JP5934827B2 - 流体加熱器 - Google Patents

流体加熱器 Download PDF

Info

Publication number
JP5934827B2
JP5934827B2 JP2015112056A JP2015112056A JP5934827B2 JP 5934827 B2 JP5934827 B2 JP 5934827B2 JP 2015112056 A JP2015112056 A JP 2015112056A JP 2015112056 A JP2015112056 A JP 2015112056A JP 5934827 B2 JP5934827 B2 JP 5934827B2
Authority
JP
Japan
Prior art keywords
passage
passages
wire
fluid
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015112056A
Other languages
English (en)
Other versions
JP2015172483A (ja
Inventor
バワーズ,ジョン・エイチ
ライオン,グレゴリー・エス
Original Assignee
アイエスアイ・テクノロジー,リミテッド・ライアビリティ・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/889,581 external-priority patent/US8861943B2/en
Application filed by アイエスアイ・テクノロジー,リミテッド・ライアビリティ・カンパニー filed Critical アイエスアイ・テクノロジー,リミテッド・ライアビリティ・カンパニー
Publication of JP2015172483A publication Critical patent/JP2015172483A/ja
Application granted granted Critical
Publication of JP5934827B2 publication Critical patent/JP5934827B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/106Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • F24H9/146Connecting elements of a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2028Continuous-flow heaters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/026Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/407Control of fluid heaters characterised by the type of controllers using electrical switching, e.g. TRIAC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2207/00Application of thermometers in household appliances

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Resistance Heating (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Resistance Heating (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

[関連出願の相互参照]
本願は、2010年9月24日に出願された米国特許出願第12/889,581号の継続であり、該出願第12/889,581号は、(2006年2月10日に出願され、米国特許出願公開第2006/0291527A1 号として公開され、米国特許第7,817,906号として刊行された)米国特許出願第11/352,184号の一部継続であり、該出願第11/352,184号は、2005年5月4日に出願された米国仮特許出願第60/677,552号、2005年8月19日に出願された米国仮特許出願第60/709,528号、および2005年10月13日に出願された米国仮特許出願第60/726,473号の出願日の利得を主張するものである。また、本願は、現在は放棄されている、2010年9月10日に出願された米国特許出願第12/879,233号の一部継続であり、該出願第12/879,233号は、2006年2月10日に出願された前述の米国特許出願第11/352,184号の一部継続である。前述の出願および公開の全ての開示内容は、参照することによって、ここに含まれるものとする。
[発明の分野]
本発明は、液体加熱器、およびその構成要素に関する。
前述の米国特許出願公開第2006/0291527A1(「‘527公開」)(特許文献1)に記載されているように、「タンクレス(tankless)」加熱装置を用いて、流体、特に、家庭温水として用いられる水のような液体を加熱すると、有利である。タンクレス加熱装置は、流体が源から使用箇所に流れているときに、該流体を加熱するように意図されている。タンクレス加熱器は、予熱された液体の貯蔵容器に依存せず、代わって、液体が最大予想需要に等しい流速で加熱器内に流れるときでも、該液体を所望の温度に加熱するのに十分な容量を有するように設計されている。例えば、もしタンクレス加熱器が家庭のシャワーに温水を供給するように意図されているなら、この加熱器は、最も低い予想入来温度の水をシャワーの最大流量での最も高い所望シャワー温度に加熱するのに十分な容量を有するように設計されている。
特許文献1に開示されているように、家庭の水加熱のような液体に特に適する流体加熱器の一形態は、直接電気抵抗液体加熱器である。直接電気抵抗液体加熱器では、電力は、加熱されることになる液体に浸漬された電極間に印加され、これによって、電流が液体自体に流れ、液体自体の電気抵抗によって、電力が熱に変換されることになる。また、特許文献1に開示されているように、このような加熱器は、液体を流すための多数の通路を画定する多数の電極を有するように、構成することができる。このような加熱器のための制御システムは、電源に対して電極の互いに異なるものを接続および切断するように構成されているとよい。加熱器の電極および関連する要素は、電源接続部への種々の組の電極の接続が液体に流れる種々のレベルの電流をもたらすように、構成されているとよい。これらのレベルは、最も好ましくは、電極のいずれもが接続されていないときのゼロ電流と全ての電極が接続されているときの最大電流との間で段階的進行(step-wise progression)をもたらすようになっているとよい。特許文献1に開示されているように、この進行では、望ましくは、非ゼロ電流レベルを有する段階的進行の互いに隣接する段階の電流間の比率が、実質的に均一になっているとよい。特許文献1において説明されているように、このような可能な電流レベルの組を有する加熱器は、入来液体温度、所望の流出液体温度、流量、および液体の抵抗率が大きく変動しても、液体温度の漸進的な制御をもたらすことができる。望ましい段階的進行は、望ましくは、所定の抵抗率を有する液体に対して、多数の段階、例えば、60以上の段階、すなわち、60以上の種々の電流レベルを含んでいる。最も好ましくは、これらの段階は、非ゼロ電流を有する段階的進行の任意の互いに隣接する2つの段階における電流レベル間の最大比率が、約1.22:1以下、好ましくは、約1.1:1以下であるように、また段階的進行の任意の互いに隣接する2つの段階における電流レベル間の最大差が、所定レベルの流体抵抗率に対する最大電流の約10%以下になるように、構成されている。
熱が液体自体に放出されるので、このような加熱器は、該加熱器に流れる液体を本質的に瞬時に加熱することになる。さらに、この加熱器は、電源に対して電極の互いに異なるものを単純に接続および切断することによって、制御することができ、これによって、通常のリレーのようなスイッチ要素、さらに好ましくは、トライアックおよび電界効果トランジスタのような固体半導体スイッチ要素を用いることができる。好ましい半導体スイッチ要素は、それらが極めて低い電気抵抗を有する伝導状態または閉状態、またはそれらが極めて高い、殆ど無限大の抵抗を有し、本質的に電流を伝導させない、従って、オープンスイッチとして作用する実質的に非伝導状態に切り換えることができる。従って、半導体素子自体は、それらが閉状態にあるときにかなりの電流がそれらに流れても、極めてわずかな電力しか浪費しないことになる。
特許文献1に開示されている加熱器は、温度センサを備えている。スイッチ要素を制御し、これによって、流れている液体に加熱器によって印加される電力を制御するために、温度センサは、温度センサからの信号に応答する制御装置の近くで加熱される液体の温度を検出するように、構成されている。特許文献1において示唆されている好ましい温度センサは、「熱伝導性温度検出プレート」を備えている。該プレートは、「加熱チャンバを出る液体が温度検出プレートの孔を通らねばならないようにするために、加熱チャンバの端の可能な限り近くに、液体の流れと直交して配置されており」、またプレートに取り付けられた「半導体接合に基づく温度センサ」を備えている。しかし、特許文献1に記載されているように、このような構成は、加熱された液体の温度の変化と熱センサから出力された信号との間に、熱プレートの熱抵抗、熱センサのパッケージング、およびこれらの構成要素の「熱質量」による、「サーマルラグまたは熱遅延」の問題を抱えることになる。これを補償するために、制御システムは、信号調節回路を備えている。この回路は、「温度センサによって測定される温度の変化の比率」を表す信号を生成し、この信号が、温度自体を表す信号に加算されるようになっている。この構成は、満足できる操作をもたらしているが、さらなる改良が望まれている。
米国特許出願公開第2006/0291527A1号明細書
本発明の一態様は、複数の通路を画定する通路構造を備える流体加熱器であって、通路は、流体が該通路内を入口から出口に向かって互いに平行に下流に流れることができるように、下流方向に延在している、流体加熱器を提供している。通路構造は、好ましくは、各通路に関連する1つまたは複数の電気エネルギー印加要素を備えている。例えば、エネルギー印加要素は、米国特許出願公開第2006/0291527A1号(’527公開)明細書に記載されているような電極であるとよい。また、加熱器は、望ましくは、複数の通路の下流端に隣接して該複数の通路を横切って延在する温度検出ワイヤと、エネルギー印加要素およびワイヤに接続された制御回路と、を備えている。制御回路は、ワイヤの電気抵抗を監視し、ワイヤの電気抵抗に応じて、印加要素への電力の印加を制御するように、構成されている。制御回路は、望ましくは、少なくともいくつかの制御条件下において、通路の互いに異なるものに流れる流体が互いに異なる温度に加熱されるように、構成されている。以下にさらに詳細に説明するように、ワイヤの電気抵抗は、種々の通路に関連する電気抵抗分の合計または平均を表しており、これによって、種々の通路から下流に流出した流体の温度の合計または平均として、流体が種々の通路から流出したときに混合する流体の最終温度を表すことになる。
本発明のさらに他の態様は、例えば、前述の加熱器に用いることができる流体処理装置を提供している。本発明のこの態様による加熱器は、望ましくは、下流方向に延在する少なくとも1つの通路を画定する通路構造体と、通路の下流端に隣接して該通路を幅方向に横切って延在する細長のワイヤと、を備えている。この装置は、通路の下流端において通路と境界を接する出口構造体をさらに備えている。出口構造体は、最も好ましくは、ワイヤと真っ直ぐに並んで通路を幅方向に横切って延在する長孔を画定している。長孔は、望ましくは、通路の断面積よりも小さい断面積を有しており、望ましくは、通路から出る流体に対して開いている。また、出口構造体は、好ましくは、長孔の両側に下流方向および幅方向と交差する横方向に長孔からずれて配置された1対の収集チャンバと、幅方向に延在しており、チャンバを長孔から分離している1対の細長のリップと、を画定している。収集チャンバは、上流方向に開いており、リップから下流方向に延在している。出口構造体は、望ましくは、多数の出口孔をさらに画定している。出口孔は、収集チャンバに連通しており、通路から出る流体の流れに開いている。好ましくは、出口孔は、合計で、長孔の断面積よりも小さい断面積を有している。出口構造体は、ワイヤに対する気泡の密着を防ぐのに役立つものである。ワイヤが前述の温度検出ワイヤである場合、これによって、検出作用が改良されることになる。
