JP5930789B2 - Abnormal sound diagnosis device - Google Patents

Abnormal sound diagnosis device Download PDF

Info

Publication number
JP5930789B2
JP5930789B2 JP2012067287A JP2012067287A JP5930789B2 JP 5930789 B2 JP5930789 B2 JP 5930789B2 JP 2012067287 A JP2012067287 A JP 2012067287A JP 2012067287 A JP2012067287 A JP 2012067287A JP 5930789 B2 JP5930789 B2 JP 5930789B2
Authority
JP
Japan
Prior art keywords
series
time
sample series
reference sample
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012067287A
Other languages
Japanese (ja)
Other versions
JP2013200144A (en
Inventor
阿部 芳春
芳春 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012067287A priority Critical patent/JP5930789B2/en
Priority to TW102107198A priority patent/TWI481828B/en
Priority to KR1020130026529A priority patent/KR101446418B1/en
Priority to CN201310089453.1A priority patent/CN103325387B/en
Publication of JP2013200144A publication Critical patent/JP2013200144A/en
Application granted granted Critical
Publication of JP5930789B2 publication Critical patent/JP5930789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、検査対象機器から発生する音を集音し集音された音の時間周波数解析によって運転中の機器の異常音の発生の可能性を判定する装置に関する。   The present invention relates to an apparatus that collects sound generated from a device to be inspected and determines the possibility of occurrence of abnormal sound of the device being operated by time-frequency analysis of the collected sound.

異常音診断装置に関し、特許文献1に示すような異常音診断装置が知られている。特許文献1に開示されている異常音診断装置は、事前に人が聴き正常音と判断した検査対象機器の音データを基準値として記憶手段で保存し、前記記憶手段により事前に保存されている前記機器における前記基準値と、計測手段で測定された診断時の検査対象機器から発生する音の測定データとの一致度を、一つあるいは複数を処理手段で算出し、前記処理手段により算出された結果の一致度により検査対象機器の異音の良否を判定手段にて判定するものである。   Regarding the abnormal sound diagnosis apparatus, an abnormal sound diagnosis apparatus as shown in Patent Document 1 is known. The abnormal sound diagnosis apparatus disclosed in Patent Document 1 stores sound data of a device to be inspected that has been heard by a person in advance as a normal sound in a storage unit as a reference value, and is stored in advance by the storage unit. The degree of coincidence between the reference value in the device and the measurement data of the sound generated from the inspection target device measured by the measuring unit is calculated by the processing unit, and is calculated by the processing unit. The determination means determines the quality of the abnormal sound of the inspection target device based on the degree of coincidence of the results.

さらに、検査対象機器の音データの基準値と検査対象機器における診断時の音の測定データとの一致度を算出する処理手段は、前記基準値の各周波数における振幅値を入力とし、同じ振幅値を出力とする比例式の直線を基準の設定直線とし、前記測定データの各周波数における振幅値の設定直線からのズレ具合を最小2乗法により算出し、その結果を一致度の指標としてなるものである。   Further, the processing means for calculating the degree of coincidence between the reference value of the sound data of the inspection target device and the sound measurement data at the time of diagnosis in the inspection target device receives the amplitude value at each frequency of the reference value as an input, and the same amplitude value The straight line of the proportional expression with the output as the reference is set as the reference set straight line, the deviation from the set straight line of the amplitude value at each frequency of the measurement data is calculated by the least square method, and the result is used as an index of the degree of coincidence. is there.

さらにまた、設定直線からのズレを数値化する手段は、測定する各周波数における振幅値が設定直線を下回る際、前記各周波数における振幅値に対し、設定直線上にあると仮定する補正を行い、機器の不具合により零あるいは低振幅による基準値の音データとの一致度不整合を防止するものである。   Furthermore, the means for digitizing the deviation from the setting line performs correction assuming that the amplitude value at each frequency is on the setting line when the amplitude value at each frequency to be measured falls below the setting line, It is intended to prevent a mismatch in the degree of coincidence with the sound data of the reference value due to zero or low amplitude due to a malfunction of the device.

特開2005-283227号公報JP 2005-283227 A

しかしながら、従来の異常音診断装置は、温度、気圧、湿度、速度、加速度、圧力、張力、荷重などの諸条件による、検査対象機器の発する音の時間周波数特性の特に特定の時間や周波数における変化の違いを考慮していないため、基準とする音データの時間周波数特性と診断する時の入力の音データの時間周波数特性の上記諸条件の相違による特定の時間や周波数における変化を、異常として誤検出するという課題があった。   However, the conventional abnormal sound diagnosis device has a change in the time-frequency characteristics of the sound emitted by the device to be inspected, particularly at a specific time or frequency, due to various conditions such as temperature, atmospheric pressure, humidity, speed, acceleration, pressure, tension, and load. The difference in the time and frequency characteristics of the reference sound data and the time and frequency characteristics of the input sound data at the time of diagnosis are mistakenly regarded as abnormal. There was a problem of detecting.

本発明に係る異常音診断装置は、
検査対象とする機器から発生する音を学習時と診断時とで取得し、学習時と診断時との音を比較し、音の異常を診断する異常音診断装置であって、
上記検査対象機器の動作と同期して検査対象機器から発生する音データを取得する音データ取得手段と、
上記音データから、複数の周波数のそれぞれについて、各時間の強度からなる標本系列を求める分析手段と、
学習時の標本系列を基準標本系列として記憶する記憶手段と、
診断時の標本系列である対象標本系列と上記基準標本系列に基づいて前記複数の周波数のそれぞれについて独立に推定される補正量または補正量系列に基づいて、前記複数の周波数のそれぞれに関する対象標本系列または基準標本系列の少なくとも何れか一方を補正する補正手段と、
前記複数の周波数のそれぞれについて、上記補正後の対象標本系列または基準標本系列と対応する基準標本系列または対象標本系列とを比較し異常度を算出するとともに、前記複数の周波数のそれぞれについて算出された異常度から総合異常度を算出し、前記総合異常度を所定の閾値と比較して判定異常度を出力する判定手段とを備える。
The abnormal sound diagnosis apparatus according to the present invention is:
An abnormal sound diagnosis device that obtains sound generated from a device to be inspected at the time of learning and at the time of diagnosis, compares the sound at the time of learning and at the time of diagnosis, and diagnoses sound abnormality,
Sound data acquisition means for acquiring sound data generated from the inspection target device in synchronization with the operation of the inspection target device;
From the sound data, for each of a plurality of frequencies, analysis means for obtaining a sample series consisting of the intensity of each time,
Storage means for storing a sample sequence at the time of learning as a reference sample sequence;
A target sample series relating to each of the plurality of frequencies based on a correction amount or a correction amount series independently estimated for each of the plurality of frequencies based on the target sample series that is a sample series at the time of diagnosis and the reference sample series Or correction means for correcting at least one of the reference sample series;
For each of the plurality of frequencies, the degree of abnormality is calculated by comparing the corrected target sample series or reference sample series with the corresponding reference sample series or target sample series, and calculated for each of the plurality of frequencies . And a determination unit that calculates a total abnormality degree from the abnormality degree, compares the total abnormality degree with a predetermined threshold value, and outputs a determination abnormality degree.

本発明に係る異常音診断装置によれば、検査対象の機器の発する音の時間周波数特性を変化させる可能性のある温度、気圧、湿度などの検査対象機器の環境条件や、速度、加速度、圧力、張力、荷重などの検査対象機器運転条件の諸条件による、音データの時間周波数特性の特に特定の時間や周波数における変化の違いを補正手段により補正して考慮するように構成したため、上記諸条件の相違による特定の時間や周波数における変化を、異常として誤検出する可能性を低減するという効果を奏する。   According to the abnormal sound diagnosis apparatus of the present invention, the environmental conditions of the inspection target device, such as temperature, atmospheric pressure, and humidity, and the speed, acceleration, and pressure, which may change the time-frequency characteristics of the sound emitted from the inspection target device. Because it is configured to take into account differences in changes in the time-frequency characteristics of sound data, especially at specific times and frequencies, due to various conditions of the operating conditions of the device under test such as tension, load, etc. There is an effect of reducing the possibility of erroneously detecting a change in a specific time or frequency due to a difference as an abnormality.

本発明の実施の形態1における異常音診断装置を示すブロック構成図である。It is a block block diagram which shows the abnormal sound diagnostic apparatus in Embodiment 1 of this invention. 実施の形態1の補正部による補正前後の標本化系列を示す模式図である。6 is a schematic diagram illustrating a sampling sequence before and after correction by the correction unit according to Embodiment 1. FIG. 実施の形態2の補正部による補正前後の標本化系列を示す模式図である。6 is a schematic diagram illustrating a sampling sequence before and after correction by a correction unit according to Embodiment 2. FIG. 実施の形態3の補正部による補正前後の標本化系列を示す模式図である。FIG. 10 is a schematic diagram illustrating a sampling sequence before and after correction by a correction unit according to the third embodiment. 実施の形態4の補正部による補正前後の標本化系列を示す模式図である。FIG. 10 is a schematic diagram illustrating a sampling sequence before and after correction by a correction unit according to the fourth embodiment. 本発明の実施の形態5における異常音診断装置を示すブロック構成図である。It is a block block diagram which shows the abnormal sound diagnostic apparatus in Embodiment 5 of this invention. 実施の形態5の補正部による補正前後の標本化系列を示す模式図である。FIG. 10 is a schematic diagram illustrating a sampling sequence before and after correction by a correction unit according to the fifth embodiment. 集音器からの測定信号取得から学習モードか診断モードかを判断するまでの処理の流れ図である。It is a flowchart of a process until it judges from the measurement signal acquisition from a sound collector to learning mode or diagnostic mode. 学習モード時の処理の流れ図である。It is a flowchart of the process at the time of learning mode. 診断モード時の処理の流れ図である。It is a flowchart of the process at the time of diagnostic mode.

実施の形態1.
本実施の形態は、検査対象機器の発する異常な音を診断する装置として、パーソナルコンピュータ(以下PCと称す)上のソフトウェアとして実装され、正常時の波形を取込む学習モードと試験時の波形を取込む診断モードを有する。測定者はマイク、音響センサー、加速度センサー等の集音器を検査対象機器に設置し、集音器をPCのUSB(Universal Serial Bus)インタフェースの入力端子に接続して、学習モード時と診断モード時の操作を行う。
Embodiment 1 FIG.
The present embodiment is implemented as software on a personal computer (hereinafter referred to as a PC) as a device for diagnosing abnormal sounds generated by a device to be inspected, and includes a learning mode for capturing a normal waveform and a waveform for a test. Has a diagnostic mode to capture. The measurer installs a sound collector such as a microphone, acoustic sensor, acceleration sensor, etc. on the device to be inspected, and connects the sound collector to the input terminal of the USB (Universal Serial Bus) interface of the PC. Do the hour operation.

検査対象機器は、例えば、エレベータのような複数の稼働部品からなる機器である。エレベータの場合、集音器をエレベータの乗車かごの中またはかごの外に取り付け、制御ケーブルを経由して集音器の信号を機械室に置いたPCに取込んで、乗車かごを上下に往復運転することで、エレベータの各機器の稼動音を診断する。   The inspection target device is, for example, a device including a plurality of operating parts such as an elevator. In the case of an elevator, the sound collector is installed in or out of the elevator car, and the signal from the sound collector is taken into the PC placed in the machine room via the control cable, and the car is reciprocated up and down. By driving, the operation sound of each device of the elevator is diagnosed.

エレベータは、複数の部品から構成されているため、集音器に集音される音はこれらの部品からの混合音である。しかも、各部品から発生する音の周波数特性は異なる。また、集音器の位置は乗車かごが時間とともに移動するため、時間周波数成分は、時間によって、時間周波数成分が由来する部品が異なる。さらに、各部品から、発生する音の強度は、温度、気圧、湿度、速度、加速度、圧力、張力、荷重などの諸条件の違いにより部品毎に異なった変化を示す。例えば、レールとガイドシューが摺動する際に発生するレール音は、レールに塗布される油の粘度が温度上昇とともに減少するため、温度が上がると摩擦が小さくなり音圧が低下する。逆に、ロープがシーブに巻きつく際に発生する音は、温度との相関はあまり見られない。また、空調音は温度上昇とともにファン回転数が増加し強度が増加する傾向が見られる。   Since the elevator is composed of a plurality of parts, the sound collected by the sound collector is a mixed sound from these parts. Moreover, the frequency characteristics of the sound generated from each component are different. In addition, since the position of the sound collector moves with time, the time frequency component of the time frequency component varies depending on the time. Furthermore, the intensity of sound generated from each component shows different changes for each component due to differences in various conditions such as temperature, atmospheric pressure, humidity, speed, acceleration, pressure, tension, and load. For example, the rail noise generated when the rail and the guide shoe slide slides, and the viscosity of oil applied to the rail decreases as the temperature rises. Therefore, when the temperature rises, the friction decreases and the sound pressure decreases. On the contrary, the sound generated when the rope winds around the sheave does not show much correlation with temperature. In addition, the air-conditioning noise tends to increase in intensity as the fan speed increases with increasing temperature.

このように、集音器に集音される音の時間周波数分布は、その強度が、前記諸条件の変化により、時間周波数特性の特定の時間や周波数毎に異なるため、機器が正常であっても、前記諸条件の相違によって、集音器に集音される音の時間周波数特性が特定の時間や周波数毎に変化し、この前記諸条件の相違による変化成分を異常音による成分として誤判定する可能性が高くなる。   In this way, the time frequency distribution of the sound collected by the sound collector is different in each time and frequency in the time frequency characteristics due to changes in the conditions, so that the equipment is normal. However, due to the difference in the various conditions, the time-frequency characteristic of the sound collected by the sound collector changes for each specific time and frequency, and the change component due to the difference in the various conditions is erroneously determined as a component due to abnormal sound. Is more likely to do.

図1は、本発明の実施の形態1における異常音診断装置を示すブロック構成図である。
図1において、1はマイクや音響センサーや振動センサーなどの集音器、2は集音器1からの信号をサンプリングしデジタル信号に変換して波形データ3を出力する波形取得部、4は波形データ3に時間窓を掛け時間窓を時間方向にずらしながら高速フーリエ変換(以下FFTと称す)演算により波形データ3を時間周波数分析し時間と周波数に対する強度を示すスペクトル値からなる時間周波数分布5を出力する時間周波数分析部、501は時間周波数分布5から所定の各周波数の強度を示すスペクトル値を各時間でサンプリングして得られる時系列である各周波数の標本系列502を出力する標本化部である。標本系列502は、所定の各周波数についての各時間の標本値からなる時系列である。
なお、以下の実施の形態の説明では、時間周波数分析部4が出力する時間周波数分布5を音データとする場合について説明する。音データとしては波形データや、波形データを解析して得られるその他の特徴量であってもよい。
FIG. 1 is a block configuration diagram showing an abnormal sound diagnosis apparatus according to Embodiment 1 of the present invention.
In FIG. 1, 1 is a sound collector such as a microphone, an acoustic sensor, or a vibration sensor, 2 is a waveform acquisition unit that samples a signal from the sound collector 1 and converts it into a digital signal and outputs waveform data 3, and 4 is a waveform. A time frequency distribution 5 comprising spectral values indicating time and intensity with respect to time and frequency is obtained by performing time-frequency analysis on the waveform data 3 by fast Fourier transform (hereinafter referred to as FFT) while shifting the time window in the time direction by multiplying the data 3 with a time window. A time frequency analysis unit 501 for outputting a sampling unit for outputting a sample sequence 502 of each frequency which is a time series obtained by sampling a spectrum value indicating the intensity of each predetermined frequency from the time frequency distribution 5 at each time. is there. The sample series 502 is a time series composed of sample values at each time for predetermined frequencies.
In the following description of the embodiment, a case will be described in which the time frequency distribution 5 output from the time frequency analysis unit 4 is sound data. The sound data may be waveform data or other feature quantities obtained by analyzing the waveform data.

503は学習時に取得される音データから得られる標本系列502を記憶する記憶部、506は学習時に記憶部503に記憶され、異常度を計算する際の基準となる各周波数の標本系列からなる基準標本系列、507は診断時に取得された音データから得られ、異常度を計算する際の対象となる各周波数の標本系列からなる対象標本系列である。   Reference numeral 503 denotes a storage unit that stores a sample series 502 obtained from sound data acquired at the time of learning. Reference numeral 506 denotes a reference that is stored in the storage unit 503 at the time of learning and includes a sample series of each frequency that serves as a reference when calculating the degree of abnormality. A sample sequence 507 is obtained from sound data acquired at the time of diagnosis, and is a target sample sequence including a sample sequence of each frequency that is a target when calculating the degree of abnormality.

601は、基準標本系列506及び対象標本系列507を参照し、補正量602を算出する補正量算出部、603は補正量602に基づいて対象標本系列507を補正し、補正後の対象標本系列509を出力する補正部である。   Reference numeral 601 refers to the reference sample series 506 and the target sample series 507, and a correction amount calculation unit that calculates the correction amount 602. Reference numeral 603 corrects the target sample series 507 based on the correction amount 602, and the corrected target sample series 509 is corrected. Is a correction unit that outputs.

15は、所定の各周波数について、基準標本系列506及び補正後の対象標本系列509を参照し、異常音発生の可能性の度合いを示す異常度を計算し異常度16を出力する異常度計算部、17は所定の各周波数に関する異常度16に基づいて異常音の発生の可能性を判定し判定結果18を出力する判定部である。   15 is an abnormality degree calculation unit that calculates the degree of abnormality indicating the degree of possibility of abnormal sound generation and outputs the degree of abnormality 16 with reference to the reference sample series 506 and the corrected target sample series 509 for each predetermined frequency. , 17 is a determination unit that determines the possibility of occurrence of abnormal sound based on the degree of abnormality 16 for each predetermined frequency and outputs a determination result 18.

以下図8〜図10の処理流れ図を参照し、動作を説明する。
学習モードまたは診断モードにおいて、波形取得部2は、集音器1から出力される測定信号を取得して増幅しAD変換することにより、サンプリングされてサンプリング周波数48kHzの16ビットリニアPCM(pulse code modulation)のデジタル信号の波形データ3に測定信号を変換する(図8のステップS1)。
時間周波数分析部4は、波形取得部2が出力する波形データ3に対して、1024点の時間窓を16ミリ秒の間隔で時間方向にずらしながらフレームを切出し、各フレームに対してFFT演算により周波数スペクトルの系列y(t,f)を求め、時間周波数分布5として出力する(図8のステップS2)。ここで、tは分析窓をずらすシフト間隔に対応する時刻のインデックス、fはFFT演算の結果の周波数を示すインデックスである。なお、時間tおよび周波数fは、それぞれ、0≦t≦T,0≦f≦Fなる関係を満たす。ここで、Tは時間周波数分布5の時間方向のフレーム数、Fは波形データ3のサンプリング周波数fsの1/2であるナイキスト周波数に対応する周波数を示すインデックスである(F=fs/2)。
The operation will be described below with reference to the processing flowcharts of FIGS.
In the learning mode or the diagnostic mode, the waveform acquisition unit 2 acquires a measurement signal output from the sound collector 1, amplifies and AD-converts the sampled signal to obtain a 16-bit linear PCM (pulse code modulation) having a sampling frequency of 48 kHz. The measurement signal is converted into the waveform data 3 of the digital signal (step S1 in FIG. 8).
The time frequency analysis unit 4 extracts a frame from the waveform data 3 output by the waveform acquisition unit 2 while shifting the time window of 1024 points in the time direction at intervals of 16 milliseconds, and performs an FFT operation on each frame. A frequency spectrum series y (t, f) is obtained and output as a time-frequency distribution 5 (step S2 in FIG. 8). Here, t is an index of time corresponding to the shift interval for shifting the analysis window, and f is an index indicating the frequency of the result of the FFT operation. The time t and the frequency f satisfy the relations 0 ≦ t ≦ T and 0 ≦ f ≦ F, respectively. Here, T is the number of frames in the time direction of the time frequency distribution 5, and F is an index indicating a frequency corresponding to the Nyquist frequency that is ½ of the sampling frequency fs of the waveform data 3 (F = fs / 2).

標本化部501は、時間周波数分布5から、所定の各周波数として、0.5kHz、1kHz、2kHz、4kHz、8kHzを中心周波数として、それぞれ、1オクターブ幅の帯域からなる5つの周波数帯域について、これら5つの周波数帯域に含まれる周波数成分を8フレームを1単位としてスペクトル値の総和を求め、8フレーム(256ms)を単位とする所定の各時間の標本値を取得し、標本系列502を出力する(図8のステップS3)。いま、各周波数、各時間の標本系列502における標本値をY(n,b)とすると、Y(n,b)は式(1−1)で計算される。   From the time-frequency distribution 5, the sampling unit 501 applies these five frequency bands each having a band of one octave width with 0.5 kHz, 1 kHz, 2 kHz, 4 kHz, and 8 kHz as the center frequencies. The sum of the spectral values is obtained with 8 frames as a unit of frequency components included in one frequency band, the sample values for each predetermined time with 8 frames (256 ms) as a unit are obtained, and a sample sequence 502 is output (FIG. 8 step S3). Now, assuming that the sample value in the sample sequence 502 at each frequency and each time is Y (n, b), Y (n, b) is calculated by the equation (1-1).

Figure 0005930789
Figure 0005930789

ここで、nは標本化された系列の時間のインデックスで、1〜Nの範囲の自然数(ただしNは時間範囲の上限、N=T/8で余りは切り捨て)、bは周波数のインデックスで1〜Bの範囲の自然数(Bは周波数帯域の数で本実施の形態ではB=5)である。また、Ω(n,b)は、時間周波数分布y(t,f)において、標本化のために総和をとる対象となる時間と周波数の組(t,f)の集合を表す。   Here, n is a time index of a sampled sequence, a natural number ranging from 1 to N (where N is the upper limit of the time range, N = T / 8 and the remainder is rounded down), and b is a frequency index. Is a natural number in the range of -B (B is the number of frequency bands, and B = 5 in the present embodiment). Further, Ω (n, b) represents a set of time and frequency sets (t, f) to be summed for sampling in the time-frequency distribution y (t, f).

標本化部501により標本系列502が取得されると、異常音診断装置は学習モード時かまたは診断モード時かを判断する(図8のステップS4)。   When the sample series 502 is acquired by the sampling unit 501, the abnormal sound diagnosis apparatus determines whether it is in the learning mode or the diagnosis mode (step S4 in FIG. 8).

学習モード時であると、記憶部503は、各周波数について(図9のステップS201)標本系列502を基準標本系列506として、記憶する(図9のステップ202)。   In the learning mode, the storage unit 503 stores the sample series 502 as the reference sample series 506 for each frequency (step S201 in FIG. 9) (step 202 in FIG. 9).

次に、診断モード時の診断処理について動作を説明する。
診断モード時であると、各周波数について(図10のステップS301)、標本系列502を診断の対象標本系列507とする(図10のステップS302)。
Next, the operation of the diagnosis process in the diagnosis mode will be described.
In the diagnosis mode, for each frequency (step S301 in FIG. 10), the sample series 502 is set as a diagnosis target specimen series 507 (step S302 in FIG. 10).

補正量算出部601は、各周波数について、記憶部503に記憶されている基準標本系列506と、標本化部501により標本化された対象標本系列507から、補正量602を算出する(図10のステップS303)。詳細には、各周波数bの各時間nの補正量を、次の手順《A1−1》〜《A1−2》で算出する。
《A1−1》周波数bの対象標本系列Y1(n,b)と周波数bの基準標本系列Y0(n,b)の差の標本系列D(n,b)を求める。(式(2−1))
《A1−2》差の標本系列D(n,b)の時間nに関する平均を求め、補正量H1(b)として出力する。(式(2−2))
The correction amount calculation unit 601 calculates a correction amount 602 for each frequency from the reference sample series 506 stored in the storage unit 503 and the target sample series 507 sampled by the sampling unit 501 (FIG. 10). Step S303). Specifically, the correction amount for each time n of each frequency b is calculated by the following procedures << A1-1 >> to << A1-2 >>.
<< A1-1 >> A sample sequence D (n, b) of a difference between the target sample sequence Y 1 (n, b) at the frequency b and the reference sample sequence Y 0 (n, b) at the frequency b is obtained. (Formula (2-1))
<< A1-2 >> The average of the difference sample series D (n, b) with respect to time n is obtained and output as the correction amount H 1 (b). (Formula (2-2))

Figure 0005930789
Figure 0005930789

なお、式(2−2)は差系列の平均を求めているが、式(2−2)の右辺は式(2−3)の右辺のように変形できることから、補正量H1(b)を求めるため、それぞれの標本系列の平均を求めてから、それぞれの平均の差を求めて、補正量H1(b)を計算するようにしても構わない。 Equation (2-2) calculates the average of the difference series. However, since the right side of equation (2-2) can be transformed like the right side of equation (2-3), the correction amount H 1 (b) Therefore, after obtaining the average of the respective sample series, the difference between the respective averages may be obtained to calculate the correction amount H 1 (b).

Figure 0005930789
Figure 0005930789

補正部603は、対象標本系列507から、補正量H(b)を減算することにより補正後の対象標本系列509を求める(図10のステップS304)。詳細には、周波数bの補正後の対象標本系列をY11(b,n)とすると、Y11(b,n)は、式(2−4)のように、周波数bの対象標本系列Y1(n,b)から、補正量H1(b)を減算することにより計算される。 The correction unit 603 obtains the corrected target sample series 509 by subtracting the correction amount H 1 (b) from the target sample series 507 (step S304 in FIG. 10). Specifically, if the target sample series after the correction of the frequency b is Y 11 (b, n), Y 11 (b, n) is the target sample series Y of the frequency b as shown in Expression (2-4). It is calculated by subtracting the correction amount H 1 (b) from 1 (n, b).

Figure 0005930789
Figure 0005930789

ここに、Y11(b,n)は補正後の対象標本系列509である。 Here, Y 11 (b, n) is the target sample series 509 after correction.

図2は、補正部603による補正の前後の標本化系列を示す模式図である。
(A)は、補正前の基準標本系列と対象標本系列の関係を示す。この場合、温度が上昇したため、対象標本系列の標本値が全時間にわたってほぼ一様に基準標本系列に対して小さくなっている。矢印は補正量による補正方向を示している。
(B)は、補正後の基準標本系列と対象標本系列の関係を示す。補正後は基準標本系列と対象標本系列の差系列の平均が0に近づくように補正されることがわかる。
FIG. 2 is a schematic diagram illustrating a sampling sequence before and after correction by the correction unit 603.
(A) shows the relationship between the reference sample series before correction and the target sample series. In this case, since the temperature has risen, the sample values of the target sample series are almost uniformly smaller than the reference sample series over the entire time. The arrow indicates the correction direction according to the correction amount.
(B) shows the relationship between the corrected reference sample series and the target sample series. It can be seen that after the correction, the average of the difference series between the reference sample series and the target sample series is corrected so as to approach zero.

異常度計算部15は、各周波数について、基準標本系列506と補正後の対象標本系列509を入力し、両者の差異を計算し、異常度16として出力する(図10のステップS305)。詳細には、各周波数bについて、基準標本系列Y0(n,b)と補正後の対象標本系列Y11(n,b)の両者の差異の異常度を、各標本系列の差の2乗平均値(標本系列をN次元空間のベクトルとみなすとユークリッド距離と同値)として計算する(式(3−1))。 The abnormality degree calculation unit 15 inputs the reference sample series 506 and the corrected target sample series 509 for each frequency, calculates the difference between the two, and outputs the difference as the degree of abnormality 16 (step S305 in FIG. 10). Specifically, for each frequency b, the degree of abnormality of the difference between the reference sample series Y 0 (n, b) and the corrected target sample series Y 11 (n, b) is expressed as the square of the difference between the sample series. It is calculated as an average value (equivalent to the Euclidean distance when the sample series is regarded as a vector in the N-dimensional space) (formula (3-1)).

Figure 0005930789
Figure 0005930789

ここで、上式において、a(b)は周波数bの異常度である。また、総和におけるnの範囲は全時間(1≦n≦N)である。   Here, in the above equation, a (b) is the degree of abnormality of the frequency b. Further, the range of n in the sum is the total time (1 ≦ n ≦ N).

判定部17は、異常度計算部15が出力する各周波数の異常度16から計算される総合異常度と所定の閾値を比較することにより、異常音が発生している可能性があるかどうかを判定して、判定結果18として出力する(図10のステップS307)。詳細には、まず、各周波数の異常度a(b)をその分散で正規化した正規化異常度a^(b)を各周波数について求める(式(3−2))。次に、正規化異常度の周波数に関する最大値を総合異常度a*とする(式(3−3))。最後に、式(3−3)で計算される総合異常度a*と閾値を比較して総合異常度が閾値以上であるとき異常音が発生している可能性があると判定して、「異常」を判定結果18として出力する。また、総合異常度が閾値未満のときは異常音は発生している可能性が低いと判定して、「正常」を判定結果18として出力する。   The determination unit 17 compares the total abnormality degree calculated from the abnormality degree 16 of each frequency output by the abnormality degree calculation part 15 with a predetermined threshold value to determine whether or not there is a possibility that an abnormal sound is generated. Determination is made and output as the determination result 18 (step S307 in FIG. 10). Specifically, first, a normalized abnormality degree a ^ (b) obtained by normalizing the abnormality degree a (b) of each frequency by its variance is obtained for each frequency (formula (3-2)). Next, the maximum value regarding the frequency of the normalized abnormality degree is set as the total abnormality degree a * (formula (3-3)). Finally, the total abnormal degree a * calculated by the equation (3-3) is compared with a threshold value, and when the total abnormal degree is equal to or higher than the threshold value, it is determined that there is a possibility that an abnormal sound is generated. “Abnormal” is output as the determination result 18. When the total abnormality level is less than the threshold value, it is determined that there is a low possibility that abnormal noise has occurred, and “normal” is output as the determination result 18.

Figure 0005930789
Figure 0005930789

ここで、a(b)は周波数bの異常度、a^(b)は周波数bの異常度a(b)をその分散δ(b)で正規化した正規化異常度、δ(b)は周波数bの異常度の分散である。異常度の分散は、例えば、複数の学習用音データから異常度のサンプルを求め、これら異常度のサンプルの標準偏差を異常度の分散として求めることができる。   Here, a (b) is the abnormality degree of the frequency b, a ^ (b) is the normalized abnormality degree obtained by normalizing the abnormality degree a (b) of the frequency b by the variance δ (b), and δ (b) is The variance of the degree of anomaly at frequency b. For example, the variance of the degree of abnormality can be obtained by obtaining a sample of the degree of abnormality from a plurality of learning sound data, and obtaining the standard deviation of the samples of the degree of abnormality as the variance of the degree of abnormality.

以上のように、実施の形態1によれば、学習時と診断時の間で、温度などの諸条件の変化により、標本系列が時間軸にそって一様に変化したときでも、各周波数毎に、それぞれ、独立して、両者の差の平均が0に近づくように、診断時の標本系列の補正を行った後、各周波数の異常度を求めるように構成したので、診断時と学習時の間で、各周波数で必ずしも同じでない標本値の変化に起因する誤判定の可能性を削減するという効果がある。   As described above, according to the first embodiment, even when the sample sequence changes uniformly along the time axis due to changes in conditions such as temperature between learning and diagnosis, for each frequency, Independently, after correcting the sample series at the time of diagnosis so that the average of the difference between the two approaches 0, the degree of abnormality of each frequency is obtained, so between the time of diagnosis and the time of learning, This has the effect of reducing the possibility of erroneous determination due to changes in sample values that are not necessarily the same at each frequency.

なお、上記の説明では、対象標本系列と基準標本系列の差系列の平均に基づいて、対象標本系列を補正するようにしたが、基準標本系列と対象標本系列の差系列の平均に基づいて、基準標本系列の側を補正するようにしても同様の効果を奏することは言うまでもない。
さらに、基準標本系列と対象標本系列の差系列の平均をもとに、基準標本系列と対象標本系列のそれぞれを差系列の平均の半分の量づつ、あるいは所定の比率に基づいた量により両者の差の平均が0に近づくように補正するようにしても同様の効果を奏することは言うまでもない。
In the above description, the target sample series is corrected based on the average of the difference series between the target sample series and the reference sample series, but based on the average of the difference series between the reference sample series and the target sample series, It goes without saying that the same effect can be obtained even if the reference sample series side is corrected.
Furthermore, based on the average of the difference series of the reference sample series and the target sample series, each of the reference sample series and the target sample series is divided by half the average of the difference series or by an amount based on a predetermined ratio. It goes without saying that the same effect can be obtained even if the average of the differences is corrected to approach zero.

実施の形態2.
本実施の形態において、対象標本系列は、診断時の検査対象機器の音が正常であれば、正常時の基準標本系列と同じ標本値をとり、一方、診断時の検査対象機器の音に異常があれば、異常音による成分により、標本値が上昇すると考えられることから、対象標本系列は基準標本系列よりも、上にくるという、制約をつけた補正を行うものである。
Embodiment 2. FIG.
In this embodiment, if the sound of the inspection target device at the time of diagnosis is normal, the target sample sequence takes the same sample value as the reference sample sequence at the time of normal, while the sound of the inspection target device at the time of diagnosis is abnormal. If there is, the sample value is considered to increase due to the component due to the abnormal sound, and therefore, the correction is performed with a constraint that the target sample series is higher than the reference sample series.

実施の形態1との相違点だけを説明する。
相違点は、補正量算出部601、及び、補正量602、補正部603の動作が異なる。
以下、動作を、図1、図3、図10を用いて説明する。
Only differences from the first embodiment will be described.
The difference is that the operations of the correction amount calculation unit 601, the correction amount 602, and the correction unit 603 are different.
Hereinafter, the operation will be described with reference to FIG. 1, FIG. 3, and FIG.

補正量算出部601は、各周波数について、基準標本系列506と対象標本系列507から、補正量602を算出する(図10のステップS303)。詳細には、周波数bの各時間nの補正量は、次の手順《A2−1》〜《A2−2》で算出される。
《A2−1》周波数bの対象標本系列Y1(n,b)と周波数bの基準標本系列Y0(n,b)の差の標本系列D(n,b)を求める。(式(4−1))
《A2−2》差の標本系列D(n,b)の時間nに関する最小値を求め、補正量H2(b)として出力する。(式(4−2))

Figure 0005930789
The correction amount calculation unit 601 calculates the correction amount 602 for each frequency from the reference sample series 506 and the target sample series 507 (step S303 in FIG. 10). Specifically, the correction amount for each time n of the frequency b is calculated by the following procedures << A2-1 >> to << A2-2 >>.
<< A2-1 >> A sample sequence D (n, b) of a difference between the target sample sequence Y 1 (n, b) at the frequency b and the reference sample sequence Y 0 (n, b) at the frequency b is obtained. (Formula (4-1))
<< A2-2 >> The minimum value for the time n of the difference sample series D (n, b) is obtained and output as the correction amount H 2 (b). (Formula (4-2))
Figure 0005930789

補正部603は、対象標本系列507から、補正量H2(b)を減算することにより補正後の対象標本系列509を求める(図10のステップS304)。詳細には、補正後の対象標本系列をY12(b,n)とすると、Y12(b,n)は、式(4−3)のように、Y1(b,n)からH2(b)を減算することで計算される。 The correction unit 603 obtains the corrected target sample series 509 by subtracting the correction amount H 2 (b) from the target sample series 507 (step S304 in FIG. 10). Specifically, if the target sample series after correction is Y 12 (b, n), Y 12 (b, n) is calculated from Y 1 (b, n) to H 2 as shown in Equation (4-3). Calculated by subtracting (b).

Figure 0005930789
Figure 0005930789

図3は、実施の形態2の補正部603による補正の前後の標本化系列を示す模式図である。
(A)は、補正前の基準標本系列と対象標本系列の関係を示す。この場合、温度が上昇したため、対象標本系列の標本値が全時間にわたってほぼ一様に基準標本系列に対して小さくなるとともに、時間の後半部分に、異常音が発生しているため、標本値が大きくなっている。矢印は補正量H2(b)による補正の方向を示している。この矢印の時刻付近で、対象標本系列と基準標本系列の標本値の差が最小値となっているため、ちょうど、矢印の方向に補正が行われる。
(B)は、基準標本系列と補正後の対象標本系列の関係を示す。補正は基準標本系列と補正後の対象標本系列の差系列の最小値が0に近づくように補正される。この補正の結果、異常音の成分が過剰に補正され基準標本系列に埋もれることなく、基準標本系列に対して異常音の成分の相対的関係が維持されていることがわかる。
FIG. 3 is a schematic diagram illustrating sampling sequences before and after correction by the correction unit 603 according to the second embodiment.
(A) shows the relationship between the reference sample series before correction and the target sample series. In this case, since the temperature has increased, the sample value of the target sample sequence becomes almost uniformly smaller than the reference sample sequence over the entire time, and abnormal sound is generated in the latter half of the time, so the sample value is It is getting bigger. The arrow indicates the direction of correction by the correction amount H 2 (b). Near the time indicated by the arrow, the difference between the sample values of the target sample series and the reference sample series is a minimum value, so that correction is performed in the direction of the arrow.
(B) shows the relationship between the reference sample series and the corrected target sample series. The correction is performed so that the minimum value of the difference series between the reference sample series and the corrected target sample series approaches zero. As a result of this correction, it can be seen that the relative relationship of the abnormal sound component is maintained with respect to the reference sample sequence without excessively correcting the abnormal sound component and being buried in the reference sample sequence.

以上のように、実施の形態2によれば、各周波数について、学習時と診断時の間で、温度の変化などにより、標本系列が時間軸にそって一様に変化し、なお、異常音成分が不均一に重畳したときでも、両者の差の最小値を求めて、この最小値が0に近づくように、補正した後、学習時と診断時の標本系列の間で、両者の違いから異常度を求めるように構成されているので、診断時と学習時の間で、周波数毎に、温度の変化などによる時間的に一様な標本値の変化に起因する誤判定の可能性を削減するとともに、異常音成分を過剰に補正することを防止し、異常音の判定精度を維持ないし向上するという効果がある。   As described above, according to the second embodiment, for each frequency, the sample sequence changes uniformly along the time axis due to a change in temperature between the time of learning and the time of diagnosis. Even when non-uniform superimposition is performed, the minimum value of the difference between the two is obtained, corrected so that the minimum value approaches 0, and the degree of abnormality is determined from the difference between the two at the time of learning and the sample series at the time of diagnosis. Therefore, it is possible to reduce the possibility of misjudgment caused by changes in the sample value over time due to temperature changes, etc. This has the effect of preventing excessive correction of sound components and maintaining or improving the accuracy of abnormal sound determination.

実施の形態3.
本実施の形態において、対象標本系列は、正常時に採取された基準標本系列と同じか、異常音成分による分だけ、パワーが上昇すると仮定できるが、実際には、検査対象機器の運転音が雑音であることから、帯域パワーの瞬時値は絶えず揺らいでいる。このため、標本値も測定回毎の揺らぎを有しており、この標本値の測定回毎の揺らぎを考慮するため、最小値の代わりに、標本系列間の差の分布から得られるq分位数を用いることで、揺らぎの影響を緩和した制約付きの標本系列の補正を行った後、標本列間の異常を判定するものである。
Embodiment 3 FIG.
In this embodiment, it can be assumed that the target sample series is the same as the reference sample series collected at normal time, or that the power increases by the amount of abnormal sound components. Therefore, the instantaneous value of the band power is constantly fluctuating. For this reason, the sample values also have fluctuations at each measurement time, and in order to consider fluctuations at each measurement time of the sample values, instead of the minimum value, the q quantile obtained from the distribution of the differences between the sample sequences. By using the number, after correcting the sample sequence with constraints that relaxes the influence of fluctuation, the abnormality between the sample sequences is determined.

相違点は、補正量算出部601、及び、補正量602、補正部603の動作が異なる。
以下、動作を、図1、図4、図10を用いて説明する。
The difference is that the operations of the correction amount calculation unit 601, the correction amount 602, and the correction unit 603 are different.
Hereinafter, the operation will be described with reference to FIG. 1, FIG. 4, and FIG.

補正量算出部601は、各周波数帯域の基準標本系列506と対象標本系列507から、補正量602を算出する(図10のステップS303)。詳細には、周波数bの各時間nの補正量は、次の手順《A3−1》〜《A3−2》で算出される。
《A3−1》周波数bの対象標本系列Y1(n,b)と周波数bの基準標本系列Y0(n,b)の差の標本系列D(n,b)を求める。(式(5−1))
《A3−2》差の標本系列D(n,b)の分布を求め、分布のq分位数を求め、補正量H3(b)として出力する。(式(5−2))
q分位数のqとしては、例えば、q=0.25とすることができる。また、q=0とすれば、実施の形態2と同じ、最小値を用いることに相当する。q=0.5とすれば、分布の中央値となり、分布の形状が平均を中心に対称であれば、ほぼ平均に近い値が得られ、実施の形態1と同じ、効果を得ることができる。
The correction amount calculation unit 601 calculates the correction amount 602 from the reference sample series 506 and the target sample series 507 in each frequency band (step S303 in FIG. 10). Specifically, the correction amount for each time n of the frequency b is calculated by the following procedures << A3-1 >> to << A3-2 >>.
<< A3-1 >> A sample sequence D (n, b) of a difference between the target sample sequence Y 1 (n, b) at the frequency b and the reference sample sequence Y 0 (n, b) at the frequency b is obtained. (Formula (5-1))
<< A3-2 >> The distribution of the difference sample series D (n, b) is obtained, the q quantile of the distribution is obtained, and output as the correction amount H 3 (b). (Formula (5-2))
The q quantile q can be, for example, q = 0.25. If q = 0, it corresponds to using the same minimum value as in the second embodiment. If q = 0.5, it becomes the median value of the distribution, and if the distribution shape is symmetrical about the average, a value close to the average is obtained, and the same effect as in the first embodiment can be obtained. .

Figure 0005930789
Figure 0005930789

ここに、quantile{X;q}は、標本系列Xに含まれる標本が構成する分布のq分位数を求める演算を表す。   Here, quantile {X; q} represents an operation for obtaining the q quantile of the distribution formed by the samples included in the sample series X.

補正部603は、対象標本系列507から、補正量H3(b)を減算することにより補正後の対象標本系列509を求める(図10のステップS304)。詳細には、補正後の対象標本系列をY13(b,n)とすると、Y13(b,n)は、式(5−3)のように、Y(b,n)からH3(b)を減算することで計算される。 The correction unit 603 obtains the corrected target sample series 509 by subtracting the correction amount H 3 (b) from the target sample series 507 (step S304 in FIG. 10). Specifically, if the target sample series after correction is Y 13 (b, n), Y 13 (b, n) is calculated from Y 1 (b, n) to H 3 as shown in Equation (5-3). Calculated by subtracting (b).

Figure 0005930789
Figure 0005930789

図4は、実施の形態3の補正部603による補正の前後の標本化系列を示す模式図である。
(A)は、補正前の基準標本系列と対象標本系列の関係を示す。この場合、温度が上昇したため、対象標本系列の標本値が全時間にわたってほぼ一様に基準標本系列に対して小さくなるとともに、時間の後半部分に、異常音が発生しているため、標本値が大きくなっている。また、図の標本値CやDは、測定毎の揺らぎにより、一部がところどころ極端に小さくなっていることを示す。これらの標本値CやDと対応する位置の基準標本系列の標本値との差は、その分布で下側の外れ値となるため、最小値の代わりにq分位数を用いる結果、矢印に示される適正な補正量H3(b)が得られる。
(B)は、補正後の基準標本系列と対象標本系列の関係を示す。補正後は基準標本系列と対象標本系列の差系列のq分位数が0に近づくように補正される。この補正の結果、異常音の成分が過剰に補正され基準標本系列に埋もれることなく、また、測定毎の揺らぎによる差系列の外れ値を除外した補正が行われ、基準標本系列に対して異常音の成分の相対的関係が適正に維持されることがわかる。
FIG. 4 is a schematic diagram illustrating sampling sequences before and after correction by the correction unit 603 according to the third embodiment.
(A) shows the relationship between the reference sample series before correction and the target sample series. In this case, since the temperature has increased, the sample value of the target sample sequence becomes almost uniformly smaller than the reference sample sequence over the entire time, and abnormal sound is generated in the latter half of the time, so the sample value is It is getting bigger. Also, the sample values C and D in the figure indicate that some of the sample values C and D are extremely small due to fluctuations at each measurement. Since the difference between the sample values C and D and the sample value of the reference sample series at the corresponding position becomes the lower outlier in the distribution, the result of using the q quantile instead of the minimum value is The appropriate correction amount H 3 (b) shown is obtained.
(B) shows the relationship between the corrected reference sample series and the target sample series. After the correction, the q quantile of the difference series between the reference sample series and the target sample series is corrected so as to approach zero. As a result of this correction, the abnormal sound component is not excessively corrected and buried in the reference sample series, and correction is performed to exclude the outliers of the difference series due to fluctuations at each measurement. It can be seen that the relative relationship of the components is properly maintained.

以上のように、実施の形態3によれば、周波数毎に、学習時と診断時の間で、温度の変化などにより、標本系列が時間軸にそって一様に変化し、なお、異常音成分が不均一に重畳するとともに、測定毎の揺らぎにより、差系列中の一部の標本値が分布上で外れ値となったときでも、両者の差の分布のq分位数を求めて、この分位数が0に近づくように、補正した後、学習時と診断時の標本系列の間で、両者の違いから異常度を求めるように構成されているので、診断時と学習時の間で、周波数毎に、温度の変化などによる時間的に一様な標本値の変化に起因する誤判定の可能性を削減するとともに、異常音成分を過剰に補正することを防止し、測定毎の揺らぎにより、極端に差異が拡大する方向に補正されないようにして、異常音の判定精度を向上するという効果がある。   As described above, according to the third embodiment, for each frequency, the sample series changes uniformly along the time axis due to a change in temperature between the time of learning and the time of diagnosis. In addition to non-uniform superposition, even if some sample values in the difference series become outliers in the distribution due to fluctuations at each measurement, the q quantile of the difference distribution between the two is obtained. After the correction is made so that the order approaches 0, the degree of abnormality is obtained from the difference between the sample series at the time of learning and at the time of diagnosis. In addition, it reduces the possibility of misjudgment caused by temporally uniform sample value changes due to temperature changes, etc., and prevents excessive correction of abnormal sound components. So that the difference is not corrected in an increasing direction, There is an effect of improving.

実施の形態4.
本実施の形態は、測定毎の揺らぎの影響を緩和するため、少なくとも何れか一方の標本系列を平滑化してから、差系列を求め、差系列の最小値または差系列の標本値の分布のq分位数により、補正量を決定するものである。
Embodiment 4 FIG.
In this embodiment, in order to alleviate the influence of fluctuation for each measurement, at least one of the sample series is smoothed, a difference series is obtained, and the minimum value of the difference series or the q of the distribution of the sample values of the difference series is obtained. The correction amount is determined by the quantile.

相違点は、補正量算出部601、及び、補正量602、補正部603の動作が異なる。
以下、動作を、図1、図5、図10を用いて説明する。
The difference is that the operations of the correction amount calculation unit 601, the correction amount 602, and the correction unit 603 are different.
Hereinafter, the operation will be described with reference to FIG. 1, FIG. 5, and FIG.

補正量算出部601は、各周波数の基準標本系列506と対象標本系列507から、補正量602を算出する(図10のステップS303)。詳細には、周波数bの各時間nの補正量は、次の手順《A4−1》〜《A4−5》で算出される。
《A4−1》周波数bの対象標本系列Y1(n,b)を平滑化して平滑化された対象標本系列Y1〜(n,b)を求める(式(6−1)))。
《A4−2》周波数bの基準標本系列Y0(n,b)を平滑化して平滑化された基準標本系列Y0〜(n,b)を求める(式(6−2)))。
《A4−3》周波数bの平滑化された対象標本系列Y1〜(n,b)と周波数bの平滑化された基準標本系列Y0〜(n,b)の差の標本系列D〜(n,b)を求める(式(6−3))。
《A4−4》差の標本系列D〜(n,b)から、補正量H4(b)を求め(式(6−4))、出力する。
《A4−5》差の標本系列D〜(n,b)の分布を求め、分布のq分位数を求め(式(6−5))、補正量H5(b)として出力する。
q分位数のqとしては、例えば、q=0.25とすることができる。また、q=0とすれば、実施の形態2と同じ、最小値を用いることに相当する。q=0.5とすれば、分布の中央値となり、分布の形状が平均を中心に対称であれば、ほぼ平均に近い値が得られ、実施の形態1と同じ、効果を得ることができる。
The correction amount calculation unit 601 calculates the correction amount 602 from the reference sample series 506 and the target sample series 507 for each frequency (step S303 in FIG. 10). Specifically, the correction amount for each time n of the frequency b is calculated by the following procedures << A4-1 >> to << A4-5 >>.
"A4-1" frequency b of the target sample sequence Y 1 (n, b) the seek smoothed by smoothing the target specimen sequence Y 1 ~ (n, b) (Formula (6-1))).
"A4-2" obtaining a reference sample sequence Y 0 (n, b) of the frequency b of the smoothed reference sample sequence Y 0 is smoothed ~ (n, b) (Formula (6-2))).
<< A4-3 >> The sample series D to (D) of the difference between the target sample series Y 1 to (n, b) smoothed at the frequency b and the reference sample series Y 0 to (n, b) smoothed to the frequency b n, b) is obtained (formula (6-3)).
<< A4-4 >> The correction amount H 4 (b) is obtained from the difference sample series D to (n, b) (formula (6-4)) and output.
<< A4-5 >> The distribution of the difference sample series D to (n, b) is obtained, the q quantile of the distribution is obtained (formula (6-5)), and output as the correction amount H 5 (b).
The q quantile q can be, for example, q = 0.25. If q = 0, it corresponds to using the same minimum value as in the second embodiment. If q = 0.5, it becomes the median value of the distribution, and if the distribution shape is symmetrical about the average, a value close to the average is obtained, and the same effect as in the first embodiment can be obtained. .

Figure 0005930789
Figure 0005930789

ここに、smooth{X}は、標本系列Xを時間方向に移動平均により平滑化する演算、quantile{X;q}は、標本系列Xに含まれる標本が構成する分布のq分位数を求める演算を表す。ここで、平滑化の移動平均の時間窓の幅は例えば1秒とすることができる。   Here, smooth {X} is an operation for smoothing the sample sequence X by moving average in the time direction, and quantile {X; q} is a q quantile of the distribution formed by the samples included in the sample sequence X. Represents an operation. Here, the width of the smoothing moving average time window can be set to 1 second, for example.

補正部603は、対象標本系列507から、補正量H4(b)または補正量H5(b)を減算することにより補正後の対象標本系列509を求める(ステップS304)。詳細には、補正後の対象標本系列をY14(b,n)またはY15(b,n)とすると、Y14(n,b)またはY15(n,b)は、式(6−6)または式(6−7)のように、Y1(n,b)からH4(b)またはH5(b)を減算することで計算される。 The correction unit 603 obtains the corrected target sample series 509 by subtracting the correction amount H 4 (b) or the correction amount H 5 (b) from the target sample series 507 (step S304). Specifically, if the target sample series after correction is Y 14 (b, n) or Y 15 (b, n), Y 14 (n, b) or Y 15 (n, b) is expressed by the equation (6- It is calculated by subtracting H 4 (b) or H 5 (b) from Y 1 (n, b) as in 6) or equation (6-7).

Figure 0005930789
Figure 0005930789

図5は、実施の形態4の補正部603による補正の前後の標本化系列を示す模式図である。
(A)は、補正前の対象標本系列と基準標本系列の関係を示す。この場合、温度が上昇したため、対象標本系列の標本値が全時間にわたってほぼ一様に基準標本系列に対して小さくなるとともに、時間の後半部分に、異常音が発生しているため、標本値が大きくなっている。ただし、測定毎の揺らぎのため、時間的に小さくたえず揺らいでいる。
(B)は、両者を平滑化した後の基準標本系列と対象標本系列の関係を示す。平滑化により、小刻みな揺らぎは除去されて、時間的に大局的な変化を表すようになる。ここで、矢印は平滑化後の対象標本系列と基準標本系列の差系列の最小値を示す時間に補正量と補正の大きさを示している。
(C)は、補正後の対象標本系列と基準標本系列の関係を示す。補正後は(B)における平滑化後の対象標本系列と基準標本系列の差系列の最小値が0に近づくように補正されている。この補正の結果、異常音の成分が過剰に補正されることなく、また、測定毎の揺らぎによる差系列の外れ値を除外した補正が行われ、基準標本系列に対して異常音の成分の相対的関係が適正に維持されることがわかる。
FIG. 5 is a schematic diagram illustrating sampling sequences before and after correction by the correction unit 603 according to the fourth embodiment.
(A) shows the relationship between the target sample series before correction and the reference sample series. In this case, since the temperature has increased, the sample value of the target sample sequence becomes almost uniformly smaller than the reference sample sequence over the entire time, and abnormal sound is generated in the latter half of the time, so the sample value is It is getting bigger. However, it fluctuates constantly in time due to fluctuations at every measurement.
(B) shows the relationship between the reference sample series and the target sample series after smoothing both. By smoothing, every small fluctuation is removed and a global change in time is represented. Here, the arrows indicate the correction amount and the magnitude of the correction at the time indicating the minimum value of the difference sequence between the target sample sequence and the reference sample sequence after smoothing.
(C) shows the relationship between the corrected target sample series and the reference sample series. After the correction, the minimum value of the difference series between the target sample series and the reference sample series after smoothing in (B) is corrected so as to approach zero. As a result of this correction, the abnormal sound component is not excessively corrected, and the correction is performed by removing the outlier of the difference series due to fluctuations at each measurement, and the relative component of the abnormal sound is relative to the reference sample series. It can be seen that the target relationship is properly maintained.

以上のように、実施の形態4によれば、周波数毎に、学習時と診断時の間で、温度の変化などにより、標本系列が時間軸にそって一様に変化し、なお、異常音成分が不均一に重畳するとともに、測定毎の時間的に変化の激しい揺らぎがあっても、平滑化後の差系列の最小値またはq分位数を用いて、補正した後、学習時と診断時の標本系列の間で、両者の違いから異常度を求めるように構成されているので、診断時と学習時の間で、周波数毎に、温度の変化などによる時間的に一様な標本値の変化に起因する誤判定の可能性を削減するとともに、異常音成分を過剰に補正することを防止し、測定毎の揺らぎにより、極端に差異が拡大する方向に補正されないようにして、異常音の判定精度を向上するという効果がある。   As described above, according to the fourth embodiment, for each frequency, the sample series changes uniformly along the time axis due to a change in temperature between the time of learning and the time of diagnosis. In addition to non-uniform superposition, even if there are fluctuations that vary greatly with time for each measurement, after correction using the minimum value of the difference series after smoothing or the q quantile, correction is performed at the time of learning and diagnosis. Because it is configured so that the degree of abnormality is obtained from the difference between the two sample sequences, it is caused by a change in the sample value over time due to a temperature change etc. for each frequency between diagnosis and learning. In addition to reducing the possibility of misjudgment, the excessive noise component is prevented from being corrected excessively, and fluctuations at each measurement are prevented from being corrected in the direction in which the difference is greatly expanded, thereby improving the accuracy of abnormal sound determination. There is an effect of improving.

実施の形態5.
本実施の形態は、上記検査対象機器の動作と同期して音データの強度をサンプルする際の各時間における上記検査対象機器の作動状態を取得ないしは推定または学習する手段を設け、対象標本系列または基準標本系列の補正量系列を各時間における上記検査対象機器の作動状態に応じて変化させるものである。
Embodiment 5 FIG.
The present embodiment provides means for acquiring, estimating or learning the operating state of the inspection target device at each time when the intensity of sound data is sampled in synchronization with the operation of the inspection target device. The correction amount series of the reference sample series is changed according to the operating state of the inspection target device at each time.

図6は本実施の形態の構成図である。図において、701は検査対象機器の作動を制御する制御信号、703は波形取得部2と同期して検査対象機器の作動状態を推定する作動状態推定部、702は検査対象機器から入力される制御信号701を処理して波形取得部2と作動状態推定部703に検査対象機器の作動と時間を同期するための信号を出力する時間同期部、704は作動状態推定部703により推定される標本系列502の各時間における検査対象機器の動作速度の推定値の系列である推定動作速度系列である。
また、601は、基準標本系列506と対象標本系列507と推定動作速度系列704を入力し、補正量系列602を出力する補正量算出部である。
FIG. 6 is a configuration diagram of the present embodiment. In the figure, 701 is a control signal for controlling the operation of the inspection target device, 703 is an operation state estimation unit for estimating the operation state of the inspection target device in synchronization with the waveform acquisition unit 2, and 702 is a control input from the inspection target device. A time synchronization unit that processes the signal 701 and outputs a signal for synchronizing the operation and time of the inspection target device to the waveform acquisition unit 2 and the operation state estimation unit 703, and 704 is a sample series estimated by the operation state estimation unit 703 This is an estimated operation speed sequence which is a sequence of estimated values of the operation speed of the inspection target device at each time of 502.
Reference numeral 601 denotes a correction amount calculation unit that inputs the reference sample sequence 506, the target sample sequence 507, and the estimated operation speed sequence 704, and outputs a correction amount sequence 602.

補正量算出部601は、基準標本系列506と対象標本系列507と推定動作速度系列704から、補正量系列602を算出する(図10のステップS303)。詳細には、周波数bの各時間nの補正量は、次の手順《A6−1》〜《A6−4》で算出される。
《A6−1》周波数bの対象標本系列Y1(n,b)と周波数bの基準標本系列Y(n,b)の差の標本系列D(n,b)を求める(式(7−1))。
《A6−2》推定動作速度系列V(n)をnに関する最大値で正規化することにより荷重係数系列W(n)を求める(式(7−2))。
《A6−3》差の標本系列D(n,b)に対して、荷重係数系列W(n)を掛け、荷重差系列DW(n,b)を求める(式(7−3))。
《A6−3》荷重差系列DW(n,b)の平均を求め仮の補正量H6(b)を求める(式(7−4))。
《A6−4》仮の補正量H6(b)に対して荷重係数系列W(n)をかけることにより補正量系列H7(n,b)を求める(式(7−5))。
The correction amount calculation unit 601 calculates the correction amount sequence 602 from the reference sample sequence 506, the target sample sequence 507, and the estimated operation speed sequence 704 (step S303 in FIG. 10). Specifically, the correction amount for each time n of the frequency b is calculated by the following procedures << A6-1 >> to << A6-4 >>.
<< A6-1 >> A sample sequence D (n, b) of a difference between the target sample sequence Y 1 (n, b) at the frequency b and the reference sample sequence Y 0 (n, b) at the frequency b is obtained (formula (7− 1)).
<< A6-2 >> A load coefficient series W (n) is obtained by normalizing the estimated operation speed series V (n) with the maximum value for n (formula (7-2)).
<< A6-3 >> The difference sample series D (n, b) is multiplied by the load coefficient series W (n) to obtain the load difference series DW (n, b) (formula (7-3)).
<< A6-3 >> An average of the load difference series DW (n, b) is obtained to obtain a provisional correction amount H 6 (b) (formula (7-4)).
<< A6-4 >> The correction amount series H 7 (n, b) is obtained by multiplying the temporary correction amount H 6 (b) by the load coefficient series W (n) (formula (7-5)).

Figure 0005930789
Figure 0005930789

ここに、Y0(n,b)は周波数bの時間nの基準標本系列の標本値、Y1(n,b)は周波数bの時間nの対象標本系列の標本値、V(n)は時間nの推定動作速度系列の値、W(n)は時間nの荷重係数系列の値、H6(b)は仮の補正量、H7(n,b)は周波数bの時間nの補正量系列の値である。 Where Y 0 (n, b) is the sample value of the reference sample sequence at time n of frequency b, Y 1 (n, b) is the sample value of the target sample sequence at time n of frequency b, and V (n) is The value of the estimated operating speed series at time n, W (n) is the value of the load coefficient series at time n, H 6 (b) is a temporary correction amount, and H 7 (n, b) is the correction of time n at frequency b. The value of the quantity series.

補正部603は、対象標本系列507から、補正量系列H7(n、b)を減算することにより補正後の対象標本系列509を求める(図10のステップS304)。詳細には、補正後の対象標本系列をY17(n,b)とすると、Y17(n,b)は、式(7−6)のように、Y1(n,b)から、補正量系列H7(n,b)を減算することにより計算される。 The correction unit 603 obtains the corrected target sample series 509 by subtracting the correction amount series H 7 (n, b) from the target sample series 507 (step S304 in FIG. 10). Specifically, when the corrected target sample series is Y 17 (n, b), Y 17 (n, b) is corrected from Y 1 (n, b) as shown in Equation (7-6). Calculated by subtracting the quantity sequence H 7 (n, b).

Figure 0005930789
Figure 0005930789

ここに、Y17(n,b)は補正後の対象標本系列である。 Here, Y 17 (n, b) is the target sample series after correction.

