JP5944810B2 - Active material and secondary battery using the same - Google Patents

Active material and secondary battery using the same Download PDF

Info

Publication number
JP5944810B2
JP5944810B2 JP2012238082A JP2012238082A JP5944810B2 JP 5944810 B2 JP5944810 B2 JP 5944810B2 JP 2012238082 A JP2012238082 A JP 2012238082A JP 2012238082 A JP2012238082 A JP 2012238082A JP 5944810 B2 JP5944810 B2 JP 5944810B2
Authority
JP
Japan
Prior art keywords
active material
crystal phase
secondary battery
negative electrode
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012238082A
Other languages
Japanese (ja)
Other versions
JP2014089836A (en
Inventor
王 雨叢
雨叢 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012238082A priority Critical patent/JP5944810B2/en
Publication of JP2014089836A publication Critical patent/JP2014089836A/en
Application granted granted Critical
Publication of JP5944810B2 publication Critical patent/JP5944810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、活物質およびそれを用いた二次電池に関する。   The present invention relates to an active material and a secondary battery using the active material.

近年、二次電池は、携帯電話やノートPCだけでなく、電気自動車用バッテリーとしてもその用途を広げており、さらに風力や太陽光発電の電圧安定化など大型用途での利用も期待されている。   In recent years, secondary batteries have been used not only for mobile phones and notebook PCs but also as batteries for electric vehicles, and are expected to be used for large-scale applications such as voltage stabilization for wind power and solar power generation. .

二次電池は、一般に正極と負極と電解液(質)とから構成されており、正極および負極には、電気伝導を担うイオンの挿入または吸着、および脱離が可能な活物質が含まれている。二次電池の開発においては、充放電条件および使用条件に応じて、容量が大きく、寿命が長い電極を製作可能な活物質を開発することが特に重要である。   A secondary battery is generally composed of a positive electrode, a negative electrode, and an electrolyte (quality), and the positive electrode and the negative electrode contain an active material capable of inserting or adsorbing and desorbing ions that conduct electric conduction. Yes. In the development of a secondary battery, it is particularly important to develop an active material capable of producing an electrode having a large capacity and a long life depending on charge / discharge conditions and use conditions.

従来より、負極用の活物質としては黒鉛やハードカーボンなどの炭素系材料や合金系材料が、正極用の活物質としては電気伝導を担うイオン(Li、Naなど)とCo、Niなどの複合酸化物が検討され、利用されてきた。また、近年では、レアメタルの資源リスクの増大により、低コストのFe、Mn、Ti、Pなどを主成分とする活物質が盛んに検討されている。中でもTiPは、電気伝導を担うイオンを構成元素として含まないにもかかわらず、活物質としての有用性が報告されている。 Conventionally, carbon-based materials and alloy materials such as graphite and hard carbon are used as the active material for the negative electrode, and ions (Li, Na, etc.) that are responsible for electrical conduction and Co, Ni, etc. are used as the active material for the positive electrode Oxides have been investigated and utilized. In recent years, active materials mainly composed of low-cost Fe, Mn, Ti, P, and the like have been actively studied due to an increase in the resource risk of rare metals. Among them, TiP 2 O 7 has been reported to be useful as an active material even though it does not contain ions responsible for electrical conduction as constituent elements.

例えば、特許文献1では、LiFe1-X(式中、Mは4価でも安定に
存在する遷移金属を表し、0≦X<1を、Yは0≦Y≦1を表す)で表される化合物からなる非水系電解質二次電池用電極活物質が提案されており、TiPを正極用活物質として用いた例が示されている。
For example, in Patent Document 1, Li Y Fe X M 1-X P 2 O 7 (wherein M represents a transition metal that is stably present even in a tetravalent state, 0 ≦ X <1, Y is 0 ≦ Y ≦ 1), an electrode active material for a nonaqueous electrolyte secondary battery is proposed, and an example using TiP 2 O 7 as a positive electrode active material is shown.

一方、特許文献2および非特許文献1においては、水系電解液を用いたリチウム二次電池の負極用活物質として、TiPを用いることが提案されている。 On the other hand, Patent Document 2 and Non-Patent Document 1 propose using TiP 2 O 7 as an active material for a negative electrode of a lithium secondary battery using an aqueous electrolyte.

特開2002−246025号公報Japanese Patent Application Laid-Open No. 2002-246025 特開2008−282665号公報JP 2008-282665 A

Haibo Wang, Kelong Huang, Yuqun Zeng, Sai Yang, Liquan Chen, Electrochimica Acta, Volume 52, Issue 9, 15 February 2007, Pages 3280-3285Haibo Wang, Kelong Huang, Yuqun Zeng, Sai Yang, Liquan Chen, Electrochimica Acta, Volume 52, Issue 9, 15 February 2007, Pages 3280-3285

しかしながら、特許文献1に記載されているTiPを含有する正極では、電位が低いためエネルギー密度が低いという問題があった。また、特許文献2および非特許文献1に記載されているようにTiPを負極用活物質として用いた場合は、充放電の繰り返しにより容量が低下するという問題があった。 However, the positive electrode containing TiP 2 O 7 described in Patent Document 1 has a problem that the energy density is low because the potential is low. Further, as described in Patent Document 2 and Non-Patent Document 1, when TiP 2 O 7 is used as the negative electrode active material, there is a problem in that the capacity decreases due to repeated charge and discharge.

本発明は、上記の課題を鑑みてなされたもので、充放電の繰り返しによる放電容量の低下が小さく、サイクル特性に優れた活物質およびそれを用いた二次電池を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an active material having a small reduction in discharge capacity due to repeated charge and discharge and excellent cycle characteristics, and a secondary battery using the active material. .

本発明の活物質は、二次電池の負極用の活物質であって、いずれもTiおよびPを含む第1の結晶相および第2の結晶相を含む活物質であって、前記第1の結晶相が、立方晶のTiPであり、前記第2の結晶相が、Ti20、Ti25および前記第1の結晶相とは異なる結晶構造を有するTiPのうち少なくとも1種であ
、前記活物質のX線回折パターンにおいて、前記第2の結晶相に由来するとともに、前記第1の結晶相に由来するX線回折ピークとは独立して存在するX線回折ピークのうち、最大の強度を有する回折ピークの強度が、前記第1の結晶相の(600)面を示す回折ピークの強度に対して1〜10%であることを特徴とする。
The active material of the present invention is an active material for a negative electrode of a secondary battery, both of which are an active material including a first crystal phase containing Ti and P and a second crystal phase, The crystal phase is cubic TiP 2 O 7 , and the second crystal phase is Ti 5 P 4 O 20 , Ti 5 P 6 O 25, and TiP having a different crystal structure from the first crystal phase. Ri least 1 Tanedea of 2 O 7
In the X-ray diffraction pattern of the active material, the maximum is the X-ray diffraction peak derived from the second crystal phase and present independently from the X-ray diffraction peak derived from the first crystal phase. The intensity of the diffraction peak having the above intensity is 1 to 10% with respect to the intensity of the diffraction peak showing the (600) plane of the first crystal phase .