本発明の一実施形態による加熱器の外部平面図である。 説明を明瞭にするために、一部が除去された、図1の加熱器の切断斜視図である。 図1の線3−3に沿った断面図である。 図1に示されている加熱器の断面図である。 図4に5で示されている領域を示す部分断面図である。 図5の線6−6に沿ったさらに他の断面図である。 図1−6の加熱器に用いられる電気回路のブロック図の形態にある概略図である。
本発明の一実施形態による加熱器は、ハウジング10を備えている(図1)。ハウジング10は、第1の端キャップ12、第2の端キャップ14、およびこれらの端キャップ間に延在する略管状の筐体16を備えている。第1および第2の端キャップは、取付け脚18を備えている。第1および第2の端キャップは、望ましくは、金属材料、例えば、ダイキャストまたは機械加工された金属材から形成されている。筐体16は、望ましくは、端キャップ間においてその長さに沿って実質的に一定の断面を有しており、望ましくは、金属材料から形成されている。例えば、筐体16は、金属押出材、例えば、アルミニウム押出材から形成されているとよい。明瞭にするために、図2では、筐体16が除去されている。筐体16およびキャップ12,14は、協働して、耐圧容器を画定している。第1の端キャップ12は、流体入口ポート20を備えており、第2の端キャップ14は、流体出口ポート22を備えている。シュラウド24が、第1の端キャップ20を覆っており、さらなるシュラウド26が第2の端キャップ14を覆っている。以下に説明するように、第2のシュラウド26は、いくつかの電気構成要素を取り囲んでいる。説明を明瞭にするために、図2では、シュラウド26および関連する電気構成要素が除去されている。
誘電体構造体30が、筐体16内に取り付けられている。誘電体構造体30は、望ましくは、互いに同一の多数の中間部分32を備えている。中間部分32は、筐体16の長さ方向に沿って積み重ねられている。積層された中間部分は、多数の長孔49を画定している。誘電体構造体は、第1の端キャップ12内に取り付けられた第1の内部端片34、および第2の端キャップ14内に取り付けられた第2の内部端片36も備えている。説明を明瞭にするために、図2では、これらの端片の一部が除去されている。誘電体構造体30は、筐体16内において長さ方向に延在する流体取入通路38と、ハウジング10内において長さ方向に延在する流体出口通路40(流体出口通路40は、ハウジング内および筐体16内においても長さ方向に延在している)と、ハウジング10および筐体16内において長さ方向に延在する1対の加熱チャンバ42、44(図3)と、を備えている。チャンバ42は、本明細書では、「上側」加熱チャンバと称されており、チャンバ44は、本明細書では「下側」加熱チャンバと称されている。しかし、このような表示は、重力場を基準とした座標系に対するどのような特定の方位も意味するものではない。
図3,図5に最もよく示されているように、多くの平坦なプレート状電極46が、ポリマー構造体30に取り付けられており、上側加熱チャンバ42を10個の略矩形通路48にさらに分割している。電極46の2つは、チャンバの縁に取り付けられており、該縁に最も近い通路と境界を接している。以下にさらに説明するように、電極46間の間隔は、均一ではなく、その結果、種々の通路48は、種々の幅を有している。下側加熱チャンバ44は、さらなる平坦なプレート状電極50を含んでいる。これらの電極50は、チャンバ44を多数の個々の通路52(図3)にさらに分割している。これらの通路52も、種々の幅を有している。
図4,図5,図6に最もよく示されているように、出口構造体54が、第1の端プレート12および第1の内部端片34の近くの通路48,52の下流端において、チャンバ42,44、従って、通路48,52と境界を接している。従って、出口構造体54は、第1の内部端片34内において、通路および加熱チャンバを出口チャンバ56(図4,図5)から分離している。
図5に最もよく示されているように、出口壁構造体54は、通路48の方(図5の図面の上の方)を向く上流側と、出口空間56の方(図5の図面の底の方)を向く下流側とを有している。電極46は、出口構造体54の上流側内に延在する溝(図示せず)内に収容されている。出口構造体54は、分割壁58も有している。分割壁58は、分割壁58が各通路46を隣接する通路46から分離して効果的に保持するために、個々の電極と実質的に同一面をなしている。各電極および同一面内にある分割壁58の間に小さい間隙60が存在しているが、このような間隙は、流体流に関して実質的に取るに足らないものである。出口構造体54の各通路48の端は、以下に述べる出口構造体の開口から離れた出口構造体の部分によって効果的に閉鎖されている。
第2の端ギャップ14における第2の内部要素36は、62で概略的に示されている流体入口空間((図2,図4)を画定している。この空間は、第2の端ギャップ14に隣接する通路の端に開いている。流体取入通路38は、第1の端キャップ12内の流体入口ポート20と、第2の端キャップ14に隣接する流体入口空間62(図2,図3)とに連通している。流体出口通路40(図2,図3)は、第1の端キャップ12に隣接する出口空間(図4,図5)と、第2の端キャップ14の流体出口ポート22とに連通している。従って、図2の湾曲した流れ経路63によって示されているように、装置内を通る流体は、第1の端キャップ12に入り、流体入口通路38を通って、第2の端キャップ14に隣接する入口チャンバ62に入る。次いで、流体は、第1の端キャップ12に向かって、流れチャンバ42,44の通路48,52内を通り、これらの通路から、出口構造体54の開口を通って、出口チャンバ56に入る。次いで、流体は、出口チャンバ56から流体出口通路40(図2,図3)を通って、第2の端キャップ14の出口ポート22を介して、装置の外に出ることになる。従って、通路48,52内を流れる流体は、第2の端キャップ14から第1の端キャップ12に向かう方向に進むことになる。通路および出口構造体のそれぞれの構造を参照して、この方向は、ここでは、「下流」方向と称され、図2,図4,図5の各々において矢印Dによって示されており、反対方向は、ここでは、「上流」方向と称されている。
図5,図6に最もよく示されているように、出口構造体54は、1対のリップ64を備えている。リップ64は、ここでは通路の「ワイヤ」方向または「幅」方向Wと称される方向において(図6)、各通路48を横切って延在している。幅方向は、図5の紙面の奥/手前方向である。リップ64は、それらの間に長孔66を画定している。長孔は、細長く、幅方向Wにおいて通路48を横切って延在している。図5に最もよく示されているように、長孔66は、出口空間56に開いており、その結果、長孔は、通路48から出る流体の流れに開いている。
出口構造体は、1対の収集チャンバ70も画定している。これらの収集チャンバ70は、長孔66から、図5,図6において両矢印Lによって示されている互いに向き合った横方向にずれている。これらの横方向は、幅方向Wと交差しており、下流方向Dとも交差している。各通路48に関連する収集チャンバ70は、リップ64によって長孔66から分離されており、リップから下流に延在している。収集チャンバは、下流方向に開いている。出口構造体は、出口孔72も画定している。出口孔72は、収集チャンバ70の下流端を出口空間56に接続している。従って、出口孔も、通路48から出る流体の流れに対して開いている。各通路に関連する長孔66は、通路の断面積よりも小さい断面積を有している。各通路に関連する出口孔72も、通路の断面積よりも小さい断面積を有しており、好ましくは、長孔の断面積よりも小さい総断面積を有している。
図5に最もよく示されているように、収集チャンバ70の各々は、境界壁を有している。この境界壁は、概して、幅方向W(図5の紙面の奥/手前方法面)に延在する軸を有する半円形の形態にある。各収集チャンバ70の境界壁は、リップの1つの側面に沿って延在する内側境界壁を備えている。このような境界壁は、収集チャンバの下流端に向かって、長孔から横方向に離れるように傾斜している。各収集チャンバ70は、外側境界壁も有している。外側境界壁は、長孔から離れており、長孔に向かって、かつ収集チャンバの下流端に向かって略内方に傾斜している。これらの境界壁は、互いに向かって傾斜しており、収集チャンバの最も下流の点において、かつチャンバとチャンバに関連する出口孔72との交差点で、交合している。
上側流れチャンバ42の各通路42に対して、かつ下側流れチャンバ44の各通路52に対して、長孔、収集チャンバ、および出口孔からなる同様の配置構成を有する出口構造体54が、設けられている。
図6に最もよく示されているように、上側流れチャンバ42の流れ通路48の全ての長孔66は、互いに真っ直ぐに並んでいる。何故なら、通路48の全てに対する出口チャンバが、互いに真っ直ぐに並んでいるからである。長孔、リップ、および出口チャンバは、実質的に各通路の全断面積を占めている。各通路に関連する長孔は、横方向Lにおいて同じ幅を有しており、ワイヤ方向Wにおいて通路の全体を横切って延在している。図6および図3を参照すると最もよく理解されるように、上側流れチャンバ内の種々の通路46は、ワイヤ方向Wにおけるそれらの寸法、従って、それらの断面積が互いに異なっている。同様に、下側流れチャンバ48の種々の通路52も、ワイヤ方向における寸法、従って、断面積が互いに異なっている。これは、種々の流れ通路に関連する電極46間の間隙および電極50間の間隙が不均一になっている結果である。しかし、各長孔は、関連する通路よりもかなり小さい断面積を有している。単なる例示にすぎないが、横方向Lにおける各長孔66の幅は、約0.115インチ(約2.921mm)であり、横方向における各通路46,52の寸法は、約0.929インチ(約23.5966mm)である。従って、通路の断面積に対する長孔の断面積の比率は、約0.12である。
出口孔、例えば、出口孔72(図5,6)の直径は、望ましくは、最小通路に関連する出口孔が最小直径を有するように選択されており、これによって、気泡を孔内に確実に入れることが可能になる。本発明は、どのような動作原理によっても制限されるものではないが、この最小直径は、液体の表面張力に関連すると考えられる。約100−120°F(約37.778−48.889°C)の家庭用温水の場合、最小直径は、約0.070インチ(約1.778mm)である。この最小直径によって、出口孔の総面積と(以下に説明するワイヤ76によって塞がれた面積を差し引いた後の)最小通路に関連する長孔66の開面積との間の比率は、0.35になる。各通路に関連する出口孔の断面積と各通路に関連する長孔の断面積との間の比率を満足のいく程度に均一に維持するために、より大きい通路に関連する出口孔は、より大きい直径を有している。例えば、この比率は、通路の全てに対して、約0.3から約0.45とすることができる。
単一の細長ワイヤ76が、出口構造体に取り付けられており、上側チャンバ42内の通路48の全てに関連する長孔66と真っ直ぐに並んで、幅方向Wに延在している。ワイヤ76は、出口構造体54の分割壁58の小さいノッチ内に支持されている。ワイヤ76は、チャンバの全ての長孔に沿って延在している。ワイヤの一部(図示せず)は、上側流れチャンバの長孔と下側流れチャンバに関連する長孔との間に延在している。この部分は、出口空間56内に配置されている。ワイヤ76は、温度と共に変化する抵抗を有する細径ワイヤである。例えば、ワイヤ76は、ニッケル−鉄合金、例えば、「Balco 120 ohm alloy」の商品名称で市販されている種類の70%ニッケル−30%鉄合金から形成されたワイヤであるとよく、薄い誘電体カバーを含めて、約40ゲージ(0.079mm直径)であるとよい。誘電体カバーは、好ましくは、ポリマー、例えば、Teflon(登録商標)の名称で市販されているPTFEポリマーのようなフッ素ポリマーから形成されている。誘電体カバーは、加熱器内に流れる流体からワイヤを絶縁するものである。誘電体カバーは、ピンホールまたは他の間隙を有せず、実用可能な限り薄くなっているべきである。
電極50,48の上流端は、図2を参照すれば最もよく理解されるように、第2の内部端構造体36および第2の端キャップ14を通って突出している。下側流れチャンバに関連する電極50の上流端が、見えている。説明を明瞭にするために、図2において、上側流れチャンバ42に関連する電極46は、除去されている。電極は、第2の内部端構造体36に封止されている。電極の上流端は、シュラウド25に取り付けられたスイッチ要素に接続されている(図4)。いくつかのスイッチ要素は、図7において矢印82によって概略的に示されている。スイッチ要素は、リレー作動される機械式スイッチであればよいが、最も好ましくは、半導体スイッチ要素、例えば、トライアック、電界効果トランジスタ、などである。各電極に関連するスイッチ要素は、望ましくは、各電極をAC電源接続部の極84または極86のいずれかに接続するように、操作可能になっている。この実施形態におけるAC電源接続部は、通常の家庭用電源に接続されるように構成された単相AC接続部である。電源の極が家庭用電源に接続されると、極84,86間に交流電圧、典型的には、米国基準で220Vが生じる。説明を明瞭にするために、図6にはいくつかの電極46,50しか示されていないが、各電極は、スイッチ要素82を有しており、電源のいずれかの極に独立して接続可能になっている。
ワイヤ76は、図7に概略的に示されている制御回路内に接続されている。制御回路は、抵抗モニター78を備えている、抵抗モニター78は、ワイヤ76の電気抵抗を検出し、ワイヤ76の抵抗を表す信号を、加熱器内の流体または加熱器内を通る流体の温度を表す温度信号として、供給するように構成されている。制御回路は、制御ロジックユニット80をさらに備えている。制御ロジックユニット80は、制御ロジックが温度信号を受信するように、抵抗モニターに繋がれている。制御ロジックユニットは、設定値源81にも接続されている。この設定値は、永久的設定値であってもよいし、またはユーザーが選択可能な設定値であってもよい。選択可能な設定値の場合、設定値源81は、ダイアル、キーパッド、などのようなユーザーが操作可能な調整つまみであるとよい。
スイッチ要素82は、制御ロジック80によって作動されるようになっている。‘527公開において詳細に説明されているように、制御ロジック80は、電極を電源の極に接続することができると共に、電極のいくつかまたは全てを非接続状態にとどめることができる。電源に対して互いに異なる電極を接続および切断することによって、制御ロジックは、種々の長さ、従って、種々の電気抵抗の電流経路を生成することができる。単なる例示にすぎないが、チャンバ42の両端の電極46a,46bを電源の向き合った極に接続し、他の電極46の全てを電極に対して非接続とすることによって、上側チャンバ42の流れ通路48の全てにおける流体を通る比較的長い高抵抗の電流経路が生じることになる。対照的に、任意の互いに最隣接した2つの電極を互いに接続することによって、極めて短い低抵抗、従って、高電流の経路が生じることになる。電極間の不均一な間隔によって、種々の長さを有するさまざまの電流経路を生じさせることが可能になる。3つ以上の電極を電源の極に接続することによって、複数の電流経路を生じさせることができ、この場合、各電流経路は、単一の流れ通路を含んでいてもよいし、または多数の流れ通路を含んでいてもよい。下側チャンバ44の流れ通路も同様の挙動をもたらすことになる。‘527公開において詳細に説明されているように、電極の間隔によって、所定の導電率を有する流体によって満たされているとき、種々の電気抵抗、従って、種々の導電率を有する電流経路がもたらされることになる。これらの導電率、従って、各経路に沿って流れる電流は、望ましくは、種々の導電率および電流として定められているとよい。また、これらの種々の導電率および電流は、望ましくは、(最小の非ゼロ導電率(および最小の非ゼロ電流)と最大の導電率および最大の電流との間で実質的に対数進行をなす)導電率および電流の段階的進行を画定する導電率および電流として定められているとよい。この段階的進行の各段階において、導電率は、電源に接続された電極対の全ての間の導電率の合計であり、電流は、接続された電極間に流れる電流の全ての合計である。望ましくは、段階的進行のそれぞれの段階間の電流、従って、導電率の比率は、実質的に均一である。最も好ましくは、段階的進行は、少なくとも60段階を備えており、さらに望ましくは、段階的進行の任意の2つの段階間の電流差が、最大電流の約25%以下、望ましくは、約25%未満、さらに好ましくは、最大電流の約10%未満になるように選択されるようになっている。利用可能な導電率および電流の値は、段階的進行を形成する必要のない冗長値を、例えば、段階的進行に含まれている他の電流値と正確にまたは殆ど正確に同一の電流値として、含んでいてもよい。
‘527公開において詳細に説明されているように、制御ロジック80は、大小に関わらずにある総電流値を有する段階を選択することによって、加熱器内に流れているか、または加熱器内に存在する流体の温度を示す信号、ここでは、抵抗モニター78からの信号に応答することになる。最も好ましくは、制御ロジック80は、毎秒につき多数回、最も好ましくは、電源84,86に印加されるAC電圧の各サイクルにつき一回の割合で信号を評価し、それに応じて電流値を変化させるように、構成されている。特に好ましい構成では、制御ロジックは、電源の電圧が正常なACサイクル中にゼロとほぼ交差するときに、作動していない電極の組合せを変更するために、必要に応じて、スイッチ要素のいずれかを切り換えるように構成されている。これによって、スイッチ作動による電源ラインの電気的「ノイズ」または無線周波数干渉をなくすことが確実になる。さらに、制御ロジックは、望ましくは、接続される電極の組を各サイクルにつき一回変更させるように構成されている。すなわち、もし大電流が必要であることを温度信号が示したなら、制御ロジックは、段階的進行の次の高い段階を与える接続を選択し、該パターンの電極に通電し、液体の温度が所望の温度にあることを温度信号が示すまで、必要に応じて、これを繰り返すことになる。換言すれば、制御ロジックは、望ましくは、著しく高い段階に即座に「ジャンプ」しないようになっている。これは、スイッチ動作が電源ラインの電圧変動を生じないことを確実にし、例えば、加熱器が設置されている建物の灯りの減光をもたらさないことを確実にするのに役立つことになる。
漏れ電極90が取入通路38および出口通路40内に設けられている。また、漏れ電極は、第2の内部端構造体36および第2の端キャップ14を通って延出している。漏れ電極は、電源のアース接続部に恒久的に接続されている。この漏れ電極によって、電流が、電極46,50のいずれかから、流れている流体を通って、配管システムまたは配管システム内を流れている流体に流れないことが確実になる。また、この漏れ電極によって、電流が端キャップまたは筐体のいずれかに流れないことが確実になる。筐体および端キャップが、さらに一層の確実性を得るために、電源のアース接続線に電気的に接続されてもよい。
動作に際して、入口ポート20が加熱されるべき液体の源、例えば、家庭の配管システムに接続され、出口ポート22が使用箇所に接続される。水のような液体は、前述のように、加熱器内に流れ、取入通路38を通って、第1の端キャップ12から入口通路のある端キャップ14に向かって略上流方向Uに沿って流れ、このような通路内の漏れ電極に接触する。次いで、液体は、種々の通路48,50を通って下流に流れながら、電極間の液体に通電することによって加熱されることになる。液体が各通路の下流端に達すると、各通路内を流れている液体の大部分は、各通路に関連する長孔を通って、該通路から出口空間56(図5,図6)内に流れ、これによって、ワイヤ76の周りを通ることになる。
ワイヤ76は、通路の全てに関連する長孔に沿って延在しており、これによって、通路の全てに流れている液体に露出されることになる。通路の互いに異なるものに流れる液体は、互いに異なる程度に加熱される。例えば、もし電源に接続された特定の組合せの電極が特定の通路を横切って電流が流れないようになっているなら、このような通路内に流れる液体は、隣接する通路からの伝熱によっていくらか加熱されるにしても、直接的には全く加熱されない。種々の通路に流れる液体は、出口空間56内において混合し、出口通路40を通って加熱器の外に流れ、この出口通路40において、電流漏れ電極90と再び接触し、出口ポート22を通って、システムから流出する。出口から流出する液体の実際の温度は、種々の通路から流出する液体の温度の組合せを反映している。暖かい液体および冷えた液体は、混合し、最終的な平均温度を有する液体を生じることになる。
ワイヤ76が通路の全てから流出する液体に露出しているので、ワイヤの抵抗は、加熱器から流出する液体の最終的な平均温度を反映する。しかし、混合の前に、個々の通路の下流端に可能な限り近い箇所の温度を測定することによって、ワイヤの抵抗は、混合過程に必要な時間遅れを生じることなく、最終的な平均値をもたらすことになる。さらに、ワイヤ76は、極めて小さい熱質量を有しているので、その抵抗は、通路から流れる液体の温度に殆ど瞬時に追従する。これらの因子によって、制御システム内の「ループ遅延」が最小限に抑えられることになる。これは、平均温度が加熱通路の下流側、例えば、加熱器の流体出口ポート22において測定される仮想的なシステムを参照すれば、最もよく理解されるだろう。このようなシステムでは、もし液体の温度が所望の設定温度よりも低いなら、制御ロジックは、電極を高電流設定に移し、これによって、より多くの熱を加えることになる。しかし、加熱された液体が、出口ポートに向かって下流に流れるまで、センサの周りを流れる液体は、設定温度未満にとどまっており、その結果、制御ロジックは、印加される電流量を連続的に増大させることになる。これによって、制御ロジックは、所望の設定値を得るのに実際に必要な電流よりも著しく大きい電流を印加し、その結果、「オーバシュート(overshoot)」状態が生じることになる。ループ遅延を最小限に抑えることによって、この実施形態による加熱器は、より効果的な制御システムをもたらすことになる。抵抗モニター78からの抵抗信号は、温度を綿密に追跡するので、通常は、制御ロジックへの抵抗信号の変化を表す信号をもたらす必要がない。しかし、必要に応じて、このような信号が加えられてもよい。
ワイヤ76は、電極および通路の下流端の極めて近くに配置されている。従って、ワイヤ76は、液体が流れていない時でも、通路自体に含まれている液体と効果的に熱連通している。従って、制御システムは、液体がシステム内を流れていなくても、通路内の液体の温度を所望の設定値に維持することができる。このような非流通状態に用いる別のセンサを設ける必要がない。さらに、非流通状態が生じていることを検出するために流れセンサまたは他の装置を設ける必要がない。
これらの利得の全ては、極めて単純な温度検出装置に拠っている。前述の実施形態に用いられる単一ワイヤは、極めて単純であり、与圧流体充填空間の外部に1つまたは2つの接続部しか必要としない。
さらなる構成では、単一ワイヤ76が多数のパスまたはターンを有していてもよく、この場合、各パスまたはターンが流れ通路の全てに関連する長孔の全てを横切って延在するようになっているとよい。これによって、温度変化当たりの抵抗の感度または変化が高められることになる。さらに他の変更形態では、多数のワイヤ区分を有するワイヤが設けられていてもよく、この場合、各ワイヤ区分は、いくつかの通路のみを横切って延在し、各ワイヤ区分の抵抗が、制御システムによって個別に監視されるようになっているとよい。しかし、このような構成では、制御システムは、好ましくは、例えば、平均を取ることによって抵抗値を数学的に組み合わせる回路を備えることになるだろう。さらに他の変更形態では、個々のワイヤまたは他のセンサが、各通路に対して設けられてもよい。しかし、このような構成は、より複雑な回路、該回路内にプログラム化されるより複雑なロジック、またはそれらの両方が必要になるだろう。さらに、多数の通路に関連する多数のセンサを用いる構成は、流体の流れ空間の外を通る多数の電気接続点を必要とし、これによって、該接続点の漏れまたは他の故障の可能性が大きくなり、またシステムのコストが高くなるだろう。
液体が通路内を下流に流れ、液体を通る電流によって加熱されると、気泡が液体内に生じる傾向にある。例えば、液体内に溶解しているガスは、液体が加熱されると、溶液から現れる傾向にある。もしこのような気泡が検出ワイヤ76に密着すると、検出ワイヤへの熱伝達を阻害し、遅延温度信号または誤差温度信号をもたらす可能性がある。出口構造体および関連する構成要素は、気泡が出口ワイヤに密着する可能性を最小限に抑えるものである。長孔66の比較的小さい断面積は、長孔を通る比較的高速の液体流れをもたらす傾向にあり、これが、ワイヤから気泡を剥ぎ取るのに役立つことになる。さらに、収集チャンバ70は、液体内に存在する気泡を捕捉する傾向にあり、その結果、気泡は、出口ポート72を通って通路から流出し、ワイヤを全く横切らないことになる。驚いたことに、出口ポート、収集チャンバ、および長孔からなる構造は、重力に対する加熱器の配向とは無関係に、この作用をもたらす傾向にある。収集チャンバおよび関連する要素の正確な形状は、いくらか変更されてもよい。例えば、収集チャンバは、図示されているように半円形状でなくてもよく、略多角形の断面を有していてもよい。
長孔および出口孔の比較的小さい断面積は、通路46,52の流れ抵抗と比較してかなり大きい流れ抵抗をもたらすことになる。これが、種々の通路内を流れる液体の粘度を均等化するのに役立つことになる。
本明細書に記載されている加熱器のモジュール設計によって、多くの異なる容量範囲を有する加熱器を簡単に製造することができる。より長い電極、より長いケーシング16、およびより中間的な要素32を単純に用いることによって、より大きい容量を有する加熱器を得ることができる。
前述の実施形態では、種々の流路46,52の種々の導電率は、ワイヤ方向Wにおける種々の電極間の種々の空間によってもたらされるようになっている(図6)。これは、望ましいことである。何故なら、各電極の本質的に全面積が、流れている流体に露出し、電流を伝達するので、電流密度は、各電極の全表面にわたって実質的に均一になっているからである。種々の通路間に同じ導電率の差をもたらすために、他のさらに複雑な装置が用いられてもよい。例えば、多数の通路がワイヤ方向において均一な幅を有する一方、いくつかの通路は、導電経路の一部を狭くするために、該通路内に横方向L(図6)に延在する誘電バリアを有していてもよい。代替的に、電極のいくつかは、電流経路の面積を縮小して通路の電気抵抗を高めるために、それらの表面の一部が誘電材料によって被覆されてもよい。しかし、このような構成は、それほど好ましくない。何故なら、電極の表面を横切る非均一な電流密度をもたらすからである。
2組の流れ通路、すなわち、上側流れチャンバ42内の流れ通路46および下側流れチャンバ44内に流れ通路52の物理的な配置は、幅方向またはワイヤ方向、すなわち、上流方向および下流方向と交差する方向において小さい寸法を有するよりコンパクトな装置をもたらすのに役立つことになる。これは、ケーシング16を含む耐圧筐体の構造を簡単なものにする。しかし、規制要件および安全要件を満たすために、ケーシング16は、典型的には、一般的に用いられるものよりも高い内圧に耐えるように構成されねばならない。
前述の加熱器は。さまざまな用途に利用可能であるが、特に、家庭の温水暖房に有用である。単一加熱器が、家庭の全体に対して設けられてもよいし、さらに好ましくは、個々の加熱器が、個々の水消費装置、または家庭内の装置のサブセットに付随的に設けられるとよく、例えば、個々の加熱器が各バスルームまたはキッチンに設けられるとよい。個々の加熱器が蛇口またはシャワーのような個々の水使用装置に付随的に設けられるシステムでは、設定値は、使用する装置のノブによって設定されるとよい。
温度検出ワイヤのような制御システム要素、および長孔および収集チャンバのような気泡排除要素について、ここでは、加熱器の電気エネルギー印加要素が電極である直接電気抵抗加熱器に関連して説明してきたが、ワイヤおよび気泡排除要素は、他の用途に用いられてもよい。例えば、液体加熱器は、個々の加熱要素を有する多数の通路であって、これらの加熱要素が、各通路に流れる流体に露出されており、電力を放散することによって、熱を個々の通路に流れる流体に伝達させるように構成されている、多数の通路を備えていてもよい。このような加熱器は、前述した検出ワイヤおよび気泡排除要素を備えることができる。
これら、他の変更形態、および前述した特徴の組合せは、請求項に定義されている本発明から逸脱することなく利用されてもよく、前述の説明は、本発明を制限するものではなく、単なる例示にすぎないと見なされるべきである。
[実施形態1]
流体処理装置において、
(a)下流方向に延在する通路を画定する通路構造体と、
(b)前記通路の下流端に隣接して前記通路を幅方向に横切って延在する細長の温度検出ワイヤと、
(c)前記通路の下流端において前記通路と境界を接する出口構造体であって、前記出口構造体は、前記ワイヤと真っ直ぐに並んで前記通路を幅方向に横切って延在する長孔を画定しており、前記長孔は、前記通路の断面積よりも小さい断面積を有しており、前記長孔は、前記通路から出る流体の流れに対して開いており、前記出口構造体は、前記長孔の両側に下流方向および幅方向と交差する横方向において前記長孔からずれて配置された1対の収集チャンバと、幅方向に延在しており、前記チャンバを前記長孔から分離している1対の細長リップと、をさらに画定しており、前記収集チャンバは、上流方向に開いており、前記リップから下流に延在しており、前記出口構造体は、前記収集チャンバに連通して前記通路から出る流体の流れに対して開いている多数の出口孔をさらに画定しており、前記出口孔は、合計で、前記長孔の断面積よりも小さい断面積を有している、出口構造体と、
を備えている、ことを特徴とする流体処理装置。
[実施形態2]
前記ワイヤは、前記長孔内に延在している、ことを特徴とする請求項1に記載の装置。
[実施形態3]
前記チャンバの各々は、前記リップの1つによって画定された内側境界壁を有しており、 前記内側境界壁は、前記境界壁の下流延長部に沿って、前記横方向の1つにおいて前記長孔から離れる方に傾斜している、ことを特徴とする実施形態1に記載の装置。
[実施形態4]
前記チャンバの各々は、前記長孔から離れた外側境界壁を有しており、前記外側境界壁は、前記外側境界壁の下流延長部に沿って前記長孔に向かって傾斜している、ことを特徴とする実施形態3に記載の装置。
[実施形態5]
前記チャンバの各々は、幅方向に延在する軸を有する円筒の半分の形態に概してある境界壁を有している、ことを特徴とする実施形態1に記載の装置。
[実施形態6]
前記通路は、略矩形の断面を有しており、前記収集チャンバおよび前記長孔は、協働して、前記通路の実質的に全断面積にわたって延在している、ことを特徴とする実施形態1に記載の装置。
[実施形態7]
前記通路構造体は、ワイヤ方向において互いに隣接するように位置をずらして延在する複数の通路を画定しており、前記ワイヤは、前記複数の通路を横切って延在しており、前記出口構造体は、前記通路ごとに、前述の長孔、収集チャンバ、および出口孔を画定している、ことを特徴とする実施形態1に記載の装置。
[実施形態8]
前記通路構造体は、前記通路の各々に関連する1つまたは複数の加熱要素を備えている、ことを特徴とする実施形態7に記載の装置。
[実施形態9]
流体加熱器において、
(a)入口と、出口と、複数の通路を画定している通路構造体であって、前記通路は、下流方向に延在しており、流体が前記入口から前記出口に向かって前記通路内を平行に流れることが可能になるように、前記入口および出口に連通しており、前記通路構造体は、各通路に関連する1つまたは複数のエネルギー印加要素を備えている、通路構造体と、
(b)前記複数の通路の下流端に隣接して前記複数の通路を横切って延在する温度検出ワイヤと、
(c)前記電気エネルギー印加要素および前記ワイヤに接続された制御回路であって、前記ワイヤの電気抵抗を監視し、少なくともいくつかの制御条件下において、前記通路の互いに異なるものに流れる流体が互いに異なる温度に加熱されるように、前記ワイヤの電気抵抗に応じて前記電気エネルギー印加要素への電力の印加を制御するように、構成されている、制御回路と、
を備えていることを特徴とする流体加熱器。
[実施形態10]
前記制御回路は、電源接続部と、前記電気エネルギー印加要素の各々と前記電源との間に接続された少なくとも1つのスイッチと、を備えており、前記電源に対して前記電気エネルギー印加要素を接続または切断するように前記スイッチを作動させるように、構成されている、ことを特徴とする実施形態9に記載の流体加熱器。
[実施形態11]
前記電気エネルギー印加要素は、前記通路内に流れる流体と接触するように露出されている電極から構成されており、前記制御回路は、電流が前記通路の少なくともいくつかにおける流体に通るように前記スイッチを作動させるように、構成されている、ことを特徴とする実施形態10に記載の流体加熱器。
[実施形態12]
前記電極は、下流縁を有しており、前記ワイヤは、前記電極の前記下流縁の約10mm以内に配置されている、ことを特徴とする実施形態11に記載の流体加熱器。
10 ハウジング
12 第1の端キャップ
14 第2の端キャップ
16 筐体
18 脚
20 流体入口ポート
22 流体出口ポート
24 シュラウド
26 第2のシュラウド
30 誘電体構造体
32 中間部分
34 第1の内部端片
36 第2の内部端片
38 流体取入通路
40 流体出口通路
42 上側加熱チャンバ
44 下側加熱チャンバ
46 電極
46a 端の電極
46b 端の電極
48 通路
49 長孔
50 電極
52 通路
54 出口構造体
56 出口チャンバ(出口空間)
58 分割壁
60 間隙
62 流体入口空間
63 流れ経路
64 リップ
66 長孔
70 収集チャンバ
72 出口孔
76 ワイヤ
78 抵抗モニター
80 制御ロジック
81 設定値源
82 スイッチ要素
84 極
86 極
90 漏れ電極

Claims (4)

  1. 流体加熱器において、
    (a)入口と、出口と、複数の通路を画定している通路構造体であって、前記通路は、下流方向に延在しており、流体が前記入口から前記出口に向かって前記通路内を平行に流れることが可能になるように、前記入口および出口に連通しており、前記通路構造体は、各通路に関連する1つまたは複数のエネルギー印加要素を備えている、通路構造体と、
    (b)前記複数の通路の下流端に隣接して前記複数の通路を横切って延在する温度検出ワイヤと、
    (c)前記電気エネルギー印加要素および前記ワイヤに接続された制御回路であって、前記ワイヤの電気抵抗を監視し、少なくともいくつかの制御条件下において、前記通路の互いに異なるものに流れる流体が互いに異なる温度に加熱されるように、前記ワイヤの電気抵抗に応じて前記電気エネルギー印加要素への電力の印加を制御するように、構成されている、制御回路と、
    を備えていることを特徴とする流体加熱器。
  2. 前記制御回路は、電源接続部と、前記電気エネルギー印加要素の各々と前記電源との間に接続された少なくとも1つのスイッチと、を備えており、前記電源に対して前記電気エネルギー印加要素を接続または切断するように前記スイッチを作動させるように、構成されている、ことを特徴とする請求項1に記載の流体加熱器。
  3. 前記電気エネルギー印加要素は、前記通路内に流れる流体と接触するように露出されている電極から構成されており、前記制御回路は、電流が前記通路の少なくともいくつかにおける流体に通るように前記スイッチを作動させるように、構成されている、ことを特徴とする請求項2に記載の流体加熱器。
  4. 前記電極は、下流縁を有しており、前記ワイヤは、前記電極の前記下流縁の約10mm以内に配置されている、ことを特徴とする請求項3に記載の流体加熱器。
JP2015112056A 2010-09-10 2015-06-02 流体加熱器 Active JP5934827B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US87923310A 2010-09-10 2010-09-10
US12/879,233 2010-09-10
US12/889,581 2010-09-24
US12/889,581 US8861943B2 (en) 2005-05-04 2010-09-24 Liquid heater with temperature control

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013528322A Division JP5801399B2 (ja) 2010-09-10 2011-09-09 流体処理装置

Publications (2)

Publication Number Publication Date
JP2015172483A JP2015172483A (ja) 2015-10-01
JP5934827B2 true JP5934827B2 (ja) 2016-06-15

Family

ID=44674887

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013528322A Active JP5801399B2 (ja) 2010-09-10 2011-09-09 流体処理装置
JP2015112056A Active JP5934827B2 (ja) 2010-09-10 2015-06-02 流体加熱器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013528322A Active JP5801399B2 (ja) 2010-09-10 2011-09-09 流体処理装置

Country Status (11)

Country Link
EP (1) EP2614315B1 (ja)
JP (2) JP5801399B2 (ja)
CN (1) CN103154631B (ja)
BR (1) BR112013005715B1 (ja)
CO (1) CO6690796A2 (ja)
DK (1) DK2614315T3 (ja)
ES (1) ES2565931T3 (ja)
HK (1) HK1181107A1 (ja)
PH (1) PH12015501730B1 (ja)
SG (1) SG188440A1 (ja)
WO (1) WO2012034000A2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734915B (zh) * 2012-07-05 2016-03-16 佛山市四季茶香茶具有限公司 一种带引水通道的即热式加热器组件
CN103431767B (zh) * 2013-09-09 2016-06-22 汕头经济特区和通电讯有限公司 加热管道及包括该加热管道的即热式饮水机
JP2019184164A (ja) * 2018-04-10 2019-10-24 株式会社デンソー 電気ヒータ装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547079A (en) * 1984-04-04 1985-10-15 Honeywell Inc. Averaging temperature responsive apparatus
GB8419987D0 (en) * 1984-08-01 1984-09-12 Cave N M Heating devices
EP0239928A3 (de) * 1986-04-01 1988-03-02 Przedsiebiorstwo Projektowania i Dostaw Kompletnych Obiektow Przemyslowych "Chemadex" Elektrisches Heizgerät für Flüssigkeiten
US5167153A (en) 1986-04-23 1992-12-01 Fluid Components, Inc. Method of measuring physical phenomena using a distributed RTD
JPH0438537U (ja) * 1990-07-30 1992-03-31
JP3378828B2 (ja) * 1999-05-25 2003-02-17 有限会社 日本建装工業 給湯装置
US8711008B2 (en) 2003-08-20 2014-04-29 The Boeing Company Methods and systems for detecting icing conditions
US7817906B2 (en) * 2005-05-04 2010-10-19 Isi Technology, Llc Direct electric resistance liquid heater
ITMO20060030A1 (it) * 2006-01-30 2007-07-31 Illycaffe Spa Metodi e apparati per ottenere bevande
CN201045531Y (zh) * 2006-05-16 2008-04-09 费罗技术控股公司 加热液体的设备
JP2008025907A (ja) * 2006-07-20 2008-02-07 Calsonic Kansei Corp 加熱装置
MX2010008829A (es) * 2008-02-11 2010-09-07 Microheat Technologies Pty Ltd Calentamiento rapido segmentado de fluido.
WO2009111640A2 (en) * 2008-03-05 2009-09-11 Campbell Mark E Molecular heater and method of heating fluids
JP5178459B2 (ja) * 2008-11-04 2013-04-10 日産自動車株式会社 流体加熱装置
CN101447467B (zh) * 2008-12-23 2011-03-23 中国科学院广州能源研究所 一种种子气泡微换热器及种子气泡微换热器系统
JP2011152907A (ja) * 2010-01-28 2011-08-11 Mitsubishi Heavy Ind Ltd 電気式加熱装置及び車両用空気調和装置

Also Published As

Publication number Publication date
BR112013005715A2 (pt) 2016-05-03
CN103154631B (zh) 2016-03-23
JP2013540977A (ja) 2013-11-07
CO6690796A2 (es) 2013-06-17
WO2012034000A3 (en) 2013-03-14
PH12015501730A1 (en) 2016-11-21
WO2012034000A2 (en) 2012-03-15
ES2565931T3 (es) 2016-04-07
EP2614315A2 (en) 2013-07-17
CN103154631A (zh) 2013-06-12
SG188440A1 (en) 2013-04-30
DK2614315T3 (en) 2016-05-30
HK1181107A1 (zh) 2013-11-01
EP2614315B1 (en) 2016-03-02
JP5801399B2 (ja) 2015-10-28
JP2015172483A (ja) 2015-10-01
BR112013005715B1 (pt) 2020-10-06
PH12015501730B1 (en) 2016-11-21

Similar Documents

Publication Publication Date Title
US10323858B2 (en) Liquid heater with temperature control
US5438642A (en) Instantaneous water heater
AU2006243758B2 (en) Direct Electric Resistance Liquid Heater
AU2017355627B2 (en) Devices for ohmically heating a fluid
EP3775709B1 (en) Fluid heater with finite element control
JP5934827B2 (ja) 流体加熱器
CN114830820A (zh) 具有多个操作状态的欧姆加热器
JP7397512B2 (ja) 流体をオーム加熱する装置
KR102678938B1 (ko) 유한 요소 제어 기능이 있는 유체 히터

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5934827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250