図7は、補正部603による補正の前後の標本系列を示す模式図である。
(A)は、補正前の基準標本系列と対象標本系列の関係を示す。また、下部に機器の動作速度を示す。この場合、温度が上昇したため、対象標本系列の標本値が全時間にわたって、基準標本系列に対して小さくなっている。また、小さくなり方は、動作速度とほぼ比例する関係にあり、動作速度が小さいT1及びT3の区間では温度による変化は小さい。また、動作速度が最大となるT2の区間では、温度による変化が大きくなっている。3つの矢印は各区間T1,T2,T3における補正量系列の平均的な大きさと補正方向を示している。
(B)は、補正後の基準標本系列と対象標本系列の関係を示す。補正後は基準標本系列と対象標本系列の差系列の平均が0に近づくように補正されることがわかる。
FIG. 7 is a schematic diagram showing a sample series before and after correction by the correction unit 603.
(A) shows the relationship between the reference sample series before correction and the target sample series. The operating speed of the equipment is shown at the bottom. In this case, since the temperature has risen, the sample value of the target sample series is smaller than the reference sample series over the entire time. Moreover, the way of decreasing is in a relation substantially proportional to the operating speed, and the change due to the temperature is small in the interval between T1 and T3 where the operating speed is low. Further, in the section of T2 where the operation speed is maximum, the change due to temperature is large. Three arrows indicate the average size and correction direction of the correction amount series in each of the sections T1, T2, and T3.
(B) shows the relationship between the corrected reference sample series and the target sample series. It can be seen that after the correction, the average of the difference series between the reference sample series and the target sample series is corrected so as to approach zero.

以上のように、実施の形態5によれば、周波数毎に、学習時と診断時の間で、温度の変化などにより、標本系列が機器の動作に合わせて変化したときでも、機器の動作で荷重した両者の荷重差の時間平滑化による平均的な補正量系列を求めて、この補正量系列による補正を行った後、学習時と診断時の標本系列の間で、両者の違いから異常度を求めるように構成したので、診断時と学習時の間で、周波数毎に、温度の変化などによる機器の動作に依存する標本値の変化に起因する誤判定の可能性を削減するという効果がある。   As described above, according to the fifth embodiment, even when the sample series is changed in accordance with the operation of the device due to a change in temperature between the time of learning and the time of diagnosis for each frequency, the load is applied by the operation of the device. After obtaining an average correction amount series by time smoothing of the load difference between the two and performing correction by this correction amount series, the degree of abnormality is obtained from the difference between the sample series at the time of learning and at the time of diagnosis. With this configuration, there is an effect of reducing the possibility of misjudgment due to a change in sample value depending on the operation of the device due to a change in temperature for each frequency between diagnosis and learning.

本発明の異常音診断装置は、使用条件が大きく変化する機器、例えば、エレベータにおいてその異常状態を検出する検出装置として利用される可能性がある。   The abnormal sound diagnosis apparatus of the present invention may be used as a detection apparatus that detects an abnormal state in a device whose use conditions are greatly changed, for example, an elevator.

1;集音器、2;波形取得部、3;波形データ、4;時間周波数分析部、5;時間周波数分布、15;異常度計算部、16;異常度、17;判定部、18;判定結果、501;標本化部、502;標本系列、503;記憶部、506;基準標本系列、507;対象標本系列、509;補正後の対象標本系列、601;補正量算出部、602;補正量、603;補正部、701;制御信号、703;作動状態推定部、702;時間同期部、704;推定動作速度系列。   DESCRIPTION OF SYMBOLS 1; Sound collector, 2; Waveform acquisition part, 3; Waveform data, 4; Time frequency analysis part, 5; Time frequency distribution, 15: Abnormality calculation part, 16; Abnormality degree, 17; Result, 501; Sampling unit, 502; Sample series, 503; Storage unit, 506; Reference sample series, 507; Target sample series, 509; Target sample series after correction, 601; Correction amount calculation unit, 602; 603; Correction unit 701; Control signal 703; Operating state estimation unit 702; Time synchronization unit 704;

Claims (7)

検査対象とする機器から発生する音を学習時と診断時とで取得し、学習時と診断時との音を比較し、音の異常を診断する異常音診断装置であって、
上記検査対象機器の動作と同期して検査対象機器から発生する音データを取得する音データ取得手段と、
上記音データから、複数の周波数のそれぞれについて、各時間の強度からなる標本系列を求める分析手段と、
前記複数の周波数のそれぞれについて、学習時の標本系列を基準標本系列として記憶する記憶手段と、
診断時の標本系列である対象標本系列と上記基準標本系列に基づいて前記複数の周波数のそれぞれについて独立に推定される補正量または補正量系列に基づいて、前記複数の周波数のそれぞれに関する対象標本系列または基準標本系列の少なくとも何れか一方を補正する補正手段と、
前記複数の周波数のそれぞれについて、上記補正後の対象標本系列または基準標本系列と対応する基準標本系列または対象標本系列とを比較し異常度を算出するとともに、前記複数の周波数のそれぞれについて算出された異常度から総合異常度を算出し、前記総合異常度を所定の閾値と比較して判定異常度を出力する判定手段と
を備えることを特徴とする異常音診断装置。
An abnormal sound diagnosis device that obtains sound generated from a device to be inspected at the time of learning and at the time of diagnosis, compares the sound at the time of learning and at the time of diagnosis, and diagnoses sound abnormality,
Sound data acquisition means for acquiring sound data generated from the inspection target device in synchronization with the operation of the inspection target device;
From the sound data, for each of a plurality of frequencies, analysis means for obtaining a sample series consisting of the intensity of each time,
Storage means for storing a sample sequence at the time of learning as a reference sample sequence for each of the plurality of frequencies ,
A target sample series relating to each of the plurality of frequencies based on a correction amount or a correction amount series independently estimated for each of the plurality of frequencies based on the target sample series that is a sample series at the time of diagnosis and the reference sample series Or correction means for correcting at least one of the reference sample series;
For each of the plurality of frequencies, the degree of abnormality is calculated by comparing the corrected target sample series or reference sample series with the corresponding reference sample series or target sample series, and calculated for each of the plurality of frequencies . An abnormal sound diagnosis apparatus comprising: a determination unit that calculates a total abnormality degree from an abnormality degree, compares the total abnormality degree with a predetermined threshold value, and outputs a determination abnormality degree.
上記補正手段は、
前記複数の周波数のそれぞれについて独立に、対象標本系列と基準標本系列の各時間における差異を求め、両者の差異の平均が0に近づくように対象標本系列または基準標本系列を補正する構成にされたことを特徴とする請求項1記載の異常音診断装置。
The correction means is
The difference between the target sample sequence and the reference sample sequence at each time is obtained independently for each of the plurality of frequencies, and the target sample sequence or the reference sample sequence is corrected so that the average of the difference between the two approaches zero. The abnormal sound diagnosis apparatus according to claim 1.
上記補正手段は、
前記複数の周波数のそれぞれについて独立に、対象標本系列と基準標本系列の各時間における差異を求め、両者の差異の最小値が0に近づくように対象標本系列または基準標本系列を補正する構成にされたことを特徴とする請求項1記載の異常音診断装置。
The correction means is
The difference between the target sample series and the reference sample series at each time is obtained independently for each of the plurality of frequencies, and the target sample series or the reference sample series is corrected so that the minimum value of the difference between the two approaches zero. The abnormal sound diagnosis apparatus according to claim 1.
上記補正手段は、
前記複数の周波数のそれぞれについて独立に、対象標本系列と基準標本系列の各時間における差異を求め、両者の差異の分布のq分位数が0に近づくように対象標本系列または基準標本系列を補正する構成にされたことを特徴とする請求項1記載の異常音診断装置。
The correction means is
The difference between the target sample series and the reference sample series at each time is obtained independently for each of the plurality of frequencies, and the target sample series or the reference sample series is corrected so that the q quantile of the difference distribution approaches zero. The abnormal sound diagnosis apparatus according to claim 1, wherein the abnormal sound diagnosis apparatus is configured.
上記補正手段は、
前記複数の周波数のそれぞれについて独立に、対象標本系列または基準標本系列の何れか一方を平滑化し、平滑化された標本系列と他方の標本系列の差異を求め、両者の差異の平均値または最小値またはq分位数が0に近づく方向に対象標本系列または基準標本系列を補正する構成にされたことを特徴とする請求項1記載の異常音診断装置。
The correction means is
For each of the plurality of frequencies, either the target sample series or the reference sample series is smoothed, the difference between the smoothed sample series and the other sample series is obtained, and the average or minimum value of the difference between the two is obtained. The abnormal sound diagnosis apparatus according to claim 1, wherein the target sample series or the reference sample series is corrected in a direction in which the q quantile approaches zero.
上記補正手段は、
上記検査対象機器の動作と同期して音データの強度をサンプルする際の各時間における上記機器の作動状態を取得または推定または学習する手段を設け、前記複数の周波数のそれぞれについて独立に、対象標本系列または基準標本系列の補正量系列を各時間における上記機器の作動状態に応じて変化させる構成にされたことを特徴とする請求項1記載の異常音診断装置。
The correction means is
Means are provided for acquiring, estimating or learning the operating state of the device at each time when the intensity of sound data is sampled in synchronization with the operation of the device to be inspected , and independently for each of the plurality of frequencies The abnormal sound diagnosis apparatus according to claim 1, wherein the correction amount series of the series or the reference sample series is configured to change according to the operating state of the device at each time.
上記判定手段は、
判定異常度を算出する際に上記補正後の対象標本系列また基準標本系列と対応する基準標本系列または対象標本系列とから求めた前記複数の周波数のそれぞれについて独立の異常度の分散で正規化された値を前記総合異常度として用いる構成にされたことを特徴とする請求項1〜6の何れかに記載の異常音診断装置。
The determination means is
Normalization independent degree of abnormality of variance for each of the plurality of frequency target specimen series or determined from the reference sample-sequence or target specimen sequences corresponding to the reference sample sequence after the correction when calculating the determination abnormality degree The abnormal sound diagnosis apparatus according to claim 1 , wherein the measured value is used as the total abnormality degree .
JP2012067287A 2012-03-23 2012-03-23 Abnormal sound diagnosis device Expired - Fee Related JP5930789B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012067287A JP5930789B2 (en) 2012-03-23 2012-03-23 Abnormal sound diagnosis device
TW102107198A TWI481828B (en) 2012-03-23 2013-03-01 Abnormal sound diagnostic device
KR1020130026529A KR101446418B1 (en) 2012-03-23 2013-03-13 Abnormal sound diagnostic equipment
CN201310089453.1A CN103325387B (en) 2012-03-23 2013-03-20 Abnormal sound diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067287A JP5930789B2 (en) 2012-03-23 2012-03-23 Abnormal sound diagnosis device

Publications (2)

Publication Number Publication Date
JP2013200144A JP2013200144A (en) 2013-10-03
JP5930789B2 true JP5930789B2 (en) 2016-06-08

Family

ID=49194083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067287A Expired - Fee Related JP5930789B2 (en) 2012-03-23 2012-03-23 Abnormal sound diagnosis device

Country Status (4)

Country Link
JP (1) JP5930789B2 (en)
KR (1) KR101446418B1 (en)
CN (1) CN103325387B (en)
TW (1) TWI481828B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160113306A (en) * 2014-02-17 2016-09-28 미쓰비시덴키 가부시키가이샤 Abnormal sound detection device, abnormal processing-machine-sound detection system, and abnormal sound detection method

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068446A1 (en) * 2013-11-08 2015-05-14 三菱電機株式会社 Abnormal sound diagnosis device
CN104409078A (en) * 2014-12-11 2015-03-11 黑龙江真美广播通讯器材有限公司 Abnormal noise detection and recognition system
KR101663820B1 (en) * 2014-12-26 2016-10-10 주식회사 아이티매직 Method and apparatus of machine diagnosis using sound signal
WO2016125256A1 (en) * 2015-02-03 2016-08-11 三菱電機株式会社 Abnormal sound diagnosis device, abnormal sound diagnosis system, abnormal sound diagnosis method, and abnormal sound diagnosis program
KR20170051856A (en) * 2015-11-02 2017-05-12 주식회사 아이티매직 Method for extracting diagnostic signal from sound signal, and apparatus using the same
WO2017098601A1 (en) * 2015-12-09 2017-06-15 三菱電機株式会社 Deteriorated-portion estimating device, deteriorated-portion estimating method, and diagnosis system for movable object
JP5939480B1 (en) * 2015-12-25 2016-06-22 富士ゼロックス株式会社 Terminal device, diagnostic system and program
JP6268218B2 (en) * 2016-05-17 2018-01-24 ミネベアミツミ株式会社 Respiration waveform drawing system and respiration waveform drawing method
JP6842299B2 (en) * 2016-12-28 2021-03-17 三菱パワー株式会社 Diagnostic equipment, diagnostic methods and programs
JP6947219B2 (en) * 2017-09-06 2021-10-13 日本電信電話株式会社 Abnormal sound detection device, abnormal model learning device, abnormal detection device, abnormal sound detection method, abnormal sound generation device, abnormal data generation device, abnormal sound generation method, and program
JP7028625B2 (en) * 2017-12-14 2022-03-02 株式会社ジャノメ Electric press, load determination method and program
EP3760398B1 (en) * 2018-02-28 2023-06-14 Nissan Motor Co., Ltd. Abnormality detecting device and abnormality detecting method
CN108566320A (en) * 2018-03-28 2018-09-21 青岛海信智慧家居系统股份有限公司 A kind of method and electronic equipment of information reporting
CN108827456A (en) * 2018-04-27 2018-11-16 成都麦隆电气有限公司 A kind of method and system of test equipment noise
CN113015888A (en) * 2018-11-14 2021-06-22 松下知识产权经营株式会社 Sound state display method, sound state display device, and sound state display system
JP7260292B2 (en) * 2018-12-04 2023-04-18 日立グローバルライフソリューションズ株式会社 Abnormality diagnosis device and abnormality diagnosis method
JP7338188B2 (en) * 2019-03-22 2023-09-05 日本電気株式会社 Acoustic property measuring device, acoustic property measuring method, and acoustic property measuring program
JP7001200B2 (en) * 2019-06-06 2022-01-19 三菱電機ビルテクノサービス株式会社 Analysis equipment
JP2021143869A (en) 2020-03-10 2021-09-24 株式会社ジェイテクト Monitoring device and monitoring method
CN111707355A (en) * 2020-06-19 2020-09-25 浙江讯飞智能科技有限公司 Equipment operation state detection method, device, equipment and storage medium
TWI751642B (en) * 2020-08-10 2022-01-01 騰擎科研創設股份有限公司 Detection system for abnormal sound detection and cause determination
JP2022032077A (en) 2020-08-11 2022-02-25 株式会社ジェイテクト Monitoring device, sound collecting device and monitoring method
JP2022081152A (en) 2020-11-19 2022-05-31 株式会社ジェイテクト Monitoring device, sound collection device and monitoring method
CN112665705B (en) * 2020-11-27 2022-10-21 浙江大学 Distributed hearing test method
CN114688693A (en) * 2020-12-31 2022-07-01 佛山市顺德区美的电热电器制造有限公司 Method and device for detecting ambient temperature change, electronic device, and medium
CN113984191A (en) * 2021-10-27 2022-01-28 苏州微著设备诊断技术有限公司 Intelligent abnormal sound listening needle system of power equipment and diagnosis method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189524A (en) * 1982-04-30 1983-11-05 Sumitomo Heavy Ind Ltd Fault detecting device of motive engine
JPS59211831A (en) * 1983-05-16 1984-11-30 Mitsubishi Electric Corp Tone quality comparing apparatus
JPH0346342Y2 (en) * 1985-11-14 1991-09-30
JPH06160172A (en) * 1992-11-25 1994-06-07 Nkk Corp Abnormality detecting device
JP3518838B2 (en) * 1997-09-04 2004-04-12 株式会社東芝 Sound monitoring device
JP2000009527A (en) 1998-06-24 2000-01-14 Konica Corp Noise-monitoring system and cable transmission system
US6507790B1 (en) * 1998-07-15 2003-01-14 Horton, Inc. Acoustic monitor
JP4096768B2 (en) * 2003-03-13 2008-06-04 株式会社ジェイテクト Rotational accuracy measuring method and rotational accuracy measuring device
US7627441B2 (en) * 2003-09-30 2009-12-01 Rosemount Inc. Process device with vibration based diagnostics
US20050222515A1 (en) * 2004-02-23 2005-10-06 Biosignetics Corporation Cardiovascular sound signature: method, process and format
JP2005283227A (en) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd Abnormal sound inspection method and its device
JP4188890B2 (en) * 2004-08-31 2008-12-03 三菱電機株式会社 Elevator system diagnostic method and elevator system diagnostic apparatus
JP2006113002A (en) * 2004-10-18 2006-04-27 Nsk Ltd Anomaly diagnosis system for mechanical equipment
JP4103884B2 (en) 2004-11-08 2008-06-18 株式会社デンソー Abnormal sound inspection method and abnormal sound inspection apparatus
JP2006242800A (en) * 2005-03-04 2006-09-14 Institute Of National Colleges Of Technology Japan Method for finding and apparatus for sorting corbicula
CN101097835A (en) * 2006-06-29 2008-01-02 台湾积体电路制造股份有限公司 Methods of detecting an abnormal operation of processing apparatus and systems thereof
US20080002832A1 (en) * 2006-06-29 2008-01-03 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of detecting an abnormal operation of processing apparatus and systems thereof
JP2008022498A (en) * 2006-07-14 2008-01-31 Oki Electric Ind Co Ltd Network abnormality detection apparatus, network abnormality detecting method, and network abnormality detection system
CN101398827B (en) * 2007-09-28 2013-01-23 三星电子株式会社 Method and device for singing search
JP2009175077A (en) * 2008-01-28 2009-08-06 Koga:Kk Abnormal sound determination device
JP5751606B2 (en) * 2009-03-04 2015-07-22 Jfeスチール株式会社 Abnormality diagnosis system for machinery
JP5271771B2 (en) * 2009-03-30 2013-08-21 日本電産サンキョー株式会社 Abnormal sound inspection apparatus and abnormal sound inspection method
JP2010266327A (en) * 2009-05-14 2010-11-25 Denso Corp Facility diagnosis device and facility diagnosis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160113306A (en) * 2014-02-17 2016-09-28 미쓰비시덴키 가부시키가이샤 Abnormal sound detection device, abnormal processing-machine-sound detection system, and abnormal sound detection method
KR101678353B1 (en) 2014-02-17 2016-11-21 미쓰비시덴키 가부시키가이샤 Abnormal sound detection device, abnormal processing-machine-sound detection system, and abnormal sound detection method

Also Published As

Publication number Publication date
TWI481828B (en) 2015-04-21
JP2013200144A (en) 2013-10-03
TW201350804A (en) 2013-12-16
CN103325387A (en) 2013-09-25
CN103325387B (en) 2015-11-18
KR20130108123A (en) 2013-10-02
KR101446418B1 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5930789B2 (en) Abnormal sound diagnosis device
JP5783808B2 (en) Abnormal sound diagnosis device
CN109239360B (en) Reaction curve abnormity detection method and device
JP2013200143A (en) Abnormal sound diagnosis device and abnormal sound diagnosis system
JP4791093B2 (en) Passenger conveyor diagnostic equipment
EP2857917A1 (en) State diagnosing method and state diagnosing apparatus
JP6038347B2 (en) Abnormal sound diagnosis device
US20080033693A1 (en) Diagnostic device for use in process control system
US10228994B2 (en) Information processing system, information processing method, and program
US10368177B2 (en) Abnormality detecting device, abnormality detection method, and recording medium storing abnormality detection computer program
JP6103899B2 (en) Failure location estimation device
JP5106329B2 (en) Equipment abnormality diagnosis method and system
JP2020159945A (en) Abnormality diagnosis method, abnormality diagnosis device and abnormality diagnosis program for rolling bearing
JP2006220629A (en) Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery
JP5606107B2 (en) Reference value creation device and reference value creation method
JP6225079B2 (en) Air conditioner operation detection method and system
KR102566810B1 (en) Motion signal extraction system and method based on vibration signal
US6236950B1 (en) Automatic stencil generation system and method
US20230332979A1 (en) Vibration analysis system and vibration analysis method
JPWO2019123633A1 (en) Sound measurement system and parameter generation device
JP4972359B2 (en) Water leakage determination device, water leakage determination method
JP2007051982A (en) Method and apparatus for evaluating object of diagnosis
JP4349888B2 (en) Engine evaluation device
JP2007218669A (en) Device and program for detecting abnormality
JP2016030067A (en) Breath sound analysis apparatus, breath sound analysis method, computer program, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5930789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees