の粘着剤がアクリル系粘着剤であることを特徴とする請求項1または2に記載の感圧センサ体。   The pressure-sensitive sensor body according to claim 1 or 2, wherein the pressure-sensitive adhesive of the pressure-sensitive adhesive layer is an acrylic pressure-sensitive adhesive. 前記感圧導電性部材が、絶縁性エラストマーシートに導電材を含有する導電塗膜層が積層されたものであることを特徴とする請求項1〜3のいずれかの一項に記載の感圧センサ体。   The pressure-sensitive conductive member according to any one of claims 1 to 3, wherein the pressure-sensitive conductive member is formed by laminating a conductive coating layer containing a conductive material on an insulating elastomer sheet. Sensor body. 前記感圧導電性部材が導電材を含有する導電性エラストマーであることを特徴とする請求項1〜3のいずれかの一項に記載の感圧センサ体。   The pressure-sensitive sensor body according to any one of claims 1 to 3, wherein the pressure-sensitive conductive member is a conductive elastomer containing a conductive material.
JP2011020880A 2011-02-02 2011-02-02 Pressure-sensitive sensor body Pending JP2012159463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020880A JP2012159463A (en) 2011-02-02 2011-02-02 Pressure-sensitive sensor body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020880A JP2012159463A (en) 2011-02-02 2011-02-02 Pressure-sensitive sensor body

Publications (1)

Publication Number Publication Date
JP2012159463A true JP2012159463A (en) 2012-08-23

Family

ID=46840110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020880A Pending JP2012159463A (en) 2011-02-02 2011-02-02 Pressure-sensitive sensor body

Country Status (1)

Country Link
JP (1) JP2012159463A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016078505A (en) * 2014-10-10 2016-05-16 アスモ株式会社 Foreign matter detection sensor and fitting structure of the same
JP2019522182A (en) * 2016-05-20 2019-08-08 エイチピーワン テクノロジーズ リミテッドHp1 Technologies Limited Apparatus and system for detecting force
JPWO2020195460A1 (en) * 2019-03-25 2020-10-01
WO2020195461A1 (en) * 2019-03-25 2020-10-01 アルプスアルパイン株式会社 Pressure-sensitive member and pressure detection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438432A (en) * 1990-06-04 1992-02-07 Agency Of Ind Science & Technol Pressure sensor for installing in curved-surface flexible body
JPH1183644A (en) * 1997-09-08 1999-03-26 Toyo Polymer Kk Pressure-sensitive sensor
JP2000212524A (en) * 1999-01-20 2000-08-02 Nitto Denko Corp Semiconductor wafer protection tacky sheet and grinding method of semiconductor wafer
JP2001067971A (en) * 1999-08-25 2001-03-16 Polymatech Co Ltd Pressure sensitive conductive sensor
JP2001099726A (en) * 1999-09-30 2001-04-13 Denso Corp Pressure sensitive sensor and its manufacturing method
JP2003157820A (en) * 2001-11-21 2003-05-30 Kureha Elastomer Co Ltd Sheet for valve element, valve element for purging gas and sealed battery
JP2006153471A (en) * 2004-11-25 2006-06-15 Hitachi Cable Ltd Pressure sensor
JP2007083526A (en) * 2005-09-21 2007-04-05 Seiko Epson Corp Method for manufacturing board with recessed portion, and board with recessed portion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438432A (en) * 1990-06-04 1992-02-07 Agency Of Ind Science & Technol Pressure sensor for installing in curved-surface flexible body
JPH1183644A (en) * 1997-09-08 1999-03-26 Toyo Polymer Kk Pressure-sensitive sensor
JP2000212524A (en) * 1999-01-20 2000-08-02 Nitto Denko Corp Semiconductor wafer protection tacky sheet and grinding method of semiconductor wafer
JP2001067971A (en) * 1999-08-25 2001-03-16 Polymatech Co Ltd Pressure sensitive conductive sensor
JP2001099726A (en) * 1999-09-30 2001-04-13 Denso Corp Pressure sensitive sensor and its manufacturing method
JP2003157820A (en) * 2001-11-21 2003-05-30 Kureha Elastomer Co Ltd Sheet for valve element, valve element for purging gas and sealed battery
JP2006153471A (en) * 2004-11-25 2006-06-15 Hitachi Cable Ltd Pressure sensor
JP2007083526A (en) * 2005-09-21 2007-04-05 Seiko Epson Corp Method for manufacturing board with recessed portion, and board with recessed portion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016078505A (en) * 2014-10-10 2016-05-16 アスモ株式会社 Foreign matter detection sensor and fitting structure of the same
JP2019522182A (en) * 2016-05-20 2019-08-08 エイチピーワン テクノロジーズ リミテッドHp1 Technologies Limited Apparatus and system for detecting force
JPWO2020195460A1 (en) * 2019-03-25 2020-10-01
WO2020195461A1 (en) * 2019-03-25 2020-10-01 アルプスアルパイン株式会社 Pressure-sensitive member and pressure detection device
WO2020195460A1 (en) * 2019-03-25 2020-10-01 アルプスアルパイン株式会社 Pressure-sensitive member and pressure detection device

Similar Documents

Publication Publication Date Title
JP5465124B2 (en) Flexible wiring body
JP5411227B2 (en) Comb-shaped force switch and sensor
EP1829069B1 (en) Adhesive membrane for force switches and sensors
JP4650538B2 (en) Capacitive sensor
WO2015040801A1 (en) Conductive member for pressure-sensitive sensor, and pressure-sensitive sensor
RU2013150201A (en) MATERIAL FOR RECEIVING PHYSIOLOGICAL SIGNALS
KR101004944B1 (en) Metal-integral conductive rubber component
JP2012159463A (en) Pressure-sensitive sensor body
JPS648403B2 (en)
US11264145B2 (en) Extensible electroconductive wiring material, and extensible electroconductive wiring module having same
JPH01305548A (en) Interface apparatus
JP5945469B2 (en) Pressure sensor
JP5662637B2 (en) Load sensor
JP6778456B1 (en) Electrical connection member and glass plate structure with terminals
WO2009078621A3 (en) Conductive material and manufacturing method thereof
EP1973010A3 (en) Conformable, Electrically Relaxable Rubbers Using Carbon Nanotubes for BCR/BTR Applications
JP7284952B2 (en) Chloride ion sensor and method for measuring chloride ion concentration
JP3420809B2 (en) Conductive particles and anisotropic conductive adhesive using the same
JP2010054296A (en) Load sensor
JP2003344185A (en) Pressure sensitive sensor
JP5980993B1 (en) Pressure sensor
JPS61207939A (en) Pressure sensor
JPWO2015198906A1 (en) Pressure-sensitive laminate, coating layer, and pressure-sensitive responsive material
JP2003004552A (en) Resistor for pressure-sensitive sensor and pressure- sensitive sensor using the same
JP2003139630A (en) Pressure sensitive film resistor and pressure sensitive sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150210