本発明の二次電池は、正極と、負極と、電解質とを有し、前記負極が上記の活物質を含むことを特徴とする。   The secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte, and the negative electrode includes the active material described above.

本発明によれば、充放電の繰り返しによる放電容量の劣化が小さく、サイクル特性に優れた活物質、およびそれを用いた二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, deterioration of the discharge capacity by repetition of charging / discharging is small, and the active material excellent in cycling characteristics, and a secondary battery using the same can be provided.

本発明の一実施形態である二次電池の概略断面図である。It is a schematic sectional drawing of the secondary battery which is one Embodiment of this invention. 二次電池の外観を示す斜視図である。It is a perspective view which shows the external appearance of a secondary battery. 実施例の試料No.12の負極に用いた活物質のX線回折チャートである。Sample No. of Example 12 is an X-ray diffraction chart of an active material used for 12 negative electrodes.

本発明の一実施形態である二次電池について、図1および図2を用いて説明する。本実施形態の二次電池は、正極1と負極3との間に電解質層2を有し、これらは発電要素4を構成している。また、正極1および負極3の電解質層2に面する側とは反対側の面には、それぞれ正極側集電層5Pおよび負極側集電層5Nが設けられている。図1に示した発電要素4を、図2に示すような電池ケースに収納することにより二次電池が形成される。電池ケースの形態はラミネートタイプやチューブ型、コイン型など多種多様であるが、いずれの形態であっても良い。図2に示す6Nおよび6Pは、それぞれ外部回路と負極および正極とを電気的に接続する負極端子および正極端子であり、7はラミネートフィルムである。   A secondary battery according to an embodiment of the present invention will be described with reference to FIGS. The secondary battery of this embodiment has an electrolyte layer 2 between the positive electrode 1 and the negative electrode 3, and these constitute a power generation element 4. Further, on the surface opposite to the side facing the electrolyte layer 2 of the positive electrode 1 and the negative electrode 3, a positive electrode side current collecting layer 5P and a negative electrode side current collecting layer 5N are provided, respectively. A secondary battery is formed by housing the power generation element 4 shown in FIG. 1 in a battery case as shown in FIG. There are various battery case forms such as a laminate type, a tube type, and a coin type, but any form may be used. 6N and 6P shown in FIG. 2 are a negative electrode terminal and a positive electrode terminal, respectively, for electrically connecting the external circuit to the negative electrode and the positive electrode, and 7 is a laminate film.

負極3には、いずれもTiおよびPを含む第1の結晶相および第2の結晶相を含む活物質を用いる。第1の結晶相は、立方晶のTiP(JCPDSのNo.00−038
−1468)であり、第2の結晶相は、Ti20、Ti25および前記第1の結晶相とは異なる結晶構造を有するTiPのうち少なくとも1種である。活物質を構成する結晶相が、1種類の立方晶TiP単独であった場合、容量の点では約90mAh/gの放電容量を得られるが、充放電サイクル特性に関しては十分な特性を得ることができない。その原因の一つは充放電による活物質の結晶格子の体積変化に起因した電極の劣化であると考えられる。
For the negative electrode 3, an active material containing a first crystal phase and a second crystal phase both containing Ti and P is used. The first crystal phase is cubic TiP 2 O 7 (JCPDS No. 00-038).
-1468), and the second crystal phase is at least one of Ti 5 P 4 O 20 , Ti 5 P 6 O 25 and TiP 2 O 7 having a different crystal structure from the first crystal phase. is there. When the crystal phase constituting the active material is only one type of cubic TiP 2 O 7 , a discharge capacity of about 90 mAh / g can be obtained in terms of capacity, but sufficient characteristics regarding charge / discharge cycle characteristics are obtained. Can't get. One of the causes is considered to be deterioration of the electrode due to the volume change of the crystal lattice of the active material due to charge / discharge.

一方、立方晶のTiP以外のTiおよびPを含む結晶相、たとえばTi20、Ti25は、活物質としての活性が低い、あるいは不活性であるため、第1の結晶である立方晶のTiPとともにこれらの結晶相を第2の結晶相として含む活物質を用いることにより、充放電により第1の結晶相が体積変化するときに第2の結晶相が緩衝材となり、サイクル特性が向上する。このような結晶相としては、上記以外に第1の結晶相とは異なる結晶構造を有するTiPであってもよく、そのようなTiPとしては、擬六方晶や、第1の結晶相とは異なる結晶構造を有する立方晶(JCPDSのNo.00−052−1470)をとるものがある。第2の結晶相をこのようなTiPとすることにより、第2の結晶相の組成や構造を第1の結晶相に近いものとすることができ、第1の結晶相と第2の結晶相との間に整合性の高い界面を形成することができるため、サイクル特性の改善効果が特に著しいものとなる。なお、第2の結晶相は単
独の結晶相であっても、複数の結晶相を含んでいてもよい。
On the other hand, a crystal phase containing Ti and P other than cubic TiP 2 O 7 , for example, Ti 5 P 4 O 20 , Ti 5 P 6 O 25 has low activity as an active material or is inactive. By using an active material containing these crystalline phases as the second crystalline phase together with cubic TiP 2 O 7 that is the first crystal, the second crystalline phase is changed when the volume of the first crystalline phase is changed by charge / discharge. The crystal phase becomes a buffer material and the cycle characteristics are improved. Such crystal phase may be a TiP 2 O 7 having a crystal structure different from the first crystal phase other than the above, examples of such TiP 2 O 7, or pseudo-hexagonal, first Some have a cubic crystal (JCPDS No. 00-052-1470) having a crystal structure different from that of the crystal phase. By setting the second crystal phase to such TiP 2 O 7 , the composition and structure of the second crystal phase can be close to those of the first crystal phase. Since a highly consistent interface can be formed with the crystal phase, the effect of improving the cycle characteristics becomes particularly remarkable. Note that the second crystal phase may be a single crystal phase or may include a plurality of crystal phases.

本実施形態における第2の結晶相の存在は、活物質のX線回折パターンにより確認できるが、第2の結晶相に由来するX線回折ピークが第1の結晶相に由来するX線回折ピークと一部重なることがあるため、第1の結晶相のX線回折ピークとは独立して存在するX線回折ピーク(以下、第2の結晶相単独のX線回折ピークという)の有無により、第2の結晶相が存在するか否かを判断する。以下、X線回折ピークを単に回折ピークという場合もある。   The presence of the second crystal phase in this embodiment can be confirmed by the X-ray diffraction pattern of the active material, but the X-ray diffraction peak derived from the second crystal phase is derived from the X-ray diffraction peak derived from the first crystal phase. And the presence or absence of an X-ray diffraction peak that exists independently of the X-ray diffraction peak of the first crystal phase (hereinafter referred to as the X-ray diffraction peak of the second crystal phase alone), It is determined whether or not a second crystal phase is present. Hereinafter, the X-ray diffraction peak may be simply referred to as a diffraction peak.

第1の結晶相に対する第2の結晶相の存在比率としては、活物質のX線回折パターンにおいて、第1の結晶相のメインピークである(600)面を示すX線回折ピークの強度に対する第2の結晶相単独の回折ピークのうち最大の強度を有するX線回折ピークの強度(以下、第2の結晶相のピーク強度比ともいう)が、1〜10%であることが好ましい。   As the abundance ratio of the second crystal phase to the first crystal phase, in the X-ray diffraction pattern of the active material, the ratio of the second crystal phase to the intensity of the X-ray diffraction peak indicating the (600) plane that is the main peak of the first crystal phase. The intensity of the X-ray diffraction peak having the maximum intensity among the diffraction peaks of the single crystal phase of 2 (hereinafter also referred to as the peak intensity ratio of the second crystal phase) is preferably 1 to 10%.

第2の結晶相のピーク強度比を1%以上とすることで、第2の結晶相により第1の結晶相の体積変化を緩和する効果が十分得られ、サイクル特性が向上する。また、第2の結晶相のピーク強度比を10%以下とすることで、充分な容量を得るために必要な量の第1の結晶相を、活物質中に確保することができる。   By setting the peak intensity ratio of the second crystal phase to 1% or more, the second crystal phase can sufficiently obtain an effect of relaxing the volume change of the first crystal phase, and the cycle characteristics are improved. Further, by setting the peak intensity ratio of the second crystal phase to 10% or less, an amount of the first crystal phase necessary for obtaining a sufficient capacity can be secured in the active material.

なお、本実施形態においては、負極3に、上記の第1の結晶相および第2の結晶相を含む活物質以外の活物質を含んでいても構わない。また、工程上の不可避不純物としてたとえばAl、Zr、Mg、Mn、Ti、Fe、V、Co、Crなどを0.5質量%以下の割合で含有していてもよい。   In the present embodiment, the negative electrode 3 may include an active material other than the active material including the first crystal phase and the second crystal phase. Moreover, you may contain Al, Zr, Mg, Mn, Ti, Fe, V, Co, Cr etc. in the ratio of 0.5 mass% or less as an inevitable impurity on a process.

このような活物質は、固相反応法、水熱合成法など公知の種々の方法で作製することができる。たとえば、所定の組成のTi、Pが含まれる混合原料粉末や、共沈法により得られるTi、Pが含まれる前駆体を、大気中にて700〜1150℃の範囲の温度で加熱処理することにより、第1の結晶相である立方晶のTiPと、第2の結晶相であるTi20、Ti25とを含む活物質を合成することができる。なお、この場合、第2の結晶相の比率を調整するには、原料粉末や前駆体に含まれるTiとPとの比率を適宜調整すればよい。 Such an active material can be produced by various known methods such as a solid phase reaction method and a hydrothermal synthesis method. For example, a mixed raw material powder containing Ti and P having a predetermined composition and a precursor containing Ti and P obtained by a coprecipitation method are heated at a temperature in the range of 700 to 1150 ° C. in the atmosphere. Thus, an active material including cubic TiP 2 O 7 as the first crystal phase and Ti 5 P 4 O 20 and Ti 5 P 6 O 25 as the second crystal phase can be synthesized. In this case, in order to adjust the ratio of the second crystal phase, the ratio of Ti and P contained in the raw material powder or the precursor may be adjusted as appropriate.

また、上記の温度範囲に加熱する前に、前処理として300〜600℃の範囲の温度で1時間以上保持することにより、第1の結晶相とは異なる結晶構造を有するTiPを含む活物質を合成することができる。 Further, before heating to the above temperature range, TiP 2 O 7 having a crystal structure different from that of the first crystal phase is included as a pretreatment by holding at a temperature in the range of 300 to 600 ° C. for 1 hour or more. An active material can be synthesized.

得られた活物質は、必要に応じボールミルやビーズミル等の手法により粉砕するなどして粒度調整を行ってもよい。粒度調整を行う場合、活物質の粉末の平均粒径は、それを用いる二次電池の使用条件や電極の作製方法に応じて適正な範囲に調整すればよく、たとえば0.1〜50μmの範囲から目的に応じた適正な範囲を選択して調整すればよい。粉末の平均粒径は、たとえば回折散乱法による粒度分布測定などにより確認できる。   The obtained active material may be adjusted in particle size by pulverization by a technique such as a ball mill or a bead mill, if necessary. When adjusting the particle size, the average particle size of the powder of the active material may be adjusted to an appropriate range according to the use condition of the secondary battery using the active material and the method for producing the electrode, for example, in the range of 0.1 to 50 μm. It is sufficient to select and adjust an appropriate range according to the purpose. The average particle size of the powder can be confirmed by, for example, particle size distribution measurement by a diffraction scattering method.

得られた活物質を用いて電極を作製する。たとえば、得られた活物質を80質量%、導電助剤としてアセチレンブラックを10質量%およびバインダーとしてポリフッ化ビニリデンを10質量%に、さらに溶媒として15質量%のNMP(N−メチルピロリドン)を添加してスラリーを作製する。作製したスラリーを、ドクターブレード法などの周知のシート成形法により、たとえばAlやステンレス、Ni、Cu等の金属箔上に塗布し溶剤を乾燥することで、いずれもTiおよびPを含む第1の結晶相および第2の結晶相を含む活物質と、導電助剤と結着剤とを含む電極を作製できる。   An electrode is produced using the obtained active material. For example, 80% by mass of the obtained active material, 10% by mass of acetylene black as a conductive assistant, 10% by mass of polyvinylidene fluoride as a binder, and 15% by mass of NMP (N-methylpyrrolidone) as a solvent are added. To prepare a slurry. The prepared slurry is applied to a metal foil such as Al, stainless steel, Ni, or Cu by a well-known sheet forming method such as a doctor blade method and the solvent is dried. An electrode including an active material including a crystal phase and a second crystal phase, a conductive additive, and a binder can be manufactured.

バインダーは、ポリフッ化ビニリデン以外にも、たとえばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、フッ素系ゴム、スチレンブタジエンゴム、ポリイミド樹脂(PI)、ポリアミド樹脂、ポリアミドイミド樹脂など、用途によって適したものを選んで使用できる。また、導電助剤も、アセチレンブラックの代わりにケッチェンブラックやカーボンナノチューブ、黒鉛、ハードカーボン、金属(アルミニウム、金、白金など)の粉末、無機導電性酸化物(酸化インジウムスズ(ITO)ガラス、酸化スズなど)など、使用電圧範囲において化学的に安定で導電性を示すものであればその材料はいずれでも良い。   In addition to polyvinylidene fluoride, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride, fluorine rubber, styrene butadiene rubber, polyimide resin (PI), polyamide resin, polyamideimide resin, etc. Can be used. In addition, the conductive auxiliary agent is ketjen black, carbon nanotube, graphite, hard carbon, metal (aluminum, gold, platinum, etc.) powder instead of acetylene black, inorganic conductive oxide (indium tin oxide (ITO) glass, Any material may be used as long as it is chemically stable and exhibits conductivity in the operating voltage range, such as tin oxide.

また、得られた活物質の粉末を用いて、押し出し成形やロールコンパクション法などの成形法によって圧粉体を作製し、電極を形成してもよい。また、活物質の粉末を焼成し、導電助剤やバインダーを含まない焼結体として用いてもよい。   The obtained active material powder may be used to form an electrode by forming a green compact by a molding method such as extrusion molding or a roll compaction method. Alternatively, the active material powder may be fired and used as a sintered body that does not contain a conductive additive or a binder.

電極中における活物質の粒子の平均粒径は、これを用いる二次電池の電圧範囲や温度などの使用条件に応じて、たとえば0.1〜50μmの範囲から適正な範囲を選んで調整すればよい。たとえば高出力が必要な二次電池用途に用いる場合、活物質の粒子の平均粒径は0.5〜1.0μmの比較的微小な範囲とすることが好ましい。   The average particle size of the active material particles in the electrode can be adjusted by selecting an appropriate range from a range of 0.1 to 50 μm, for example, depending on the use conditions such as the voltage range and temperature of the secondary battery using the active material. Good. For example, when used in a secondary battery application that requires high output, the average particle size of the active material particles is preferably in a relatively small range of 0.5 to 1.0 μm.

なお、電極中における活物質の粒子の平均粒径の制御は、シート成形や圧粉体により電極を形成する場合には活物質の粉末の粒度調整により行うことができ、焼結体を用いて電極を形成する場合には、活物質の粉末の粒度調整および焼成温度の調整により行うことができる。電極中における活物質の粒子の平均粒径は、たとえば電極の断面において、走査型電子顕微鏡(SEM)と波長分散型X線分析(WDS)により活物質の粒子を判別し、撮影した写真を画像解析して算出するなどして求めることができる。   The average particle size of the active material particles in the electrode can be controlled by adjusting the particle size of the active material powder when the electrode is formed by sheet molding or green compact. When forming an electrode, it can be performed by adjusting the particle size of the active material powder and adjusting the firing temperature. The average particle diameter of the active material particles in the electrode is determined by, for example, distinguishing the active material particles in the cross section of the electrode using a scanning electron microscope (SEM) and wavelength dispersive X-ray analysis (WDS), and taking a photograph. It can be obtained by analyzing and calculating.

正極1に用いる活物質は、例えば、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、二酸化マンガン、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムバナジウム複合酸化物、酸化バナジウムなどや、ナトリウムコバルト複合酸化物、ナトリウムマンガン複合酸化物、二酸化マンガン、ナトリウムニッケル複合酸化物、ナトリウムニッケル鉄複合酸化物、ナトリウム鉄複合酸化物、ナトリウムクロム複合酸化物などが挙げられる。これらの活物質の粒子を用いて上述したような製法により電極を作製することにより、正極1が得られる。   Examples of the active material used for the positive electrode 1 include lithium cobalt composite oxide, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium nickel cobalt composite oxide, lithium vanadium composite oxide, vanadium oxide, and sodium. Examples include cobalt composite oxide, sodium manganese composite oxide, manganese dioxide, sodium nickel composite oxide, sodium nickel iron composite oxide, sodium iron composite oxide, sodium chromium composite oxide, and the like. The positive electrode 1 is obtained by producing an electrode by the above-described manufacturing method using these active material particles.

電解質層2としては、水系電解液や、有機電解液やイオン液体等の非水系電解液をセパレータに含浸させたものや、高分子固体電解質、無機固体電解質、溶融塩等のいずれも用いることができる。   As the electrolyte layer 2, any one of an aqueous electrolyte, a non-aqueous electrolyte such as an organic electrolyte or an ionic liquid impregnated in a separator, a polymer solid electrolyte, an inorganic solid electrolyte, or a molten salt may be used. it can.

水系電解液や非水系電解液を含浸させるセパレータには、イオンを通し、かつ正負極のショートを防止することが求められる。具体的には、ポリオレフィン繊維性の不織布やポリオレフィン製の微多孔膜、ガラスフィルター、セラミックの多孔質材料などを用いることができる。ここで、ポリオレフィンとしてはポリエチレン、ポリプロピレンを挙げることができ、一般的にリチウムイオン電池などの二次電池に用いられるセパレータが適用可能である。   The separator impregnated with the aqueous electrolyte solution or the non-aqueous electrolyte solution is required to pass ions and prevent the positive and negative electrodes from being short-circuited. Specifically, a polyolefin fibrous nonwoven fabric, a polyolefin microporous film, a glass filter, a ceramic porous material, or the like can be used. Here, examples of the polyolefin include polyethylene and polypropylene, and a separator generally used for a secondary battery such as a lithium ion battery is applicable.

水系電解液としては、たとえば1〜2mol/Lの硫酸リチウムや硝酸リチウム、硫酸
ナトリウム、硝酸ナトリウムなどの水溶液を用いることができる。このような水系電解液は、pHの調整により水の電気分解電位を変化させることができるため、二次電池の充電電位を変えることも可能である。
As the aqueous electrolyte, for example, an aqueous solution of 1 to 2 mol / L lithium sulfate, lithium nitrate, sodium sulfate, sodium nitrate, or the like can be used. Such an aqueous electrolyte solution can change the electrolysis potential of water by adjusting the pH, and thus can change the charging potential of the secondary battery.

有機電解液は、有機溶媒と電解質塩によって構成され、必要に応じて電極表面への被膜
形成、過充電防止、難燃性の付与等を目的とした添加剤を加えてもよい。有機溶媒としては、高誘電率を有し、低粘性、低蒸気圧のものが好適に用いられ、このような材料としては、たとえば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、メチルエチルカーボネート、ジメチルカーボネート、ジエチルカーボネートから選ばれる1種もしくは2種以上を混合した溶媒が挙げられる。電解質塩としては、たとえばLiBF4,LiPF6,LiClO4,LiCF3SO3,LiAsF6,LiN(CF3SO2)2,LiN(C2F5SO2)等のリチウム塩や、過塩素酸ナトリウム(NaClO)、四フッ化ホウ酸ナトリウム(NaBF)、六フッ化リン酸ナトリウム(NaPF)、NaN(FSO、NaN(CFSO、NaN(CSO等のナトリウム塩が挙げられる。このうち、NaN(SOF)、NaN(CFSOおよびNaN(CSOは、他のアルカリ金属塩と混合して一定温度以上の環境で使用することで、溶融塩としても用いることができる。
The organic electrolyte is composed of an organic solvent and an electrolyte salt, and an additive for the purpose of forming a film on the electrode surface, preventing overcharge, imparting flame retardancy, or the like may be added as necessary. As the organic solvent, those having a high dielectric constant, low viscosity and low vapor pressure are preferably used. Examples of such materials include ethylene carbonate (EC), propylene carbonate, butylene carbonate, and γ-butyrolactone. , Sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, methyl ethyl carbonate, dimethyl carbonate, diethyl carbonate, or a mixed solvent of two or more. It is done. As the electrolyte salt, for example LiBF4, LiPF6, LiClO4, LiCF3SO3, LiAsF6, LiN (CF3SO2) 2, and lithium salts such as LiN (C2F5SO2), sodium perchlorate (NaClO 4), tetrafluoride sodium borate (NaBF 4 ), Sodium hexafluorophosphate (NaPF 6 ), NaN (FSO 2 ) 2 , NaN (CF 3 SO 2 ) 2 , NaN (C 2 F 5 SO 2 ) 2 and the like. Among these, NaN (SO 2 F) 2 , NaN (CF 3 SO 2 ) 2, and NaN (C 2 F 5 SO 2 ) 2 are mixed with other alkali metal salts and used in an environment at a certain temperature or higher. Therefore, it can also be used as a molten salt.

電解質層2として高分子固体電解質や無機固体電解質を用いる場合は、その厚みをたとえば10μm以下、さらには3μm以下と薄くすることができ、同一体積の二次電池と比較して活物質をより多く詰め込めるため、高容量化が進み、結果としてエネルギー密度向上にも寄与することができる。ただし、固体電解質は、ショートを防止するために絶縁破壊やピンホールによるショートを起こさない必要最低限の厚みを確保する必要がある。   When a polymer solid electrolyte or an inorganic solid electrolyte is used as the electrolyte layer 2, the thickness can be reduced to, for example, 10 μm or less, and further 3 μm or less, and more active materials can be used compared to a secondary battery having the same volume. Since packing can be performed, the capacity can be increased, and as a result, the energy density can be improved. However, in order to prevent a short circuit, the solid electrolyte needs to have a necessary minimum thickness that does not cause a dielectric breakdown or a short circuit due to a pinhole.

なお、本実施形態における活物質は、充放電への寄与が少ない第2の結晶相を含むことにより、活物質の水中での安定性が向上するため、特に水系電解液を用いた二次電池の負極用の活物質として好適である。   In addition, since the active material in this embodiment contains the 2nd crystal phase with little contribution to charging / discharging, since the stability in water of an active material improves, especially the secondary battery using aqueous electrolyte solution It is suitable as an active material for the negative electrode.

また、本実施形態における活物質は、特にナトリウムイオンをやり取りすることにより充放電を行う二次電池の負極3に用いた場合に、サイクル特性の改善効果が著しい。ナトリウムのイオン半径はリチウムよりも大きく、充放電による結晶格子の体積変化も大きい。したがって、ナトリウム二次電池は通常、リチウム二次電池よりサイクル特性の劣化が大きいが、本実施形態の活物質を負極3に用いたナトリウム二次電池では、充放電による体積変化が少ない第2結晶相が存在することにより、充放電に起因する負極3の体積変化が緩和されるため、特にサイクル特性の劣化を効果的に抑制することができる。   Moreover, the active material in this embodiment has a remarkable effect of improving the cycle characteristics, particularly when used for the negative electrode 3 of a secondary battery that is charged and discharged by exchanging sodium ions. The ionic radius of sodium is larger than that of lithium, and the volume change of the crystal lattice due to charge / discharge is also large. Therefore, the sodium secondary battery generally has a greater deterioration in cycle characteristics than the lithium secondary battery, but the sodium secondary battery using the active material of the present embodiment for the negative electrode 3 has a small volume change due to charge / discharge. By the presence of the phase, the volume change of the negative electrode 3 due to charge / discharge is alleviated, so that deterioration of cycle characteristics can be particularly effectively suppressed.

正極側集電層5Pには、正極の電位において溶解などの反応が発生しない耐食性を有する材料を用いればよい。このような材料としては、たとえば、アルミニウム、タンタル、ニオブ、チタン、金、白金等を含む金属材料や合金、黒鉛、ハードカーボン、ガラス状炭素等の炭素質材料、ITOガラス、酸化すずなどの無機導電性酸化物材料などを用いることができる。その中でもアルミニウム、金、白金は耐食性に優れ、容易に入手できるため好ましい。特にアルミニウムは、表面に酸化被膜を形成して不動態化し、高い電位においても耐食性に優れる点から好ましい。   A material having corrosion resistance that does not cause a reaction such as dissolution at the potential of the positive electrode may be used for the positive current collecting layer 5P. Examples of such materials include metal materials and alloys including aluminum, tantalum, niobium, titanium, gold, platinum, etc., carbonaceous materials such as graphite, hard carbon, and glassy carbon, inorganic materials such as ITO glass and tin oxide. A conductive oxide material or the like can be used. Among these, aluminum, gold, and platinum are preferable because they are excellent in corrosion resistance and easily available. Aluminum is particularly preferable because it is passivated by forming an oxide film on the surface and excellent in corrosion resistance even at a high potential.

負極側集電層5Nには、負極の電位においてLiやNaとの合金化などの副反応が発生しない材料を用いればよい。このような材料としては、たとえば、銅、ニッケル、真鍮、亜鉛、アルミニウム、ステンレス、タングステン、金、白金等を含む金属材料や合金、黒鉛、ハードカーボン、ガラス状炭素等の炭素質材料、ITOガラス、酸化すずなどの無機導電性酸化物材料などを用いることができる。特に、導電性が高く比較的安価な点から、アルミニウムまたはニッケルを用いることが好ましい。特にアルミニウムは、銅やニッケルと同様に導電性が高く比較的安価であり、リチウムに対しては合金を形成するため使用できないが、ナトリウムに対しては不活性であるため、正極および負極のいずれにも集電体として用いることが可能である。   A material that does not cause side reactions such as alloying with Li or Na at the potential of the negative electrode may be used for the negative current collecting layer 5N. Examples of such materials include metal materials and alloys including copper, nickel, brass, zinc, aluminum, stainless steel, tungsten, gold, platinum, carbonaceous materials such as graphite, hard carbon, and glassy carbon, ITO glass. An inorganic conductive oxide material such as tin oxide can be used. In particular, it is preferable to use aluminum or nickel from the viewpoint of high conductivity and relatively low cost. Aluminum, in particular, has high conductivity and is relatively inexpensive, like copper and nickel, and cannot be used because it forms an alloy with lithium, but is inactive with sodium. Also, it can be used as a current collector.

正極側集電層5Pおよび負極側集電層5Nは、これらの金属材料からなる金属箔やメッシュを用いてもよいし、金属材料、炭素質材料またはITOガラスや酸化すずなどの無機導電性酸化物材料などをフィラーとした導電性インクなどを電極材料表面に塗布し、乾燥させたものを用いてもよい。また、白金やアルミニウム、チタンなどの金属を電極材料表面に蒸着したものであってもよい。   The positive electrode side current collecting layer 5P and the negative electrode side current collecting layer 5N may use a metal foil or mesh made of these metal materials, or an inorganic conductive oxide such as a metal material, a carbonaceous material, ITO glass or tin oxide. A conductive ink or the like using a material material as a filler may be applied to the electrode material surface and dried. Moreover, what vapor-deposited metals, such as platinum, aluminum, and titanium, on the electrode material surface may be used.

なお、金属箔またはメッシュを用いる場合、その厚みは5〜20μmとすることが好ましい。また、金属箔を使用する場合は、電極材料との接着力向上のために、金属箔の表面を粗面化処理したものを用いてもよい。この場合、金属箔の表面粗さは、算術平均粗さ(Ra)にして0.5〜2μmであることが好ましい。金属箔の表面粗さは、触針式、光干渉式等の表面粗さ計や、レーザー顕微鏡、原子間力顕微鏡(AFM)等を用いて測定する。一般的に使用される触針式表面粗さ計を用いる場合は、JIS B0601に基づいて、たとえば、触針先端径を2μm、測定長を4.8mm、カットオフ値を0.8mmという条件で測定すればよい。   In addition, when using metal foil or a mesh, it is preferable that the thickness shall be 5-20 micrometers. Moreover, when using metal foil, you may use what roughened the surface of metal foil in order to improve the adhesive force with electrode material. In this case, the surface roughness of the metal foil is preferably 0.5 to 2 μm in terms of arithmetic average roughness (Ra). The surface roughness of the metal foil is measured using a surface roughness meter such as a stylus type or a light interference type, a laser microscope, an atomic force microscope (AFM), or the like. When using a stylus-type surface roughness meter that is generally used, based on JIS B0601, for example, on the condition that the stylus tip diameter is 2 μm, the measurement length is 4.8 mm, and the cutoff value is 0.8 mm Just measure.

以上、本実施形態の二次電池について説明したが、本発明は本実施形態に限定されるものではなく、本発明を逸脱しない範囲で種々変更したものにも適用することができる。   The secondary battery of the present embodiment has been described above, but the present invention is not limited to the present embodiment, and can be applied to various modifications without departing from the present invention.

以下、本発明の活物質およびそれを用いた二次電池について、実施例に基づき詳細に説明する。   Hereinafter, an active material of the present invention and a secondary battery using the active material will be described in detail based on examples.

まず、活物質の素原料としてアナターゼ型TiO(東邦チタニウム製)とNHPO(リン酸二水素アンモニウム)を、TiとPの比率が表1に示す比率となるように配合し、イソプロピルアルコール(IPA)を溶媒としてスラリー化し、ZrOボールを用いてボールミルにて20時間混合した。混合後のスラリーを乾燥した後、大気中で加熱処理を行い、活物質を合成した。加熱処理は表1に示した条件で行った。 First, anatase type TiO 2 (manufactured by Toho Titanium) and NH 4 H 2 PO 4 (ammonium dihydrogen phosphate) as raw materials for the active material are blended so that the ratio of Ti and P is the ratio shown in Table 1. Then, isopropyl alcohol (IPA) was slurried as a solvent and mixed in a ball mill using ZrO 2 balls for 20 hours. After drying the mixed slurry, heat treatment was performed in the air to synthesize an active material. The heat treatment was performed under the conditions shown in Table 1.

合成した活物質のX線回折(XRD)測定を行い、回折パターンを解析して活物質に含まれる結晶相を同定した。活物質に含まれる結晶相のうち、JCPDSのNo.00−0
38−1468で同定されるTiPの結晶相を第1の結晶相とし、それ以外のTiおよびPを含む結晶相を第2の結晶相として、第1の結晶相のメインピークである(600)面を示すピークの強度I1に対する、第2の結晶相単独のピークのうち最大の強度を有するピークの強度I2の比率I2/I1を算出した。第2の結晶相として同定された結晶相の種類、I2として用いた回折ピークの2θおよび回折ピーク強度の比率I2/I1を表1に示す。なお、X線回折測定はCuKα線を用いて行った。
The synthesized active material was subjected to X-ray diffraction (XRD) measurement, and the diffraction pattern was analyzed to identify the crystal phase contained in the active material. Of the crystal phases contained in the active material, JCPDS No. 00-0
It is the main peak of the first crystal phase with the crystal phase of TiP 2 O 7 identified by 38-1468 as the first crystal phase and the other crystal phase containing Ti and P as the second crystal phase. The ratio I2 / I1 of the peak intensity I2 having the maximum intensity among the peaks of the second crystal phase alone with respect to the peak intensity I1 indicating the (600) plane was calculated. Table 1 shows the type of the crystal phase identified as the second crystal phase, the diffraction peak 2θ used as I2 and the ratio of the diffraction peak intensities I2 / I1. X-ray diffraction measurement was performed using CuKα rays.

合成した活物質を用いて負極を作製した。合成した活物質の粉末を80質量%、導電助剤としてアセチレンブラックを10質量%、バインダーとしてポリフッ化ビニリデンを10質量%、溶媒としてNMP(N−メチルピロリドン)を15質量%混合してスラリーを作製した。このスラリーを、負極側集電層となる金属箔の上にドクターブレード法により塗布し、溶媒を乾燥することにより、厚さ50μmの負極を形成した。   A negative electrode was produced using the synthesized active material. 80% by mass of the synthesized active material powder, 10% by mass of acetylene black as a conductive assistant, 10% by mass of polyvinylidene fluoride as a binder, and 15% by mass of NMP (N-methylpyrrolidone) as a solvent were mixed to prepare a slurry. Produced. This slurry was applied onto a metal foil serving as a negative electrode side current collecting layer by a doctor blade method, and the solvent was dried to form a negative electrode having a thickness of 50 μm.

正極は、市販のLiMn粉末(戸田工業製)または合成したNa0.7MnO2.05粉末を活物質として用いた。これらの活物質の粉末を80質量%、導電助剤としてアセチレンブラックを10質量%、バインダーとしてポリフッ化ビニリデンを10質量%、溶媒としてNMP(N−メチルピロリドン)を15質量%混合してスラリー作製し、正極側集電層となる金属箔の上にドクターブレード法により塗布し、溶媒を乾燥することにより、厚さ50μmの正極を形成した。 As the positive electrode, a commercially available LiMn 2 O 4 powder (manufactured by Toda Kogyo) or a synthesized Na 0.7 MnO 2.05 powder was used as an active material. A slurry was prepared by mixing 80% by mass of these active material powders, 10% by mass of acetylene black as a conductive additive, 10% by mass of polyvinylidene fluoride as a binder, and 15% by mass of NMP (N-methylpyrrolidone) as a solvent. And it apply | coated with the doctor blade method on the metal foil used as a positive electrode side current collection layer, and the positive electrode with a thickness of 50 micrometers was formed by drying a solvent.

得られた正極および負極を、集電層である金属箔と共に10×10cmの正方形状に切断し、さらに集電層である金属箔の電極が形成されていない側の面の端部に、同一の材質からなる金属箔を正極端子または負極端子として、スポット溶接で取り付けた。   The positive electrode and the negative electrode obtained were cut into a 10 × 10 cm square shape together with the metal foil as the current collecting layer, and the same as the end of the surface on the side where the electrode of the metal foil as the current collecting layer was not formed A metal foil made of the above material was attached as a positive electrode terminal or a negative electrode terminal by spot welding.

作製した正極と負極との間に、電解液を含んだポリプロピレン/ポリエチレン製のセパレータを配置し、外装体である袋状のアルミニウムラミネートフィルムに収納し、電解液を注入した。電解液には、有機溶媒であるプロピレンカーボネート(PC)にLiClOまたはNaN(CFSO(NaTFSIともいう)を1mol/Lで溶解したもの、あるいはLiNOまたはNaSOを2mol/L溶解した水溶液を用いた。正極に用いた活物質、正極側集電層および負極側集電層の材質、電解液の種類を表2に示す。 Between the produced positive electrode and negative electrode, a separator made of polypropylene / polyethylene containing an electrolytic solution was placed, housed in a bag-like aluminum laminate film as an exterior body, and the electrolytic solution was injected. As the electrolyte, LiClO 4 or NaN (CF 3 SO 2 ) 2 (also referred to as NaTFSI) dissolved in 1 mol / L in propylene carbonate (PC), which is an organic solvent, or 2 mol of LiNO 3 or Na 2 SO 4 is used. / L dissolved aqueous solution was used. Table 2 shows the active material used for the positive electrode, the materials of the positive current collector layer and the negative current collector layer, and the type of electrolyte.

電解液を注入した後、正極端子および負極端子の端部が外装体の開口部から露出した状態で外装体の開口部を熱溶着により密閉し、二次電池とした。   After injecting the electrolytic solution, the opening of the outer package was sealed by thermal welding in a state where the ends of the positive electrode terminal and the negative electrode terminal were exposed from the opening of the outer package, thereby obtaining a secondary battery.

作製した二次電池の充放電特性を、0.2Cの条件で評価した。表2に初期放電容量と、放電−充電1回を1サイクルとした100サイクルの充放電試験後の放電容量維持率を示す。   The charge / discharge characteristics of the produced secondary battery were evaluated under the condition of 0.2C. Table 2 shows the initial discharge capacity and the discharge capacity retention rate after a 100-cycle charge / discharge test with one discharge-charge cycle.

Figure 0005944810
Figure 0005944810

Figure 0005944810
Figure 0005944810

表1および表2に示すように、試料No.2〜4、6〜8、10〜13、15、16、18、19の二次電池は、第1の結晶相である立方晶のTiPの他に、第2の結晶相としてTi20、Ti25および前記第1の結晶相とは異なる結晶構造を有するTiPのうち少なくとも1種を含み、第2の結晶相が、所定のX線回折ピーク強度を有する活物質を用いて負極が形成されているため、サイクル特性が大幅に改善され、100サイクルの充放電試験後の容量維持率が80%を超えていることが分かる。 As shown in Tables 1 and 2, Sample No. Secondary batteries 2 to 4, 6 to 8, 10 to 13, 15, 16, 18, and 19 include, in addition to cubic TiP 2 O 7 that is the first crystal phase, Ti as the second crystal phase. 5 viewed contains at least one of TiP 2 O 7 having a different crystal structure from the P 4 O 20, Ti 5 P 6 O 25 and the first crystal phase, the second crystal phase, a predetermined X-ray Since the negative electrode is formed using the active material which has a diffraction peak intensity , cycling characteristics are improved significantly and it turns out that the capacity | capacitance maintenance factor after a 100-cycle charging / discharging test exceeds 80%.

1・・・・正極
2・・・・電解質層
3・・・・負極
4・・・・発電要素
5N・・・負極側集電層
5P・・・正極側集電層
6N・・・負極端子
6P・・・正極端子
7・・・・ラミネートフィルム
DESCRIPTION OF SYMBOLS 1 .... Positive electrode 2 .... Electrolyte layer 3 .... Negative electrode 4 .... Electric power generation element 5N ... Negative electrode side current collecting layer 5P ... Positive electrode side current collecting layer 6N ... Negative electrode terminal 6P ... Positive terminal 7 ... Laminate film

Claims (5)

二次電池の負極用の活物質であって、
いずれもTiおよびPを含む第1の結晶相および第2の結晶相を含み、
前記第1の結晶相が、立方晶のTiPであり、
前記第2の結晶相が、Ti20、Ti25および前記第1の結晶相とは異なる結晶構造を有するTiPのうち少なくとも1種であり、
前記活物質のX線回折パターンにおいて、
前記第2の結晶相に由来するとともに、前記第1の結晶相に由来するX線回折ピークとは独立して存在するX線回折ピークのうち、最大の強度を有する回折ピークの強度が、
前記第1の結晶相の(600)面を示す回折ピークの強度に対して1〜10%であることを特徴とする活物質。
An active material for a negative electrode of a secondary battery,
Each includes a first crystal phase and a second crystal phase containing Ti and P,
The first crystalline phase is cubic TiP 2 O 7 ;
The second crystal phase, Ri least 1 Tanedea of TiP 2 O 7 having a different crystal structure from Ti 5 P 4 O 20, Ti 5 P 6 O 25 and the first crystal phase,
In the X-ray diffraction pattern of the active material,
Among the X-ray diffraction peaks that are derived from the second crystal phase and exist independently from the X-ray diffraction peak derived from the first crystal phase, the intensity of the diffraction peak having the maximum intensity is
1 to 10% of the intensity of the diffraction peak showing the (600) plane of the first crystal phase .
前記第2の結晶相である前記TiPが、擬六方晶または前記第1の結晶相とは異なる結晶構造を有する立方晶であることを特徴とする請求項1に記載の活物質。 2. The active material according to claim 1, wherein the TiP 2 O 7 which is the second crystal phase is a pseudo hexagonal crystal or a cubic crystal having a crystal structure different from that of the first crystal phase. 正極と、負極と、電解質とを有し、前記負極が請求項1または2に記載の活物質を含むことを特徴とする二次電池。 A positive electrode, a negative electrode, and an electrolyte, a secondary battery comprising the active material according the negative electrode to claim 1 or 2. 前記電解質が、水系の電解液であることを特徴とする請求項に記載の二次電池。 The secondary battery according to claim 3 , wherein the electrolyte is an aqueous electrolyte solution. 前記正極と前記負極との間でナトリウムイオンをやり取りすることにより充放電を行うことを特徴とする請求項またはに記載の二次電池。 The secondary battery according to claim 3 or 4, characterized in that charging and discharging by exchanging sodium ions between the positive electrode and the negative electrode.
JP2012238082A 2012-10-29 2012-10-29 Active material and secondary battery using the same Expired - Fee Related JP5944810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238082A JP5944810B2 (en) 2012-10-29 2012-10-29 Active material and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238082A JP5944810B2 (en) 2012-10-29 2012-10-29 Active material and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2014089836A JP2014089836A (en) 2014-05-15
JP5944810B2 true JP5944810B2 (en) 2016-07-05

Family

ID=50791587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238082A Expired - Fee Related JP5944810B2 (en) 2012-10-29 2012-10-29 Active material and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5944810B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114141A1 (en) * 2015-01-14 2016-07-21 国立大学法人 東京大学 Aqueous electrolyte solution for electrical storage device, and electrical storage device including said aqueous electrolyte solution
WO2017026228A1 (en) * 2015-08-11 2017-02-16 日本電気硝子株式会社 Negative electrode active material for electricity storage devices
JP7271235B2 (en) * 2019-03-08 2023-05-11 Dowaエレクトロニクス株式会社 Method for producing titanium pyrophosphate and method for producing solid electrolyte

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165018A (en) * 2002-11-13 2004-06-10 Toyota Central Res & Dev Lab Inc Active material for lithium cell and its manufacturing method as well as lithium cell
ITPG20040013A1 (en) * 2004-04-30 2004-07-30 Fuma Tech Gmbh ORGANIC SOLUTIONS OF TETRAVALENT METAL PHOSPHATES AND PYROPHOSPHATES PRECURSORS AND THEIR USE FOR THE MODIFICATION OF ELECTRODES AND FOR THE PREPARATION OF COMPOSITE MEMBRANES FOR FUEL CELLS OPERATING AT TEMPERATURES> 900 CENTIGRADS AND / OR LOW
JP4983382B2 (en) * 2007-05-10 2012-07-25 株式会社豊田中央研究所 Water-based lithium secondary battery
CN102511104B (en) * 2010-03-04 2014-08-06 株式会社东芝 Non-aqueous electrolyte cell, cell pack, and automobile
JP5454426B2 (en) * 2010-09-03 2014-03-26 株式会社豊田中央研究所 Aqueous secondary battery

Also Published As

Publication number Publication date
JP2014089836A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP6524158B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, non-aqueous electrolyte secondary battery, battery pack and vehicle
JP6098878B2 (en) Non-aqueous electrolyte secondary battery
JP4595987B2 (en) Cathode active material
CN108281658B (en) Nonaqueous electrolyte battery and battery pack
CN108292746B (en) Negative electrode active material, mixed negative electrode active material, negative electrode, and secondary battery
JP5601536B2 (en) Nonaqueous electrolyte secondary battery
JP6039269B2 (en) Positive electrode active material for sodium ion secondary battery and sodium ion secondary battery using the same
Wang et al. An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/Li4Ti5O12 full-cell
JP2004319129A (en) Anode active material and nonaqueous electrolyte secondary battery using it
JP2011070789A (en) Nonaqueous electrolyte secondary battery
WO2013151209A1 (en) Cathode active material for lithium ion capacitor and method for manufacturing same
TWI623132B (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode material for lithium ion secondary battery and lithium ion secondary battery
WO2014069117A1 (en) Anode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP6010447B2 (en) Active material and secondary battery using the same
JP5944810B2 (en) Active material and secondary battery using the same
JP6117630B2 (en) Negative electrode material for sodium secondary battery and sodium secondary battery using the same
JP5017010B2 (en) Lithium secondary battery
JP4940530B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP6121726B2 (en) Active material and secondary battery using the same
WO2013061922A1 (en) Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
JP2014192133A (en) Active material, and secondary battery arranged by use thereof
JP6096517B2 (en) Active material and secondary battery using the same
Sun et al. Effectively enhance high voltage stability of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode material with excellent energy density via La 2 O 3 surface modified
JP2010170867A (en) Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery
Johnson et al. Synthesis, characterisation and electrochemical evaluation of lithium titanate anode for lithium ion cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160526

R150 Certificate of patent or registration of utility model

Ref document number: 5944810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees