JP5937560B2 - Dissolved hydrogen concentration measuring device - Google Patents
Dissolved hydrogen concentration measuring device Download PDFInfo
- Publication number
- JP5937560B2 JP5937560B2 JP2013218658A JP2013218658A JP5937560B2 JP 5937560 B2 JP5937560 B2 JP 5937560B2 JP 2013218658 A JP2013218658 A JP 2013218658A JP 2013218658 A JP2013218658 A JP 2013218658A JP 5937560 B2 JP5937560 B2 JP 5937560B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- liquid
- hydrogen
- dissolved hydrogen
- hydrogen concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 233
- 239000001257 hydrogen Substances 0.000 title claims description 216
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 216
- 239000007788 liquid Substances 0.000 claims description 219
- 238000003756 stirring Methods 0.000 claims description 102
- 239000000446 fuel Substances 0.000 claims description 90
- 238000005259 measurement Methods 0.000 claims description 58
- 239000012528 membrane Substances 0.000 claims description 33
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- 229910001882 dioxygen Inorganic materials 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 5
- 239000012085 test solution Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 description 60
- 229910052760 oxygen Inorganic materials 0.000 description 60
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 56
- 238000009792 diffusion process Methods 0.000 description 38
- 239000003054 catalyst Substances 0.000 description 24
- 238000012856 packing Methods 0.000 description 24
- 150000002431 hydrogen Chemical class 0.000 description 22
- 239000005518 polymer electrolyte Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- -1 hydrogen ions Chemical class 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 238000011088 calibration curve Methods 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Landscapes
- Fuel Cell (AREA)
Description
本発明は、被測定液中に含まれる溶存水素の濃度を測定する装置及び測定方法に関する。 The present invention relates to an apparatus and a measuring method for measuring the concentration of dissolved hydrogen contained in a liquid to be measured.
近年、水素分子(水素ガス)を水に溶解させた水素水が、さまざまな分野で注目されている。例えば、健康産業分野では、水素水中の水素分子が体内の活性酸素を還元して除去する効果が着目され、健康維持のための飲料水等として水素水が使用されている。また、電子産業分野においては、その洗浄効果に着目して電子部品洗浄用水として水素水が使用されている。ところが、水素水中の水素分子は水中から抜けやすく、時間の経過と共に溶存水素濃度が低下する傾向にあるため、使用の時点における水素水中の溶存水素濃度を把握することが求められている。 In recent years, hydrogen water in which hydrogen molecules (hydrogen gas) are dissolved in water has attracted attention in various fields. For example, in the health industry field, attention has been paid to the effect of hydrogen molecules in hydrogen water reducing and removing active oxygen in the body, and hydrogen water is used as drinking water for maintaining health. Also, in the electronic industry field, hydrogen water is used as electronic component cleaning water, paying attention to its cleaning effect. However, since hydrogen molecules in hydrogen water easily escape from the water and the dissolved hydrogen concentration tends to decrease with time, it is required to grasp the dissolved hydrogen concentration in the hydrogen water at the time of use.
溶存水素濃度の測定は、特許文献1に記載されているように、主に隔膜型ポーラログラフ式の溶存水素計を用いて行われる。この測定装置において、溶存水素濃度測定は、被測定液中の水素を水素透過性の隔膜を通して電解液中に溶解させ、その電解液中に生じた水素ガスの酸化反応による電流値を測定することにより行われている。 The measurement of the dissolved hydrogen concentration is performed mainly using a diaphragm-type polarographic dissolved hydrogen meter as described in Patent Document 1. In this measuring device, the dissolved hydrogen concentration is measured by dissolving the hydrogen in the solution to be measured into the electrolyte through the hydrogen permeable membrane and measuring the current value due to the oxidation reaction of the hydrogen gas generated in the electrolyte. It is done by.
しかしながら、特許文献1に記載の溶存水素計では、装置が比較的大型になると共に装置自体の価格が高額であることから、装置を導入し難いという問題があった。また、特許文献1に記載の溶存水素計では、隔膜や電解液が劣化する度に交換する必要があるため、準備やメンテナンスが煩瑣であるという問題もあった。 However, the dissolved hydrogen meter described in Patent Document 1 has a problem that it is difficult to introduce the apparatus because the apparatus becomes relatively large and the price of the apparatus itself is expensive. In addition, the dissolved hydrogen meter described in Patent Document 1 has a problem in that preparation and maintenance are troublesome because it needs to be replaced every time the diaphragm and the electrolytic solution deteriorate.
本発明は上述した点に鑑み案出されたもので、その目的は、新たな溶存水素濃度の測定装置及び測定方法を提供することにある。 The present invention has been devised in view of the above-described points, and an object thereof is to provide a new measuring apparatus and measuring method for dissolved hydrogen concentration.
本発明の他の目的は、容易に溶存水素濃度を測定することのできる溶存水素濃度の測定装置及び測定方法を提供することにある。 Another object of the present invention is to provide a dissolved hydrogen concentration measuring device and a measuring method capable of easily measuring the dissolved hydrogen concentration.
本発明のさらに他の目的は、小型であり、安価な溶存水素濃度の測定装置及びこのような測定装置を構成可能な測定方法を提供することにある。 Still another object of the present invention is to provide a small-sized and inexpensive apparatus for measuring dissolved hydrogen concentration and a measurement method capable of configuring such a measurement apparatus.
上記課題を解決するため、本発明の溶存水素濃度の測定装置は、被測定液中に溶存水素として含まれる水素ガスを被測定液から放出させる被測定液撹拌室と、被測定液から放出された水素ガスと空気中の酸素ガスとを反応させて電気エネルギを発生させる燃料電池セルと、燃料電池セルに接続され、燃料電池セルから発生した電気エネルギ量を測定する測定手段とを備えている。 In order to solve the above-mentioned problems, the dissolved hydrogen concentration measuring apparatus of the present invention includes a measured liquid stirring chamber for releasing hydrogen gas contained as dissolved hydrogen in the measured liquid from the measured liquid, and a measured liquid stirring chamber. A fuel cell that generates electric energy by reacting the hydrogen gas with oxygen gas in the air, and a measuring means that is connected to the fuel cell and measures the amount of electric energy generated from the fuel cell. .
被測定液撹拌室で被測定液が撹拌されることにより、被測定液中に含まれていた溶存水素が水素ガスとして放出される。このとき、放出された水素ガスは燃料電池セルの水素極(燃料極、アノード)へ供給されると共に空気中の酸素が燃料電池セルの酸素極(空気極、カソード)に供給されて反応し、電気エネルギが生じる。この電気エネルギ量を所定の測定手段を用いて測定することにより、被測定液に含まれている水素ガスの濃度、すなわち溶存水素濃度が検出される。 When the measurement liquid is stirred in the measurement liquid stirring chamber, the dissolved hydrogen contained in the measurement liquid is released as hydrogen gas. At this time, the released hydrogen gas is supplied to the hydrogen electrode (fuel electrode, anode) of the fuel cell and oxygen in the air is supplied to the oxygen electrode (air electrode, cathode) of the fuel cell and reacts. Electric energy is generated. By measuring the amount of electric energy using a predetermined measuring means, the concentration of hydrogen gas contained in the liquid to be measured, that is, the dissolved hydrogen concentration is detected.
さらに、測定手段は、燃料電池セルの出力端子に接続された電圧測定器と、電圧測定器と並列接続されており、燃料電池セルが発生する電気エネルギ量の少なくとも一部を消費する低抵抗負荷抵抗器とを備えていることも好ましい。 Further, the measuring means includes a voltage measuring device connected to the output terminal of the fuel cell, and a low resistance load that is connected in parallel with the voltage measuring device and consumes at least a part of the electric energy generated by the fuel cell. It is also preferable to provide a resistor.
また、本発明の溶存水素濃度の測定装置の被測定液撹拌室は、被測定液の流入部及び排出部と、縦横に所定の間隔で配置された複数の撹拌柱と、前記複数の撹拌柱の間に格子状に形成された被測定液流路とを有し、撹拌柱の柱高さAと前記被測定液流路の幅Bとは、それらの長さがA/2≧Bであることも好ましい。被測定液撹拌室に流入する被測定液を多数の撹拌柱に衝突させるように構成することにより、被測定液が十分に撹拌され、被測定液に含まれている溶存水素が水素ガスとして放出される。また、撹拌柱の柱高さAと流路の幅BをA/2≧Bとすることにより、被測定液の撹拌柱に対する接触面積が増え、被測定液が効率よく撹拌され得る。それゆえ、被測定液中に含まれる溶存水素を確実に水素ガスとして放出することができ、その水素ガス量に基づいて発生した電気エネルギ量を測定することができる。 Further, the measured liquid stirring chamber of the dissolved hydrogen concentration measuring apparatus of the present invention includes an inflow portion and a discharging portion of the measured liquid, a plurality of stirring columns arranged at predetermined intervals in the vertical and horizontal directions, and the plurality of stirring columns. The measured liquid flow path formed in a lattice between the column height A of the stirring column and the width B of the measured liquid flow path are such that the length is A / 2 ≧ B. It is also preferable that there is. By configuring the liquid to be measured flowing into the liquid chamber to be measured to collide with a number of stirring columns, the liquid to be measured is sufficiently stirred, and the dissolved hydrogen contained in the liquid to be measured is released as hydrogen gas. Is done. Further, by setting the column height A of the stirring column and the width B of the flow path to A / 2 ≧ B, the contact area of the liquid to be measured with respect to the stirring column increases, and the liquid to be measured can be efficiently stirred. Therefore, the dissolved hydrogen contained in the liquid to be measured can be reliably released as hydrogen gas, and the amount of electric energy generated based on the amount of hydrogen gas can be measured.
また、本発明の溶存水素濃度の測定装置の被測定液撹拌室は、燃料電池セルの水素極セパレータとして構成されていることも好ましい。これにより、被測定液撹拌室を燃料電池ユニットとして構成することができ、被測定液撹拌室において発生した水素ガスを水素極(燃料極)に直接供給することが容易になると共に、測定装置全体を小型とすることができる。なお、本明細書におけるセパレータとは、導電性を備えている必要はなく、電池セルを収容することができ、各電極において利用されない燃料ガス(水素)や空気、被測定液を遮断することができるものであればよい。 Moreover, it is also preferable that the measured liquid stirring chamber of the measuring device for the dissolved hydrogen concentration of the present invention is configured as a hydrogen electrode separator of a fuel cell. As a result, the measured liquid stirring chamber can be configured as a fuel cell unit, and it becomes easy to directly supply the hydrogen gas generated in the measured liquid stirring chamber to the hydrogen electrode (fuel electrode), and the entire measuring apparatus. Can be made small. In addition, the separator in this specification does not need to have electroconductivity, can accommodate a battery cell, and can block fuel gas (hydrogen), air, and a liquid to be measured that are not used in each electrode. Anything is possible.
さらに、本発明の溶存水素濃度の測定装置の燃料電池セルを構成する水素極と電解質膜との間の外縁には、被測定液の浸入を防ぐための封止部材が備えられていることも好ましい。被測定液撹拌室を備える水素極セパレータには被測定液が流入するため、水素極側は水に浸った状態にあるところ、被測定液が酸素極側にまで浸入すると酸素拡散膜が水濡れして酸素供給が妨げられ、起電力が低下する。そのため、水素極と電解質膜との間の外縁に封止部材を施すことにより、酸素極側への被測定液の浸入を防ぐことができる。これにより、酸素拡散膜への酸素供給が妨げられることなく、安定した発電が燃料電池セルで行われ、被測定液中の溶存水素濃度を高い精度で測定することができる。 Furthermore, the outer edge between the hydrogen electrode constituting the fuel cell of the dissolved hydrogen concentration measuring device of the present invention and the electrolyte membrane may be provided with a sealing member for preventing intrusion of the liquid to be measured. preferable. Since the liquid to be measured flows into the hydrogen electrode separator provided with the liquid chamber to be measured, the hydrogen electrode side is immersed in water. However, if the liquid to be measured enters the oxygen electrode side, the oxygen diffusion film becomes wet. As a result, the supply of oxygen is hindered and the electromotive force decreases. Therefore, by providing a sealing member on the outer edge between the hydrogen electrode and the electrolyte membrane, it is possible to prevent the liquid to be measured from entering the oxygen electrode side. Thus, stable power generation is performed in the fuel cell without hindering oxygen supply to the oxygen diffusion membrane, and the dissolved hydrogen concentration in the liquid to be measured can be measured with high accuracy.
さらに、本発明の溶存水素濃度の測定装置の測定手段は、電圧測定器に接続されており電圧測定器が測定した電圧値から溶存水素濃度値を算出する演算器と、演算器が算出した溶存水素濃度値を表示する表示器(例えば、溶存水素濃度を簡易表示するLEDランプ、デジタルレベルモニタ又はアナログレベルモニタ等)とをさらに備えていることも好ましい。これにより、燃料電池セルで生じた電気エネルギ量の測定値に基づく被測定液中の溶存水素濃度を容易に確認することができる。 Further, the measuring means of the device for measuring dissolved hydrogen concentration of the present invention is connected to a voltage measuring device, an arithmetic unit for calculating the dissolved hydrogen concentration value from the voltage value measured by the voltage measuring device, It is also preferable to further include a display for displaying the hydrogen concentration value (for example, an LED lamp, a digital level monitor or an analog level monitor for simply displaying the dissolved hydrogen concentration). Thereby, the dissolved hydrogen concentration in the liquid to be measured based on the measured value of the amount of electric energy generated in the fuel battery cell can be easily confirmed.
また、本発明の溶存水素濃度の測定方法は、被測定液を撹拌して、被測定液中に溶存水素として含まれる水素ガスを被測定液から放出させる工程と、燃料電池セルに被測定液から放出された水素ガスおよび空気中の酸素ガスを供給して電気エネルギを発生させる工程と、電気エネルギの量を測定する工程とを有している。被測定液を撹拌することにより、被測定液中に含まれていた溶存水素が水素ガスとして放出される。この放出された水素ガスが燃料電池セルの燃料極(水素極、アノード)へ供給されると共に空気中の酸素が燃料電池セルの空気極(酸素極、カソード)へ供給されることにより発電し、電気エネルギが生じる。この電気エネルギの量を測定することにより、被測定液に含まれている水素ガスの濃度、すなわち溶存水素濃度を測定することができる。 The method for measuring the dissolved hydrogen concentration of the present invention includes a step of stirring the liquid to be measured and releasing hydrogen gas contained as dissolved hydrogen in the liquid to be measured from the liquid to be measured, and a liquid to be measured in the fuel cell. A step of supplying the hydrogen gas released from the air and an oxygen gas in the air to generate electric energy, and a step of measuring the amount of electric energy. By stirring the liquid to be measured, the dissolved hydrogen contained in the liquid to be measured is released as hydrogen gas. The released hydrogen gas is supplied to the fuel electrode (hydrogen electrode, cathode) of the fuel cell, and oxygen in the air is supplied to the air electrode (oxygen electrode, cathode) of the fuel cell. Electric energy is generated. By measuring the amount of electric energy, the concentration of hydrogen gas contained in the liquid to be measured, that is, the dissolved hydrogen concentration can be measured.
本発明によれば、以下のような優れた効果を有する溶存水素濃度の測定装置及び測定方法を提供することができる。
(1)使用の時点における被測定液(水素水など)に含まれる溶存水素濃度を迅速かつ簡単に定量することができる。
(2)装置全体が小型であり、装置自体や測定にかかるコストが非常に安価な測定装置が得られる。
ADVANTAGE OF THE INVENTION According to this invention, the measuring apparatus and measuring method of the dissolved hydrogen concentration which have the following outstanding effects can be provided.
(1) The dissolved hydrogen concentration contained in the liquid to be measured (hydrogen water or the like) at the time of use can be quickly and easily quantified.
(2) The entire apparatus is small, and a measuring apparatus with a very low cost for the apparatus itself and measurement can be obtained.
以下、図1〜図3を参照しつつ本発明の一実施形態に係る溶存水素濃度の測定装置について説明する。 The dissolved hydrogen concentration measuring apparatus according to an embodiment of the present invention will be described below with reference to FIGS.
図1に示すように、本実施形態に係る溶存水素濃度の測定装置1は、主に、被測定液Wに含まれる水素ガスを放出させるための被測定液撹拌室30と、放出された水素ガスと空気中の酸素ガスとを反応させて電気エネルギを発生させる燃料電池セル4と、発生した電気エネルギの量を測定し、その値から溶存水素濃度を算出する測定手段6とを備えている。特に本実施形態においては、図3に示すように、被測定液撹拌室30は、水素極セパレータ3内に設けられた凹部においてその開口部側が燃料電池セル4で密封的に覆われることによって形成されている。燃料電池2は、水素極セパレータ3及び酸素極セパレータ5間に燃料電池セル4を密封的に挟みこんで収容することにより構成されている。 As shown in FIG. 1, the dissolved hydrogen concentration measuring apparatus 1 according to this embodiment mainly includes a measured liquid stirring chamber 30 for releasing hydrogen gas contained in the measured liquid W, and the released hydrogen. A fuel battery cell 4 that generates electric energy by reacting a gas and oxygen gas in the air, and a measuring means 6 that measures the amount of the generated electric energy and calculates the dissolved hydrogen concentration from the value. . In particular, in the present embodiment, as shown in FIG. 3, the measured liquid stirring chamber 30 is formed by sealingly covering the opening side of the recessed portion provided in the hydrogen electrode separator 3 with the fuel cell 4. Has been. The fuel cell 2 is configured by enclosing and holding a fuel cell 4 between a hydrogen electrode separator 3 and an oxygen electrode separator 5.
水素極セパレータ3の被測定液撹拌室30には、ポンプ7、コック8及び流路L0を介して、水素水製造装置(図示せず)が接続されており、この水素水製造装置で製造された水素水等の被測定液Wが流入するように構成されている。なお、流路L2は、水素水製造装置で製造された水素水を測定装置1を経由することなく外部へ供給するための流路である。被測定液撹拌室30には、さらに、測定した被測定液Wが排出する流路L1が接続されている。また、燃料電池2により発生した電気エネルギを測定する測定手段6は、燃料電池2の正負電極に電気的に接続されている。 The test solution stirring chamber 30 of Suisokyoku separator 3, the pump 7, through a cock 8 and the channel L 0, hydrogen water manufacturing apparatus (not shown) is connected, produced in the hydrogen water manufacturing apparatus The liquid W to be measured such as hydrogen water is configured to flow in. Incidentally, the flow path L 2 is a flow path for supplying to the outside without passing through the measuring device 1 the hydrogen water produced by the hydrogen water manufacturing apparatus. The test solution stirring chamber 30, further, the measured fluid W was measured passage L 1 is connected to discharge. The measuring means 6 for measuring the electric energy generated by the fuel cell 2 is electrically connected to the positive and negative electrodes of the fuel cell 2.
本実施形態における測定装置1の測定対象たる被測定液Wは水素水製造装置等により製造された水素ガスを豊富に含む水素水であるが、本発明装置の測定対象はこれに限定されるものではなく、水道水や環境水等の水素ガスを含むいかなる液体であっても良い。 The liquid to be measured W, which is a measurement target of the measurement apparatus 1 in the present embodiment, is hydrogen water containing abundant hydrogen gas produced by a hydrogen water production apparatus or the like, but the measurement object of the present invention apparatus is limited to this. Instead, any liquid containing hydrogen gas such as tap water or environmental water may be used.
次に、被測定液撹拌室30の構成及び作用について詳細に説明する。図2(a)及び図3に示すように、被測定液撹拌室30は、被測定液Wが流入する被測定液流入部31と、被測定液撹拌室30内に流入した被測定液Wが衝突することによってこれを撹拌するための複数の撹拌柱33と、被測定液Wが排出する被測定液排出部32とから概略構成される。被測定液流入部31は、被測定液撹拌室30に開口した流入口31aと、この流入口31aに連通している筒部31bとから構成されている。また、被測定液排出部32は、被測定液撹拌室30に開口した排出口32aと、この排出口32aに連通している筒部32bとから構成されている。 Next, the configuration and operation of the measured liquid stirring chamber 30 will be described in detail. As shown in FIGS. 2A and 3, the measured liquid stirring chamber 30 includes a measured liquid inflow portion 31 into which the measured liquid W flows and a measured liquid W that has flowed into the measured liquid stirring chamber 30. Are roughly constituted by a plurality of agitation columns 33 for agitating them and a liquid to be measured discharge unit 32 from which the liquid to be measured W is discharged. The measured liquid inflow portion 31 includes an inflow port 31a that opens to the measured liquid stirring chamber 30, and a cylindrical portion 31b that communicates with the inflow port 31a. In addition, the measured liquid discharge part 32 includes a discharge port 32a that opens to the measured liquid stirring chamber 30, and a cylindrical part 32b that communicates with the discharge port 32a.
複数の撹拌柱33は、被測定液撹拌室30内の、流入口31a及び排出口32aが配置された場所以外の部分に、所定の間隔でマトリクス状に配置されている。従って、互いに隣接する撹拌柱33間には、格子状の溝からなる被測定液流路34が形成されている。被測定液Wは、被測定液流入部31の流入口31aを介して被測定液撹拌室30内に流入した後、撹拌柱33に衝突しながら被測定液流路34を通り、被測定液排出部32の排出口32aに向かう。その際に、多数の撹拌柱33に衝突して乱流となり撹拌されることから、被測定液W内に含まれていた水素ガスが放出される。各撹拌柱33の形状としては、特に限定されないが、多角柱状、円柱状、角錐台状、円錐台状、又は星型状等が挙げられ、被測定液Wを十分に撹拌して水素ガスを放出させる観点から、直方体等の多角柱状であることが好ましい。また、図3に示すように、撹拌柱の柱高さA(被測定液流路34の溝深さ)としては、被測定液Wの撹拌柱33に対する接触面積が増え、被測定液Wが効率よく撹拌され得る観点から、被測定液流路の幅Bに対して、A/2≧Bとすることが好ましく、A/3≧Bとすることがより好ましく、A/3>Bとすることが特に好ましい。単なる一例であるが、各撹拌柱33は、底面が約1.4mm×約1.4mmの略正方形、高さAが約3.5mm、被測定液流路34の幅Bが約1mmとなるように設計されている。このように構成された複数の撹拌柱33によって撹拌されることにより、被測定液Wから放出された水素ガスは、後述する燃料電池セル4の水素極40に供給される。 The plurality of stirring columns 33 are arranged in a matrix at predetermined intervals in portions other than the locations where the inlet 31a and the outlet 32a are arranged in the measured liquid stirring chamber 30. Therefore, between the stirring columns 33 adjacent to each other, a measured liquid channel 34 formed of a lattice-like groove is formed. The measured liquid W flows into the measured liquid stirring chamber 30 through the inlet 31a of the measured liquid inflow part 31, and then passes through the measured liquid flow path 34 while colliding with the stirring column 33. It goes to the discharge port 32a of the discharge part 32. At that time, the gas collides with a large number of stirring columns 33 and becomes turbulent and stirred, so that hydrogen gas contained in the liquid W to be measured is released. The shape of each stirring column 33 is not particularly limited, and examples thereof include a polygonal column shape, a columnar shape, a truncated pyramid shape, a truncated cone shape, a star shape, and the like. From the viewpoint of release, a polygonal column shape such as a rectangular parallelepiped is preferable. Further, as shown in FIG. 3, as the column height A of the stirring column (groove depth of the measured liquid channel 34), the contact area of the measured liquid W with respect to the stirring column 33 increases, and the measured liquid W is reduced. From the viewpoint of efficient stirring, it is preferable to satisfy A / 2 ≧ B, more preferably A / 3 ≧ B, and A / 3> B with respect to the width B of the measured liquid channel. It is particularly preferred. As an example only, each stirring column 33 has a bottom surface of about a square of about 1.4 mm × about 1.4 mm, a height A of about 3.5 mm, and a measured liquid channel 34 having a width B of about 1 mm. Designed to be By being stirred by the plurality of stirring columns 33 configured as described above, the hydrogen gas released from the liquid to be measured W is supplied to the hydrogen electrode 40 of the fuel battery cell 4 to be described later.
なお、本実施形態においては、被測定液撹拌室30は燃料電池2の一部材である水素極セパレータ3内に形成されているが、被測定液Wに含まれる溶存水素を十分に放出させることができ、放出された水素ガスを燃料電池の水素極に供給させることができればどのような構成であってもよい。例えば、被測定液撹拌室30の構成を、被測定液Wをバブリングすること等によって水素ガスを放出させ、放出させた水素ガスを管路等を介して燃料電池の水素極に供給させるような構成とすることもできる。 In the present embodiment, the measured liquid stirring chamber 30 is formed in the hydrogen electrode separator 3 which is a member of the fuel cell 2, but the dissolved hydrogen contained in the measured liquid W is sufficiently released. Any configuration is possible as long as the released hydrogen gas can be supplied to the hydrogen electrode of the fuel cell. For example, the configuration of the measured liquid stirring chamber 30 is such that hydrogen gas is released by bubbling the measured liquid W, and the released hydrogen gas is supplied to the hydrogen electrode of the fuel cell via a conduit or the like. It can also be configured.
次に、図3を参照しつつ、燃料電池セル4の構成及び作用について説明する。本実施形態における燃料電池セル4は、水素極40、水素拡散膜41、触媒膜43、高分子電解質膜44、酸素拡散膜45及び酸素極46がこの順序で順次積層されて構成されている。燃料電池セル4は、水素極セパレータ3内に設けられた凹部内に収容されており、この凹部の開口部側を密封的に覆うように装着されている。これにより、この凹部と燃料電池セル4とに囲まれた空間が被測定液撹拌室30となり、燃料電池セル4の水素極40がこの被測定液撹拌室30に隣接して配置されることとなる。なお、燃料電池セル4の構成は、本実施形態において記載したものに限らず、一般的に燃料電池セルとして用いられている構成を広く用いることができる。例えば、触媒膜43と高分子電解質膜44とが一体となっているもの、電極と拡散膜とが一体となっているものを用いることも可能である。また、触媒膜43が酸素拡散膜45と高分子電解質膜44の間に配置されているものや、その他機能性膜を配置させたものを用いることも可能である。 Next, the configuration and operation of the fuel battery cell 4 will be described with reference to FIG. The fuel cell 4 in this embodiment is configured by sequentially stacking a hydrogen electrode 40, a hydrogen diffusion film 41, a catalyst film 43, a polymer electrolyte film 44, an oxygen diffusion film 45, and an oxygen electrode 46 in this order. The fuel cell 4 is accommodated in a recess provided in the hydrogen electrode separator 3, and is mounted so as to cover the opening side of the recess in a hermetically sealed manner. Thereby, the space surrounded by the recess and the fuel battery cell 4 becomes the measured liquid stirring chamber 30, and the hydrogen electrode 40 of the fuel battery cell 4 is disposed adjacent to the measured liquid stirring chamber 30. Become. The configuration of the fuel cell 4 is not limited to that described in the present embodiment, and a configuration generally used as a fuel cell can be widely used. For example, it is possible to use one in which the catalyst film 43 and the polymer electrolyte membrane 44 are integrated, or one in which the electrode and the diffusion film are integrated. It is also possible to use a catalyst film 43 disposed between the oxygen diffusion film 45 and the polymer electrolyte film 44 or a film in which other functional films are disposed.
以下、燃料電池セル4を構成する各膜の構成及び作用について簡単に説明する。本実施形態における水素極40は、ステンレス(SUS)素材にカーボンが焼結されて形成されている。この水素極40には、多数の孔40aがマトリクス状に開けられており、これら孔40aを通じて被測定液撹拌室30で放出された水素ガス及び被測定液Wの一部が水素拡散膜41に供給される。また、この水素極40に形成された孔40aは、被測定液撹拌室30の被測定液流路34に対向する位置に配置されており、撹拌柱33の柱頂33aで覆われないように形成されている。それゆえ、被測定液Wから放出された水素ガスが、孔40aを通じて水素拡散膜41側に効率良く供給されるように設計されている。 Hereinafter, the configuration and operation of each membrane constituting the fuel cell 4 will be briefly described. The hydrogen electrode 40 in this embodiment is formed by sintering carbon on a stainless steel (SUS) material. A large number of holes 40 a are formed in the hydrogen electrode 40 in a matrix, and the hydrogen gas discharged from the measured liquid stirring chamber 30 through these holes 40 a and a part of the measured liquid W are formed in the hydrogen diffusion film 41. Supplied. Further, the hole 40 a formed in the hydrogen electrode 40 is disposed at a position facing the measured liquid flow path 34 of the measured liquid stirring chamber 30 so as not to be covered with the column top 33 a of the stirring column 33. Is formed. Therefore, the hydrogen gas released from the liquid W to be measured is designed to be efficiently supplied to the hydrogen diffusion film 41 side through the hole 40a.
次に水素ガスが到達する水素拡散膜41は、炭素繊維で形成されている。この水素拡散膜41は、水素極40の孔40aを通じて供給された被測定液W及び水素ガスを保持し、触媒膜43に水素ガスを均一に到達させる機能を有している。また、水素拡散膜41は触媒膜43を構成する白金成分の脱落を防止させる機能をも備えている。 Next, the hydrogen diffusion film 41 to which the hydrogen gas reaches is formed of carbon fiber. The hydrogen diffusion film 41 has a function of holding the liquid to be measured W and the hydrogen gas supplied through the holes 40 a of the hydrogen electrode 40 and allowing the hydrogen gas to uniformly reach the catalyst film 43. The hydrogen diffusion film 41 also has a function of preventing the platinum component constituting the catalyst film 43 from falling off.
次に水素ガスが到達する触媒膜43は白金触媒を含有する炭素繊維で形成されている。この触媒膜43では、水素拡散膜41を介して到達した水素ガスを水素イオンに分離させる反応が行われる。水素イオンと同時に生じた電子は、水素拡散膜41の炭素繊維と水素極40と導線とを通じて酸素極46に移動する。 Next, the catalyst film 43 to which hydrogen gas reaches is formed of carbon fibers containing a platinum catalyst. In the catalyst film 43, a reaction for separating the hydrogen gas that has reached through the hydrogen diffusion film 41 into hydrogen ions is performed. Electrons generated simultaneously with the hydrogen ions move to the oxygen electrode 46 through the carbon fiber of the hydrogen diffusion film 41, the hydrogen electrode 40, and the conductive wire.
この水素イオンが到達する高分子電解質膜44は、本実施形態においては、フッ素樹脂系陽イオン交換膜で形成されている。この高分子電解質膜44では、水素イオンが高分子電解質膜44を通りぬけて水素極側から酸素極側に移動する反応が行われる。 In this embodiment, the polymer electrolyte membrane 44 to which the hydrogen ions reach is formed of a fluororesin cation exchange membrane. In the polymer electrolyte membrane 44, a reaction in which hydrogen ions pass through the polymer electrolyte membrane 44 and move from the hydrogen electrode side to the oxygen electrode side is performed.
次に、酸素極セパレータ5について説明する。酸素極セパレータ5は、水素極セパレータ3と組み合わせることにより、燃料電池セル4を挟持して収容できるように構成されている。酸素極セパレータ5には、セパレータの面を貫通する酸素供給孔50が複数形成されており、この孔より空気中の酸素を供給すると共に、電極で生成した水(水蒸気)を放出し蒸発できるように構成されている。 Next, the oxygen electrode separator 5 will be described. The oxygen electrode separator 5 is configured so as to be able to sandwich and accommodate the fuel cell 4 by being combined with the hydrogen electrode separator 3. The oxygen electrode separator 5 is formed with a plurality of oxygen supply holes 50 penetrating the separator surface so that oxygen in the air can be supplied from the holes and water (water vapor) generated by the electrodes can be discharged and evaporated. It is configured.
この酸素極セパレータ5では、酸素極セパレータ5に形成されている酸素供給孔50及び、酸素極46に形成されている孔46aを通じ、空気中の酸素が酸素拡散膜45に供給される。ここで、酸素極46側に移動した水素イオン、導線を通じて移動した電子、そして供給された酸素とが反応し、水(水蒸気)が生成される。酸素極側においては、酸素極セパレータ5の酸素供給孔50の位置と酸素極46の孔46aの位置とは互いに対応しており、酸素を十分に取り込めると共に、化学反応により生じた水を蒸発放出できるように構成されている。酸素極46は水素極40と同様にステンレス(SUS)材にカーボンが焼結されて形成されている。また、酸素拡散膜45は主に炭素繊維から形成されているが、フッ素樹脂等により撥水性を付与することにより、水濡れを防止すると共に反応により生成した水(水蒸気)の蒸発放出を促進し、酸素供給を効率的に行えるように構成されている。なお、水素拡散膜41は被測定液を一定程度保持する必要があるため、撥水性を施さず、一定の親水性を付与するように構成されている。 In the oxygen electrode separator 5, oxygen in the air is supplied to the oxygen diffusion film 45 through the oxygen supply hole 50 formed in the oxygen electrode separator 5 and the hole 46 a formed in the oxygen electrode 46. Here, the hydrogen ions that have moved to the oxygen electrode 46 side, the electrons that have moved through the conducting wire, and the supplied oxygen react to generate water (water vapor). On the oxygen electrode side, the position of the oxygen supply hole 50 of the oxygen electrode separator 5 and the position of the hole 46a of the oxygen electrode 46 correspond to each other, so that oxygen can be sufficiently taken in and water generated by the chemical reaction is evaporated and released. It is configured to be able to. Similar to the hydrogen electrode 40, the oxygen electrode 46 is formed by sintering carbon on a stainless steel (SUS) material. The oxygen diffusion film 45 is mainly formed of carbon fiber, and by imparting water repellency with a fluororesin or the like, it prevents water wetting and promotes evaporation and release of water (water vapor) generated by the reaction. The oxygen supply can be efficiently performed. Since the hydrogen diffusion film 41 needs to hold a liquid to be measured to a certain degree, the hydrogen diffusion film 41 is configured to give a certain hydrophilicity without applying water repellency.
また、本実施形態においては、燃料電池セル4と被測定液撹拌室30とが隣接しているため、被測定液撹拌室30内に充満されている被測定液Wが燃料電池セル4内に多量に浸入する可能性がある。燃料電池セル4は通常の湿気程度ではその機能に問題は生じず、むしろ、高分子電解質膜44は湿気があることにより水素イオンの移動が円滑になるとされている。しかしながら、本発明においては通常の燃料電池のように水素ガスではなく、水素ガスが含まれている被測定液Wを燃料電池2内に供給しているために、燃料電池セル4の構成部材が水濡れし、各膜の機能が低下するおそれがある。例えば、酸素拡散膜45が水濡れすると、酸素ガスの供給が損なわれるため、起電力が著しく低下する。また、触媒膜43では、水素ガスを水素イオンに分離させる反応が生じるが、触媒膜43が多量に水濡れすると、触媒膜43への水素ガスの均一な供給が損なわれるため、起電力が低下する。それゆえ、被測定液撹拌室30と燃料電池セル4の水素極40との間の周縁部を封止するためのパッキン36を設けることが好ましい。本実施形態ではパッキン36は被測定液撹拌室30に設けられたパッキン用溝35内に嵌めこまれ、水素極40の周縁部に当接している。さらに、高分子電解質膜44と水素極40との間の周縁部を封止するためのパッキン42を設けることが好ましい。本実施形態においては、図3に示すように、パッキン42は、水素拡散膜41及び触媒膜43を挟みこむようにして、高分子電解質膜44と水素極40の周縁部に接触し、水素極40と高分子電解質膜44との間の周縁から酸素拡散膜45への水の浸入を防いでいる。さらに、被測定液Wが孔40a以外から水素拡散膜41及び触媒膜43に浸入することを防いでいる。本実施形態においては、水素拡散膜41と触媒膜43はいずれも、高分子電解質膜44や水素極40よりもひとまわり小さいサイズに形成されており、水素拡散膜41と触媒膜43とを積層させた際に、これらの膜の周端部がパッキン42と接触して封止されるように構成されている。なお、本実施形態においては、パッキン42を、複数の構成部材を挟んで周縁部を封止する構成としているが、他の実施形態として、例えば、触媒膜43と水素拡散膜41との間の周縁部のみを封止するような構成としてもよい。このようにパッキンを設けることにより、被測定液Wが燃料電池セル4内に多量に浸入することを防止すると共に、水素ガスを水素イオンに分離させる反応が生じる触媒膜43を過多な水濡れから確実に防ぐことができ、さらに酸素拡散膜45の水濡れをも確実に防ぐことができる。 In this embodiment, since the fuel battery cell 4 and the measured liquid stirring chamber 30 are adjacent to each other, the measured liquid W filled in the measured liquid stirring chamber 30 is contained in the fuel battery cell 4. There is a possibility of infiltration in large quantities. It is said that the function of the fuel battery cell 4 does not occur at a normal humidity level, but rather the movement of hydrogen ions is facilitated by the presence of moisture in the polymer electrolyte membrane 44. However, in the present invention, since the liquid to be measured W containing hydrogen gas is supplied into the fuel cell 2 instead of hydrogen gas as in a normal fuel cell, the constituent members of the fuel cell 4 are provided. There is a possibility that the function of each film may deteriorate due to water wetting. For example, when the oxygen diffusion film 45 is wetted with water, the supply of oxygen gas is impaired, and the electromotive force is significantly reduced. Further, in the catalyst film 43, a reaction for separating the hydrogen gas into hydrogen ions occurs. However, when the catalyst film 43 gets wet with a large amount of water, the uniform supply of the hydrogen gas to the catalyst film 43 is impaired, so that the electromotive force decreases. To do. Therefore, it is preferable to provide a packing 36 for sealing the peripheral edge between the measured liquid stirring chamber 30 and the hydrogen electrode 40 of the fuel cell 4. In this embodiment, the packing 36 is fitted in a packing groove 35 provided in the measured liquid stirring chamber 30 and is in contact with the peripheral edge of the hydrogen electrode 40. Furthermore, it is preferable to provide a packing 42 for sealing the peripheral edge between the polymer electrolyte membrane 44 and the hydrogen electrode 40. In the present embodiment, as shown in FIG. 3, the packing 42 is in contact with the periphery of the polymer electrolyte membrane 44 and the hydrogen electrode 40 so as to sandwich the hydrogen diffusion membrane 41 and the catalyst membrane 43. Water permeation into the oxygen diffusion film 45 from the periphery between the polymer electrolyte film 44 is prevented. Furthermore, the liquid W to be measured is prevented from entering the hydrogen diffusion film 41 and the catalyst film 43 from other than the holes 40a. In the present embodiment, both the hydrogen diffusion film 41 and the catalyst film 43 are formed to be slightly smaller than the polymer electrolyte film 44 and the hydrogen electrode 40, and the hydrogen diffusion film 41 and the catalyst film 43 are laminated. The peripheral ends of these films are configured to come into contact with the packing 42 when sealed. In the present embodiment, the packing 42 is configured to seal the peripheral portion with a plurality of components interposed therebetween. However, as another embodiment, for example, between the catalyst film 43 and the hydrogen diffusion film 41. It is good also as a structure which seals only a peripheral part. By providing the packing in this way, the liquid W to be measured is prevented from entering the fuel cell 4 in a large amount, and the catalyst film 43 in which the reaction for separating the hydrogen gas into hydrogen ions occurs is caused from excessive water wetting. It is possible to reliably prevent the oxygen diffusion film 45 from being wetted with water.
上述したこれらパッキン36及び42は、水の浸入を抑止することができればどのような構成であってもよいが、具体的には、シリコンやゴム等で形成されたものが好適に用いられる。また、これらパッキンに代えて、燃料電池セル4を構成する膜の周縁部に接着させたパッキンを用いること、又は膜の周縁部自体に封止機能をもたせた構成とすることも可能である。具体的には、一例として、パッキン42と高分子電解質膜44、触媒膜43及び水素拡散膜41を積層させて組み込んだ一体型として構成すること等が挙げられる。 The packings 36 and 42 described above may have any configuration as long as water can be prevented from entering, but specifically, those formed of silicon, rubber, or the like are preferably used. Further, instead of these packings, it is possible to use a packing adhered to the peripheral portion of the membrane constituting the fuel battery cell 4 or a configuration in which the peripheral portion of the membrane itself has a sealing function. Specifically, as an example, a configuration in which the packing 42, the polymer electrolyte membrane 44, the catalyst membrane 43, and the hydrogen diffusion membrane 41 are stacked and incorporated is included.
さらに、上述したように触媒膜43や酸素拡散膜45の起電力が低下するような過多な水濡れを避けるため、燃料電池セル4を構成する各膜の耐水圧は、以下のような値であることが好ましい。水素拡散膜41については、例えば、被測定液撹拌室30の被測定液Wが流入したことによる内圧が0.02MPaである場合には、水素拡散膜41の耐水圧は0.02MPa以下であることが好ましく、0.0005MPa〜0.003MPaであることがより好ましい。また、触媒膜43の水素極側の耐水圧は、水素拡散膜41よりも高いことが好ましく、例えば、水素極側拡散膜41の耐水圧が0.0005MPa〜0.003MPaである場合には、0.002MPa〜0.005MPaであることが好ましい。 Further, as described above, in order to avoid excessive water wetting such that the electromotive force of the catalyst film 43 and the oxygen diffusion film 45 is reduced, the water pressure resistance of each film constituting the fuel cell 4 is as follows. Preferably there is. For the hydrogen diffusion film 41, for example, when the internal pressure due to the flow of the measured liquid W in the measured liquid stirring chamber 30 is 0.02 MPa, the water pressure resistance of the hydrogen diffusion film 41 is 0.02 MPa or less. It is preferable that the pressure is 0.0005 MPa to 0.003 MPa. Further, the water pressure resistance on the hydrogen electrode side of the catalyst film 43 is preferably higher than that of the hydrogen diffusion film 41. For example, when the water pressure resistance of the hydrogen electrode side diffusion film 41 is 0.0005 MPa to 0.003 MPa, It is preferably 0.002 MPa to 0.005 MPa.
次に、図1を参照して測定手段6の構成及び作用について説明する。測定手段6は、本実施形態では、燃料電池2の正負電極間に互いに並列に接続された、電圧測定器60と、定常負荷を構成する低い抵抗値(例えば十数〜数十Ω)の負荷抵抗器61及び常閉接点のスイッチ62の直列回路と、電圧測定器60に接続されており、その出力電圧値から溶存水素濃度を表す測定結果を算出する演算器63とから主に構成されている。演算器63の算出結果を表示する表示器(図示なし)を設けても良い。表示器としては、例えば、LEDランプ、デジタルレベルモニタ、又はアナログレベルモニタ等を用いることができる。このような表示器を用いることにより、測定された溶存水素濃度が簡易表示されるので、溶存水素濃度の確認が容易となる。 Next, the configuration and operation of the measuring means 6 will be described with reference to FIG. In this embodiment, the measuring means 6 includes a voltage measuring device 60 connected in parallel between the positive and negative electrodes of the fuel cell 2 and a load having a low resistance value (for example, several tens to several tens Ω) constituting a steady load. It is mainly composed of a series circuit of a resistor 61 and a normally closed contact switch 62 and an arithmetic unit 63 which is connected to a voltage measuring device 60 and calculates a measurement result representing a dissolved hydrogen concentration from its output voltage value. Yes. You may provide the indicator (not shown) which displays the calculation result of the calculating unit 63. FIG. As the display, for example, an LED lamp, a digital level monitor, an analog level monitor, or the like can be used. By using such an indicator, the measured dissolved hydrogen concentration is simply displayed, so that the dissolved hydrogen concentration can be easily confirmed.
上述したように、燃料電池セル4で生起した電子が水素極40に接続された負電極と酸素極46に接続された正電極とに接続された導線を移動することにより、電気エネルギが生じる。この導線間に負荷抵抗器61と電圧測定器60とを配置して電圧を測定することにより燃料電池セル4で発生した電気エネルギを測定することができ、この電気エネルギが溶存水素濃度に対応しているため、測定した電圧を演算器63で演算することによって被測定液Wの溶存水素濃度を求めることができる。 As described above, electric energy is generated by moving the conductive wire connected to the negative electrode connected to the hydrogen electrode 40 and the positive electrode connected to the oxygen electrode 46 by the electrons generated in the fuel cell 4. By arranging the load resistor 61 and the voltage measuring device 60 between the conductors and measuring the voltage, the electric energy generated in the fuel cell 4 can be measured, and this electric energy corresponds to the dissolved hydrogen concentration. Therefore, the dissolved hydrogen concentration of the liquid W to be measured can be obtained by calculating the measured voltage with the calculator 63.
燃料電池2の正負電極間が低抵抗の負荷抵抗器61で接続され、常時低抵抗で短絡に近い状態とされているため、燃料電池セル4により生じる電気エネルギを常時この負荷抵抗器61で消費させておくことが可能となる。低抵抗負荷の値としては、燃料電池セル4により生じる電気エネルギの少なくとも一部を消費させて、好適な範囲の出力電圧を得られるように調整することができればよく、特に限定されないが電極面積が0.04dm2程度の燃料電池セルを用いた場合には、3〜100Ωが好ましく、7〜70Ωがより好ましく、10〜50Ωがさらに好ましい。 Since the positive and negative electrodes of the fuel cell 2 are connected by a low-resistance load resistor 61 and are always in a state of low resistance and close to a short circuit, the electric energy generated by the fuel cell 4 is always consumed by the load resistor 61. It is possible to leave it. The value of the low resistance load is not particularly limited as long as it can be adjusted so that at least a part of the electric energy generated by the fuel battery cell 4 is consumed and an output voltage in a suitable range can be obtained. When a fuel battery cell of about 0.04 dm 2 is used, 3 to 100Ω is preferable, 7 to 70Ω is more preferable, and 10 to 50Ω is more preferable.
電圧測定器60は、実際には、これに並列接続された負荷抵抗器61の両端間の電圧を測定しているが、溶存水素濃度の変化に対して測定電圧が飽和する応答速度が遅い場合は、スイッチ62を一旦開成して負荷抵抗器61の接続を解除し、例えば10秒程度起電力(電気エネルギ)の蓄積を行った後に再びスイッチ62を閉にして電圧測定を行うことにより、応答速度を高めることが可能である。 The voltage measuring device 60 actually measures the voltage across the load resistor 61 connected in parallel to the voltage measuring device 60, but the response speed at which the measured voltage is saturated with respect to the change in the dissolved hydrogen concentration is slow. The switch 62 is opened once and the connection of the load resistor 61 is released. For example, after accumulating electromotive force (electric energy) for about 10 seconds, the switch 62 is closed again and voltage measurement is performed. It is possible to increase the speed.
負荷抵抗器61は本実施形態では固定抵抗器で構成されているが、これを可変抵抗器とすることも可能である。この可変抵抗器を調整することにより、好適な測定範囲の電圧値を得ることが可能である。 Although the load resistor 61 is formed of a fixed resistor in the present embodiment, it can be a variable resistor. By adjusting this variable resistor, it is possible to obtain a voltage value in a suitable measurement range.
次に、図4を参照しつつ、溶存水素濃度の測定方法及び本実施形態に係る溶存水素濃度の測定装置の使用方法について説明する。 Next, a method for measuring the dissolved hydrogen concentration and a method for using the measuring device for the dissolved hydrogen concentration according to the present embodiment will be described with reference to FIG.
図4に示すように、本実施形態に係る溶存水素濃度の測定方法は、被測定液Wを準備する前準備工程S0、被測定液Wに含まれる水素ガスを放出させる工程S1、供給された水素ガスと空気中の酸素とを用いて燃料電池による起電力発生を行う工程S2、起電力発生により得られた電気エネルギ量(電圧値)を測定する工程S3、及び測定された電圧値から溶存水素濃度を求める工程S4から構成される。 As shown in FIG. 4, the method for measuring the dissolved hydrogen concentration according to the present embodiment is supplied with a preparatory step S0 for preparing the measurement liquid W, a step S1 for releasing the hydrogen gas contained in the measurement liquid W, Step S2 for generating an electromotive force by the fuel cell using hydrogen gas and oxygen in the air, Step S3 for measuring the amount of electric energy (voltage value) obtained by the generation of the electromotive force, and dissolution from the measured voltage value It consists of process S4 which calculates | requires hydrogen concentration.
(前準備工程)
まず、図4に示す前準備工程S0について説明する。この前準備工程S0では、被測定液Wの準備を行う。図1に示すように、測定装置1をポンプ7、コック8及び流路L0を介して例えば水素水製造装置に接続し、被測定液Wが測定装置1に供給されるように準備する。この被測定液Wは、本実施形態のように、水素水製造装置等によりその都度製造されるものであっても良いし、ボンベ、缶又は瓶等の容器に収容されているものであっても良い。
(Preparation process)
First, the preparation step S0 shown in FIG. 4 will be described. In this pre-preparation step S0, the liquid to be measured W is prepared. As shown in FIG. 1, the measurement apparatus 1 is connected to, for example, a hydrogen water production apparatus via a pump 7, a cock 8, and a flow path L 0 , and a measurement target liquid W is prepared to be supplied to the measurement apparatus 1. The liquid W to be measured may be produced each time by a hydrogen water production apparatus or the like as in this embodiment, or is contained in a container such as a cylinder, can or bottle. Also good.
(被測定液撹拌工程)
次に、被測定液撹拌工程S1について説明する。準備した被測定液Wを図1に示すポンプ7、コック8及び流路L0を介して測定装置1の被測定液流入部31から被測定液撹拌室30内部に流入させる。これにより、被測定液撹拌室30内の撹拌柱33に被測定液Wが衝突して乱流が生じ、水素ガスが放出される。このとき、被測定液撹拌室30内で放出される水素ガス量は、被測定液Wの流量や液温に依存するため、測定時の被測定液流量及び液温は一定量及び一定温度とすることが好ましい。例えば、被測定液Wの流量を多くすると、被測定液撹拌室30内の撹拌柱33に衝突して放出される水素ガスの量も多くなるため、結果として燃料電池セル4による発電量が高くなる。同様に、被測定液Wの液温が高いと、放出される水素ガスの量が多くなると共に水素イオンや酸素イオンの活動が活発になり反応速度が向上するため、結果として燃料電池セル4による発電量が高くなる。また、被測定液Wの流入を止めると水素ガスの放出がなくなり、燃料電池セル4による発電量はゼロになるため、後述する工程の電圧値の測定を完了させるまでは被測定液Wを一定の流量で流入させることが好ましい。
(Measurement liquid stirring process)
Next, the measured liquid stirring step S1 will be described. The prepared measured liquid W is caused to flow from the measured liquid inflow portion 31 of the measuring apparatus 1 into the measured liquid stirring chamber 30 via the pump 7, the cock 8 and the flow path L 0 shown in FIG. As a result, the measured liquid W collides with the stirring column 33 in the measured liquid stirring chamber 30 to generate a turbulent flow, and hydrogen gas is released. At this time, since the amount of hydrogen gas released in the measured liquid stirring chamber 30 depends on the flow rate and the liquid temperature of the measured liquid W, the measured liquid flow rate and the liquid temperature at the time of measurement are a constant amount and a constant temperature. It is preferable to do. For example, when the flow rate of the liquid to be measured W is increased, the amount of hydrogen gas released by colliding with the stirring column 33 in the liquid to be measured stirring chamber 30 also increases, and as a result, the amount of power generated by the fuel cell 4 is high. Become. Similarly, when the liquid temperature of the liquid W to be measured is high, the amount of released hydrogen gas increases and the activity of hydrogen ions and oxygen ions becomes active and the reaction rate is improved. The amount of power generation increases. Further, when the flow of the measured liquid W is stopped, the hydrogen gas is not released and the amount of power generated by the fuel cell 4 becomes zero. Therefore, the measured liquid W is kept constant until the measurement of the voltage value in the process described later is completed. It is preferable to flow in at a flow rate.
(起電力発生工程)
次に、放出された水素ガスと空気中の酸素とを用いて燃料電池2による起電力発生を行う工程S2について説明する。放出された水素ガスは燃料電池セル4内の隣接する水素極40に供給される。他方、空気中の酸素が酸素極セパレータ5の酸素供給孔50を通じて酸素極46に供給される。これら水素及び酸素が燃料電池セル4内にて反応し、電気エネルギが生じる。前述したように、放出された水素ガス量が多いほど、起電力は大きくなる。
(Electromotive force generation process)
Next, step S2 for generating an electromotive force by the fuel cell 2 using the released hydrogen gas and oxygen in the air will be described. The released hydrogen gas is supplied to the adjacent hydrogen electrode 40 in the fuel cell 4. On the other hand, oxygen in the air is supplied to the oxygen electrode 46 through the oxygen supply hole 50 of the oxygen electrode separator 5. These hydrogen and oxygen react in the fuel cell 4 to generate electric energy. As described above, the electromotive force increases as the amount of released hydrogen gas increases.
(電圧測定工程)
次に、燃料電池セル4で発生した電気エネルギ量(電圧)を測定する工程S3について説明する。図1に示すように、本実施形態においての測定は、測定手段6の電圧測定器60により、並列接続された負荷抵抗器61の両端間の電圧を測定することによって行われる。スイッチ62は通常閉にされている。測定電圧が一定値に落ち着くまでの応答速度が遅い場合は、このスイッチ62を一旦開にして負荷抵抗器61の接続を解除し、燃料電池セル4内に起電力の蓄積を行った後、再びスイッチ62を閉にして電圧測定を行う。これにより、応答速度を早めることができる。
(Voltage measurement process)
Next, step S3 for measuring the amount of electric energy (voltage) generated in the fuel cell 4 will be described. As shown in FIG. 1, the measurement in this embodiment is performed by measuring the voltage across the load resistor 61 connected in parallel by the voltage measuring device 60 of the measuring means 6. The switch 62 is normally closed. When the response speed until the measured voltage settles to a constant value is slow, the switch 62 is opened once, the connection of the load resistor 61 is released, the electromotive force is accumulated in the fuel cell 4, and then again. Voltage is measured with the switch 62 closed. Thereby, the response speed can be increased.
(溶存水素濃度の算出)
次に、溶存水素濃度の算出に係る工程S4について説明する。測定手段6の演算器63により、前述の電圧測定工程S3により得られた電圧値を同条件の試験により得られた検量線にあてはめる演算を行うことにより、溶存水素濃度が得られる。また、算出された溶存水素濃度を、LEDランプ、デジタルレベルモニタ又はアナログレベルモニタ等で簡易表示させるように構成させてもよい。
(Calculation of dissolved hydrogen concentration)
Next, step S4 related to the calculation of the dissolved hydrogen concentration will be described. The arithmetic unit 63 of the measuring means 6 performs a calculation for applying the voltage value obtained in the voltage measurement step S3 described above to a calibration curve obtained by a test under the same conditions, thereby obtaining a dissolved hydrogen concentration. Further, the calculated dissolved hydrogen concentration may be simply displayed by an LED lamp, a digital level monitor, an analog level monitor, or the like.
以下、実施例を用いて、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
1.被測定液流量の検討
図1〜図3に示す本発明の一実施形態に記載の装置を用いて、各種溶存水素濃度に調整した水素水を被測定液(試料液)Wとした際の電圧を測定した。具体的には、燃料電池セル4及び酸素極セパレータ5はホライゾンフュエルセル社の小型PEM燃料電池(製品参照番号;FCSU−012)を用い、図2に示す被測定液撹拌室30を備えた水素極セパレータ3を用いた。被測定液撹拌室30の撹拌柱33の柱高さAは3.0mm、被測定液流路34の幅Bは1.0mmであった。なお、燃料電池セル4を構成する各膜のうち、水素拡散膜41は、炭素繊維のみで撥水加工されていないものを用いた。また、水素極セパレータ3と燃料電池セル4との間にはパッキン36を入れ、高分子電解質膜44と水素極40との間にもパッキン42を入れて被測定液Wの浸水を防止した。測定手段6としては、電圧測定器60として市販の電圧計(型式;732−03、横河メータ&インスツルメンツ株式会社製品)を用い、33.8Ωの負荷抵抗器61を用いた。測定条件としては、スイッチ62を閉成状態に維持させて燃料電池セル4の電極間には負荷抵抗器61のみが接続されるように構成した。電圧測定器60の抵抗は無限大に近いものとみなした。被測定液Wの水温は29℃、被測定液Wの被測定液撹拌室30への流量は1050mL/分とし、被測定液撹拌室30内の圧力を0.03MPaとした。なお、被測定液(試料液)Wの溶存水素濃度について、市販の溶存水素調整器(型式;BIH−50D、バイオニクス機器株式会社製品)を用いて同時計測した。
1. Examination of flow rate of liquid to be measured Voltage when hydrogen water adjusted to various dissolved hydrogen concentrations is used as liquid to be measured (sample liquid) W using the apparatus described in the embodiment of the present invention shown in FIGS. Was measured. Specifically, the fuel cell 4 and the oxygen electrode separator 5 are Horizon Fuel Cell's small PEM fuel cells (product reference number: FCSU-012), and are equipped with a measurement liquid stirring chamber 30 shown in FIG. The pole separator 3 was used. The column height A of the stirring column 33 in the measured liquid stirring chamber 30 was 3.0 mm, and the width B of the measured liquid channel 34 was 1.0 mm. Of the membranes constituting the fuel cell 4, the hydrogen diffusion membrane 41 is made of only carbon fibers and not water-repellent. Further, a packing 36 was inserted between the hydrogen electrode separator 3 and the fuel battery cell 4, and a packing 42 was also inserted between the polymer electrolyte membrane 44 and the hydrogen electrode 40 to prevent the liquid W to be measured from entering. As the measuring means 6, a commercially available voltmeter (model: 732-03, Yokogawa Meter & Instruments Co., Ltd. product) was used as the voltage measuring device 60, and a load resistor 61 of 33.8Ω was used. Measurement conditions were such that the switch 62 was kept closed and only the load resistor 61 was connected between the electrodes of the fuel cell 4. The resistance of the voltage measuring device 60 was considered to be close to infinity. The water temperature of the measured liquid W was 29 ° C., the flow rate of the measured liquid W to the measured liquid stirring chamber 30 was 1050 mL / min, and the pressure in the measured liquid stirring chamber 30 was 0.03 MPa. In addition, about the dissolved hydrogen density | concentration of the to-be-measured liquid (sample liquid) W, it measured simultaneously using the commercially available dissolved hydrogen regulator (model | form; BIH-50D, Bionics apparatus company product).
次に、被測定液Wの流量を1680mL/分、又は2100mL/分と設定した以外は、上述と同じ条件で試験を行った。 Next, the test was performed under the same conditions as described above except that the flow rate of the liquid W to be measured was set to 1680 mL / min or 2100 mL / min.
結果を図5(a)に示す。縦軸は測定された出力電圧(mV)を示し、横軸は被測定液撹拌室30に供給された被測定液Wの溶存水素濃度(mg/L)を示している。これにより、被測定液の流量によって、燃料電池セルから発生する電気エネルギ量が異なり、被測定液流量が大きくなるほど大きな電圧が得られることが、わかった。また、いずれの被測定液流量においても、溶存水素濃度と測定された電圧とは略直線関係になるため、被測定液流量を一定とすれば、この検量線から測定された電圧に対応する溶存水素濃度を求められることが示された。なお、溶存水素濃度が0.7mg/L未満の低濃度領域ではグラフの直線性にやや乱れが生じているところ、このような低濃度領域の測定においては、負荷抵抗器61を33.8Ωより抵抗の大きい100Ω程度とし、低濃度の範囲の溶存水素濃度について得られた検量線を選択することが好ましいと考えられる。または被測定液流量を1000mL/分程度とし、傾きが小さい検量線を選択することでも測定が可能であると考えられる。 The results are shown in FIG. The vertical axis represents the measured output voltage (mV), and the horizontal axis represents the dissolved hydrogen concentration (mg / L) of the measurement liquid W supplied to the measurement liquid stirring chamber 30. Thus, it has been found that the amount of electric energy generated from the fuel cell varies depending on the flow rate of the liquid to be measured, and a larger voltage can be obtained as the flow rate of the liquid to be measured increases. Further, since the dissolved hydrogen concentration and the measured voltage have a substantially linear relationship at any measured liquid flow rate, the dissolved liquid concentration corresponding to the voltage measured from the calibration curve can be obtained if the measured liquid flow rate is constant. It was shown that the hydrogen concentration can be determined. In the low concentration region where the dissolved hydrogen concentration is less than 0.7 mg / L, the linearity of the graph is somewhat disturbed. In the measurement of such a low concentration region, the load resistor 61 is less than 33.8Ω. It is considered preferable to select a calibration curve obtained with a high resistance of about 100Ω and a dissolved hydrogen concentration in a low concentration range. Alternatively, it is considered that the measurement can be performed by setting the flow rate of the liquid to be measured to about 1000 mL / min and selecting a calibration curve having a small slope.
また、図5(b)に溶存水素濃度が0.7mg/L以上のデータについて近似曲線を求めたグラフを示す。このように、種々の被測定液流量において測定された電圧と被測定液中の溶存水素濃度は、直線的な関係を示す。よって、測定時の被測定液流量を一定とすることにより、本発明の装置が溶存水素濃度測定装置として実用できることが見出された。 Moreover, the graph which calculated | required the approximate curve about FIG.5 (b) about the data whose dissolved hydrogen concentration is 0.7 mg / L or more is shown. Thus, the voltage measured at various measured liquid flow rates and the dissolved hydrogen concentration in the measured liquid show a linear relationship. Therefore, it has been found that the apparatus of the present invention can be put into practical use as a dissolved hydrogen concentration measuring apparatus by making the measured liquid flow rate constant during measurement.
2.被測定液温度の検討
実施例1に記載の装置を用いて、被測定液の液温と被測定液流量及び被測定液撹拌室30内の圧力を変更した以外は、実施例1と同じ条件で各種溶存水素濃度に調整した水素水を被測定液Wとした際の電圧を測定した。被測定液流量は1110mL/分、被測定液撹拌室30内の圧力は0.011MPaに設定した。被測定液の液温については、16℃、23℃及び33℃に調整したものを用いてそれぞれ試験を行った。
2. Examination of measured liquid temperature The same conditions as in Example 1 except that the temperature of the measured liquid, the measured liquid flow rate, and the pressure in the measured liquid stirring chamber 30 were changed using the apparatus described in Example 1. The voltage when hydrogen water adjusted to various dissolved hydrogen concentrations was used as the liquid W to be measured was measured. The measured liquid flow rate was set to 1110 mL / min, and the measured liquid stirring chamber 30 pressure was set to 0.011 MPa. About the liquid temperature of to-be-measured liquid, it tested using what adjusted to 16 degreeC, 23 degreeC, and 33 degreeC, respectively.
結果を図6(a)に示す。縦軸は測定された出力電圧(mV)を示し、横軸は、被測定液撹拌室30に供給された被測定液Wの溶存水素濃度(mg/L)を示している。これにより、被測定液流量ほどではないが、被測定液温度によって、燃料電池セル4から発生する電気エネルギ量が異なり、被測定液温度が高くなるほど大きな電圧が得られることがわかった。また、いずれの被測定液温度においても、溶存水素濃度と測定された電圧とは略直線関係になるため、被測定液温度を一定とすれば、この検量線から測定された電圧に対応する溶存水素濃度を求められることが示された。 The results are shown in FIG. The vertical axis represents the measured output voltage (mV), and the horizontal axis represents the dissolved hydrogen concentration (mg / L) of the measured liquid W supplied to the measured liquid stirring chamber 30. As a result, it was found that the amount of electric energy generated from the fuel battery cell 4 differs depending on the temperature of the liquid to be measured, but a larger voltage is obtained as the temperature of the liquid to be measured increases, although not as much as the flow rate of the liquid to be measured. In addition, since the dissolved hydrogen concentration and the measured voltage are in a substantially linear relationship at any measured solution temperature, the dissolved solution corresponding to the voltage measured from the calibration curve can be obtained if the measured solution temperature is constant. It was shown that the hydrogen concentration can be determined.
また、図6(b)に溶存水素濃度が0.7mg/L以上のデータについて近似曲線を求めたグラフを示す。このように、種々の被測定液温度において測定された電圧と被測定液中の溶存水素濃度は、直線的な関係を示す。よって、測定時の被測定液温度を一定とし、上述した実施例1に示すように被測定液流量を一定とすることにより、本発明の装置が溶存水素濃度測定装置として実用できることが示された。 Moreover, the graph which calculated | required the approximate curve about FIG.6 (b) about the data whose dissolved hydrogen concentration is 0.7 mg / L or more is shown. Thus, the voltage measured at various measured liquid temperatures and the dissolved hydrogen concentration in the measured liquid show a linear relationship. Therefore, it was shown that the device of the present invention can be practically used as a dissolved hydrogen concentration measuring device by keeping the temperature of the liquid to be measured at the time of measurement constant and keeping the flow rate of the liquid to be measured constant as shown in Example 1 described above. .
3.被測定液撹拌室内の圧力の検討
実施例1に記載の装置を用いて、被測定液流量及び被測定液撹拌室30内の圧力を変更した以外は、実施例1と同じ条件で各種溶存水素濃度に調整した水素水を被測定液Wとした際の電圧を測定した。被測定液流量は1350mL/分とし、被測定液撹拌室30内の圧力は0.05MPa、0.025MPa及び0.012MPaにそれぞれ設定し、試験を行った。
3. Examination of the pressure in the measured liquid stirring chamber Various dissolved hydrogens under the same conditions as in the first embodiment, except that the flow rate of the measured liquid and the pressure in the measured liquid stirring chamber 30 were changed using the apparatus described in the first embodiment. The voltage when hydrogen water adjusted to the concentration was used as the measurement liquid W was measured. The test was performed with the measured liquid flow rate set to 1350 mL / min and the pressure in the measured liquid stirring chamber 30 set to 0.05 MPa, 0.025 MPa, and 0.012 MPa, respectively.
結果を図7に示す。縦軸は測定された出力電圧(mV)を示し、横軸は被測定液撹拌室30に供給された被測定液Wの溶存水素濃度(mg/L)を示している。これにより、いずれの水圧においても、溶存水素濃度と測定された電圧とは略直線関係になることが示され、得られる電圧値は被測定液撹拌室内における水圧値に影響されないことが示された。これにより、被測定液Wの水圧は燃料電池セルの起電力に影響せず、実施例1及び2で示された被測定液量及び液温が影響することが確認された。 The results are shown in FIG. The vertical axis represents the measured output voltage (mV), and the horizontal axis represents the dissolved hydrogen concentration (mg / L) of the measurement liquid W supplied to the measurement liquid stirring chamber 30. As a result, it was shown that the dissolved hydrogen concentration and the measured voltage were in a substantially linear relationship at any water pressure, and the obtained voltage value was not affected by the water pressure value in the measured liquid stirring chamber. . Thereby, it was confirmed that the water pressure of the liquid W to be measured does not affect the electromotive force of the fuel cell, and the liquid volume to be measured and the liquid temperature shown in Examples 1 and 2 have an effect.
4.測定方法の検討
実施例1に記載の装置において、低抵抗の負荷抵抗器61の抵抗値を10Ωとし、電圧測定器60に並列に10kΩの高抵抗の負荷抵抗器を接続し、被測定液流量を2100mL/分に変えた以外は、実施例1と同じ条件(スイッチ62は閉成状態)で1.02、1.28、1.61及び1.90mg/Lの溶存水素濃度に調整した水素水を被測定液Wとした際の電圧をそれぞれ測定した。また、この装置を用いて、スイッチ62を開にすることにより、低抵抗の負荷抵抗器61を開放して高抵抗の負荷抵抗器のみとし、5秒、10秒、15秒、25秒及び30秒経過した際の出力電圧をそれぞれ測定した。
4). Examination of measurement method In the apparatus described in Example 1, the resistance value of the low resistance load resistor 61 is set to 10Ω, and a high resistance load resistor of 10 kΩ is connected in parallel to the voltage measuring device 60, and the flow rate of the liquid to be measured The hydrogen was adjusted to dissolved hydrogen concentrations of 1.02, 1.28, 1.61 and 1.90 mg / L under the same conditions as in Example 1 (switch 62 in the closed state) except that was changed to 2100 mL / min. The voltage when water was used as the liquid to be measured W was measured. Also, by using this device, the switch 62 is opened to open the low-resistance load resistor 61, so that only the high-resistance load resistor is used, for 5 seconds, 10 seconds, 15 seconds, 25 seconds, and 30. The output voltage was measured when 2 seconds passed.
結果を図8に示す。縦軸は測定された出力電圧(mV)を示し、横軸は被測定液撹拌室30に供給された被測定液Wの溶存水素濃度(mg/L)を示している。これにより、電圧測定方法によって、得られる電圧値が異なることがわかった。本実施例で使用した燃料電池セルにおいては、850mV程度で飽和しているため、スイッチ62を開にして高抵抗の負荷抵抗器のみとした後の出力電圧により溶存水素濃度を測定する際には、測定される電圧値が850mV以下となるように測定条件を調整する必要があることがわかった。測定条件は、被測定液の流量や液温、短絡負荷量や定常負荷量、そして測定時間等により調整することができる。他方、スイッチ62を閉成状態に保ち、低抵抗の負荷抵抗器61が接続されている際の出力電圧による電圧測定においては、電圧と溶存水素濃度とはきれいな直線関係を示していた。なお、本実施例で使用した燃料電池セルにおいては、測定される待機電圧を500mV以下に制御することが好ましく、そのためには、50Ω程度の低抵抗の負荷抵抗器61を使用することが適当であると考えられる。このように、本発明の装置はさまざまな電圧の測定方法に適応しており、測定条件を調整することにより、精度の高い溶存水素濃度測定装置として使用できることがわかった。 The results are shown in FIG. The vertical axis represents the measured output voltage (mV), and the horizontal axis represents the dissolved hydrogen concentration (mg / L) of the measurement liquid W supplied to the measurement liquid stirring chamber 30. Thereby, it turned out that the voltage value obtained changes with voltage measuring methods. In the fuel cell used in this example, since it is saturated at about 850 mV, when measuring the dissolved hydrogen concentration by the output voltage after opening the switch 62 and using only the high resistance load resistor, It was found that it was necessary to adjust the measurement conditions so that the measured voltage value was 850 mV or less. The measurement conditions can be adjusted by the flow rate and temperature of the liquid to be measured, the short-circuit load amount, the steady load amount, the measurement time, and the like. On the other hand, in the voltage measurement based on the output voltage when the switch 62 is kept closed and the low resistance load resistor 61 is connected, the voltage and the dissolved hydrogen concentration showed a clean linear relationship. In the fuel cell used in this example, it is preferable to control the measured standby voltage to 500 mV or less. For this purpose, it is appropriate to use a load resistor 61 having a low resistance of about 50Ω. It is believed that there is. Thus, it has been found that the apparatus of the present invention is adapted to various voltage measuring methods and can be used as a highly accurate dissolved hydrogen concentration measuring apparatus by adjusting the measurement conditions.
5.被測定液撹拌室の撹拌柱の柱高さの検討
図1〜3に示す本発明の一実施形態に記載の装置を用いて、各種溶存水素濃度に調整した水素水を被測定液Wとした際の電圧を測定した。具体的には、燃料電池セル4及び酸素極セパレータ5はホライゾンフュエルセル社の小型PEM燃料電池(製品参照番号;FCSU−012)を用い、図2に示す被測定液撹拌室30を水素極セパレータとして用いた。被測定液撹拌室30の撹拌柱33の柱高さAは3.5mm、被測定液流路の幅Bは1.0mmであった。なお、燃料電池セル4を構成する各膜のうち、水素拡散膜41は炭素繊維のみで撥水加工されていないものを用いた。また、水素極セパレータ3と燃料電池セル4との間にはパッキン36を入れ、高分子電解質膜44と水素極40との間にもパッキン42を入れて被測定液Wの浸水を防止した。測定手段6としては、電圧測定器60として市販の電圧計(型式;732−03、横河メータ&インスツルメンツ株式会社製品)を用いた。測定条件としては、スイッチ62を閉成状態に保ち、低抵抗の負荷抵抗器61が接続されている状態とし、その抵抗値を62.9Ωとした。また、溶存水素濃度が2.0mg/Lのときに出力電圧値が1500mVとなるように可変抵抗器を調整した。被測定液の水温は28℃、被測定液Wの被測定液撹拌室30への流量は1620mL/分とし、被測定液撹拌室30内の圧力を0.02MPaとした。
5. Examination of the column height of the stirring column of the measured liquid stirring chamber Using the apparatus described in the embodiment of the present invention shown in FIGS. 1 to 3, hydrogen water adjusted to various dissolved hydrogen concentrations was used as the measured liquid W. The voltage at the time was measured. Specifically, as the fuel cell 4 and the oxygen electrode separator 5, a small PEM fuel cell (product reference number: FCSU-012) manufactured by Horizon Fuel Cell is used, and the liquid stirring chamber 30 shown in FIG. Used as. The column height A of the stirring column 33 in the measured liquid stirring chamber 30 was 3.5 mm, and the width B of the measured liquid channel was 1.0 mm. Of the membranes constituting the fuel cell 4, the hydrogen diffusion membrane 41 was made of only carbon fibers and not water repellent. Further, a packing 36 was inserted between the hydrogen electrode separator 3 and the fuel battery cell 4, and a packing 42 was also inserted between the polymer electrolyte membrane 44 and the hydrogen electrode 40 to prevent the liquid W to be measured from entering. As the measuring means 6, a commercially available voltmeter (model; 732-03, Yokogawa Meter & Instruments Co., Ltd. product) was used as the voltage measuring device 60. As measurement conditions, the switch 62 was kept closed, a low resistance load resistor 61 was connected, and the resistance value was 62.9Ω. In addition, the variable resistor was adjusted so that the output voltage value was 1500 mV when the dissolved hydrogen concentration was 2.0 mg / L. The water temperature of the measured liquid was 28 ° C., the flow rate of the measured liquid W to the measured liquid stirring chamber 30 was 1620 mL / min, and the pressure in the measured liquid stirring chamber 30 was 0.02 MPa.
次に、被測定液撹拌室30を、撹拌柱33の柱高さAが3.0mm、被測定液流路の幅Bが1.0mmのものを用いた以外は、上述と同じ条件で試験を行った。 Next, the measured liquid stirring chamber 30 was tested under the same conditions as described above except that the column height A of the stirring column 33 was 3.0 mm and the width B of the measured liquid flow path was 1.0 mm. Went.
測定試験は同じ条件でほぼ半月にわたって実施日を変えて行い、撹拌柱33の柱高さAが3.5mmの試験区については14回、柱高さAが3.0mmの試験区については11回試験を行い、それぞれの平均値を算出した。結果を図9に示す。縦軸は測定された出力電圧(mV)を示し、横軸は被測定液撹拌室30に供給された被測定液Wの溶存水素濃度(mg/L)を示している。いずれの試験区においても、溶存水素濃度と測定された電圧とは略直線関係になり、この検量線から測定された電圧に対応する溶存水素濃度を求められることがわかった。また、被測定液撹拌室30の撹拌柱33の柱高さAが3.5mm(図9(a))と3.0mm(図9(b))との試験結果を比較すると、溶存水素濃度が0.5mg/L以下の比較的低濃度の範囲において、柱高さAが高い撹拌柱を用いることにより、グラフの直線性に安定した傾向がみられた。これは、柱高さAが長くなることにより、被測定液Wと撹拌柱との接触面積が大きくなり、水素水の撹拌効率に影響が及んでいるためと考えられる。 The measurement test was carried out under the same conditions for almost half a month, changing the implementation date, 14 times for the test section where the column height A of the stirring column 33 is 3.5 mm, and 11 for the test section where the column height A is 3.0 mm. A round test was performed and the average value of each was calculated. The results are shown in FIG. The vertical axis represents the measured output voltage (mV), and the horizontal axis represents the dissolved hydrogen concentration (mg / L) of the measurement liquid W supplied to the measurement liquid stirring chamber 30. In any test section, it was found that the dissolved hydrogen concentration and the measured voltage had a substantially linear relationship, and the dissolved hydrogen concentration corresponding to the voltage measured from this calibration curve was obtained. Moreover, when the column height A of the stirring column 33 of the measured liquid stirring chamber 30 is 3.5 mm (FIG. 9A) and 3.0 mm (FIG. 9B), the dissolved hydrogen concentration is compared. When a stirring column having a high column height A was used in a relatively low concentration range of 0.5 mg / L or less, a tendency toward stable linearity of the graph was observed. This is presumably because the contact area between the liquid to be measured W and the stirring column is increased by increasing the column height A, which affects the stirring efficiency of hydrogen water.
6.パッキンの検討
実施例1に記載の装置を用いて、高分子電解質膜44と水素極40との間のパッキン42を外し、被測定液流量を1170mL/分、被測定液撹拌室30内の圧力を0.022MPaに変えた以外は、実施例1と同じ条件で各種溶存水素濃度に調整した水素水を被測定液Wとした際の電圧を測定した。測定試験は同じ条件で日を変えて5回行い、それぞれの電圧値を測定した。
6). Examination of Packing Using the apparatus described in Example 1, the packing 42 between the polymer electrolyte membrane 44 and the hydrogen electrode 40 is removed, the measured liquid flow rate is 1170 mL / min, and the measured liquid stirring chamber 30 pressure Was changed to 0.022 MPa, and the voltage when hydrogen water adjusted to various dissolved hydrogen concentrations under the same conditions as in Example 1 was used as the measurement liquid W was measured. The measurement test was performed five times under the same conditions, changing the day, and each voltage value was measured.
結果を図10に示す。縦軸は測定された出力電圧(mV)を示し、横軸は被測定液撹拌室30に供給された被測定液Wの溶存水素濃度(mg/L)を示している。これにより、高分子電解質膜44と水素極40との間のパッキン42がない場合には、電圧と溶存水素濃度とが直線関係にならず、乱れる場合のあることがわかった。直線関係を示していない試験日の燃料電池セルを分解して調べてみたところ、膜の周縁部を伝って被測定液Wが触媒膜43や酸素拡散膜45にまで到達し、触媒膜43や酸素拡散膜45が過剰に水濡れを起こしていることがわかった。これにより、触媒膜43への均一な水素ガスの供給及び酸素拡散膜45への酸素ガスの供給が損なわれ、安定した起電力が得られなかったものと考えられる。よって、高分子電解質膜44と水素極40との間のパッキン42は安定した溶存水素濃度の測定のため、配置させることが好ましい。 The results are shown in FIG. The vertical axis represents the measured output voltage (mV), and the horizontal axis represents the dissolved hydrogen concentration (mg / L) of the measurement liquid W supplied to the measurement liquid stirring chamber 30. Thus, it has been found that when there is no packing 42 between the polymer electrolyte membrane 44 and the hydrogen electrode 40, the voltage and the dissolved hydrogen concentration are not in a linear relationship and may be disturbed. When the fuel cells on the test day that did not show a linear relationship were disassembled and examined, the measured liquid W reached the catalyst film 43 and the oxygen diffusion film 45 along the peripheral edge of the film, and the catalyst film 43 and It was found that the oxygen diffusion film 45 was excessively wetted. Thereby, it is considered that the uniform supply of hydrogen gas to the catalyst film 43 and the supply of oxygen gas to the oxygen diffusion film 45 are impaired, and a stable electromotive force cannot be obtained. Therefore, it is preferable to arrange the packing 42 between the polymer electrolyte membrane 44 and the hydrogen electrode 40 in order to stably measure the dissolved hydrogen concentration.
本発明は、上記の実施形態又は実施例に限定されるものでなく、特許請求の範囲に記載された発明の要旨を逸脱しない範囲内での種々、設計変更した形態も技術的範囲に含むものである。 The present invention is not limited to the above-described embodiments or examples, and various design changes within the scope not departing from the gist of the invention described in the claims are also included in the technical scope. .
1 溶存水素濃度の測定装置
2 燃料電池
3 水素極セパレータ
30 被測定液撹拌室
31 被測定液流入部
31a 流入口
31b 筒部
32 被測定液排出部
32a 排出口
32b 筒部
33 撹拌柱
33a 柱頂
34 被測定液流路
35 パッキン用溝
36 パッキン
A 撹拌柱の柱高さ
B 被測定液流路の幅
4 燃料電池セル
40 水素極
40a 孔
41 水素拡散膜
42 パッキン
43 触媒膜
44 高分子電解質膜
45 酸素拡散膜
46 酸素極
46a 孔
5 酸素極セパレータ
50 酸素供給孔
6 測定手段
60 電圧測定器
61 負荷抵抗器
62 スイッチ
63 演算器
7 ポンプ
8 コック
L0〜L2 流路
W 被測定液
DESCRIPTION OF SYMBOLS 1 Measuring apparatus of dissolved hydrogen concentration 2 Fuel cell 3 Hydrogen electrode separator 30 Measuring liquid stirring chamber 31 Measuring liquid inflow part 31a Inlet 31b Tube part 32 Measuring liquid discharge part 32a Outlet 32b Tube part 33 Stirring pillar 33a Column top 34 Liquid channel for measurement 35 Groove for packing 36 Packing A Column height of stirring column B Width of liquid channel for measurement 4 Fuel cell 40 Hydrogen electrode 40a Hole 41 Hydrogen diffusion membrane 42 Packing 43 Catalyst membrane 44 Polymer electrolyte membrane 45 Oxygen diffusion film 46 Oxygen electrode 46a Hole 5 Oxygen electrode separator 50 Oxygen supply hole 6 Measuring means 60 Voltage measuring device 61 Load resistor 62 Switch 63 Calculator 7 Pump 8 Cock L 0 to L 2 Flow path W Liquid to be measured
Claims (5)
前記被測定液から放出された水素ガスと空気中の酸素ガスとを反応させて電気エネルギを発生させる燃料電池セルと、
前記燃料電池セルに接続され、前記燃料電池セルから発生した電気エネルギ量を測定する測定手段とを備え、
前記被測定液撹拌室は、前記燃料電池セルの水素極セパレータとして構成されていることを特徴とする溶存水素濃度の測定装置。 A measurement liquid stirring chamber for releasing hydrogen gas contained as dissolved hydrogen in the measurement liquid from the measurement liquid;
A fuel battery cell that generates electric energy by reacting hydrogen gas released from the liquid to be measured with oxygen gas in the air;
Measuring means connected to the fuel cell and measuring the amount of electric energy generated from the fuel cell ,
The test solution stirring chamber, apparatus for measuring dissolved hydrogen concentration which is characterized that you have been configured as a hydrogen electrode separator of the fuel cell.
前記撹拌柱の柱高さAと前記被測定液流路の幅Bとは、それらの長さがA/2≧Bであることを特徴とする請求項1〜3のいずれか1項に記載の溶存水素濃度の測定装置。 The measurement liquid stirring chamber includes an inflow portion and a discharge portion of the measurement liquid, a plurality of stirring columns arranged at predetermined intervals in the vertical and horizontal directions, and a target formed in a lattice shape between the plurality of stirring columns. A measurement liquid flow path,
Wherein the column height A of the stirring pole and the width B of the measured liquid flow path, according to any one of claims 1 to 3, their length is characterized by a A / 2 ≧ B Measuring device for dissolved hydrogen concentration.
5. The sealing member for preventing intrusion of the liquid to be measured is provided at an outer edge between the hydrogen electrode constituting the fuel battery cell and the electrolyte membrane . The apparatus for measuring a dissolved hydrogen concentration according to Item 1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013218658A JP5937560B2 (en) | 2013-10-21 | 2013-10-21 | Dissolved hydrogen concentration measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013218658A JP5937560B2 (en) | 2013-10-21 | 2013-10-21 | Dissolved hydrogen concentration measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015081799A JP2015081799A (en) | 2015-04-27 |
JP5937560B2 true JP5937560B2 (en) | 2016-06-22 |
Family
ID=53012478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013218658A Active JP5937560B2 (en) | 2013-10-21 | 2013-10-21 | Dissolved hydrogen concentration measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5937560B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6521773B2 (en) * | 2015-07-08 | 2019-05-29 | 東西化学産業株式会社 | Dissolved hydrogen concentration measuring device and measuring method |
JP7104837B1 (en) | 2021-07-06 | 2022-07-21 | 株式会社日本トリム | Dissolved gas concentration measuring method, dissolved hydrogen concentration measuring device and dialysate preparation water production device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2748751B2 (en) * | 1991-08-26 | 1998-05-13 | 日新電機株式会社 | Oil dissolved gas measuring device |
JP3891544B2 (en) * | 2001-03-22 | 2007-03-14 | 鹿島建設株式会社 | Hydrogen fermentation bioreactor with built-in fuel cell |
JP2008006365A (en) * | 2006-06-28 | 2008-01-17 | Kawakuriin:Kk | Continuous producing method of hydrogen water, its producing apparatus, bathing apparatus using hydrogen water, and bathroom device |
US9077009B2 (en) * | 2008-08-12 | 2015-07-07 | General Electric Company | Fuel cell element electrode including layers with varying hydrophobicity |
-
2013
- 2013-10-21 JP JP2013218658A patent/JP5937560B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015081799A (en) | 2015-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9977006B2 (en) | Hydrogen sensor element for measuring concentration of hydrogen gas dissolved in liquid and method for measuring concentration of hydrogen gas using same | |
CA2946448C (en) | Electrochemical cell | |
US3223597A (en) | Method and means for oxygen analysis of gases | |
KR101077919B1 (en) | Card-type mult tester | |
JP2015087221A (en) | Dissolved hydrogen concentration measuring method and electrolytic solution generation device | |
JP5937560B2 (en) | Dissolved hydrogen concentration measuring device | |
WO2015060328A1 (en) | Potentiostatic electrolytic gas sensor | |
JP6426336B2 (en) | Constant potential electrolysis type gas sensor | |
CN206156809U (en) | Electrolysis water generation device and electrode unit | |
KR20170098349A (en) | Electrochemical TRO sensor | |
JP4671565B2 (en) | Diaphragm electrode | |
US8382974B2 (en) | Sensor to measure a concentration of alkali alcoholate | |
CN107850563A (en) | Potentiostatic deposition formula gas sensor | |
JP6262080B2 (en) | Peracetic acid concentration meter | |
JP2015230172A (en) | Membrane-type sensor and liquid analyzer | |
JP2014098679A (en) | Controlled-potential-electrolysis type gas sensor | |
JP2005214685A (en) | Gas leak detector | |
JP6330213B2 (en) | Constant potential electrolytic oxygen gas sensor | |
JP6259934B1 (en) | Gas permeability measurement method and system | |
JP2018017582A (en) | Ozone water concentration measurement device | |
JP7078242B2 (en) | Ozone water concentration sensor and ozone water concentration measuring device | |
JP3708208B2 (en) | pH sensor and ion water generator | |
JPWO2014084068A1 (en) | measuring device | |
JP6315983B2 (en) | Constant potential electrolytic gas sensor | |
RU2690081C1 (en) | Measuring cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160512 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5937560 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |