JP5636290B2 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP5636290B2
JP5636290B2 JP2011004096A JP2011004096A JP5636290B2 JP 5636290 B2 JP5636290 B2 JP 5636290B2 JP 2011004096 A JP2011004096 A JP 2011004096A JP 2011004096 A JP2011004096 A JP 2011004096A JP 5636290 B2 JP5636290 B2 JP 5636290B2
Authority
JP
Japan
Prior art keywords
pressure
sensitive
elastic modulus
mass
rubber member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011004096A
Other languages
Japanese (ja)
Other versions
JP2012145447A (en
Inventor
池田 寛
寛 池田
浦野 竜太
竜太 浦野
山田 晃久
晃久 山田
原田 倫宏
倫宏 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2011004096A priority Critical patent/JP5636290B2/en
Publication of JP2012145447A publication Critical patent/JP2012145447A/en
Application granted granted Critical
Publication of JP5636290B2 publication Critical patent/JP5636290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、荷重の変化を電気抵抗値の変化で検出する感圧センサに用いられる感圧導電ゴム部材に関し、またこれを用いた感圧センサに関する。   The present invention relates to a pressure-sensitive conductive rubber member used in a pressure-sensitive sensor that detects a change in load by a change in electric resistance value, and also relates to a pressure-sensitive sensor using the pressure-sensitive conductive rubber member.

従来、部材に作用する圧力の大きさ、分布状態を測定する手段として、チタン酸ジルコン酸鉛等の圧電セラミックスを用いた方式や、歪みゲージを用いる方式が使用されている。しかしながら、圧電セラミックスを用いた方式は、一般に剛性の高い材料が使用されるため、感圧センサの形状の自由度に制限があり、また、歪みゲージを用いる方式も同様に、感圧センサの形状設計の自由度が低いという問題を有している。   Conventionally, a method using piezoelectric ceramics such as lead zirconate titanate or a method using a strain gauge has been used as means for measuring the magnitude and distribution of pressure acting on a member. However, since the method using piezoelectric ceramics generally uses a material with high rigidity, the degree of freedom of the shape of the pressure sensor is limited, and the method using a strain gauge is also similar to the shape of the pressure sensor. There is a problem that the degree of freedom of design is low.

これらの問題に対して、ゴム、エラストマー、樹脂材料などの高分子材料を基材とし、この基材中に導電性粒子を分散させた感圧部材を用いることで、形状の自由度が高い感圧センサが得られることが知られている。   With respect to these problems, a polymer material such as rubber, elastomer, resin material, etc. is used as a base material, and a pressure-sensitive member in which conductive particles are dispersed in this base material is used. It is known that a pressure sensor can be obtained.

例えば、非導電性エラストマー中に、粒子径が1〜20μmである微小球状炭素粒子と共に、粒子径が10〜150μmの中空状弾性マイクロスフェアーが分散された感圧導電性エラストマーが報告されている(特許文献1)。この感圧導電性エラストマーは、中空状弾性マイクロスフェアーを用いることから、優れた耐久性、衝撃吸収性を示し、圧力−抵抗変化のヒステリシスが改善された感圧導電性エラストマーを得る事が可能となる。   For example, a pressure-sensitive conductive elastomer is reported in which hollow elastic microspheres having a particle size of 10 to 150 μm are dispersed together with fine spherical carbon particles having a particle size of 1 to 20 μm in a non-conductive elastomer. (Patent Document 1). Since this pressure-sensitive conductive elastomer uses hollow elastic microspheres, it is possible to obtain a pressure-sensitive conductive elastomer with excellent durability and shock absorption and improved hysteresis of pressure-resistance change. It becomes.

また、平均表面粗さが0.1μm以上3μm以下でありかつ表面凹凸周期のピークが10μm以上1,000μm以下であると共に、弾性率が800MPa以上8,000MPa以下である膜状感圧抵抗体が報告されている(特許文献2)。この膜状感圧抵抗体は、充分な平均表面粗さ、表面凹凸周期のピークおよび弾性率を有することから、接触初期の低荷重域における荷重変化に対しても接触面積が緩やかに変化するものである。   A film-like pressure sensitive resistor having an average surface roughness of 0.1 μm or more and 3 μm or less, a peak of the surface irregularity period of 10 μm or more and 1,000 μm or less, and an elastic modulus of 800 MPa or more and 8,000 MPa or less. It has been reported (Patent Document 2). This film-like pressure-sensitive resistor has a sufficient average surface roughness, peak surface irregularity period, and elastic modulus, so that the contact area gradually changes even when the load changes in the low load region at the initial stage of contact. It is.

特開4−71108号公報Japanese Patent Laid-Open No. 4-71108 特開2002−158103号公報JP 2002-158103 A

しかしながら特許文献1の感圧導電性エラストマーは次の点が問題である。
(1)弾性に富んだ中空状弾性マイクロスフェアーを用いたとしても、感圧導電性エラストマーの粘着性等が原因で検知抵抗値に強いヒステリシスロスが生じる場合があり、感圧特性の信頼性に欠ける。
(2)感圧導電性エラストマーの弾性率が低いために、一定の力がセンサに加えられている時にエラストマー変形量が徐々に増大し、出力(電気抵抗値)が経時と共に極めて大きく変化する。
However, the pressure-sensitive conductive elastomer of Patent Document 1 has the following problems.
(1) Even if hollow elastic microspheres rich in elasticity are used, a strong hysteresis loss may occur in the detection resistance value due to the adhesiveness of the pressure-sensitive conductive elastomer, and the reliability of the pressure-sensitive characteristics Lack.
(2) Since the elastic modulus of the pressure-sensitive conductive elastomer is low, the amount of deformation of the elastomer gradually increases when a constant force is applied to the sensor, and the output (electric resistance value) changes significantly with time.

また特許文献2の膜状感圧抵抗体は次の点が問題である。
(1)膜状感圧抵抗体が充分な平均表面粗さ、表面凹凸周期のピークおよび弾性率を有するとしても、基材が弾性体でなければ膜状感圧抵抗体と電極との接触状態の均一性に劣り、負荷−除荷試験を繰り返し行なった場合の再現性に劣る場合があり、感圧特性の信頼性に欠ける。
(2)また、膜状感圧抵抗体の弾性率が高いことから、膜状感圧抵抗体と電極との接触状態が乱雑で、一定の力がセンサに加えられている時に出力が一定に保たれない場合がある。
The film-shaped pressure sensitive resistor disclosed in Patent Document 2 has the following problems.
(1) Even if the film-like pressure sensitive resistor has a sufficient average surface roughness, a peak of the surface irregularity period and an elastic modulus, if the substrate is not an elastic body, the contact state between the film-like pressure sensitive resistor and the electrode The uniformity of the pressure is poor, the reproducibility may be inferior when the load-unloading test is repeated, and the pressure-sensitive characteristics are not reliable.
(2) Since the elastic modulus of the film-like pressure sensitive resistor is high, the contact state between the film-like pressure sensitive resistor and the electrode is messy, and the output is constant when a constant force is applied to the sensor. It may not be kept.

したがって、本発明の課題は、ヒステリシスロスが小さく、一定の力がセンサに加えられている時の出力が経時と共に変化する量が極めて小さく(=ドリフト良好)、変形による電気抵抗値の変化が優れた再現性を有し、信頼性の高い感圧導電ゴム部材を提供すること、及びこれを用いた感圧センサを提供することにある。   Therefore, the problems of the present invention are that the hysteresis loss is small, the amount of change in output when a constant force is applied to the sensor is very small (= good drift), and the change in electrical resistance value due to deformation is excellent. It is to provide a pressure-sensitive conductive rubber member having high reproducibility and high reliability, and to provide a pressure-sensitive sensor using the pressure-sensitive conductive rubber member.

本発明は、荷重の変化に応じた感圧導電ゴム部材と電極との導通抵抗値の変化を検出することによって、荷重を感知する感圧センサにおいて、該感圧センサは、平板状のゴム基材と導電剤を含有する樹脂塗膜とを含む少なくとも二層で形成される感圧導電ゴム部材と、該感圧導電ゴム部材の樹脂塗膜面に対向接触する電極を有し、ダイナミック超微小硬度計にて測定される弾性率のうち、前記ゴム基材の弾性率をE1、前記樹脂塗膜が形成された面の感圧導電ゴム部材の弾性率をE2としたとき、E1が0.5MPa以上、30MPa以下、E2が10MPa以上、700MPa以下であり、且つ、弾性率E1と弾性率E2の比が、1<E2/E1<1,000であることを特徴とする感圧センサである。 The present invention, by detecting a change in the conduction resistance of the pressure sensitive conductive rubber member and the electrode in response to changes in load, Oite pressure-sensitive sensor that senses a load, sensitive pressure sensors, flat has between Ru formed of at least two layers sensitive conductive rubber member and a resin coating containing a rubber substrate and a conductive agent, an electrode facing contact with the resin coated surface of the photosensitive-pressure conductive rubber member, Of the elastic modulus measured with a dynamic ultra-micro hardness meter, when the elastic modulus of the rubber base material is E1, and the elastic modulus of the pressure-sensitive conductive rubber member on the surface on which the resin coating film is formed is E2, E1 is 0.5 MPa or more and 30 MPa or less , E2 is 10 MPa or more and 700 MPa or less, and the ratio of elastic modulus E1 and elastic modulus E2 is 1 <E2 / E1 <1,000. It is a pressure sensitive sensor .

また本発明は、前記感圧センサであって、前記電極がフレキシブルプリント基板であることを特徴とする感圧センサである。 Moreover, this invention is the said pressure sensor, Comprising: The said electrode is a flexible printed circuit board, It is a pressure sensor characterized by the above-mentioned.

本発明によれば、ヒステリシスロスが小さく、一定の力がセンサに加えられている時の出力が経時と共に変化する量が極めて小さく(=ドリフト良好)、変形による電気抵抗値の変化が優れた再現性を有し信頼性の高い検出性を有する感圧センサ用感圧導電ゴム部材が提供される。またこの感圧導電ゴム部材を用いることにより変形による電気抵抗値の変化が優れた再現性を有し信頼性の高い検出性を有する感圧センサが提供される。   According to the present invention, hysteresis loss is small, the amount of output change with time when a constant force is applied to the sensor is extremely small (= good drift), and the electrical resistance value change due to deformation is excellent reproduction There is provided a pressure-sensitive conductive rubber member for a pressure-sensitive sensor having high reliability and high detectability. Further, by using this pressure-sensitive conductive rubber member, a pressure-sensitive sensor having excellent reproducibility and highly reliable detection of changes in electrical resistance value due to deformation is provided.

本発明に係る感圧導電ゴム部材の断面図である。図1(a)は二層構成、図1(b)は三層構成の樹脂塗膜が被覆している形態であり、図1(c)は基材の周囲を樹脂塗膜が被覆している形態である。It is sectional drawing of the pressure-sensitive conductive rubber member which concerns on this invention. FIG. 1 (a) is a two-layer structure, FIG. 1 (b) is a form in which a three-layer resin coating is coated, and FIG. 1 (c) is a resin film coating around the substrate. It is a form. 本発明に係る感圧センサに使用されるフレキシブルプリント基板電極の平面図である。図2(a)は櫛型電極、図2(b)は角板型電極である。It is a top view of the flexible printed circuit board electrode used for the pressure sensor which concerns on this invention. 2A shows a comb-type electrode, and FIG. 2B shows a square plate-type electrode. 本発明に係る感圧センサの断面図である。図3(a)は感圧導電ゴム部材1aと櫛型電極2aを使用した場合、図3(b)は感圧導電ゴム部材1bと角板型電極2bを使用した場合である。It is sectional drawing of the pressure-sensitive sensor which concerns on this invention. FIG. 3A shows the case where the pressure-sensitive conductive rubber member 1a and the comb-shaped electrode 2a are used, and FIG. 3B shows the case where the pressure-sensitive conductive rubber member 1b and the square plate-type electrode 2b are used. 負荷−除荷試験における圧力と電気抵抗値の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of the pressure and electrical resistance value in a load-unloading test. 実施例1における負荷−除荷試験の圧力と電気抵抗値LogRの関係を示す図である。It is a figure which shows the relationship between the pressure of the load-unloading test in Example 1, and electrical resistance value LogR.

本発明における感圧導電ゴム部材は、荷重の変化に応じた感圧導電ゴム部材と電極との導通抵抗値の変化を検出することによって、荷重を感知する感圧センサに用いられる感圧導電ゴム部材である。この感圧導電ゴム部材は、ゴム基材と導電剤を含有する樹脂塗膜とを含む少なくとも二層で形成されており、ダイナミック超微小硬度計にて測定される弾性率のうち、前記ゴム基材の弾性率をE1、前記樹脂塗膜が形成された面の感圧導電ゴム部材の弾性率をE2としたとき、弾性率E1が、0.5MPa以上、30MPa以下、弾性率E2が、10MPa以上、700MPa以下であり、且つ、弾性率E1と弾性率E2の比が、1<E2/E1<1,000であることを特徴としている。 The pressure-sensitive conductive rubber member in the present invention is a pressure-sensitive conductive rubber used in a pressure-sensitive sensor that senses a load by detecting a change in conduction resistance value between the pressure-sensitive conductive rubber member and the electrode in accordance with a change in load. It is a member. This pressure-sensitive conductive rubber member is formed of at least two layers including a rubber base material and a resin coating film containing a conductive agent. Of the elastic modulus measured by a dynamic ultra-micro hardness meter , the rubber when the elastic modulus of the base material E1, the elastic modulus of the pressure-sensitive conductive rubber member of the resin coating film is formed faces the E2, elastic modulus E1 is, 0.5 MPa or more, 30 MPa or less, the elastic modulus E2 Is 10 MPa or more and 700 MPa or less, and the ratio between the elastic modulus E1 and the elastic modulus E2 is 1 <E2 / E1 <1,000.

本発明における感圧導電ゴム部材は、ゴム基材の表面に導電剤を含有する樹脂塗膜が形成された少なくとも二層構成である。図1(a)〜図1(c)は、本発明の感圧導電ゴム部材の断面図を示している。図1(a)は、ゴム基材1a−1の片面に樹脂塗膜1a−2が形成された二層構成の感圧導電ゴム部材1aである。図1(b)は、ゴム基材1b−1の両面に樹脂塗膜2b−1が形成された三層構成の感圧導電ゴム部材1bである。図1(c)のように、ゴム基材1c−1の周囲に樹脂塗膜1c−2が形成された形態の感圧導電ゴム部材1cでもよい。 The pressure-sensitive conductive rubber member in the present invention has at least a two-layer structure in which a resin coating film containing a conductive agent is formed on the surface of a rubber base material. Fig.1 (a)-FIG.1 (c) have shown sectional drawing of the pressure-sensitive conductive rubber member of this invention. FIG. 1A shows a pressure-sensitive conductive rubber member 1a having a two-layer structure in which a resin coating film 1a-2 is formed on one surface of a rubber substrate 1a-1. FIG. 1B shows a pressure-sensitive conductive rubber member 1b having a three-layer structure in which a resin coating film 2b-1 is formed on both surfaces of a rubber substrate 1b-1. As shown in FIG. 1C, the pressure-sensitive conductive rubber member 1c may be formed in a form in which a resin coating film 1c-2 is formed around the rubber base material 1c-1.

〔ゴム基材〕
ゴム基材は、圧縮に伴い弾性変形し、感圧導電ゴム部材と対向して配置される電極との導通抵抗変化が滑らかに変化する作用を有する弾性体である。
[Rubber substrate]
The rubber base material is an elastic body that has an action of elastically deforming with compression and smoothly changing a conduction resistance change with an electrode disposed opposite to the pressure-sensitive conductive rubber member.

ゴム基材の原料となる未加硫のゴム組成物のゴム成分として具体的には、以下のものが挙げられる。天然ゴム(NR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、エチレンプロピレンゴム(EPM、EPDM)、クロロプレンゴム(CR)、イソプレンゴム(IR)、エピクロルヒドリンゴム(CO、ECO)、シリコーンゴム、及びウレタンゴム(U)等。これらのゴム成分は、単独で或いは2種以上を混合して用いることができる。ゴム組成物は通常、ゴム成分の他に各種配合剤を含有する。例えば、導電性付与剤、加硫剤、加硫促進剤、充填剤、老化防止剤、スコーチ防止剤、軟化剤、可塑剤、分散剤などの従来からゴムの配合剤として使用されているものを適宜配合する。未加硫のゴム組成物の混合は、例えば、加圧式ニーダー、オープンロール等の混練機を用いて行うことができる。   Specific examples of the rubber component of the unvulcanized rubber composition used as a raw material for the rubber base material include the following. Natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), ethylene propylene rubber (EPM, EPDM), chloroprene rubber (CR), isoprene rubber (IR), epichlorohydrin rubber ( CO, ECO), silicone rubber, urethane rubber (U) and the like. These rubber components can be used alone or in admixture of two or more. The rubber composition usually contains various compounding agents in addition to the rubber component. For example, those conventionally used as rubber compounding agents such as conductivity imparting agents, vulcanizing agents, vulcanization accelerators, fillers, anti-aging agents, anti-scorching agents, softeners, plasticizers, dispersants, etc. Mix appropriately. The unvulcanized rubber composition can be mixed using, for example, a kneader such as a pressure kneader or an open roll.

未加硫のゴム組成物を成形、架橋する方法としては、特に限定されるものではなく、成形方法としては、押出成形、プレス成形等を挙げることができる。押出成形は、上記未加硫物をスクリューで混練し、先端の押出金型(ダイ)を通過させて連続的に成形する方法である。プレス成形は、金型に上記未加硫物を充填し加圧成型する方法である。成形後の未加硫ゴム混合物の加硫方法としては、加熱、冷却等の温度制御により加硫を行う方法であれば、特に条件は問わない。   The method for molding and crosslinking the unvulcanized rubber composition is not particularly limited, and examples of the molding method include extrusion molding and press molding. Extrusion molding is a method in which the unvulcanized product is kneaded with a screw and passed continuously through an extrusion die (die) at the tip. Press molding is a method in which a mold is filled with the above unvulcanized product and pressure molded. The vulcanization method for the unvulcanized rubber mixture after molding is not particularly limited as long as the vulcanization is performed by temperature control such as heating and cooling.

ゴム基材の弾性率は、0.5MPa以上、30MPa以下であり、より好ましくは、1.0MPa以上、20MPa以下である。上記範囲内であれば、圧縮に伴い弾性変形し、感圧導電ゴム部材と対向して配置される電極との導通抵抗変化が滑らかに変化する作用を有する弾性ゴム基材が得られる。弾性率が、0.5MPaより小さいと、圧縮に伴いゴム基材が即座に変形して、感圧センサがオン−オフのスイッチのように機能することになる。弾性率が、30MPaより大きいと、荷重の増減に追従してゴム基材が弾性変形できず、検知抵抗値が滑らかな曲線にならない。   The elastic modulus of the rubber base material is 0.5 MPa or more and 30 MPa or less, and more preferably 1.0 MPa or more and 20 MPa or less. If it is in the said range, the elastic rubber base material which has an effect | action which elastically deforms with compression and the conduction resistance change with the electrode arrange | positioned facing a pressure-sensitive conductive rubber member will change smoothly will be obtained. If the elastic modulus is less than 0.5 MPa, the rubber base material is immediately deformed with compression, and the pressure sensor functions as an on-off switch. If the elastic modulus is larger than 30 MPa, the rubber base material cannot be elastically deformed following the increase and decrease of the load, and the detection resistance value does not become a smooth curve.

また、ゴム基材の厚みd1は、特に限定はされないが、0.1mm≦d1≦10mmが好ましい。ゴム基材の厚みが0.1mm以上であれば、圧縮に伴ってゴム基材が弾性変形して感圧導電ゴム部材と電極との導通抵抗が適度に変化する。またゴム基材の厚みが10mm以下であれば、感圧導電ゴム部材のサイズの小型化が可能であり、感圧センサの形状の自由度を高めることができる。   The thickness d1 of the rubber base material is not particularly limited, but is preferably 0.1 mm ≦ d1 ≦ 10 mm. If the thickness of the rubber base material is 0.1 mm or more, the rubber base material is elastically deformed with compression, and the conduction resistance between the pressure-sensitive conductive rubber member and the electrode is appropriately changed. If the thickness of the rubber substrate is 10 mm or less, the size of the pressure-sensitive conductive rubber member can be reduced, and the degree of freedom of the shape of the pressure-sensitive sensor can be increased.

また、ゴム基材の電気抵抗値は、感圧導電ゴム部材とし、感圧センサとして用いる場合の電極の構成により、適宜調整される。図3(a)に示すような片面に電極が配置されている場合は、電気は樹脂塗膜を通して導通するので、ゴム基材の電気抵抗値は特に限定されない。図3(b)に示すような両面に電極が配置されている場合は、電気はゴム基材を通して導通するので、ゴム基材の電気抵抗値は10Ω・cm以下であることが好ましい。10Ω・cm以下であれば、感圧導電ゴム部材を介して、荷重に応じた電気の導通変化が得られる。 Further, the electrical resistance value of the rubber base material is appropriately adjusted depending on the configuration of the electrode when used as a pressure-sensitive conductive rubber member and as a pressure-sensitive sensor. When electrodes are arranged on one side as shown in FIG. 3 (a), electricity is conducted through the resin coating film, so that the electric resistance value of the rubber base material is not particularly limited. When electrodes are arranged on both sides as shown in FIG. 3 (b), electricity is conducted through the rubber base material. Therefore, the electrical resistance value of the rubber base material is preferably 10 3 Ω · cm or less. If it is 10 3 Ω · cm or less, an electrical conduction change corresponding to the load can be obtained through the pressure-sensitive conductive rubber member.

〔樹脂塗膜〕
感圧導電ゴム部材は、上記ゴム基材の表面に導電剤を含有する樹脂塗膜を形成して二層以上の構成とすることにより、感圧導電ゴム部材に対する外力の作用を電気抵抗値として検出する素子として機能する。以下、導電剤を含有する樹脂塗膜を単に「樹脂塗膜」と表現する。
[Resin coating film]
The pressure-sensitive conductive rubber member is formed of a resin coating containing a conductive agent on the surface of the rubber base material to form two or more layers. Functions as a detecting element. Hereinafter, a resin coating film containing a conductive agent is simply expressed as “resin coating film”.

樹脂塗膜を構成する樹脂成分として具体的には、以下のものが挙げられる。フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂、ブチラール樹脂、スチレン−エチレン・ブチレン−オレフィン共重合体(SEBC)及びオレフィン−エチレン・ブチレン・オレフィン共重合体(CEBC)等。これらの樹脂は1種または2種以上を組み合わせて用いてもよい。また、樹脂は架橋系のものでもよく、樹脂塗膜の原料となる塗料組成物中には、硬化剤として、例えば、イソシアネート化合物、アミン化合物を適宜配合することができる。   Specifically, the following are mentioned as a resin component which comprises a resin coating film. Fluorine resin, polyamide resin, acrylic resin, polyurethane resin, polyester resin, epoxy resin, silicone resin, butyral resin, styrene-ethylene-butylene-olefin copolymer (SEBC) and olefin-ethylene-butylene-olefin copolymer (CEBC) )etc. These resins may be used alone or in combination of two or more. In addition, the resin may be a cross-linked resin, and for example, an isocyanate compound and an amine compound can be appropriately blended as a curing agent in the coating composition as a raw material for the resin coating film.

また、樹脂塗膜は、所望の電気抵抗値を得るために、導電性カーボン、グラファイト、銅、アルミニウム、ニッケル、鉄粉及び金属酸化物である導電性酸化錫や導電性酸化チタン等の導電剤を含有する。これらは1種または2種以上を組み合わせて用いてもよい。樹脂塗膜の電気抵抗値は、特に限定はされないが、500kPa以上の圧力下において、10-1Ω・cm以上10Ω・cm以下であることが好ましい。10-1Ω・cm以上であれば、無加圧時の絶縁性が保たれ、加圧時には、荷重に応じた導通変化が得られる。10Ω・cm以下であれば、負荷を施しても出力が得られないような事はなく、負荷に応じた出力が得られる。 Moreover, in order to obtain a desired electrical resistance value, the resin coating film is made of conductive carbon, graphite, copper, aluminum, nickel, iron powder and conductive oxides such as conductive tin oxide and conductive titanium oxide which are metal oxides. Containing. These may be used alone or in combination of two or more. The electric resistance value of the resin coating film is not particularly limited, but is preferably 10 -1 Ω · cm or more and 10 3 Ω · cm or less under a pressure of 500 kPa or more. If it is 10 −1 Ω · cm or more, the insulation is maintained when no pressure is applied, and a change in conduction according to the load is obtained when pressure is applied. If it is 10 3 Ω · cm or less, no output is obtained even when a load is applied, and an output corresponding to the load is obtained.

上記樹脂、導電粒子の他に、その他成分を配合することも可能であり、例えば、有機弾性フィラー、無機酸化物フィラー、分散剤などが挙げられる。   In addition to the resin and conductive particles, other components can be blended, and examples thereof include organic elastic fillers, inorganic oxide fillers, and dispersants.

樹脂塗膜の形成方法については、まず上記の樹脂塗膜を構成する材料、及び有機溶剤等からなる塗料組成物を、サンドミル、ペイントシェイカー、ダイノミル、及びパールミル等のビーズを利用した分散装置を用いて調製する。得られた塗料組成物を、ディッピング法やスプレーコート法により、ゴム基材の表面に塗工する。塗料組成物の利用効率を考慮すると、ディッピング法が好ましい。さらに熱風循環乾燥機や赤外線乾燥炉などを用いて溶剤を除去してゴム基材の表面に樹脂塗膜を形成する。   Regarding the method of forming the resin coating film, first, the material constituting the resin coating film, and the coating composition composed of an organic solvent, etc., using a dispersing device using beads such as a sand mill, a paint shaker, a dyno mill, and a pearl mill. Prepare. The obtained coating composition is applied to the surface of the rubber substrate by dipping or spray coating. In consideration of the utilization efficiency of the coating composition, the dipping method is preferable. Further, the solvent is removed using a hot air circulating dryer or an infrared drying furnace to form a resin coating on the surface of the rubber substrate.

なお、ゴム基材と塗料組成物との濡れ性が良好でない場合には、塗工する前に、ゴム基材を紫外線照射することにより表面自由エネルギーを高めたり、ゴム基材にプライマーを塗布して、濡れ性を良好にする事で、均一な塗膜を形成する事が可能である。   If the wettability between the rubber base material and the coating composition is not good, the surface free energy is increased by irradiating the rubber base material with ultraviolet rays or a primer is applied to the rubber base material before coating. Thus, it is possible to form a uniform coating film by improving the wettability.

樹脂塗膜は弾性ゴム基材の少なくとも一面に形成すればよく、本発明の感圧導電ゴム部材を感圧センサとして用いる場合は、少なくとも一対の電極が形成された基板上に、電極に樹脂塗膜が対向するよう感圧導電ゴム部材を配置すればよい。   The resin coating may be formed on at least one surface of the elastic rubber substrate. When the pressure-sensitive conductive rubber member of the present invention is used as a pressure-sensitive sensor, the resin coating is applied to the electrodes on a substrate on which at least a pair of electrodes are formed. What is necessary is just to arrange | position a pressure-sensitive conductive rubber member so that a film | membrane opposes.

樹脂塗膜が形成される面の感圧導電ゴム部材の弾性率は、10MPa以上、700MPa以下であり、より好ましくは、50MPa以上、600MPa以下である。弾性率が10MPa以上であれば、一定の力がセンサに加えられている時に変形量が経時と共に増加することもなく、経時と共に電気抵抗値が増加するおそれもない。また弾性率が700MPa以下であれば、部材としての柔軟性は良好であり、電極との接触状態の均一性が保たれ、負荷−除荷試験を繰り返し行なった場合の再現性が良好である。また、一定の力がセンサに加えられている時に接触状態が均一に保たれ、出力が経時と共に変化するおそれもない。   The elastic modulus of the pressure-sensitive conductive rubber member on the surface on which the resin coating film is formed is 10 MPa or more and 700 MPa or less, and more preferably 50 MPa or more and 600 MPa or less. If the elastic modulus is 10 MPa or more, the amount of deformation does not increase with time when a constant force is applied to the sensor, and the electrical resistance value does not increase with time. If the elastic modulus is 700 MPa or less, the flexibility as a member is good, the uniformity of the contact state with the electrode is maintained, and the reproducibility when the load-unloading test is repeated is good. Further, the contact state is kept uniform when a certain force is applied to the sensor, and there is no possibility that the output changes with time.

樹脂塗膜の膜厚d2は、特に限定はされないが、5μm≦d2≦100μmが好ましい。樹脂塗膜の膜厚が100μm以下であれば、感圧導電ゴム部材としての柔軟性が保たれ、荷重の変化に応じて接触面積が変化する。また樹脂塗膜の膜厚が5μm以上であれば、感圧導電ゴム部材として所望の弾性率が得られ、一定の力がセンサに加えられている時に徐々に変形量が増大することもなく、出力が経時と共に変化するおそれもない。   The film thickness d2 of the resin coating film is not particularly limited, but 5 μm ≦ d2 ≦ 100 μm is preferable. When the film thickness of the resin coating film is 100 μm or less, the flexibility as the pressure-sensitive conductive rubber member is maintained, and the contact area changes according to the change in load. Moreover, if the film thickness of the resin coating film is 5 μm or more, a desired elastic modulus is obtained as a pressure-sensitive conductive rubber member, and the amount of deformation does not gradually increase when a certain force is applied to the sensor, There is also no risk of the output changing over time.

ゴム基材の弾性率E1と樹脂塗膜が形成された面の感圧導電ゴム部材の弾性率E2の比は、1<E2/E1<1,000である。E2/E1が1以下の場合は、ゴム基材の弾性率E1よりも樹脂塗膜が形成された面の感圧導電ゴム部材の弾性率E2が大きくない場合であり、樹脂塗膜が形成された面の感圧導電ゴム部材の弾性率の低さに由来し、一定の力がセンサに加えられている時に徐々に変形量が増大し、出力が経時と共に極めて大きく変化するという問題がある。また、感圧導電ゴム部材の粘着性等で検知抵抗値に強いヒステリシスロスが生じるという問題がある。 The ratio of the elastic modulus E1 of the rubber substrate and the elastic modulus E2 of the pressure-sensitive conductive rubber member on the surface on which the resin coating film is formed is 1 <E2 / E1 <1,000. When E2 / E1 is 1 or less, the elastic modulus E2 of the pressure-sensitive conductive rubber member on the surface on which the resin coating film is formed is not larger than the elastic modulus E1 of the rubber substrate, and the resin coating film is formed. Due to the low elastic modulus of the pressure-sensitive conductive rubber member on the other surface, there is a problem that the amount of deformation gradually increases when a constant force is applied to the sensor, and the output changes greatly with time. In addition, there is a problem that a strong hysteresis loss occurs in the detection resistance value due to the adhesiveness of the pressure-sensitive conductive rubber member.

E2/E1が1,000以上の場合は、樹脂塗膜が形成された面の感圧導電ゴム部材の弾性率の高さに由来し、電極との接触状態の均一性に劣り、負荷−除荷試験を繰り返し行なった場合の再現性に劣るという問題がある。また、一定の力がセンサに加えられている時に接触状態が均一に保たれ難くなり、出力が経時と共に変化するという問題がある。 When E2 / E1 is 1,000 or more, it is derived from the high elastic modulus of the pressure-sensitive conductive rubber member on the surface on which the resin coating film is formed , and is inferior in the uniformity of the contact state with the electrode. There is a problem that the reproducibility is poor when the load test is repeated. Further, when a constant force is applied to the sensor, it is difficult to maintain a uniform contact state, and there is a problem that the output changes with time.

〔電極〕
本発明に係る感圧センサは、少なくとも前記感圧導電ゴム部材と該感圧導電ゴム部材の樹脂塗膜面に対向接触する電極とを備えた感圧センサであって、前記電極としてフレキシブルプリント基板を配置することができる。
〔electrode〕
Pressure-sensitive sensor according to the present invention, there is provided a pressure sensor comprising an electrode facing contact with the resin coated surface of at least the pressure-sensitive conductive rubber member and the photosensitive-pressure conductive rubber member, the flexible printed circuit board as the electrode Can be arranged.

感圧センサの電極としては、図2に示すようなフレキシブルプリント基板電極が使用される。図2(a)は、櫛型電極2aの平面図であり、銅乃至銀ペースト等の導電性金属からなる配線2a−1と、ポリイミド乃至ポリエステルフィルム等の絶縁性樹脂からなる基板2a−2で形成されている。図2(b)は、角板型電極2bの平面図であり、銅乃至銀ペースト等の導電性金属からなる配線2b−1と、ポリイミド乃至ポリエステルフィルム等の絶縁性樹脂からなる基板2b−2で形成されている。   A flexible printed circuit board electrode as shown in FIG. 2 is used as the electrode of the pressure sensitive sensor. FIG. 2A is a plan view of the comb-shaped electrode 2a, which includes a wiring 2a-1 made of a conductive metal such as copper or silver paste and a substrate 2a-2 made of an insulating resin such as polyimide or polyester film. Is formed. FIG. 2B is a plan view of the square plate-type electrode 2b. The wiring 2b-1 is made of a conductive metal such as copper or silver paste, and the substrate 2b-2 is made of an insulating resin such as polyimide or polyester film. It is formed with.

図3は、本発明の感圧導電ゴム部材を使用した感圧センサの断面図を示している。図3(a)は、櫛型電極2aの配線2b−1側に、感圧導電ゴム部材1aの樹脂塗膜面1a−1が対向接触するように配置された感圧センサ3aである。感圧センサ3aに対する荷重Pの負荷−除荷に応じて感圧導電ゴム部材1aが弾性変形し導通抵抗が変化する。図3(b)は、角板型電極2bの配線2b−1側が相対するように感圧導電ゴム部材1bを挟み配置された感圧センサ3bである。感圧センサ3bに対する荷重Pの負荷−除荷に応じて感圧導電ゴム部材1bが弾性変形し導通抵抗が変化する。   FIG. 3 shows a cross-sectional view of a pressure-sensitive sensor using the pressure-sensitive conductive rubber member of the present invention. FIG. 3A shows a pressure-sensitive sensor 3a disposed so that the resin coating surface 1a-1 of the pressure-sensitive conductive rubber member 1a is opposed to the wiring 2b-1 side of the comb-shaped electrode 2a. The pressure-sensitive conductive rubber member 1a is elastically deformed according to the load-unloading of the load P with respect to the pressure-sensitive sensor 3a, and the conduction resistance changes. FIG. 3B shows a pressure-sensitive sensor 3b that is disposed with a pressure-sensitive conductive rubber member 1b sandwiched so that the wiring 2b-1 side of the square plate-type electrode 2b faces each other. The pressure-sensitive conductive rubber member 1b is elastically deformed and the conduction resistance is changed according to the load-unloading of the load P with respect to the pressure-sensitive sensor 3b.

以下、実施例及び比較例により本発明の感圧センサを具体的に説明する。 Hereinafter, the pressure-sensitive sensor of the present invention will be specifically described with reference to examples and comparative examples.

(実施例1)
<1.基材の作製>
以下の材料を2本ロールにて20分間混合し、未加硫ゴムコンパウンドを作製した。
・ブタジエンゴム(宇部興産(株)製、商品名「BR150」)70質量部、
・イソプレンゴム(日本ゼオン(株)製、商品名「IR2200」)30質量部、
・酸化亜鉛(ハクスイテック(株)製、商品名「亜鉛華2種」)5質量部、
・ステアリン酸亜鉛(日本油脂(株)製、商品名「ジンクステアレート」)1質量部、
・カーボンブラック(東海カーボン(株)製、商品名「シーストTA」)10質量部、
・硫黄(鶴見化学工業(株)製、商品名「サルファックスPMC」)2質量部、
・TETD(テトラエチルチウラムジスルフィド)(大内新興化学(株)製、商品名「ノクセラーTET」)1質量部、
・MBTS(ジベンゾチアジルジスルフィド)(大内新興化学(株)製、商品名「ノクセラーDM」)1質量部。
Example 1
<1. Fabrication of substrate>
The following materials were mixed with two rolls for 20 minutes to produce an unvulcanized rubber compound.
・ 70 parts by mass of butadiene rubber (trade name “BR150” manufactured by Ube Industries, Ltd.)
-30 parts by mass of isoprene rubber (manufactured by Nippon Zeon Co., Ltd., trade name “IR2200”),
-5 parts by mass of zinc oxide (manufactured by Hakusui Tech Co., Ltd., trade name “Zinc Hana 2”),
-1 part by weight of zinc stearate (Nippon Yushi Co., Ltd., trade name “zinc stearate”),
・ 10 parts by mass of carbon black (product name “SEAST TA” manufactured by Tokai Carbon Co., Ltd.)
・ 2 parts by mass of sulfur (trade name “Sulfax PMC”, manufactured by Tsurumi Chemical Co., Ltd.)
-1 part by mass of TETD (tetraethyl thiuram disulfide) (Ouchi Shinsei Chemical Co., Ltd., trade name "Noxeller TET"),
MBTS (dibenzothiazyl disulfide) (manufactured by Ouchi Shinsei Chemical Co., Ltd., trade name “Noxeller DM”) 1 part by mass.

次に、上記未加硫物を予め170℃に加熱した縦150mm、横150mm、深さ2.0mmの金型内に充填し、170℃、100kgfにて15分間プレス加硫を行い、平板状ゴム基材を得た。   Next, the unvulcanized product is filled in a mold having a length of 150 mm, a width of 150 mm, and a depth of 2.0 mm preheated to 170 ° C., and press vulcanized at 170 ° C. and 100 kgf for 15 minutes to form a flat plate shape. A rubber substrate was obtained.

<2.塗料組成物の作製>
続いて、以下の材料を配合し、固形分30質量%の樹脂溶液を作製した。
・ポリオール(ダイセル化学工業(株)製、商品名「プラクセルDC2016(固形分70%、水酸基価80mgKOH/g)」)100質量部、
・イソホロンジイソシアネート系硬化剤(デグサ・ヒュルス社製、商品名「ベスタナートB1370(固形分60%、NCO8.0%)」)25質量部、
・ヘキサメチレンジイソシアネート系硬化剤(旭化成工業(株)製、商品名「デュラネートTPA−B80E(固形分80%、NCO12.5%)」)32質量部(NCO/OH比=1.0)、
・カーボンブラック(三菱化学(株)製、商品名「#3230」)55質量部、
・変性ジメチルシリコーンオイル(東レ・ダウコーニングシリコーン(株)製、商品名「SH−28PA」)0.05質量部、
・MIBK(メチルイソブチルケトン)340質量部。
<2. Preparation of coating composition>
Subsequently, the following materials were blended to prepare a resin solution having a solid content of 30% by mass.
-100 parts by weight of polyol (manufactured by Daicel Chemical Industries, Ltd., trade name "Placcel DC2016 (solid content 70%, hydroxyl value 80 mgKOH / g)")
-25 parts by mass of isophorone diisocyanate curing agent (manufactured by Degussa Huls, trade name "Vestanat B1370 (solid content 60%, NCO 8.0%)")
-Hexamethylene diisocyanate curing agent (Asahi Kasei Kogyo Co., Ltd., trade name "Duranate TPA-B80E (solid content 80%, NCO 12.5%)") 32 parts by mass (NCO / OH ratio = 1.0),
・ 55 parts by mass of carbon black (trade name “# 3230” manufactured by Mitsubishi Chemical Corporation),
-Modified dimethyl silicone oil (Toray Dow Corning Silicone Co., Ltd., trade name "SH-28PA") 0.05 parts by mass,
-340 mass parts of MIBK (methyl isobutyl ketone).

この樹脂溶液200質量部に対して、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェイカーを使用して6時間分散した。最後に200メッシュの網で溶液をろ過して、塗料組成物を作製した。   To 200 parts by mass of this resin solution, 200 parts by mass of glass beads having a diameter of 0.8 mm were added, placed in a 450 ml mayonnaise bottle, and dispersed for 6 hours using a paint shaker. Finally, the solution was filtered through a 200 mesh screen to prepare a coating composition.

<3.感圧導電ゴム部材の作製>
前記平板状ゴム基材を前記塗料組成物中に、引き下げ速度200mm/secで垂直に浸漬し、10秒間保持した後、引き上げ速度10mm/secで引き上げ、ゴム基材の表面に塗料組成物を塗工した。なお、上記塗工は、室温にて行った。ついで、室温にて30分間風乾後、オーブンを用い、160℃で1時間加熱することによって硬化させ、ゴム基材の表面に膜厚13μmの樹脂塗膜が形成された感圧導電ゴム部材を得た。
<3. Production of pressure-sensitive conductive rubber member>
The flat rubber substrate is vertically immersed in the coating composition at a pulling rate of 200 mm / sec, held for 10 seconds, and then pulled up at a pulling rate of 10 mm / sec to apply the coating composition on the surface of the rubber substrate. Worked. In addition, the said coating was performed at room temperature. Next, after air-drying at room temperature for 30 minutes, an oven is used to cure by heating at 160 ° C. for 1 hour to obtain a pressure-sensitive conductive rubber member having a 13 μm-thick resin coating formed on the surface of the rubber substrate. It was.

<4.弾性率の測定>
弾性率の測定には、島津製作所製「島津ダイナミック超微小硬度計」DUH−W201Sを用いた。測定条件は、試験モード:負荷−除荷試験、負荷速度:0.28mN/sec、保持時間:5sec、圧子の種類:三角すい圧子115である。試験力は、圧子の押し込み深さが、測定対象物の厚みの1/10以下なるよう調整した。つまり、ゴム基材の厚みが2.0mmの時は、押し込み深さが0.2mm以下となるよう、試験力を調整した。樹脂塗膜の厚みが13μmの時は、押し込み深さが1.3μm以下となるよう、試験力を調整した。なお、ゴム基材の弾性率は、前記平板状ゴム基材の表面に三角すい圧子を押し込んで求めた。樹脂塗膜が形成された面の感圧導電ゴム部材の弾性率は、前記感圧導電ゴム部材の樹脂塗膜の表面に三角すい圧子を押し込んで求めた。結果を表1に示す。
<4. Measurement of elastic modulus>
For the measurement of the elastic modulus, “Shimadzu Dynamic Ultra Hardness Tester” DUH-W201S manufactured by Shimadzu Corporation was used. The measurement conditions are: test mode: load-unload test, load speed: 0.28 mN / sec, holding time: 5 sec, indenter type: triangular pan indenter 115. The test force was adjusted so that the indentation depth of the indenter was 1/10 or less of the thickness of the measurement object. That is, when the thickness of the rubber base material was 2.0 mm, the test force was adjusted so that the indentation depth was 0.2 mm or less. When the thickness of the resin coating film was 13 μm, the test force was adjusted so that the indentation depth was 1.3 μm or less. The elastic modulus of the rubber base material was obtained by pressing a triangular pan indenter into the surface of the flat rubber base material. The elastic modulus of the pressure-sensitive conductive rubber member on the surface on which the resin coating film was formed was determined by pressing a triangular pan indenter into the surface of the resin coating film of the pressure-sensitive conductive rubber member. The results are shown in Table 1.

<5.感圧センサとしての荷重検知性能>
得られた感圧導電ゴム部材を縦10mm、横10mmに裁断した角形シートを、23℃、60%RH(N/N)環境に24時間以上放置した後、図4に示すように、上記感圧導電ゴム部材の樹脂塗膜がフレキシブルプリント基板櫛型電極(電極幅1mm、電極間隔0.5mm)と対向するように配置して感圧センサとし、角形シート上面全体に荷重が加わるようにした。
<5. Load detection performance as a pressure sensor>
The obtained pressure-sensitive conductive rubber member was cut into 10 mm length and 10 mm width, and the square sheet was left in a 23 ° C., 60% RH (N / N) environment for 24 hours or more, and as shown in FIG. The pressure-sensitive rubber member resin coating was placed so as to face the flexible printed circuit board comb electrode (electrode width: 1 mm, electrode spacing: 0.5 mm) to form a pressure-sensitive sensor so that a load was applied to the entire top surface of the square sheet. .

この状態で櫛型電極に直流電圧5Vを印加し、荷重測定器にて感圧センサの厚さ方向に5mm/minの速度で0〜50kPaの範囲で、負荷、除荷を行ない、櫛型電極に直列接続した1kΩの抵抗体にかかる電圧を検出測定した。各荷重における電圧値から、電気抵抗値を算出した。結果を図5に示す。   In this state, a DC voltage of 5 V is applied to the comb-shaped electrode, and a load measuring device is loaded and unloaded at a speed of 5 mm / min in the thickness direction of the pressure-sensitive sensor within a range of 0 to 50 kPa. The voltage applied to a 1 kΩ resistor connected in series to the was detected and measured. The electrical resistance value was calculated from the voltage value at each load. The results are shown in FIG.

1)ヒステリシスロス
各荷重における、負荷時の電気抵抗値(LogR負荷)と除荷時の電気抵抗値(LogR除荷)の差の絶対値を求め、これの最大値をヒステリシスロスの指標とし、以下の基準で表示した。結果を表1に示す。
◎:|最大値Δ(LogR負荷−LogR除荷)|≦0.1
○:0.1<|最大値Δ(LogR負荷−LogR除荷)|≦0.3
△:0.3<|最大値Δ(LogR負荷−LogR除荷)|≦0.5
×:0.5<|最大値Δ(LogR負荷−LogR除荷)| 。
1) Hysteresis loss For each load, obtain the absolute value of the difference between the electrical resistance value at the time of loading (LogR load ) and the electrical resistance value at the time of unloading (LogR unloading ), and use this maximum value as an index of hysteresis loss. Displayed according to the following criteria. The results are shown in Table 1.
A: | Maximum value Δ (LogR load− LogR unloading ) | ≦ 0.1
○: 0.1 <| maximum value Δ (LogR load− LogR unloading ) | ≦ 0.3
Δ: 0.3 <| maximum value Δ (LogR load− LogR unloading ) | ≦ 0.5
×: 0.5 <| maximum value Δ (LogR load− LogR unloading ) |

2)再現性
上記負荷−除荷試験を100回繰り返し行ない、繰り返し負荷−除荷における検出抵抗値の再現性を評価した。負荷時の電気抵抗値(LogR負荷)の各荷重における100回測定した値の標準偏差(3σ)、及び、除荷時の電気抵抗値(LogR除荷)の各荷重における100回測定した値の標準偏差(3σ)を求め、これの最大値(3σmax)を再現性の指標とした。結果を表1に示す。
◎:3σmax≦0.3
○:0.3<3σmax≦0.4
△:0.4<3σmax≦0.5
×:0.5<3σmax
2) Reproducibility The load-unloading test was repeated 100 times, and the reproducibility of the detected resistance value in repeated load-unloading was evaluated. The standard deviation (3σ) of the value measured 100 times at each load of the electrical resistance value at the time of loading (LogR load ) and the value measured 100 times at each load of the electrical resistance value at the time of unloading (LogR unloading ) A standard deviation (3σ) was determined, and the maximum value (3σ max ) was used as an index of reproducibility. The results are shown in Table 1.
A: 3σ max ≦ 0.3
○: 0.3 <3σ max ≦ 0.4
Δ: 0.4 <3σ max ≦ 0.5
X: 0.5 <3σ max .

3)ドリフト
荷重測定器にて感圧センサの厚さ方向に5mm/minの速度で15kPaまで負荷を行ない、この一定荷重15kPaを保持したまま、櫛型電極に直列接続した1kΩの抵抗体にかかる電圧を10時間検出測定した。各時間における電圧値から、電気抵抗値を算出した。初期の電気抵抗値(LogRドリフト初期)と10時間後の電気抵抗値(LogRドリフト10時間後)の差の絶対値を求め、定荷重時の出力変動の指標として以下の基準で表示した。結果を表1に示す。
◎:|Δ(LogRドリフト初期−LogRドリフト10時間後)|≦0.1
○:0.1<|Δ(LogRドリフト初期−LogRドリフト10時間後)|≦0.3
△:0.3<|Δ(LogRドリフト初期−LogRドリフト10時間後)|≦0.5
×:0.5<|Δ(LogRドリフト初期−LogRドリフト10時間後)| 。
3) Drift Load is applied to the pressure sensor in the thickness direction of the pressure sensor at a speed of 5 mm / min up to 15 kPa, and is applied to a 1 kΩ resistor connected in series to the comb electrode while maintaining this constant load of 15 kPa. The voltage was detected and measured for 10 hours. The electric resistance value was calculated from the voltage value at each time. The absolute value of the difference between the initial electrical resistance value (the initial LogR drift ) and the electrical resistance value after 10 hours ( after 10 hours of LogR drift ) was obtained and displayed as an index of output fluctuation at constant load according to the following criteria. The results are shown in Table 1.
|: | Δ (LogR drift initial stage—LogR drift 10 hours later ) | ≦ 0.1
○: 0.1 <| Δ (LogR drift initial stage—LogR drift 10 hours later ) | ≦ 0.3
Δ: 0.3 <| Δ (LogR drift initial stage−LogR drift 10 hours later ) | ≦ 0.5
×: 0.5 <| Δ (LogR drift initial stage−LogR drift 10 hours later ) |

また感圧センサとしての荷重検知性能の総合判定は下記基準にて行った。結果を表1に示す。
最良:ヒステリシスロス、再現性、ドリフトの各評価において、◎のみである。
良好:ヒステリシスロス、再現性、ドリフトの各評価において、○を含む。(△以下は含まない。)
可:ヒステリシスロス、再現性、ドリフトの各評価において、△を含む。(×以下は含まない。)
不適切:ヒステリシスロス、再現性、ドリフトの各評価において、×を含む。
Moreover, the comprehensive judgment of the load detection performance as a pressure sensor was performed on the following reference | standard. The results are shown in Table 1.
Best: In each evaluation of hysteresis loss, reproducibility, and drift, only ◎.
Good: In each evaluation of hysteresis loss, reproducibility, and drift, ○ is included. (△ and below are not included.)
Yes: In each evaluation of hysteresis loss, reproducibility, and drift, Δ is included. (X and below are not included.)
Inappropriate: In each evaluation of hysteresis loss, reproducibility, and drift, x is included.

(実施例2)
以下の組成で未加硫ゴムコンパウンドを作製した以外は、実施例1と同様にして感圧導電ゴム部材を得た。また実施例1と同様にして各種評価を実施した。結果を表1に示す。
・エチレンプロピレンゴム(住友化学(株)製、商品名「エスプレン600F(油展量100phr)」)200質量部、
・カーボンブラック「シーストTA」10質量部、
・ジクミルパーオキサイド(日本油脂(株)製、商品名「パークミルD−40MB」)8質量部、
・トリアリルイソシアヌレート(日本化成(株)製、商品名「TAIC−WH60」)3質量部。
(Example 2)
A pressure-sensitive conductive rubber member was obtained in the same manner as in Example 1 except that an unvulcanized rubber compound was prepared with the following composition. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
・ 200 parts by mass of ethylene propylene rubber (manufactured by Sumitomo Chemical Co., Ltd., trade name “Esprene 600F (oil expansion amount 100 phr)”),
・ 10 parts by mass of carbon black “Seast TA”
・ 8 parts by mass of dicumyl peroxide (Nippon Yushi Co., Ltd., trade name “Park Mill D-40MB”),
Trial isocyanurate (Nihon Kasei Co., Ltd., trade name “TAIC-WH60”) 3 parts by mass.

(実施例3)
以下の材料を配合して未加硫ゴムコンパウンドを作製した。
・ブタジエンゴム「BR150」70質量部、
・イソプレンゴム「IR2200」30質量部、
・酸化亜鉛「亜鉛華2種」5質量部、
・カーボンブラック(旭カーボン(株)製、商品名「旭F−200」)50質量部、
・ジクミルパーオキサイド「パークミルD−40MB」3質量部。
Example 3
The following materials were blended to prepare an unvulcanized rubber compound.
・ 70 parts by mass of butadiene rubber “BR150”,
-Isoprene rubber "IR2200" 30 parts by mass,
-5 parts by mass of zinc oxide "Zinc flower 2 types"
-50 parts by mass of carbon black (manufactured by Asahi Carbon Co., Ltd., trade name "Asahi F-200")
-3 parts by mass of dicumyl peroxide “Park Mill D-40MB”.

また、溶剤MIBKの配合部数を235質量部として、固形分37質量%の塗料組成物を作製した。それ以外は、実施例1と同様にして膜厚38μmの樹脂塗膜が形成された感圧導電ゴム部材を得た。また実施例1と同様にして各種評価を実施した。結果を表1に示す。   In addition, a coating composition having a solid content of 37% by mass was prepared with the blending part of the solvent MIBK being 235 parts by mass. Otherwise, a pressure-sensitive conductive rubber member having a 38 μm-thick resin coating film was obtained in the same manner as in Example 1. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
溶剤MIBKの配合部数を173質量部として、固形分43質量%の塗料組成物を作製した以外は、実施例1と同様にして膜厚63μmの樹脂塗膜が形成された感圧導電ゴム部材を得た。また実施例1と同様にして各種評価を実施した。結果を表1に示す。
Example 4
A pressure-sensitive conductive rubber member having a resin coating film with a film thickness of 63 μm formed in the same manner as in Example 1 except that a coating composition having a solid content of 43% by mass was prepared by setting the blending part of the solvent MIBK to 173 parts by mass. Obtained. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
以下の材料を配合して固形分37質量%の塗料組成物を作製した。
・ポリオール「プラクセルDC2016」100質量部、
・イソホロンジイソシアネート系硬化剤「ベスタナートB1370」45質量部、
・ヘキサメチレンジイソシアネート系硬化剤「デュラネートTPA−B80E」29質量部(NCO/OH比=1.2)、
・MIBK244質量部。
それ以外は、実施例1と同様にして膜厚38μmの樹脂塗膜が形成された感圧導電ゴム部材を得た。また実施例1と同様にして各種評価を実施した。結果を表1に示す。
(Example 5)
The following materials were blended to prepare a coating composition having a solid content of 37% by mass.
-100 parts by weight of polyol "Placcel DC2016"
-45 parts by mass of isophorone diisocyanate curing agent "Vestanat B1370"
-29 parts by mass of hexamethylene diisocyanate curing agent “Duranate TPA-B80E” (NCO / OH ratio = 1.2),
-MIBK244 mass part.
Otherwise, a pressure-sensitive conductive rubber member having a 38 μm-thick resin coating film was obtained in the same manner as in Example 1. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
以下の材料を配合して未加硫ゴムコンパウンドを作製した。
・エチレンプロピレンゴム「エスプレン600F」200質量部、
・カーボンブラック「シーストTA」5質量部、
・ジクミルパーオキサイド「パークミルD−40MB」5質量部、
・トリアリルイソシアヌレート「TAIC−WH60」2質量部。
(Example 6)
The following materials were blended to prepare an unvulcanized rubber compound.
-200 parts by mass of ethylene propylene rubber "Esprene 600F"
・ 5 parts by mass of carbon black “Seast TA”
-5 parts by mass of dicumyl peroxide "Park Mill D-40MB"
-2 parts by mass of triallyl isocyanurate “TAIC-WH60”.

また、以下の材料を配合して固形分20質量%の塗料組成物を作製した。
・ポリオール「プラクセルDC2016」100質量部、
・ヘキサメチレンジイソシアネート系硬化剤「デュラネートTPA−B80E」48質量部(NCO/OH比=1.0)、
・MIBK612質量部。
それ以外は、実施例1と同様にして膜厚3μmの樹脂塗膜が形成された感圧導電ゴム部材を得た。また実施例1と同様にして各種評価を実施した。結果を表1に示す。
Moreover, the following materials were mix | blended and the coating composition with a solid content of 20 mass% was produced.
-100 parts by weight of polyol "Placcel DC2016"
-48 parts by mass of hexamethylene diisocyanate curing agent “Duranate TPA-B80E” (NCO / OH ratio = 1.0),
-MIBK612 mass part.
Other than that was carried out similarly to Example 1, and obtained the pressure-sensitive conductive rubber member in which the resin coating film with a film thickness of 3 micrometers was formed. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例7)
以下の材料を配合して未加硫ゴムコンパウンドを作製した。
・ブタジエンゴム「BR150」80質量部、
・ハイスチレンゴム(JSR(株)製、商品名「JSR0061」)20質量部、
・酸化亜鉛「亜鉛華2種」5質量部、
・カーボンブラック「旭F−200」50質量部、
・ジクミルパーオキサイド「パークミルD−40MB」5質量部。
(Example 7)
The following materials were blended to prepare an unvulcanized rubber compound.
・ 80 parts by mass of butadiene rubber “BR150”,
・ 20 parts by mass of high styrene rubber (manufactured by JSR Corporation, trade name “JSR0061”),
-5 parts by mass of zinc oxide "Zinc flower 2 types"
・ 50 parts by mass of carbon black “Asahi F-200”,
-5 mass parts of dicumyl peroxide "Park mill D-40MB".

また、以下の材料を配合して固形分37質量%の塗料組成物を作製した。
・ポリオール「プラクセルDC2016」100質量部、
・イソホロンジイソシアネート系硬化剤「ベスタナートB1370」45質量部、
・ヘキサメチレンジイソシアネート系硬化剤「デュラネートTPA−B80E」29質量部(NCO/OH比=1.2)、
・MIBK244質量部。
それ以外は、実施例1と同様にして膜厚38μmの樹脂塗膜が形成された感圧導電ゴム部材を得た。また実施例1と同様にして各種評価を実施した。結果を表1に示す。
Further, the following materials were blended to prepare a coating composition having a solid content of 37% by mass.
-100 parts by weight of polyol "Placcel DC2016"
-45 parts by mass of isophorone diisocyanate curing agent "Vestanat B1370"
-29 parts by mass of hexamethylene diisocyanate curing agent “Duranate TPA-B80E” (NCO / OH ratio = 1.2),
-MIBK244 mass part.
Otherwise, a pressure-sensitive conductive rubber member having a 38 μm-thick resin coating film was obtained in the same manner as in Example 1. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例8)
以下の材料を配合して未加硫ゴムコンパウンドを作製した。
・ブタジエンゴム「BR150」80質量部、
・ハイスチレンゴム「JSR0061」20質量部、
・酸化亜鉛「亜鉛華2種」5部、
・カーボンブラック「旭F−200」50質量部、
・ジクミルパーオキサイド「パークミルD−40MB」5質量部。
(Example 8)
The following materials were blended to prepare an unvulcanized rubber compound.
・ 80 parts by mass of butadiene rubber “BR150”,
・ 20 parts by mass of high styrene rubber “JSR0061”
・ Zinc oxide "Zinc Hana 2 types" 5 parts,
・ 50 parts by mass of carbon black “Asahi F-200”,
-5 mass parts of dicumyl peroxide "Park mill D-40MB".

また、以下の材料を配合して固形分20質量%の塗料組成物を作製した。
・ポリオール「プラクセルDC2016」100質量部、
・ヘキサメチレンジイソシアネート系硬化剤「デュラネートTPA−B80E」48質量部(NCO/OH比=1.0)、
・MIBK612質量部。
それ以外は、実施例1と同様にして膜厚3μmの樹脂塗膜が形成された感圧導電ゴム部材を得た。また実施例1と同様にして各種評価を実施した。結果を表1に示す。
Moreover, the following materials were mix | blended and the coating composition with a solid content of 20 mass% was produced.
-100 parts by weight of polyol "Placcel DC2016"
-48 parts by mass of hexamethylene diisocyanate curing agent “Duranate TPA-B80E” (NCO / OH ratio = 1.0),
-MIBK612 mass part.
Other than that was carried out similarly to Example 1, and obtained the pressure-sensitive conductive rubber member in which the resin coating film with a film thickness of 3 micrometers was formed. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例9)
以下の材料を配合して未加硫ゴムコンパウンドを作製した。
・エチレンプロピレンゴム「エスプレン600F」200質量部、
・カーボンブラック「シーストTA」5質量部、
・ジクミルパーオキサイド「パークミルD−40MB」5質量部、
・トリアリルイソシアヌレート「TAIC−WH60」2質量部。
Example 9
The following materials were blended to prepare an unvulcanized rubber compound.
-200 parts by mass of ethylene propylene rubber "Esprene 600F"
・ 5 parts by mass of carbon black “Seast TA”
-5 parts by mass of dicumyl peroxide "Park Mill D-40MB"
-2 parts by mass of triallyl isocyanurate “TAIC-WH60”.

また、以下の材料を配合して固形分34質量%の塗料組成物を作製した。
・ポリオール「プラクセルDC2016」100質量部、
・イソホロンジイソシアネート系硬化剤「ベスタナートB1370」45質量部、
・ヘキサメチレンジイソシアネート系硬化剤「デュラネートTPA−B80E」29質量部(NCO/OH比=1.2)、
・MIBK286質量部。
それ以外は、実施例1と同様にして膜厚23μmの樹脂塗膜が形成された感圧導電ゴム部材を得た。また実施例1と同様にして各種評価を実施した。結果を表1に示す。
Moreover, the following materials were mix | blended and the coating composition with a solid content of 34 mass% was produced.
-100 parts by weight of polyol "Placcel DC2016"
-45 parts by mass of isophorone diisocyanate curing agent "Vestanat B1370"
-29 parts by mass of hexamethylene diisocyanate curing agent “Duranate TPA-B80E” (NCO / OH ratio = 1.2),
-MIBK286 mass part.
Otherwise, a pressure-sensitive conductive rubber member having a resin coating film having a thickness of 23 μm was obtained in the same manner as in Example 1. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
以下の材料を配合して未加硫ゴムコンパウンドを作製した。
・エチレンプロピレンゴム「エスプレン600F」200質量部、
・カーボンブラック「シーストTA」5質量部、
・ジクミルパーオキサイド「パークミルD−40MB」5質量部、
・トリアリルイソシアヌレート「TAIC−WH60」2質量部。
(Comparative Example 1)
The following materials were blended to prepare an unvulcanized rubber compound.
-200 parts by mass of ethylene propylene rubber "Esprene 600F"
・ 5 parts by mass of carbon black “Seast TA”
-5 parts by mass of dicumyl peroxide "Park Mill D-40MB"
-2 parts by mass of triallyl isocyanurate “TAIC-WH60”.

また、以下の材料を配合して固形分37質量%の塗料組成物を作製した。
・ポリオール「プラクセルDC2016」100質量部、
・イソホロンジイソシアネート系硬化剤「ベスタナートB1370」45質量部、
・ヘキサメチレンジイソシアネート系硬化剤「デュラネートTPA−B80E」29質量部(NCO/OH比=1.2)、
・MIBK244質量部。
それ以外は、実施例1と同様にして膜厚38μmの樹脂塗膜が形成された感圧導電ゴム部材を得た。また実施例1と同様にして各種評価を実施した。結果を表1に示す。
Further, the following materials were blended to prepare a coating composition having a solid content of 37% by mass.
-100 parts by weight of polyol "Placcel DC2016"
-45 parts by mass of isophorone diisocyanate curing agent "Vestanat B1370"
-29 parts by mass of hexamethylene diisocyanate curing agent “Duranate TPA-B80E” (NCO / OH ratio = 1.2),
-MIBK244 mass part.
Otherwise, a pressure-sensitive conductive rubber member having a 38 μm-thick resin coating film was obtained in the same manner as in Example 1. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
基材としてポリエステルフィルム(東レフィルム加工(株)製、商品名「タフトップ#188 B2T0」)を用いた。また、以下の材料を配合して固形分20質量%の塗料組成物を作製した。
・ポリオール「プラクセルDC2016」100質量部、
・ヘキサメチレンジイソシアネート系硬化剤「デュラネートTPA−B80E」48質量部(NCO/OH比=1.0)、
・MIBK612質量部。
それ以外は、実施例1と同様にして膜厚3μmの樹脂塗膜が形成された感圧導電ゴム部材を得た。また実施例1と同様にして各種評価を実施した。結果を表1に示す。
(Comparative Example 2)
A polyester film (trade name “Tough Top # 188 B2T0” manufactured by Toray Film Processing Co., Ltd.) was used as the substrate. Moreover, the following materials were mix | blended and the coating composition with a solid content of 20 mass% was produced.
-100 parts by weight of polyol "Placcel DC2016"
-48 parts by mass of hexamethylene diisocyanate curing agent “Duranate TPA-B80E” (NCO / OH ratio = 1.0),
-MIBK612 mass part.
Other than that was carried out similarly to Example 1, and obtained the pressure-sensitive conductive rubber member in which the resin coating film with a film thickness of 3 micrometers was formed. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
以下の材料を2本ロールにて20分間混合して未加硫ゴムコンパウンドを作製した。
・シリコーンゴム(信越シリコーン(株)製、商品名「KE−650U」)100質量部、
・中空状弾性マイクロスフェアー(松本油脂製薬(株)製、商品名「M600」)50質量部、
・微小球状炭素粒子(日本カーボン(株)製、商品名「カーボンマイクロビーズICB0510」)50質量部、
・ジクミルパーオキサイド「パークミルD−40MB」2質量部。
(Comparative Example 3)
The following materials were mixed with two rolls for 20 minutes to produce an unvulcanized rubber compound.
・ 100 parts by mass of silicone rubber (manufactured by Shin-Etsu Silicone Co., Ltd., trade name “KE-650U”),
-50 parts by mass of hollow elastic microsphere (Matsumoto Yushi Seiyaku Co., Ltd., trade name "M600"),
-50 parts by mass of fine spherical carbon particles (manufactured by Nippon Carbon Co., Ltd., trade name “carbon microbead ICB0510”),
-2 parts by mass of dicumyl peroxide “Park Mill D-40MB”.

次に、上記未加硫物を予め170℃に加熱した縦150mm、横150mm、深さ2.0mmの金型内に充填し、170℃、100kgfにて15分間プレス加硫を行い、感圧導電ゴム部材を得た。この感圧導電ゴム部材を用いて実施例1と同様にして各種評価を実施した。結果を表1に示す。   Next, the unvulcanized product was filled in a 150 mm long, 150 mm wide, 2.0 mm deep mold preheated to 170 ° C., and press vulcanized at 170 ° C. and 100 kgf for 15 minutes to obtain pressure-sensitive pressure. A conductive rubber member was obtained. Various evaluations were performed in the same manner as in Example 1 using this pressure-sensitive conductive rubber member. The results are shown in Table 1.

実施例1、2及び3においては、ヒステリシスロス、再現性、ドリフトに優れ、本感圧導電ゴム部材を適用することにより、好適な感圧センサを提供できることがわかる。実施例4及び5においては、感圧導電ゴム部材の弾性率の高さに起因し、電極との接触状態の均一性に少し劣り、負荷−除荷試験を繰り返し行なった場合の再現性に劣る傾向にあるが、ヒステリシスロス、ドリフトは優れ、感圧センサとしては良好であることがわかる。   In Examples 1, 2, and 3, it can be seen that excellent pressure loss, reproducibility, and drift can be provided, and a suitable pressure-sensitive sensor can be provided by applying this pressure-sensitive conductive rubber member. In Examples 4 and 5, due to the high elastic modulus of the pressure-sensitive conductive rubber member, the uniformity of the contact state with the electrode is slightly inferior, and the reproducibility when the load-unloading test is repeated is inferior. Although there is a tendency, hysteresis loss and drift are excellent, and it can be seen that the pressure sensor is good.

実施例6においては、感圧導電ゴム部材の弾性率の低さに起因し、粘着性を有し、検知抵抗値にヒステリシスロスが劣る傾向にある。また、感圧導電ゴム部材の弾性率の低さに起因し、一定の力がセンサに加えられている時に徐々に変形量が増大し、出力が経時と共に変化する傾向にあるが、感圧導電ゴム部材が適度な柔軟性を有するために、負荷−除荷試験を繰り返し行なった場合においても、出力の再現性に優れ、感圧センサとして適用可能である。   In Example 6, due to the low elastic modulus of the pressure-sensitive conductive rubber member, the pressure-sensitive conductive rubber member has adhesiveness, and the hysteresis loss tends to be inferior to the detection resistance value. Also, due to the low elastic modulus of the pressure-sensitive conductive rubber member, the amount of deformation gradually increases when a constant force is applied to the sensor, and the output tends to change over time. Since the rubber member has an appropriate flexibility, even when the load-unloading test is repeated, the output is excellent in output reproducibility and can be applied as a pressure-sensitive sensor.

実施例7においては、感圧導電ゴム部材の弾性率の高さに起因し、電極との接触状態の均一性に少し劣り、負荷−除荷試験を繰り返し行なった場合の再現性に劣る傾向にある。また、ゴム基材の弾性率の高さ及び、感圧導電ゴム部材の弾性率の高さに起因し、一定の力がセンサに加えられている時に接触状態が均一に保たれ難くなり、出力が経時と共に変化する傾向にあるが、感圧導電ゴム部材としては適度な柔軟性を有するために、ヒステリシスロスは優れ、感圧センサとして適用可能である。   In Example 7, due to the high elastic modulus of the pressure-sensitive conductive rubber member, the uniformity of the contact state with the electrode is slightly inferior, and the reproducibility tends to be inferior when the load-unloading test is repeated. is there. Also, due to the high elastic modulus of the rubber base material and the high elastic modulus of the pressure-sensitive conductive rubber member, it is difficult to maintain a uniform contact state when a certain force is applied to the sensor, and the output However, since the pressure-sensitive conductive rubber member has an appropriate flexibility, the hysteresis loss is excellent and can be applied as a pressure-sensitive sensor.

実施例8においては、弾性率の比E2/E1が小さい事、且つ、感圧導電ゴム部材の弾性率が比較的低い事に起因し、一定の力がセンサに加えられている時に徐々に変形量が増大し、出力が経時と共に変化する傾向にある。また、感圧導電ゴム部材の粘着性に起因して検知抵抗値にヒステリシスロスが劣る傾向にあるが、感圧導電ゴム部材が適度な柔軟性を有するために、負荷−除荷試験を繰り返し行なった場合においても、出力の再現性に優れ、感圧センサとして適用可能である。   In Example 8, since the elastic modulus ratio E2 / E1 is small and the elastic modulus of the pressure-sensitive conductive rubber member is relatively low, it is gradually deformed when a certain force is applied to the sensor. The amount increases and the output tends to change over time. In addition, the hysteresis loss tends to be inferior in the detection resistance value due to the adhesiveness of the pressure-sensitive conductive rubber member. However, since the pressure-sensitive conductive rubber member has appropriate flexibility, the load-unloading test is repeated. Even in such a case, it is excellent in output reproducibility and can be applied as a pressure-sensitive sensor.

実施例9においては、弾性率の比E2/E1が大きい事に起因し、ゴム弾性に劣り、電極との接触状態の均一性に少し劣り、負荷−除荷試験を繰り返し行なった場合の再現性に劣る傾向にある。また、一定の力がセンサに加えられている時に接触状態が均一に保たれ難くなり、出力が経時と共に変化する傾向にあるが、感圧導電ゴム部材としては適度な柔軟性を有するために、ヒステリシスロスは優れ、感圧センサとして適用可能である。   In Example 9, due to the large elastic modulus ratio E2 / E1, the rubber elasticity is inferior, the uniformity of the contact state with the electrode is slightly inferior, and the reproducibility when the load-unloading test is repeatedly performed. Tend to be inferior. In addition, when a certain force is applied to the sensor, it is difficult to maintain a uniform contact state, and the output tends to change with time, but as a pressure-sensitive conductive rubber member, it has moderate flexibility, Hysteresis loss is excellent, and it can be applied as a pressure-sensitive sensor.

比較例1においては、弾性率の比E2/E1が大きい事に起因し、ゴム弾性に劣り、電極との接触状態の均一性に劣り、負荷−除荷試験を繰り返し行なった場合の再現性に劣ってしまっている。また、一定の力がセンサに加えられている時に接触状態が均一に保たれ難くなり、出力が経時と共に大きく変化しており、感圧センサとしては適さないことがわかる。   In Comparative Example 1, due to the large elastic modulus ratio E2 / E1, the rubber elasticity is inferior, the contact state with the electrode is inferior in uniformity, and the reproducibility when the load-unloading test is repeatedly performed. It is inferior. In addition, it is difficult to maintain a uniform contact state when a constant force is applied to the sensor, and the output changes greatly with time, indicating that it is not suitable as a pressure-sensitive sensor.

比較例2においては、樹脂塗膜の基材として柔軟性の低い樹脂を用いているために、電極との接触状態の均一性に劣り、負荷−除荷試験を繰り返し行なった場合の再現性に劣ってしまっている。また、一定の力がセンサに加えられている時に接触状態が均一に保たれ難くなり、出力が経時と共に大きく変化しており、感圧センサとしては適さないことがわかる。   In Comparative Example 2, since a resin with low flexibility is used as the base material of the resin coating film, the uniformity of the contact state with the electrode is inferior, and the reproducibility when the load-unloading test is repeatedly performed. It is inferior. In addition, it is difficult to maintain a uniform contact state when a constant force is applied to the sensor, and the output changes greatly with time, indicating that it is not suitable as a pressure-sensitive sensor.

比較例3においては、感圧導電ゴム部材弾性率の低さに由来し、一定の力がセンサに加えられている時に徐々に変形量が増大し、出力が経時と共に極めて大きく変化している。また、感圧導電ゴム部材の粘着性に起因し、強いヒステリシスロスが生じており、感圧センサとしては適さないことがわかる。   In Comparative Example 3, the pressure-sensitive conductive rubber member has a low elastic modulus. When a constant force is applied to the sensor, the amount of deformation gradually increases, and the output changes greatly with time. It can also be seen that a strong hysteresis loss occurs due to the adhesiveness of the pressure-sensitive conductive rubber member, which is not suitable as a pressure-sensitive sensor.

本発明の感圧導電ゴム部材は、例えば所望の形状に成形し櫛形の電極に当接させ、部材に作用する加圧力の大きさ、分布状態を測定するセンサとして好適に使用することができる。   The pressure-sensitive conductive rubber member of the present invention can be suitably used as a sensor for measuring the magnitude and distribution state of the applied pressure acting on the member by forming the pressure-sensitive conductive rubber member of the present invention into a desired shape and bringing it into contact with a comb-shaped electrode, for example.

1a 感圧導電ゴム部材
1a−1 ゴム基材
1a−2 樹脂塗膜
1b 感圧導電ゴム部材
1b−1 ゴム基材
1b−2 樹脂塗膜
1c 感圧導電ゴム部材
1c−1 ゴム基材
1c−2 樹脂塗膜
2a 櫛型電極
2a−1 配線
2a−2 基板
2b 角板型電極
2b−1 配線
2b−2 基板
3a 感圧センサ
3b 感圧センサ
4−1 櫛型電極
4−2 感圧導電ゴム部材
4−3 絶縁性シート
4−4 電圧測定器
4−5 1kΩ抵抗体
4−6 直流電圧発生器5V
4−7 荷重測定器
1a Pressure-sensitive conductive rubber member 1a-1 Rubber substrate 1a-2 Resin coating 1b Pressure-sensitive conductive rubber member 1b-1 Rubber substrate 1b-2 Resin coating 1c Pressure-sensitive conductive rubber member 1c-1 Rubber substrate 1c- 2 Resin coating 2a Comb electrode 2a-1 Wiring 2a-2 Substrate 2b Square plate electrode 2b-1 Wiring 2b-2 Substrate 3a Pressure sensor 3b Pressure sensor 4-1 Comb electrode 4-2 Pressure sensitive conductive rubber Member 4-3 Insulating sheet 4-4 Voltage measuring instrument 4-5 1 kΩ resistor 4-6 DC voltage generator 5V
4-7 Load measuring instrument

Claims (4)

荷重の変化に応じた感圧導電ゴム部材と電極との導通抵抗値の変化を検出することによって、荷重を感知する感圧センサにおいて、該感圧センサは、平板状のゴム基材と導電剤を含有する樹脂塗膜とを含む少なくとも二層で形成される感圧導電ゴム部材と、該感圧導電ゴム部材の樹脂塗膜面に対向接触する電極を有し、ダイナミック超微小硬度計にて測定される弾性率のうち、前記ゴム基材の弾性率をE1、前記樹脂塗膜が形成された面の感圧導電ゴム部材の弾性率をE2としたとき、E1が0.5MPa以上、30MPa以下、E2が10MPa以上、700MPa以下であり、且つ、弾性率E1と弾性率E2の比が、1<E2/E1<1,000であることを特徴とする感圧センサ。 By detecting the change in the conduction resistance of the pressure sensitive conductive rubber member and the electrode in response to changes in load, Oite pressure-sensitive sensor that senses a load, sensitive pressure sensors, flat rubber substrate a and the pressure sensitive conductive rubber members that will be formed by at least two layers comprising a resin coating containing a conductive agent, an electrode facing contact with the resin coated surface of the photosensitive-pressure conductive rubber member, a dynamic ultra-micro Of the elastic modulus measured by a hardness meter, when the elastic modulus of the rubber substrate is E1, and the elastic modulus of the pressure-sensitive conductive rubber member on the surface on which the resin coating film is formed is E2, E1 is 0.00. A pressure-sensitive sensor , wherein 5 MPa or more and 30 MPa or less , E2 is 10 MPa or more and 700 MPa or less, and a ratio of elastic modulus E1 and elastic modulus E2 is 1 <E2 / E1 <1,000 . 前記弾性率E2が、50MPa以上、600MPa以下である請求項1に記載の感圧センサ。 The pressure-sensitive sensor according to claim 1, wherein the elastic modulus E2 is 50 MPa or more and 600 MPa or less . 前記弾性率E1が、1.0MPa以上、20MPa以下である請求項1または2に記載の感圧センサ。 The pressure-sensitive sensor according to claim 1 or 2, wherein the elastic modulus E1 is 1.0 MPa or more and 20 MPa or less . 求項1〜3のいずれかの一項に記載の感圧センサであって、前記電極がフレキシブルプリント基板であることを特徴とする感圧センサ。 A pressure sensor according to one of either Motomeko 1-3, the pressure-sensitive sensor, wherein the electrode is a flexible printed circuit board.
JP2011004096A 2011-01-12 2011-01-12 Pressure sensor Active JP5636290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004096A JP5636290B2 (en) 2011-01-12 2011-01-12 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004096A JP5636290B2 (en) 2011-01-12 2011-01-12 Pressure sensor

Publications (2)

Publication Number Publication Date
JP2012145447A JP2012145447A (en) 2012-08-02
JP5636290B2 true JP5636290B2 (en) 2014-12-03

Family

ID=46789150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004096A Active JP5636290B2 (en) 2011-01-12 2011-01-12 Pressure sensor

Country Status (1)

Country Link
JP (1) JP5636290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222702A (en) * 2015-11-14 2016-01-06 际华三五一五皮革皮鞋有限公司 Three dimensionality resistance-type curved surface sensor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787537B2 (en) * 2011-02-07 2015-09-30 キヤノン株式会社 Gripping device and robot device
KR101390708B1 (en) 2012-10-17 2014-05-07 한국표준과학연구원 Pressure sensing device, position detection device using electric conductive rubber and diode and method for controlling thereof
JP6424408B2 (en) 2014-02-06 2018-11-21 国立研究開発法人科学技術振興機構 Pressure sensor sheet, pressure sensor, and method of manufacturing pressure sensor sheet
JP6585907B2 (en) * 2015-03-17 2019-10-02 ローム株式会社 Electrostatic switch controller and control method therefor, door opening and closing device, and electronic key system
WO2016159245A1 (en) * 2015-03-31 2016-10-06 株式会社NejiLaw Conduction-path-equipped member, method for patterning conduction path, and method for measuring changes in member
JP6864507B2 (en) * 2017-03-15 2021-04-28 Kyb株式会社 Seal condition detector
DE102017223195A1 (en) * 2017-12-19 2019-06-19 Contitech Vibration Control Gmbh Elastic bearing element
JP2019201949A (en) * 2018-05-24 2019-11-28 セイコーエプソン株式会社 Biological analysis device
JPWO2020195460A1 (en) * 2019-03-25 2020-10-01
CN110329660B (en) * 2019-04-11 2021-01-26 武汉大学 Printed sensor packaging device based on magnetic resonance wireless power supply technology and design method
WO2021075356A1 (en) * 2019-10-15 2021-04-22 パナソニックIpマネジメント株式会社 Load sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212825A (en) * 1985-07-10 1987-01-21 Shinei Kk Power sensitive sensor and its measuring instrument
JP3980300B2 (en) * 2000-09-07 2007-09-26 株式会社フジクラ Membrane pressure sensitive resistor and pressure sensor
JP2007132888A (en) * 2005-11-14 2007-05-31 Fujikura Ltd Pressure-sensitive sensor device
JP5662637B2 (en) * 2008-08-27 2015-02-04 住友理工株式会社 Load sensor
JP5448736B2 (en) * 2008-11-18 2014-03-19 東海ゴム工業株式会社 Conductive film, transducer including the same, and flexible wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222702A (en) * 2015-11-14 2016-01-06 际华三五一五皮革皮鞋有限公司 Three dimensionality resistance-type curved surface sensor

Also Published As

Publication number Publication date
JP2012145447A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5636290B2 (en) Pressure sensor
JP5496446B2 (en) Capacitive sensor
JP6696885B2 (en) Piezoelectric sensor
TWI622329B (en) Capacitance type sensor, sensor sheet, and manufacturing method of capacitance type sensor
JP5501064B2 (en) Elastic material for pressure measurement and pressure measuring device
JP4650538B2 (en) Capacitive sensor
Tolvanen et al. Hybrid foam pressure sensor utilizing piezoresistive and capacitive sensing mechanisms
WO2011065100A1 (en) Bend sensor and method of measuring deformed shape
JP5622405B2 (en) Capacitance-type pressure-sensitive sensor and manufacturing method thereof
TWI820217B (en) Electrostatic capacitance detection device that can calculate shear force
JP2012049140A (en) Interdigital force switch, and sensor
WO2015040801A1 (en) Conductive member for pressure-sensitive sensor, and pressure-sensitive sensor
JP5945469B2 (en) Pressure sensor
JP5654789B2 (en) Bending sensor and deformation shape measuring method
JP5662637B2 (en) Load sensor
JP2018054590A (en) Elastic capacitor and deformation sensor
JP5636300B2 (en) Pressure-sensitive conductive rubber member and pressure-sensitive sensor
JP5046386B2 (en) Roller manufacturing method
JP2015161572A (en) Conductive member for pressure sensor, and pressure sensor
JP5937449B2 (en) Conductive member for pressure sensor, pressure sensor using the same
JP5679799B2 (en) Charging roller and electrophotographic apparatus
JP5980993B1 (en) Pressure sensor
JP2012026991A (en) Resistance increase type sensor
JP5636302B2 (en) Conductive member for pressure sensor, pressure sensor using the same
JP2021196585A (en) Sponge roller and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5636290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250